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Abstract

Let K be an algebraic function field over a finite field. Let L be
an extension field of K of degree at least three. Let R be a finite set
of valuations of K and denote by S the set of extensions of valuations
of R to L. Denote by OK,R, OL,S the ring of R-integers of K and S
integers of L, respectively. Assume that α ∈ OL,S with L = K(α), let
0 6= µ ∈ OK,R and consider the solutions (x, y) ∈ OK,R of the Thue
equation

NL/K(x− αy) = µ.

We give an efficient method for calculating the R-integral solutions of
the above equation. The method is different from that in our previous
paper [2] and is much more efficient in many cases.
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1 Introduction

Keeping the notation of Part I [2], let k = Fq denote a finite field with q = pd

elements. The rational function field of k is k(t) as usual, and K is a finite
extension of k(t). The integral closure of k[t] in K is denoted by OK . We
assume that K is separably generated over k(t) by an element z belonging
to OK and that k is the full constant field of K.

Denote by R a finite set of valuations of K containing the infinite val-
uations. Let L be an extension field of K of degree at least three. Let S
be the set of extensions of valuations of R to L and denote by OK,R, OL,S

the ring of R-integers of K, the ring of S-integers of L, respectively. (If R
is just the set of infinite valuations of K, then OK,R is just OK , the ring of
integers of K.) Assume that α ∈ OL,S with L = K(α), let 0 6= µ ∈ OK,R

and consider the solutions of the Thue equation

NL/K(x− αy) = µ in x, y ∈ OK,R. (1)

The purpose of the present paper is to give an efficient method for calculating
the R-integral solutions of the above equation.

Our algorithm has two goals. First, instead of just integer solutions,
our algorithm calculates R-integral solutions of the equation. There may
be finitely many (isolated) solutions and there may occur finitely many
parametrized families of solutions. If equation (1) has infinitely many so-
lutions (that is such families occur), we give a method how to parametrize
them.

Secondly, our method turned out to be much more efficient than that of
[2] in many cases. For explicit calculations in function fields both in [2] and
here we use Kash [1]. In both cases the calculations can be split into two
parts:
1. The explicit determination of certain function field elements, valuations
etc. This is usually done in an interactive way and costs almost no CPU
time.
2. The test of a certain set consisting of some thousands of elements. This
is done by running some loops in Kash, costing some seconds of CPU time.
However, the size of this set is much smaller by using the method presented
in this paper than by applying the method of [2].

The reason for this is the following. In [2] we calculated the fundamen-
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tal units and represented the element β = x − αy as a power product of
the fundamental units. We derived inequalities for the exponents of the
fundamental units and all possible sets of exponents must then be checked.

On the other hand, in the present paper we directly deal with the possible
prime divisors of βi/βn (βi being the conjugates of β = x − αy ∈ L over
K) and use the fact that βi/βn determines x/y. Using an upper bound
for the height of βi/βn we construct all divisors that are composed of the
given prime divisors and have bounded height. Calculating a basis of the
corresponding Riemann-Roch space we find out if such a divisor is principal,
that is if it can be the splitting of the element βi/βn into prime divisors.
This simple test (performed very fast by Kash) makes the number of possible
βi/βn to be checked much smaller, than the number of cases to be tested
with the method of [2].

2 Auxiliary results

In this section we recall the ”fundamental inequality” (Lemma 3.1) of [2].

Let K be a finite extension of k(t) of genus gK . The set of all (exponen-
tial) valuations of K is denoted by V , the subset of infinite valuations by
V∞. For a non-zero element f ∈ K we denote by v(f) the value of f at v.
For the normalized valuations vN (f) = v(f) ·deg v of K the product formula∑

v∈V

vN (f) = 0 ∀f ∈ K \ {0}

holds. The height of a non-zero element f of K is defined to be

H(f) :=
∑
v∈V

max{0, vN (f)} = −
∑
v∈V

min{0, vN (f)} .

Let V0 be a finite subset of V . Then the non-zero elements γ ∈ K
satisfying v(γ) = 0 for all v 6∈ V0 form a multiplicative group in K. These
elements are called V0-units. (For V0 = V∞ the V0-units are just the units
of the ring OK of integers of K.) We consider the unit equation

γ1 + γ2 + γ3 = 0 (2)

where the γi are V0-units.
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Remark: It suffices to assume that γ1/γ3 and γ2/γ3 are V0-units which
makes the set V0 smaller, cf. the proof of Lemma 3.1 in [2].

Lemma 2.1 Let V0 be a finite subset of V and let γi (1 ≤ i ≤ 3) be V0-units
satisfying (2). Then either γ1

γ3
is in Kp or its height is bounded:

H

(
γ1

γ3

)
≤ 2gK − 2 +

∑
v∈V0

deg v . (3)

3 R-integral solutions of the Thue equation

In this section we detail our algorithm for determining all R-integral solu-
tions of equation (1).

Assume that (x, y) is a solution of (1). Denote by α = α1, α2, . . . , αn the
conjugates of α over K and set βi = x − αiy, 1 ≤ i ≤ n. Fix indices i, j
with 1 ≤ i < j < n. Using the notation

γi = (αj − αn)βi, γj = (αn − αi)βj , γn = (αi − αj)βn,

we can write Siegel’s identity

(αi − αj)βn + (αj − αn)βi + (αn − αi)βj = 0

in the form
γi + γj + γn = 0. (4)

Denote by V0 the set of valuations of Lijn = K(αi, αj , αn) containing the
extensions of the valuations of R, the extensions of those valuations which
have non-trivial value for µ and all those valuations which have non-trivial
value for one of the elements (αj−αn)/(αj−αi) and (αn−αi)/(αj−αi). Then
γi/γn and γj/γn are V0-units. By Lemma 2.1 these fractions are either of
bounded height or are pth powers in K. According to these two possibilities
in the following we shall consider Case I and Case II. In order to obtain all
solutions of equation (1) both possible cases must be considered. In Case I
we get finitely many (isolated) solutions (x, y). In Case II we can get finitely
many parametrized families of solutions, cf. Section 3.1.
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Case I. Assume that γi/γn is not a pth power in Lijn. Then by applying
Lemma 2.1 in the field M = Lijn we derive an upper bound for the height
of γi/γn.

Because of
βi

βn
=

αi − αj

αj − αn

γi

γn

this implies

H

(
βi

βn

)
≤ H

(
γi

γn

)
+ H

(
αi − αj

αj − αn

)
. (5)

We are going to construct all possible elements βi/βn. Observe that this
element is contained in Lin = K(αi, αn). Denote by W0 the set of valuations
of Lin that are extensions of the valuations of R and those valuations that
have nonzero values for µ. Then βi/βn is a W0-unit of Lin. We consider
the divisors Dv corresponding to the valuations v of W0. We form linear
combinations

D =
∑
v∈V0

av ·Dv (6)

of these divisors with suitable coefficients av ∈ Z so that the height∑
v∈V0

max(0, av) · deg v

does not exceed the bound in (5), and the product formula holds∑
v∈V0

av · deg v = 0.

We calculate a basis of the Riemann-Roch space corresponding to the di-
visors D. If this space is of dimension 1, then there is an element in Lin

that splits into divisors in the given way and this element is determined (up
to a non-zero factor in k) by the basis element of the Riemann-Roch space.
Otherwise, if this space is of dimension > 1, then there is no element of K
that splits into divisors in the given way, and there is no possible value of
βi/βn corresponding to the divisor (6).

Following the argument of R.C.Mason [3] (page 18) by βi = x−αiy, βn =
x− αny we obtain

x

y
=

αnβi − αiβn

βi − βn
=

αn
βi

βn
− αi

βi

βn
− 1

,
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therefore βi/βn determines x/y. For y = 0 the corresponding x can be
calculated easily from (1). Note that if βi/βn = 1 then we again obtain
y = 0. Finally, equation (1) implies

yn ·
n∏

h=1

(
x

y
− αh

)
= µ,

whence by
yn =

µ∏n
h=1

(
x

y
− αh

)
we can determine the possible values of y and from x/y and y all possible
values of x, as well. In order to determine the solutions of equation (1) in
Case I we have to check all possible values of x and y if they are in OK,R

and if (1) is satisfied.

Case II. Consider now the case when γi/γn is a complete pth power in
K. In the prime divisor decomposition of βi/βn only divisors from W0 can
occur. Since

γi

γn
=

αj − αn

αi − αj

βi

βn
,

in this case the values of finite valuations of Lijn, appearing only in
(αj − αn)/(αi − αj) and not being an extension of a valuation of W0, must
be divisible by p. If this is not satisfied for certain finite valuations, then
this case is excluded. Else we replace p-th powers of elements in the unit
equation by the elements themselves and repeat the argument.

This phenomenon can indeed occur as is shown by Example 2. In
such a case we are lead in a straightforward way (see Section 3.1) to an
infinite parametrized family of solutions. Note that only finitely many
such parametrized families of solutions can occur. The character of the
parametrized families of solutions is described in Section 3.1, as well as
indicated why the number of such families is finite.

3.1 Infinite families of solutions

Now we turn to the case when in all possible unit equations the solutions
are pth powers. We describe how to find the corresponding parametrized
families of solutions.
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In this case, for 1 ≤ i < j ≤ n− 1 equation (4) implies

− γi

γn
= ηpm

i , − γj

γn
= ηpm

j

where m is a positive integer and ηi and ηj are V0-units in Lijn not being
pth powers, such that ηi + ηj = 1. These equations give rise to the infinite
parametric families of solutions (see below, cf. Example 2). Since there are
only finitely many possibilities for ηi and ηj (there are finitely many V0-units
in Lijn of bounded height), hence there can be at most finitely many infinite
families of solutions.

We have

βi

βn
=

αj − αi

αj − αn
· ηpm

i ,
βj

βn
=

αj − αi

αn − αi
· ηpm

j

and we can derive similar formulas for all the other βh-s. Using β1 . . . βn = µ
we get

βn
n ·

β1

βn
· · · βn−1

βn
= µ,

whence we obtain an expression for βn
n which can be written as a power

product of the fundamental Sn-units ε1, . . . , εr in Ln = K(αn) (Sn denotes
the set of extensions of valuations of R to Ln). This can be used to decide if
there are certain values of m for which the product is a complete nth power
and if yes, which are the suitable values of m: we obtain congruence condi-
tions for m. In this way we determine the value of βn which we then use to
determine β1, . . . , βn−1 as a product of some fixed elements of L1, . . . , Ln−1

and a power product of ε1, . . . , εr. Then we can check if these expressions
are indeed conjugates of βn, and if yes then

y =
βj − βi

αi − αj

is certainly in OL,S . Moreover, since the conjugates of y are equal (these
equations are identical with Siegel’s identity) we have y ∈ OK,R. Finally, x
is given by

x =
αiβj − αjβi

αi − αj

and similarly as above we have x ∈ OK,R. Carrying out those calculations
in Cases I and II yields all solutions of (1).
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4 Examples

4.1 Example 1

Let k = F5 and let α be a root of

z4 + (4t + 2)z2 + 1 = 0.

Let K = k(t) and R the set of infinite valuations of K together with the
valuation corresponding to t + 2. Let L = K(α), µ = 1/(t + 2)4. Consider
the solutions x, y ∈ OK,R of the equation

NL/K(x− αy) = µ. (7)

The extension set S of set R of valuations of K to L consits of two infinite
valuations v∞,1, v∞,2 both of degree 1 and two valuations vt+2,1, vt+2,2 ex-
tending t + 2 to L, both of degree 2. The field L is Galois, we have α =
α1 =

√
t +

√
t + 1 and its conjugates α2 = −

√
t +

√
t + 1, α3 =

√
t−

√
t + 1

and α4 = −
√

t −
√

t + 1 are also contained in L. The field L has genus 0.
To construct the set V0 of valuations of L we have to add to S the exten-
sions vt,1, vt,2, both of degree 1, of the valuation corresponding to t, and the
extensions vt+1,1, vt+1,2, both of degree 1, of the valuation corresponding to
t + 1. Then we have γ1/γ4, γ2/γ4 as V0 units in L and the application of
Lemma 2.1 implies, that these elements are either of height ≤ 8 or they
are 5th powers. In Case I, if they are not 5th powers, then for the height
of β1/β4 we obtain the bound 10. This element β1/β4 may have nontrivial
values only at one of v∞,1, v∞,2, vt+2,1, vt+2,2. Searching over all elements of
L with this property, we obtain the solutions

(x, y) =
(

1
t + 2

, 0
)

,

(
2

t + 2
, 0
)

,

(
3

t + 2
, 0
)

,

(
4

t + 2
, 0
)

,(
0,

1
t + 2

)
,

(
0,

2
t + 2

)
,

(
0,

3
t + 2

)
,

(
0,

4
t + 2

)
.

Case II can be excluded by considering

γ1

γ4
=

α2 − α4

α1 − α2
· β1

β4
.

On the right hand side the valuations vt+1,1, vt+1,2 occur only in (α2 − α4)/(α1 − α2)
with value 1, hence the left hand side can not be a 5th power. Hence the
above list consists of all R-integral solutions of equation (7).
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4.2 Example 2

Let k = F5, K = k(t), A = t3 + t + 1 and let α = α1 be a root of

z3 −Az2 − (A + 3)z − 1 = 0.

Let L = K(α), denote by α2, α3 the other roots of the polynomial. This is
an analogue of a simplest cubic number field, cf. D.Shanks [5]. The field L
is cyclic, α2 = −1/(α1 + 1), α3 = −1/(α2 + 1). The elements α1 and α2 are
fundamental units in L. This function field has genus 4, it has three infinite
valuations v∞,1, v∞,2, v∞,3, all of degree 1. Let S = {v∞,1, v∞,2, v∞,3}.
Let µ = 1 and consider the (S-)integral solutions x, y ∈ OK of

(x− α1 y) (x− α2 y) (x− α3 y) = 1. (8)

In this case βi = x−αiy as well as (α2−α3)/(α1−α2) and (α3−α1)/(α1−α2),
hence ε = −γ1/γ3 and η = −γ2/γ3 are units of L. Consider the unit equation

ε + η = 1 (9)

in units ε, η of L.

In Case I, if ε is not a 5th power, then the application of Lemma 2.1 gives
the bound 9 for the height of ε = −γ1/γ3. In our case both V0 and W0 is just
the set of infinite valuations, hence it is more economical to construct all
possible units ε from the infinite valuations (instead of deriving a somewhat
larger bound for the height of β1/β3). We obtain the following 9 solutions
of the unit equation (9). The solutions are represented by α1 and α2.

# ε η

1. 4α1α2 4α2

2. 4α2 4α1α2

3. 4/α1 4/α1α2

4. 4/α1α2 4/α1

5. 4α1 4/α2

6. 4/α2 4α1

7. 2 4
8. 4 2
9. 3 3
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None of the occurring values ε, η ∈ L \ k is a 5th power. The values of
ε = −γ1/γ3 enable us to calculate β1/β3 and from that the solutions of
equation (8), which are

(x, y) = (0, 4), (4, 1), (1, 0). (10)

In Case II, if both ε and η are 5th powers, but not in k, the unit equation
becomes

ε5
0 + η5

0 = 1

with some units ε0, η0 implying

(ε0 + η0)5 = 15,

hence
ε0 + η0 = 1.

If both ε0 and η0 are still 5th powers, we can repeat the argument. This
implies, that all further solutions of the unit equation (9) are of the form
(ε5m

, η5m
) for one of the solutions (ε, η) of equation (9) and a positive integer

m. We have

β1

β3
=

α2 − α1

α2 − α3
· ε5m

= 4α1 · ε5m
,

β2

β3
=

α2 − α1

α3 − α1
· η5m

= 4α1α2 · η5m
. (11)

Further,

β3
3 ·

β1

β3
· β2

β3
= 1,

that is

β3
3 ·

(α2 − α1)2

(α2 − α3)(α3 − α1)
· (εη)5

m
= 1,

whence
β3

3 = (εη)−5m 1
α2

1α2
. (12)

Since all occuring elements are units, for all the nine pairs (ε, η) of solutions
of the unit equation (9) the right hand side of (12) can be represented as a
power product of α1 and α2 and it can be easily decided if it is a cube or
not.

We detail the calculations only for the first solution in the table. In this
case we have εη = α1α

2
2 hence

β3
3 = α−5m−2

1 · α−2·5m−1
2 .
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Here the exponents are divisible by 3 if and only if m = 2` with a positive
integer `, that is

β3 = α
(−52`−2)/3
1 · α(−2·52`−1)/3

2 . (13)

Similarly, for m = 2` we obtain β3 for the solutions No. 2, 3, 4, 5, 6, for
the other solutions the exponents in the representation of β3

3 are not both
divisible by 3.

For the first solution of the unit equation we have ε = 4α1α2, η = 4α2,
hence using (11) and (13) we obtain

β1 = (4α1) · (4α1α2)5
2` · α(−52`−2)/3

1 · α(−2·52`−1)/3
2 = α

(2·52`+1)/3
1 · α(52`−1)/3

2 ,

from which by taking conjugates (using α′
1 = α2 and α′

2 = 1/α1α2) we
obtain

β′1 = α
(−52`+1)/3
1 · α(52`+2)/3

2

which is the same as what we get for β2 from (11). Also, the conjugate of
β2 is just β3. Now if the values of β1 and β2 are indeed conjugates, then the
value of

y =
β2 − β1

α1 − α2

is an integer, as well as x = β1 + α1y = (α1β2 − α2β1)/(α1 − α2). In this
way we obtain the infinite parametric family of solutions

x =
1

α1 − α2
·
(

α1 · α(−52`+1)/3
1 · α(52`+2)/3

2 − α2 · α(2·52`+1)/3
1 · α(52`−1)/3

2

)
y =

1
α1 − α2

·
(

α
(−52`+1)/3
1 · α(52`+2)/3

2 − α
(2·52`+1)/3
1 · α(52`−1)/3

2

)
.

For the solutions No. 2, 4, 5 of the unit equation we obtain β′1 6= β2

hence we do not get a solution (x, y). For the solutions No. 3, 6 of the unit
equation we obtain the following infinite parametric families of solutions
(x, y), respectively:

x =
1

α1 − α2
·
(

α1 · α(−52`+1)/3
1 · α(−2·52`+2)/3

2 − α2 · α(−52`+1)/3
1 · α(52`−1)/3

2

)
y =

1
α1 − α2

·
(

α
(−52`+1)/3
1 · α(−2·52`+2)/3

2 − α
(−52`+1)/3
1 · α(52`−1)/3

2

)

12



and

x =
1

α1 − α2
·
(

α1 · α(2·52`+1)/3
1 · α(52`+2)/3

2 − α2 · α(−52`+1)/3
1 · α(−2·52`−1)/3

2

)
y =

1
α1 − α2

·
(

α
(2·52`+1)/3
1 · α(52`+2)/3

2 − α
(−52`+1)/3
1 · α(−2·52`−1)/3

2

)
.

Hence all solutions of equation (8) are given by the four isolated solutions
(10) together with the above three parametrized families of solutions.

Remark The algorithms were implemented in KASH, the KANT-Shell
[1]. The computations of the examples were carried out on an AMD Athlon
i686 with 1733 MHz and 512 MB RAM under Suse Linux 8.0, and took just
a few seconds.
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