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Abstract 
 
The relationship between blistering, H content and de-passivation of the dangling bonds 

has been studied in annealed hydrogenated a-Si/a-Ge superlattice (SL) nanostructures 

grown by RF sputtering. Measurements have been carried out by ERDA, IR absorbance 

and AFM. By comparison with parallel investigations on a-Si and a-Ge single layers it 

has been established that the bubbles causing blistering in the annealed SLs very likely 

start to grow in the Ge layers of the SL because H is released from Ge much earlier than 

from Si. It is shown that the H forming the bubbles is only a fraction of the H liberated 

during the annealing. 
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1 . Introduction 
 

Its single-electron atomic structure and small covalent radius makes hydrogen the 

ideal element to passivate dangling bonds in semiconductors, either crystalline or 

amorphous, like Si, Ge and SiGe. By such neutralization of the dangling bonds much 

better electro-optical characteristics are gained. The properties of hydrogenated a-Si, a-

Ge and a-SiGe are currently deeply investigated [1-4] because of their promising 

employment in many devices, like solar cells, IR detectors and because of the many still 

unsolved issues. Among the latter ones, the behaviour of H is not fully understood and 

predictable when the above materials are submitted to illumination or thermal treatment 

[5, 6]. A huge literature exists on a-Si and a-SiGe alloy, but not so much for a-Ge and a-

Si/a-Ge superlattice nanostructures. The latter ones can be candidate to form the a-SiGe 

alloy by annealing them so as to intermix Si and Ge and create the alloy [7, 8]. In this 

work we report on the effect of annealing on the properties of hydrogenated a-Si/a-Ge 

superlattice nanostructures deposited by RF sputtering. Results on annealed 

hydrogenated single layers of a-Si and a-Ge are also presented as they turned out to be 

useful to interpret the behavior of H in the superlattices. 

 
 
2 . Experimental 

 
The hydrogenated a-Si/a-Ge superlattice (SL) nanostructures were deposited by 

RF sputtering in a conventional high vacuum sputtering apparatus (Leybold Z400), 

operated at 5⋅10-5 Pa or less. High purity crystalline silicon and germanium targets were 

used set at 50 mm far from the polished (100) Si substrate. Sputtering was done with a 

mixture of high purity argon and hydrogen gases. Growth rate was 6.3 and 13.5 nm/min 

for a-Si and a-Ge, respectively. The SLs consisted of fifty couples of alternating a-Si 
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and a-Ge layers, 3 nm thick each, yielding a SL thickness of 300 nm. Hydrogenation 

was achieved by letting H flow into the sputtering chamber during the whole deposition 

period. H flow rates were 0.4, 0.8, and 1.5 ml/min. The samples were annealed in high 

purity (99.999%) argon at 350 °C or 400 °C for 1, 4 and 10 hours. Single, 40 nm thick, 

layers of a-Si and a-Ge were also grown, under the same conditions, to measure the H 

incorporation efficiency. 

The samples were analysed by STEM (Scanning Transmission Electron 

Microscopy) in the HAADF (High Angle Annular Dark Field) mode, ERDA (Elastic 

Recoil Detection Analysis), AFM (Atomic Force Microscopy) and Infrared (IR) 

Absorption. For STEM-HAADF in a JEOL 2200 FS machine the SLs were prepared in 

cross-sectional view by assembling a piece of a sample in a sandwich between 2 Si 

slabs. The sandwich was then mechanically ground down to 40 µm and finally thinned 

to electron transparency by Ar ion beam bombardment at 5-3 kV and 3.5 mA. For 

ERDA the 1.6 MeV 4He+ beam available at the 5 MeV Van de Graaff accelerator of 

Budapest was applied to measure the H in the samples. The recoiled H signal was 

collected by an Si detector placed at 10° detecting angle with regard to the beam 

direction, with the sample tilted 85o to the normal. A 6 µm thick Mylar foil placed in 

front of the ERDA detector stopped the forward scattered He ions, so that the ERDA 

spectra for H were almost background-free. Low ion current ( ˜ 6 nA) was used to avoid 

beam heating. Evaluation of ERDA spectra was done by RBX program developed by 

Kótai [9]. A VEECO Dimension 3100 in tapping mode was employed for the AFM 

analysis. IR absorbance gave information on how H bonds to Si and Ge before and after 

annealing. An Oriel Cornerstone instrument was used. 
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3 . Results and discussion 

 
The as-sputtered SLs and single layers were amorphous as checked by electron 

diffraction in the TEM [10]. No area of the crystalline Si substrate was amorphous 

confirming that the amorphous state was not caused by the ion beam thinning. The 

samples remained amorphous after annealing [10], as could be expected because the 

used annealing temperatures were ≤ 400 °C, i.e., below the crystallization temperature 

of Ge, which is 450-475 [11] or 490 °C [12], and of Si, which is 700-725 [11] or 740 °C 

[12]. The H incorporation in a-Si and a-Ge as a function of the H flow rate was 

determined by ERDA measurements on the unannealed single layer samples. The 

ERDA results of this calibration are shown in Fig. 1. H is incorporated more than twice 

more efficiently in a-Si than in a-Ge. The H content exhibits an asymptotic behaviour at 

the highest H flow rates reaching a value of ˜17 at % and ˜ 7 at % for a-Si and a-Ge, 

respectively, at the H flow rate of 1.5 ml/min. 

Fig. 2 a) is the STEM-HAADF image of the bottom part of an SL nanostructure on 

the substrate side. A HAADF image is formed by collecting the incoherently scattered 

electrons at high angles (Rutherford scattering) [13, 14]. Single atoms scatter 

incoherently and the image intensity is the sum of individual atomic scattering 

contributions [15]. The HAADF intensity turns out to be proportional to Z2, with Z the 

atomic number [13, 14, 16]. Ge layers appear thus brighter than the Si ones. The layer 

thickness from Fig. 2 a) averaged over some FWHMs of intensity profiles across the 

layers turned out to be 2.97 (± 6%) nm for both types of layer, in good agreement with 

expected values. 
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The unannealed SLs did not show any structural modification upon annealing with 

an RMS roughness of 0.193 nm. Structural modifications in the shape of blistering was 

instead observed in the annealed hydrogenated SLs, with formation of surface bubbles 

by plastic deformation whose density and size increased with increasing H content, for 

the same annealing conditions [17]. A typical surface image of an annealed SL is given 

in Fig. 2 b). Bubble height is on the order of some tens of nm whist the lateral size is on 

the order of a few µms. Along with such structural surface degradation a change of the 

H bonding configuration to Si and Ge also occurs as detected by IR absorbance 

measurements. Fig. 3 illustrates the case of an SL hydrogenated at a flow of 1.5 ml/min 

and annealed at 400 °C for 1 and 10 h. In the as-deposited, unannealed layer (spectrum 

C1) H is bonded to Ge and Si as monohydride as shown by the peaks at 1880 cm-1 and 

at 2010 cm-1, respectively, which are the fingerprints of such bonds [18-21].  The shape 

of the Si-H peak indicates that the peak of the Si di-hydride bond, Si-H2, at about 2140 

cm-1 could also exist hidden in the tail of the Si-H peak at high wave numbers. The shift 

with respect to the standard value of 2100 cm-1 can be due to the presence of (Si-H2)n 

poly-hydrides [18, 19] or to a possible contamination of the hydrides by oxygen [19]. 

Upon  increasing the annealing time the Si-H and Ge-H bonds progressively break until 

they almost completely disappear for the annealing time of 10 h (spectra C2 and C3 in 

Fig. 3). The destruction of the Ge-H bonds is already complete after 1 h, i.e. it is much 

faster than that of the Si-H bonds. H is totally released from Ge already after 1 h 

annealing. Annealing thus liberates H to the lattice. This suggests that the bubbles are 

due to local accumulation of free H. 

Surface blistering due to bubbles was also observed in the single layers of a-Si and a-

Ge. For the highest H content and most severe annealing conditions applied to the single 
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layers (1.5 ml/min, 350 °C, 4 h) it was observed that in the a-Ge layers the bubbles have 

transformed into craters, i.e. they blew up because of a high internal gas pressure, while 

they did not significantly undergo such transformation in a-Si (Fig. 4). This allows to 

conclude that in a-Ge hydrogen release and formation of H bubbles is more efficient and 

occurs at an earlier time, with consequent earlier explosion, than in a-Si. For crystalline 

materials both the yield strength and the ultimate tensile strength are smaller in Ge than 

in Si [22, 23]. Vandeperre et al. have shown that for the yield strength this is also true at 

temperatures higher than RT, namely in the 350-400 °C range [23].  In the amorphous 

phase the above strengths should be lower [24]. The anticipated rupture of the Ge layer 

has thus also to be partially ascribed to the lower mechanical strength of the Ge lattice 

with respect to Si. Therefore, blistering of the a-Si/a-Ge superlattice nanostructures very 

likely primarily starts by accumulation of H liberated from the Ge atoms. Nucleation 

sites for the growth of the bubbles are expected to be nanocavities present in the 

amorphous phase [18, 25]. 

The ERDA results of Fig. 5 show that the H (at%) remained in the single layers 

after annealing decreases with respect to the one before to an extent that depends on the 

annealing time and initial H content, for the same temperature.  In a-Ge such decrease is 

very great (≥ ˜ 85 at%) even after 1 h annealing whereas for a-Si that percentage is in 

the 35-45% range. This is certainly due to the opening of many craters in a-Ge (Fig. 4) 

through which H largely escapes out. It is expected that in the superlattice samples the 

H escaped from the Ge layers could remain inside the superlattice as isolated H or 

gathered into the bubbles because of the presence of the Si layers which have a higher 

mechanical strength.  
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The amount of H in the bubbles in the case of Si single layers can be evaluated with 

the model of lenticular crack proposed by Wan et al. [26]. The much smaller height of 

the bubbles with respect to their lateral size suggests that they may have a lenticular 

shape (Figs. 2b) and 4). The pressure P inside the bubble is then given by [26]  

 

  P = 16Ehd3 / 3(1-ν2)R4    (1) 

 

where E is Young modulus, ν Poisson ratio, h the height of the bubble, R its radius and 

d the thickness of the layer. The relevant data for the Si single layer of Fig. 4 b) are : 

E=130 GPa, ν = 0.28, h=250 nm, d=40 nm, R=0.7 µm. The latter 3 values are average 

ones. For E several values have appeared in the literature (see e.g. [27]) ranging roughly 

from 100 to 200 GPa. Here the values found by Wertman and Evans for E and ν  have 

been chosen [28, 29]. With such values the pressure in a bubble is P = 50 MPa = 50 

J/cm3. The number N of gas molecules in a bubble is given by the gas law,  

PV = NkT     (2) 

with k the Boltzmann constant, T the temperature and V the average bubble volume. 

Since the craters, i.e. exploded bubbles, are as deep as the whole layer (as deduced from 

AFM height profiles across craters, not shown here) and do not expand into the 

substrate, it is assumed that a bubble is a buckling of the whole deposited layer, i.e. that 

the layer has delaminated in that position. Therefore, for V half the value given by Wan 

[26], i.e.  V = ½ (½πhR2), is employed here since a semi-lenticular shape, rather than a 

full lenticular one, better describes our bubbles. For T = 350 °C it is N = 5.60 .108. The 

density of the bubbles in the sample of Fig. 4 b) is ρ = 2.24.106  cm-2. The density N of 

the H2 molecules filling all the bubbles in the layer is then N = N ρ /d = 3.125.1020 cm-

3. 
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From Fig. 5 the H present in the Si single layer hydrogenated at the flow of 1.5 

ml/min after annealing for 4 h at 350 °C is 9.9 at %. By taking the atomic density of 

amorphous Si as the one of crystalline Si (5.1022 cm-3) [30] reduced by 1.8 % [18], it 

turns out that the density of the H atoms remained in the a-Si single layer is 4.86.1021 

cm-3. The total amount 2N of H atoms trapped in the bubbles is therefore 12.9 % of the 

H remained in the layer after annealing.  The rest of the unbound H atoms should stay 

dispersed in the layer as interstitials or inside small bubbles which have not caused 

blistering and were thus not detected by AFM nor used in the above computation. 

According to Fig. 3 re-passivation of the Si and Ge dangling bonds should not have 

occurred. 

A rough estimation of the amount of H in the bubbles for the case of an a-Si/a-Ge 

superlattice could be obtained by the same Wan model [26] applied above. The data for 

the superlattice of Fig. 2 a) are: h=80 nm, d=300 nm, R=1.25 µm, ρ = 6.7.105  cm-2. For 

E the average between its value for Ge (E=110 GPa) [28, 29] and Si is used, i.e. E= 120 

GPa. ν = 0.28 since ν is almost the same for Si and Ge [28, 29]. The pressure in a 

bubble turns out to be 526 MPa with the number of H2 molecules in a bubble 

N=6.48.109. The total concentration of H atoms in all the bubbles is thus 2N = 2N ρ /d 

= 2.90.1020 cm-3 (d=300 nm). The ERDA results of Fig. 5 show that the H remained in 

the Si and Ge layers after annealing at 350 °C for 4 h is 9.9 and 0.5 at%, respectively. 

Such data are used for a first approximate estimate of all the H remained in the SL by 

assuming that the total concentration of the remained H atoms is the sum of the one in 

the Si layers and the one in the Ge layers. It results that such total concentration is 

5.08.1021 cm-3. The amount of H atoms in the bubbles is therefore 5.7 % of the H 

remained in the SL after annealing. This lower value with respect to the single layer 
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case may be explained by the lower volume occupied by the bubbles per cubic 

centimetre of deposited material in the SL (2.37.10-3 cm3/cm3 in SL vs 5.38.10-2 

cm3/cm3 in single layer), modified (slower) diffusivity of H in the two-phase SL system 

with respect to the one-phase single layer case, exact location of the H released by Ge 

(escaped out of the SL through effusion channels or trapped in the Si layers) or other 

reasons not yet understood. 

 

4. Conclusions 

 
The presented results show that the annealing of hydrogenated a-Si/a-Ge SL 

nanostructures may have deleterious effects on their structure. Surface bubbles, i.e. 

blistering, form with a density and size that increase with increasing time and 

temperature of annealing as well as increasing H content. Annealing also causes de-

passivation of the dangling bonds as H is released from its bonds to Si and Ge. 

Investigations on single layers of Ge and Si suggest that the structural damage, with 

formation of H bubbles inside the samples, first starts in the Ge layers because H is 

released earlier and more efficiently from Ge than from Si and because of the smaller 

mechanical strength of Ge. The liberated H is partially lost through open craters. ERDA 

measurements in the single layers, containing the highest amount of H considered here, 

show that the H remained in the layers is nearly 15% and 55-65% of the incorporated 

one for Ge and Si, respectively. The total H atoms trapped in the bubbles is around 13% 

of those remained in the a-Si single layer. No estimation for Ge was possible because 

the surface bubble density could not be reliably measured by AFM. For the SLs an 

approximate evaluation suggests that the H atoms trapped in the bubbles are 5.7% of 

those remained inside. However, modelling and calculation need improvement. A key 
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parameter is the shape, hence volume of the bubbles, The assumption made in this work 

is that they have a semi-lenticular shape. Alternatively a semi-ellipsoidal shape could be 

assumed. In such a case the volume of a bubble (½ (4/3πhR2), hence the density of the 

atoms trapped in the bubbles, increases by a factor 2.66. The bubble volume issue is 

more critical in the case of the SLs as the bubble shape might be more complex than in 

the single layers since it might be irregular because of the different elastic properties of 

Si and Ge and depending on whether the bubble fully extends down to the substrate 

surface or not. A better estimation of the shape could be provided by future AFM 

observations in cross-sectional view. Whatever is the shape of the bubbles their H 

content will always be somewhat underestimated if some bubbles do not produce 

blistering and cannot be detected by AFM. 

As regards the formation of the a-SiGe alloy from the studied a-Si/a-Ge SLs 

previous findings have shown that Si and Ge interdiffusion actually occurs across the 

interfaces [31-33, 17]. However, complete intermixing so as to form a homogeneous 

SiGe alloy in place of the SL has not been achieved as yet. The optimum compromise 

among annealing conditions, H content and layer thickness has to be looked for. 
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Figure Captions 

 

Fig. 1 - Calibration curve of the total H concentration incorporated in a-Si (solid black 

line) and a-Ge (dash blue line) as a function of the H flow rate as determined by 

ERDA measurements in the single layers. 

Fig. 2 - a) Typical STEM-HAADF image of the first grown layers of the a-Si/a-Ge SL 

nanostructures. The bright stripes are the a-Ge layers, while the dark ones are a-Si. 

The very first grown amorphous layer is Si; it cannot be distinguished from the Si 

substrate. Interface roughness is partially due to the growth process and partially to 

pixelating of the digital image (pixel size 0.17 nm). b) Typical AFM image of 

blistering in an a-Si/a-Ge SL (H flow rate 1.5 ml/min) annealed at 350 °C for 10 h. 

Area size 50x50 µm2. Average bubble height and diameter are 80 nm and 2.5 µm, 

respectively; bubble density 6.7x105 cm-2. 

Fig. 3 - Typical IR absorbance spectra in the stretching mode range of the wave number 

for a-Si/a-Ge SLs sputtered under H flow rate of 1.5 ml/min. C1 is the spectrum of 

the as-deposited layer, C2 the spectrum after annealing at 400 °C for 1 h and C3 the 

one after annealing at 400 °C for 10 h.  

Fig. 4 - AFM amplitude image of a) a-Ge and b) a-Si single layer after annealing at 350 

°C for 4 h. H flow rate 1.5 ml/min. In a) large craters, i.e. exploded bubbles with 

escape of H, are predominant. In b) bumps/blisters (close bubbles with H still 

inside) are the majority. 

Fig. 5 - Hydrogen concentration, as determined by ERDA, as a function of the H flow 

rate in a-Si and a-Ge single layers before and after annealing at 350 °C for 1 and 4 h. 

The experimental curve for the as-deposited sample is also shown. 
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