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Abstract: Background: There are no exact data about the prevalence of familial chylomicronemia 

syndrome (FCS) in Central Europe. We aimed to identify FCS patients using either the FCS score 

proposed by Moulin et al. or with data mining, and assessed the diagnostic applicability of the FCS 

score. Methods: Analyzing medical records of 1,342,124 patients, the FCS score of each patient was 

calculated. Based on the data of previously diagnosed FCS patients, we trained machine learning 

models to identify other features that may improve FCS score calculation. Results: We identified 26 

patients with an FCS score of ≥10. From the trained models, boosting tree models and support vector 

machines performed the best for patient recognition with overall AUC above 0.95, while artificial 

neural networks accomplished above 0.8, indicating less efficacy. We identified laboratory features 

that can be considered as additions to the FCS score calculation. Conclusions: The estimated 

prevalence of FCS was 19.4 per million in our region, which exceeds the prevalence data of other 

European countries. Analysis of larger regional and country-wide data might increase the number 

of FCS cases. Although FCS score is an excellent tool in identifying potential FCS patients, 

consideration of some other features may improve its accuracy. 

Keywords: data mining; familial chylomicronemia syndrome; FCS score; machine learning; 
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1. Introduction 

Fasting chylomicronemia may rarely be due to a monogenic disorder that markedly 

reduces the activity of lipoprotein lipase (LPL), resulting in a decreased clearance of the 

triglyceride-rich lipoproteins from plasma [1]. This condition, referred to as familial 

chylomicronemia syndrome (FCS), is characterized by severe hypertriglyceridemia and 

sustained fasting chylomicronemia, thus predisposing affected individuals to recurrent 

episodes of pancreatitis. With an estimated frequency of one per million in the population, 

FCS is usually due to the homozygous or compound heterozygous mutations of the LPL 

gene, leading to a severe lack of functioning LPL protein [2]. Although, the majority of the 

FCS patients are carriers of loss-of-function mutations in the LPL gene, similar mutations 

are found to be causal in FCS, including apolipoproteins C2 and A5 (APOC2 and APOA5, 

respectively), lipase maturation factor 1 (LMF1), glycosylphosphatidylinositol-anchored 

high-density lipoprotein-binding protein 1 (GPIHBP1) and glycerol-3-phosphate 

dehydrogenase 1 (G3PDH1) [3–6].  
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Compared to those with multifactorial chylomicronemia syndrome (MFCS), patients 

with FCS are usually younger and less likely to possess any of the aggravating factors of 

hypertriglyceridemia; however, they are more prone to develop pancreatitis on the basis 

of the sustained chylomicronemia [7]. Interestingly, FCS patients are less likely to have 

cardiovascular disease (CVD), probably because of the severe reduction in LPL activity 

reducing the formation and accumulation of the atherogenic chylomicron and very low 

density lipoprotein (VLDL) remnants [2]. With a mortality rate of 2–5%, acute pancreatitis 

is the most dangerous consequence of hypertriglyceridemia [8]. Recently, an international 

expert panel proposed an excellent and easy-to-use diagnostic tool named the FCS score 

(Table 1) for the better identification of FCS patients [6]. According to Moulin et al., the 

FCS score turned out to have a sensitivity of 88% and specificity of 85% in identifying 

individuals with “very likely FCS”.  

Table 1. Familial chylomicronemia syndrome scoring, according to Moulin et al. 

 Score 

1. Fasting TGs > 10 mmol/L for three consecutive blood analyses  +5  

     Fasting TGs > 20 mmol/L at least once  +1 

2. Previous TGs < 2 mmol/L  −5 

3. No secondary factor (except pregnancy and ethinylestradiol)  +2 

4. History of pancreatitis  +1 

5. Unexplained recurrent abdominal pain  +1 

6. No history of familial combined hyperlipidemia  +1 

7. No response (TG decrease <20%) to hypolipidemic treatment  +1 

8. Onset of symptoms at age:  

- <40 years  

- <20 years  

- <10 years 

 

+1 

+2 

+3 
Score > 10: FCS very likely; Score < 9: FCS unlikely; Score < 8: FCS very unlikely. 

Although the disease represents a great health burden, exact data are lacking about 

the frequency of the disease in Hungary and other European countries as well [6]. 

Therefore, we aimed to identify FCS patients using the above mentioned FCS score with 

data mining methods in two major hospitals of the Northern Great Plain region of 

Hungary. We also tried to assess the usability of the FCS score using various machine 

learning methods that were trained on the data of previously identified FCS patients, 

individuals likely to have FCS based on their FCS score and the total clinical population 

in Debrecen (n = 590,500). 

2. Materials and Methods 

2.1. Patients and Methods 

We obtained raw data from the hospital record system of the two leading medical 

centers of the Northern Great Plain region of Hungary including University of Debrecen 

Clinical Center (UDCC) and the County Hospital of Szabolcs-Szatmár-Bereg (CHSSB). 

Summing up eight total years, the data source contained all medical records from these 

two centers between 1 January, 2007 and 31 December, 2014. Through the servers of 

Aesculab Medical Solutions (Black Horse Group Ltd., Debrecen, Hungary), we accessed, 

cleaned, preprocessed and structured anonymous data that contained all medical records 

from these healthcare providers. As discussed previously [9], the studied population was 

considered to be representative for the regional population, therefore, the calculated 

prevalence may precisely estimate the regional prevalence of FCS. The information 

processed for the study contained three data sources as (i) laboratory data, (ii) diagnostic 

data using, and transforming to, the International Statistical Classification of Diseases and 
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Related Health Problems (ICD)-10 convention and (iii) textual data including all hospital 

appointments. Data cleaning, preprocessing steps, detailed methodologies and software 

used were described previously [9]. The feature set (feature space) for the training 

included (i) all available nominal laboratory data during the medical history with nominal 

values calculated for the same units (e.g., triglycerides above 1.7 mmol/L) and (ii) the 

medical history either available from the diagnosis or mined from the textual data and 

calculated to 5 characters of the ICD-10, (e.g., E7800). The FCS score calculations and chart 

generation were performed with open-source software solutions on the textual data 

(Appendix A). 

From the mined data, we calculated the previously proposed FCS score for each 

patient and grouped them according to the likelihood of FCS. Following data selection 

and screening, the medically evaluated data were trained with multiple machine learning 

techniques, including rectified linear unit neural networks (ReLU), adaptive boosting 

(AdaBoost), gradient boosting (XGBoost) and support vector machines (SVM). The 

training was carried out with an open source software (Appendix A) using the UDCC site 

clinical data. Tests were performed both on the trained data (with a 50–50 split) and on 

the CHSSB data as well. Labelling previously identified FCS patients as “positive” and 

individuals with no previous diagnosis of FCS as “negative”, we trained binary 

classification models on a dataset, which contained all previously identified FCS patients 

labeled as “positive”, and randomly selected patients from the remaining part of the 

clinical population labelled as “negative”. We also experimented with models trained on 

a dataset where we treated individuals likely to have FCS based on their FCS score as 

patients belonging to the “positive” label. 

2.2. About Machine Learning 

We may define the problem as a traditional binary classification as we have a finite, 

real valued descriptor and a binary label for each patient. Thus, a patient may either have 

FCS, thus labelled as “1”, or lack FCS and labeled as “0”. Based on the annotated dataset, 

several ways exist to identify relations between the features (including the elements of the 

descriptors that contain the ICD-10 diagnosis, as well as laboratory test values) and the 

known labels. In order to determine the best method for FCS classification and to 

approximate the performance of the models over the whole population, we built models 

using subsets of patients with known true labels as clinically diagnosed FCS, and 

evaluated the performance of the learned models on an independent dataset with known 

true labels. Our reasoning was based on the fundamental theory of generalization 

introduced by Vapnik and Chervonenkis in 1971 [10] and as a set of consequences of the 

theorem, which apply to all methods but a set of special neural networks. For the latter, 

we refer to Nagarajan and Kolter [11] and Devroye et al. [12]. Therefore, even if the bounds 

in the Vapnik–Chervonenkis generalization are not informative about deep neural 

networks on the first hand, there may be an underlying structure for which the theorem 

is meaningful in practice, too. There are three key rules based on the theorem, which are 

in shape with the fundamentals of data mining and machine learning: (i) prefer models 

with low complexity to provide capacity to learn any labeling [13], (ii) evaluate on an 

independent test set and (iii) use a training set as large as possible.  

To cover different but the most efficient methods, we selected three widely used 

machine learning frameworks, including tree ensembles (AdaBoost and XGBoost) [13,14], 

“shallow” neural networks with kernel functions (SVM) [15] and fully connected “deep” 

neural networks with ReLU activations [16]. In comparison to ReLU networks, tree 

ensembles methods are less powerful as a function approximation technique, while the 

smaller capacity helps in the case of small datasets like ours or non-spatiotemporal 

structural variables, when there are no previously known reoccurring structures over the 

features. The order of the features is arbitrary in our study as they do not form rigid 

structures, hence, we used the only viable option and adopted fully connected artificial 
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neural networks. Tree ensembles and kernel-based methods are not sensitive to the order 

of the features. 

Tree ensembles build a set of “weak” classifiers from small, almost random decision 

trees. There are several methods to determine the set of decision trees and their 

importance e.g., random forest [17], adaptive boosting [13] or gradient boosting machines 

[14]. In the case of the neural networks, we built fully connected deep networks with ANN 

(artificial neural network) that were trained using ReLU as activations, and the parameters 

were optimized with adaptive momentum [18]. Finally, SVM models were trained with 

various kernel functions, including linear, polynomial or radial basis functions. Table 2 

indicates the best performing methods per class.  

Table 2. Classification performance of models trained on FCS. 

Training Set Test Set Method Exp. 
Mean 

AUC 

Std 

AUC 

Mean 

ACC 

Std 

ACC 

Mean 

Sens. 

Std 

Sens. 

Mean 

Spec. 

Std 

Spec. 

50% Exam. Ind. 50% Exam. ReLU  30 0.735 0.064 0.895 0.024 0.212 0.160 0.950 0.029 

  SVM 30 0.792 0.054 0.927 0.013 0.0 0.0 0.999 0.001 

  ADA 30 0.770 0.053 0.902 0.014 0.110 0.121 0.970 0.023 

  XGB 30 0.810 0.042 0.909 0.018 0.070 0.104 0.976 0.025 

50% Exam.  
Ind. 50% Exam. UDCC 

5000 patients w/o FCS 
ReLU  30 0.599 0.088 0.857 0.112 0.237 0.184 0.859 0.113 

  SVM 30 0.872 0.057 0.998 0.001 0.0 0.0 0.999 0.001 

  ADA 30 0.824 0.092 0.996 0.002 0.110 0.121 0.999 0.002 

  XGB 30 0.871 0.074 0.997 0.001 0.070 0.104 0.999 0.001 

50% Exam. & 

UDCC 1000 

patients w/o 

FCS 

Ind. 50% Exam. UDCC 

5000 patients w/o FCS 
ReLU  30 0.906 0.041 0.997 0.001 0.245 0.142 0.999 0.011 

  SVM 30 0.955 0.024 0.999 0.001 0.0 0.0 0.999 0.001 

  ADA 30 0.923 0.051 0.996 0.002 0.110 0.121 0.999 0.001 

  XGB 30 0.982 0.015 0.997 0.001 0.091 0.096 0.999 0.001 

XGBoost (XGB) and AdaBoost (ADA) were trained with the default setup for every tree. For SVM, 

the chosen kernel was normalized Radial Basis Function (RBF) [14]. ReLU networks were optimized 

with Adam [18]. The networks contained five hidden layers, each with default units. 

Besides sensitivity, specificity and accuracy, the most important metric is area under 

the receiver operating characteristic curve (ROC AUC) as an evaluation method for our 

binary classification method. Sensitivity is measured as the proportion of true positives in 

patients with FCS, while specificity describes the proportion of true negatives in patients 

without FCS. Accuracy is the proportion of the total number of patients that are correctly 

identified in the studied population. ROC curve is defined by the point pairs of true 

positive rates (sensitivity) and false positive rates (1 minus specificity) at different 

threshold settings. AUC can be interpreted as the probability of classifying a positive 

sample with higher confidence than a negative sample. 

It is important to note that, based on the trees learned by a gradient boosted tree 

model, it is possible to rank the features using their position in the trees. There are multiple 

methods ranging from the simple count of occurrence to a complex subset identification 

that may yield a generously good ranking of the features. We relied on a weighted version 

of the former, most commonly used method [19]. Additionally, the order of the trees 

learned during the boosting phase is of utmost importance, thus, we decided to 

investigate the learnings of the first couple of trees learned by the model. 
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3. Results 

Based upon the features of the previously proposed FCS score, we calculated the 

score of each individual that visited the two major healthcare providers in our region 

during the study period (n = 1.341.722; mean age: 38.12 ± 23.37 years, male/female: 

602.258/739.464; 45/55%). Patient characteristics and their calculated FCS score are listed 

on Table 3. We identified a total of 26 patients very likely with FCS (score ≥ 10). These data 

suggest that FCS might be more frequent, at least in our region, with an estimated 

prevalence of 19.4 per million. 

Table 3. Calculated familial chylomicronemia (FCS) scores of patients visiting medical providers in 

the Northern Great Plain area of Hungary (pcm = 1:100,000; ppm = 1:1,000,000). 

Cluster 
FCS 

Score 

Male 

Patients 

Female  

Patients 

Total 

Patients 

Percentage of 

Patients 

Highly 

unlikely FCS 

0+ 
602.258 

(45%) 
739.464 (55%) 1.341.722 100% 

1+ 5.612 (56%) 4.334 (44%) 9.946 7.41‰ 

2+ 1.659 (75%) 558 (25%) 2.217 1.65‰ 

3+ 1.441 (75%) 493 (25%) 1.934 1.44‰ 

4+ 1.307 (74%) 461 (26%) 1.768 1.32‰ 

5+ 1.272 (74%) 453 (26%) 1.725 1.29‰ 

6+ 909 (78%) 254 (22%) 1.163 8.67‱ 

7+ 705 (79%) 182 (21%) 887 6.61‱ 

Unlikely FCS 
8+ 298 (82%) 67 (18%) 365 2.72‱ 

9+ 56 (81%) 13 (19%) 69 5.14 pcm 

Likely FCS 
10+ 17 (77%) 5 (23%) 22 1.64 pcm 

11+ 3 (75%) 1 (25%) 4 2.98 ppm 

For a rapid estimation of FCS scores, we gradually cut down data based on some 

strong key features of the score system to estimate the number of the patients that fell into 

the three major categories of “highly unlikely FCS”, “unlikely FCS” and “likely FCS”. As 

FCS is a disease characterized by serum triglyceride (TG) levels, we chose features which 

contributed markedly to the FCS score and were easily measurable with less subjectivity 

(Figure 1). 
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Figure 1. Flowchart of the rapid estimation of familial chylomicronemia (FCS) score. 

Therefore, we took patients with fasting TG levels exceeding 10 mmol/L for three 

consecutive cases (+5 points) and those who never had TG levels less than 2 mmol/L (thus 

avoiding the −5 points), and added those patients who had no secondary causes such as 

diabetes mellitus, metabolic syndrome, hypothyroidism, corticosteroid therapy or alcohol 

abuse (+2 points). To further enhance this estimation of FCS scores and find those that 

potentially live with undiagnosed FCS, we added key features of fasting TG levels 

exceeding 20 mmol/L at least once (+1 point), symptoms below 40 years (+1 point) and 

positive history of pancreatitis (+1 point). Key features in the two major healthcare 

providers (UDCC and CHSSB) for FCS score estimation and the number of the patients 

falling into the score categories are represented on Table 4, respectively. Some intra-

regional difference was detectable as we estimated the prevalence of “likely FCS” to be 

8.47 per million in UDCC and 5.32 in CHSSB, respectively. 

Table 4. Familial chylomicronemia (FCS) score estimation on key features. 

A. FCS score estimation on key features (UDCC, all patients *) 

Cluster Feature FCS Score 
Number of 

Patients 

Percentage of 

Patients 

Highly 

unlikely FCS 

Clinical site patients 0+ 590.500 100% 

TG 10+ mmol/L and 

TG never 2- mmol/L 
5+ 665 1.13‰ 
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No secondary 

medical factors ** 
7+ 275 4.67‱ 

Unlikely FCS 

TG 20+ mmol/L at 

least once 
8+ 85 1.44‱ 

Symptoms below age 

40 
9+ 24 4.06 pcm 

Likely FCS 
Treated with acute 

pancreatitis 
10+ 5 8.47 ppm 

B. FCS score estimation on key features (CHSSB, all patients *) 

Cluster Key Condition FCS Score 
Number of 

Patients  

Percentage of 

Patients 

Highly 

unlikely FCS 

Clinical site patients 0+ 751.624 100% 

TG 10+ mmol/L and 

TG never 2− mmol/L 
5+ 1.046 1.39 ‰ 

No secondary 

medical factors ** 
7+ 501 6.67‱ 

Unlikely FCS 

TG 20+ mmol/L at 

least once 
8+ 93 1.23‱ 

Symptoms below age 

40 
9+ 20 2.66 pcm 

Likely FCS 
Treated with acute 

pancreatitis 
10+ 4 5.32 ppm 

(A): * Patients who visited University of Debrecen Clinical Center (UDCC) at least once between 

2007–2014; ** diabetes, metabolic syndrome, hypothyroidism, corticosteroid therapy, alcohol abuse. 

(B) * Patients who visited County Hospital of Szabolcs-Szatmár-Bereg (CHSSB) at least once 

between 2007–2014; ** diabetes, metabolic syndrome, hypothyroidism, corticosteroid therapy, 

alcohol abuse. 

As with the total population, we also calculated FCS score for every single patient 

available in the hospital database, separately in the two medical centers (Table 5, 

respectively). Based on our results, the calculated prevalence of FCS is 27.11 per million 

in the Debrecen (UDCC) region and 13.3 per million in the Nyíregyháza (CHSSB) region. 

Overall, male patients had a 4 to 5 times increased chance for a “likely FCS” than females. 

The magnitude of the number of patients with a calculated FCS score of 10+ (“likely FCS”) 

was comparable with the estimated prevalence when checking the patients individually. 

Table 5. Familial chylomicronemia (FCS) score calculation of individual patients. 

Cluster 
FCS 

Score 
Males (n) Females (n) Total (n) Percentage 

A. FCS score calculation of individual patients (UDCC, all patients *) 

Highly unlikely 

FCS 

0+ 251.949 (43%) 338.149 (57%) 590.098 100% 

1+ 2368 (53%) 2.108 (47%) 4.476 7.59‰ 
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2+ 589 (74%) 208 (26%) 797 1.35‰ 

3+ 538 (73%) 198 (27%) 736 1.25‰ 

4+ 506 (73%) 188 (27%) 694 1.18‰ 

5+ 490 (73%) 183 (27%) 673 1.14‰ 

6+ 340 (76%) 107 (24%) 447 7.58‱ 

7+ 250 (78%) 71 (22%) 321 5.44‱ 

Unlikely FCS 
8+ 110 (77%) 32 (23%) 142 2.41‱ 

9+ 31 (82%) 7 (18%) 38 6.44 pcm 

Likely FCS 
10+ 10 (77%) 3 (23%) 13 2.20 pcm 

11+ 2 (67%) 1 (33%) 3 5.08 ppm 

B. FCS score calculation of individual patients (CHSSB, all patients *) 

Highly unlikely 

FCS 

0+ 350.309 (47%) 401.315 (53%) 751.624 100% 

1+ 3.244 (59%) 2.226 (41%) 5.470 7.28‰ 

2+ 1070 (75%) 350 (25%) 1.420 1.89‰ 

3+ 903 (75%) 295 (25%) 1.198 1.59‰ 

4+ 801 (75%) 273 (25%) 1.074 1.42‰ 

5+ 782 (74%) 270 (26%) 1.052 1.40‰ 

6+ 569 (79%) 147 (21%) 716 9.53‱ 

7+ 455 (80%) 111 (20%) 566 7.53‱ 

Unlikely FCS 
8+ 188 (84%) 35 (16%) 223 2.97‱ 

9+ 25 (81%) 6 (19%) 31 4.12 pcm 

Likely FCS 
10+ 7 (78%) 2 (22%) 9 1.19 pcm 

11+ 1(100%) 0 (0%) 1 1.33 ppm 

(A) * Patients who visited University of Debrecen Clinical Center (UDCC) at least once between 

2007–2014. (B) * Patients who visited County Hospital of Szabolcs-Szatmár-Bereg (CHSSB) at least 

once between 2007–2014. 

As our estimated prevalence turned out to be one order of magnitude higher than 

the literature data, we decided to evaluate thoroughly those patients of UDCC with an 

estimated 7+ score (n = 275, see Table 3). Therefore, all patients of this medical center with 

an estimated score falling into “unlikely FCS” and “likely FCS” diagnoses underwent a 

detailed evaluation of their medical history, TG levels and clinical signs in order to find 

those with undiagnosed FCS. During this data revision, we identified 7 patients with FCS 

and, without genetic testing, marked an additional 14 individuals with potential FCS. 

These data indicate an estimated prevalence of 11.8–35.6 FCS patients per million, which 

is a similar magnitude to our calculation detailed above. 

Then we utilized machine learning, which was trained and tested on the UDCC 

dataset to identify those FCS patients who had ever been hospitalized. As trained data, 

we used the above mentioned 7 confirmed and 14 potential FCS patients against those 
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who scored 7+ in the FCS score system and against random individuals. The results of the 

mathematical modeling are depicted on Table 2, while model parameters are detailed in 

Appendix B. During classification, boosting models (i.e., AdaBoost and XGBoost) 

performed most successfully in terms of ROC/AUC measures, tightly followed by support 

vector machines. Deep neural networks lagged behind, notably in terms of overall 

performance.  

Table 6 shows the summarized importance of conditions of the history in defining 

FCS, using all model trainings. To evaluate the accuracy of the FCS score, we trained these 

confirmed and potential FCS patients vs. patients with 7+ FCS score. Individual laboratory 

measurements were mined from the medical histories of the patients with no absolute 

values assigned to them. The parameters were ranked by the mathematical models from 

0 to 100, where the value of 100 indicates the most important condition in decision making. 

Our results confirmed the foundational importance of the TG levels, as (i) the highest TG 

level and (ii) the average TG level were found to be the most important features, while 

(iii) conditions characterizing deviations in the TG concentrations (i.e., TG fluctuation, as 

well as highest and lowest TG levels) were also among the top conditions of the history. 

Cholesterol level also turned out to be a substantial feature in defining FCS. These 

conditions are the most important ones to distinguish FCS patients from those with no 

FCS but high FCS score.  

Table 6. Importance of conditions of the history in defining FCS, using all model trainings 

(expressed in relative importance scores, in the fractions of the most important features). 

Confirmed and Potential FCS Patients  

vs. Patients with FCS Score of 7+ 

Confirmed and Potential FCS Patients  

vs. Random Individuals 

Condition Importance Condition Importance 

Highest triglyceride 100 Average triglyceride 100 

Average triglyceride 50 Highest triglyceride 70 

Average cholesterol 25 Lowest triglyceride 40 

Triglyceride fluctuation 20 Triglyceride fluctuation 35 

Lowest triglyceride 17 Average cholesterol 30 

Lowest carbamide 16 Highest cholesterol 25 

Highest cholesterol 15 Lowest cholesterol 15 

Average hemoglobin 14 Cholesterol fluctuation 15 

Lowest glucose 12 Average hemoglobin 10 

Average alkaline phosphatase 10 Glucose fluctuation 10 

To find the most important conditions and decisive laboratory cut values that can be 

used for population screening, we also trained machine learning using the data of the 

confirmed and potential FCS patients vs. all patients (Table 7). The cut values do not make 

distinction between their absolute importance but help the clinicians to get closer or away 

from the likelihood of FCS. Altogether, we found that patients may be identified based 

upon their highest and lowest TG levels, average TG levels and TG level deviations, as 

well as the highest and lowest total cholesterol concentrations and the deviations of the 

total cholesterol level. We also identified other parameters that may help to find 

individuals with potential FCS, as increasing hemoglobin, MCHC, basophil granulocyte, 

lymphocyte, or amylase above the cut levels raised the probability of FCS. On the other 

hand, elevated GPT, GGT, glucose, sodium and creatinine measurement cut levels 

decreased the chance of FCS. Interestingly, we also found that inflammatory markers as 

WBC and CRP, as well as the amylase activity had a negative impact on the probability of 

FCS. 
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Table 7. Summary of the most decisive laboratory value cuts in machine learning models and their 

impact on getting closer to (+) or away (−) from likelihood of FCS. 

Laboratory Parameter Cut (>) Impact 

Triglyceride 30 mmol/L + 

Triglyceride 18 mmol/L + 

Triglyceride 6.5 mmol/L + 

Cholesterol 11 mmol/L − 

Cholesterol 6.5 mmol/L + 

Cholesterol 4.0 mmol/L + 

Hemoglobin 95 g/L + 

MCHC 330 (g/L) + 

Amylase 20 U/L + 

Basophile granulocyte 0.6% + 

Lymphocyte 20% + 

Sodium 145 mmol/L − 

White Blood Cell 6.5 G/L − 

Neutrophile granulocyte 65% − 

GPT 15 U/L − 

GPT 200 U/L − 

GGT 35 U/L − 

GGT 350 U/L − 

Creatinine 68 µmol/L − 

CRP 5.0 mg/L − 

Glucose (fasting) 6.0 mmol/L − 

4. Discussion 

We suspected the regional frequency of FCS to be 19.4 per million among hospital 

goers, which exceeds the estimated worldwide prevalence of 1 per million [20]. As FCS is 

considered to be a rare disease, recent data indicate higher frequency of the disease when 

using larger cohorts. Indeed, reviewing the data of more than 1.5 million patients, 

Pallazola et al. found an FCS prevalence of 13 per million among the patients of a 

quaternary medical center [21]. On a smaller dataset of thirty thousand children, the 

prevalence of type 1 hyperlipoproteinemia (i.e., familial chylomicronemia syndrome) was 

estimated to be about 1 in 300,000 [22]. It is important to emphasize that we studied a 

population that was treated or checked in a hospital, which might have contributed to the 

variance of the disease prevalence. Though falling into the same magnitude, we also 

found the FCS prevalence to be different between the medical providers, either estimated 

with using key features of the disease or calculated individually in each patient. These 

discrepancies are presumably due to the different levels of care and the covered territories 

of the medical providers (university hospital vs. county hospital). Indeed, with its various 

lipid/metabolic disease outpatient clinics, our university hospital accepts patients from 

the county hospital, as well. More targeted history taking, wider diagnostic and laboratory 

availabilities may also explain our prevalence results after revisiting the university 

hospital data. Besides indicating the usability of our methods in distinct populations, our 

findings highlight the need of the specialist’s expertise in recognizing FCS. 

The diagnosis of FCS is largely based upon genetic analysis and post-heparin LPL 

activity assay [7]. Recently, an expert panel of lipidologists proposed a very practical FCS 

scoring system for the better identification of patients with this rare, inherited disease [6]. 

A solid advantage of the FCS score is the strong reliance on the exact serum triglyceride 

measurements. Indeed, the selection of the potential patients can be reduced to 1–2‰, if 

studying those with TG levels exceeding 10 mmol/L for three consecutive occasions and 
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never below 2 mmol/L (as indicated on Table 4). Adding the other strong and measurable 

condition (TG levels exceeding 20 mmol/L at least once) cut down the patient selection to 

the zone of ten thousandths (‱).  

On the other hand, we realized that patients with the highest FCS scores are not 

necessarily the similar ones that we diagnosed. That can be due to incomplete history 

taking (e.g., missing targeted questions on conditions aggravating hypertriglyceridemia), 

which can hamper proper diagnosis [23]; therefore, FCS scoring seems to be perfect when 

all such secondary factors can be excluded by the dedicated physician, while there could 

be an area for improvement when approaching FCS score on a larger, automatized level. 

Machine learning, however, may serve as a helpful tool to better identify rare 

diseases when using larger datasets [9,24]. Trained and tested on the UDCC data, we also 

tried to find those FCS patients who, with any diagnosis, had ever been hospitalized in 

our university hospital. We found gradient boosting and SVM to be the most successful 

in terms of ROC/AUC measures. Contrary to neural networks, these boosting-based 

models were more useful to find those with FCS. Our investigations on laboratories 

indicated that mild-to-moderate or very high TG concentration cuts further improve 

identifying potential FCS patients, even when peaking above 20 mmol/L. Interestingly, 

total cholesterol level may also be a promising asset to improve identification. The role of 

cholesterol, however, seems to be more complex, as the likelihood of FCS decreases below 

4 mmol/L and above 11 mmol/L. In other words, patients with low or with very high 

cholesterol levels should not be considered to have FCS, which indicates the importance 

the triglyceride-rich lipoprotein cholesterol and the intimate interplay between 

cholesterol and triglyceride metabolism [25].  

On the other hand, we found several metabolic parameters including liver 

transaminases and serum glucose, whose increased activities or concentrations affected 

negatively the probability of FCS. These findings might be due to the common presence 

of insulin resistant conditions as obesity, type 2 diabetes mellitus and non-alcoholic fatty 

liver disease (NAFLD) among hospital goers and are concordant with the recent report of 

Paquette et al., who found higher activities of gamma-glutamyl transferase (GGT) in 

MFCS compared to FCS [7]. Of note, although occurring in both FCS and MFCS patients, 

NAFLD was observed to be significantly less frequent in patients with familial 

chylomicronemia syndrome [26]. 

Interestingly, we found that elevated amylase activity had a negative impact on FCS 

probability, which indicates a high prevalence of such laboratory findings in the studied 

population. Longitudinal studies on well-characterized patient populations, however, 

confirmed the higher incidence of acute pancreatitis in FCS patients [27]. These 

investigations may also shed light on cardiovascular outcomes in these subjects, as well. 

Nevertheless, besides indicating the potential existence of multifactorial backgrounds, our 

findings may also help to increase FCS awareness, as higher glucose levels or 

transaminase activities decrease the probability of FCS.  

Limitations also exist in our study. Hospital goers represent a population that differs 

from the normal population; therefore, our calculations might overestimate the frequency 

of the disease. Although we could study a relatively large cohort of patients, it did not 

directly represent the total population in our region, as not 100% of the population goes 

to hospital each year. Also, we were unable to assess the data about family history and 

did not perform genetic testing to diagnose FCS. Verifying the existence of confirmed or 

potentially pathogenic mutations in LPL or other genes modulating lipoprotein lipase 

activity would have contributed to improve identification of potential FCS patients in the 

studied population. Genetic analysis of gene variants with triglyceride-lowering effect 

would also have modified our results. In addition, hospital goers tended to be older and 

checked more frequently. On the contrary, younger patients usually had less thorough 

laboratory examinations and their history was less detailed and asked less frequently. 

Such tendencies bias the identification of FCS patients towards the elderly. Additionally, 

a larger population is needed to define those exact cuts in cholesterol levels that could 
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improve FCS scoring. Although our machine learning models found their impact on the 

likelihood of FCS, the real-life importance of the other laboratory parameters should also 

be addressed in future studies. While machine learning may overestimate the incidence 

of FCS, it also may help to reduce the number of those individuals that would require 

expensive and time-consuming genetic analysis. 

5. Conclusions 

Using the previously proposed FCS scoring based on a large hospital database, we 

found an increased prevalence of familial chylomicronemia syndrome in our region. Data 

mining and machine learning seem to be promising tools in screening for FCS; however, 

further studies on larger, national or international datasets are of major importance to 

prove their accuracy and usefulness. Also, an analysis of larger populations might 

increase the number of discovered FCS cases. 

Although FCS scoring is an easy-to-use tool to set FCS and MFCS apart, “fine tuning” 

of the features and inclusion of the total cholesterol levels may be considered to better 

identify FCS patients. Although the weight of cholesterol levels in the score has to be 

determined, this may alleviate the need for systematic genotyping in patients with severe 

hypertriglyceridemia and would also help identify the high-priority candidates for 

genetic analysis. Furthermore, early and accurate diagnosis is essential for effective 

treatment to avoid severe, life-threatening complications of FCS. 
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Appendix A 

For the analysis of the textual data, we utilized Python 3.8.x 

(https://www.python.org, Python Software Foundation, Beaverton, OR, USA, accessed on 

12 February 2022) packages: Pandas 1.2.x (https://pandas.pydata.org, open sourced, 

accessed on 12 February 2022), Numpy 1.18 (https://numpy.org, open sourced, accessed 

on 12 February 2022), cython 0.29 (https://cython.org, open source, accessed on 12  

https://www.python.org/
https://pandas.pydata.org/
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February 2022), Natural Language Toolkit (NLTK) 3.4.5 (https://www.nltk.org, open 

source, accessed on 12 February 2022) and scikit-learn 0.23 (https://scikit-learn.org, open 

source, accessed on 12 February 2022).  

Appendix B 

For AdaBoost, SVM we used the implementations in scikit-learn 0.23 (https://scikit-

learn.org, open source, accessed on 12 February 2022), while for ReLU networks we used 

PyTorch 1.6 (https://pytorch.org, open source, accessed on 12 February 2022) and XGBoost 

1.2.1 (https://xgboost.readthedocs.io/en/latest/, open source, accessed on 12  February 

2022) to train gradient boosted trees. We report the best results we found during the 

parameter search. 
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