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1) Motivation and Aim

Data may be sequential or non sequential in nature. Non sequential data are those
data where order of occurrence is not important. Sequential data are those data
where order of occurrence is important to consider. Sequential data can be ordered
with respect to time or some other dimension such as, space.

A sequential pattern is a subsequence that appears frequently in a sequence
database. Mining sequential patterns in large databases has become an important
data mining task with broad applications, such as business analysis, web mining,
customer shopping sequences, security, and bio-sequences (discovery of motifs in
DNA sequences) analysis [1].

In the last decade, a number of algorithms and techniques have been proposed to
deal with the problem of sequential pattern mining [2][3][4][5][6]. The main
approaches to sequential pattern mining, namely Apriori-based and pattern-growth
methods are being used as the basis for other structured pattern mining algorithms.
However, and despite the fact that pattern-growth algorithms have shown better
performance in the majority of the situations, their advantages over Apriori-based
methods are not sufficiently understood.

It is interesting and useful to mine sequential patterns associated with
multidimensional information. In the other words, if sequential pattern mining can
be associated with multidimensional information, it will be more effective. While
many studies have contributed to find sequential patterns from sequence dataset,
there is no significant number of works to mine patterns from multidimensional
sequence dataset. This motivates our theses of sequential pattern in

multidimensional sequence data.



There could be a large number of sequential patterns in a huge database,
especially multidimensional sequence database. Besides, although -efficient
algorithms have been proposed, mining large datasets requires powerful
computational resources. In fact, data mining algorithms working on very large
datasets take a very long time on conventional computers to get results. One
approach is parallel computing. High performance computers and parallel data
mining algorithms can offer a very efficient way to mine very large datasets by
analyzing them in parallel.

Parallelize multidimensional sequential pattern mining is the main subject of our
thesis and main goal is to introduce data mining techniques on parallel
architectures and to show how large scale data mining and knowledge discovery
applications can achieve scalability by using systems, tools and performance
offered by parallel processing systems. Our approach to efficient sequence mining
is parallelization, where the whole computation is broken up into parallel tasks.
We explore data parallelism to extract patterns from sequence dataset.

In this study, we have been described a framework for representing
multidimensional sequence dataset. Since relational model is one the most popular
way to store data, we identify a table as the main dataset with four basic groups of
attributes. This model can be simple and comprehensible and originally introduced
in [7]. The next step is developing one parallel method that utilizes data
parallelism for extracting sequential patterns in multidimensional sequence
dataset. From a data mining viewpoint, our method has several main advantages
over task parallelism. This simplifies programming and leads to a development
time significantly smaller than one associated with task parallel programming,

because a lot of previously written serial code can be reused. Our algorithm has a



higher degree of machine architecture independence, in comparison with task
parallelism. In most applications, the amount of data can increase arbitrarily fast,
while the number of lines of code typically increases at a much slower rate.
Although, primary algorithm scales well but we improve this approach with two
modification rules. Using a suitable distribution of dataset and an approximate
way to find patterns led to have good performance for improved algorithm. In our
published papers [8][9], we have been demonstrated that algorithm can greatly
reduce the number of scans through the sequence dataset and a good work loading
as well. In fact, it tries to optimize local mining at processors while minimizing
the data transfer among them.

Our experimental results indicate that primary and improved algorithms have a
similar behavior when length of patterns is low. As the length of patterns and
database size grow up, improved algorithm scales better than main parallel
algorithm but number of patterns generated by improved algorithm is usually
much than main method. In fact, improved approach try to use parallel techniques
for optimizing the local mining at a worker, and use distributed techniques for
construction global patterns or model, while minimizing the communication and
data transfers. Consequently, while the primary proposed parallel algorithm scales

well, the IMP algorithm is faster than it.

2) Related Works
While many studies have contributed to find sequential patterns from sequence
dataset, there has been relatively less works on mining patterns from

multidimensional sequence dataset.



According to [10] a multidimensional sequence database is defined over the
schema (PK,Aj,...,A,S), where PK is a key, 4; (1<i<n) stands for the dimensions
and S is in the domain of sequences. A multidimensional sequence takes the form
of (ay,...,a,s), where a; is in {4, *} for 1<i<n, and s is a sequence. In this paper
some methods are proposed that can be classified into two groups: (1) integration
of efficient sequential pattern mining and multidimensional analysis methods, and
(2) embedding multidimensional information into sequences and using sequential
pattern mining method to find patterns. The sequences found by this approach do
not contain several dimensions because the time only can be combined with
specific dimensions. Consequently, some sequences are not generated.

In [11], two algorithms have been developed. It mines sequential patterns from
multidimensional sequence data in the framework of web usage mining. There are
some main drawbacks in the work as pointed out by [7]. Three dimensions (page,
session, day) consider and these dimensions belong to a single hierarchical
dimension. The generated sequences explain correlation between objects over
time by considering only one dimension which corresponds to the web pages.

In [7], a definition for multidimensional sequential patterns has been proposed that
is close to our model. The authors claim that they aim at considering more than
one dimension. This proposition can be extended for approximate values on

quantitative dimensions.

3) Basic Definitions
There is a rich variety of sequence terminology but this section defines the
concepts sequence, subsequence, sequence pattern, subset, segment, and support;

it also discusses major characteristics of our model, multidimensional sequence



dataset. Some of the definitions are generic, because different applications have
variety properties.

The main table M has tuples <D, Att;,Att,, ..., Att,>, where D is an attribute whose
its domain is totally ordered and other attributes divided into two groups: analysis
and relevant attributes. Notice that irrelevant attributes removed in preprocessing
phase. The schema <D,A4,,...,A,, Ry ..., R,> is a multidimensional sequence
database, where 4; (1<i<n) are analysis and R; (/<j<m) are relevant dimensions.
The schema is partitioned into subsets according distinct values of relevant
attributes and sequence support computed by number of partitions in which keep
corresponding sequence. A subset table 7 is a set of tuples <D,A4,,4,,...,4A,>,
where D that stated before is an attribute whose its domain is totally ordered, and
A; (I<i<n) are analysis attributes. A sequence S is denoted by an ordered list
<tpt...t>, where ¢; is a tuple, ie., D(#)<D(%)<...<D(#) for I[<i<k and
D(#,))=value of D tuple #,. Every tuple has » analysis attributes along with an
ordered value. A set of analysis attribute values can occur at most once in a same
value of D, but can occur multiple times in different values of D attribute.

The number of distinct values of D in a sequence is the length of that sequence. If
the length of S is &, then we call it a k-sequence and in similar way k-pattern refers
to a pattern with length £.

A sequence S;=<ayay,...,a,> is called a subsequence of another sequence
S>=<bpby...,.b,,> and S, a super-sequence S;, if there exist integers
151575, . .<j<m such that a;=b;;, a;=b),..., and a,=bj,.

Given a minimum support threshold min_support, a multidimensional sequence S

is called a multidimensional pattern if and only if support(S)>min_support. The



problem of sequential pattern mining is to find the complete set of frequent
sequential patterns satisfying a minimum support in the sequence database.

In this framework, <(#;, ©),(t;),(ts, t5, t;))> is a multidimensional 3-sequence.
Brackets and commas may be added to make multidimensional sequences more
readable. All tuples in a bracket are assumed to occur at the same time. In first
bracket, due to tuples #; and ¢, have the same value of D; both of them appear in
one bracket (D(#;)=D(t,)). This way a sequence is an ordered list of brackets in
which ordered according to their associated time in a sequence. Number of
brackets show length of sequence. Therefore, above sequence is a sequence with
length 3 (3-sequence). It is obvious that each tuple can be repeated in different
brackets (time), such as tuple #;, which appears in first and third bracket. On the
other side, the ordering between tuples in one bracket is not important. According
above definition, multidimensional sequence <(7,),(#3)> is a subsequence example
of sequence <(?,, t;),(13), (4 t5, t;)> with length 2.

A segment is the largest subsequence in which all of its tuples belong to a same
time value. As a result, every sequence with length » has » segments. Given a
sequence S=<x;x;...x,> with length n, where each x; (/<i<n) consists of one or
some tuples with time value i. Each x; is a segment. For example, in 3-sequence
S=<(t;, t;),(t3),(t4, ts5, t;)>, there are three segments <(t¢;, t2)>, <(t4, ts5, t;)>, and
<(13)>,.

Let us consider a real example of taking the course by students. Suppose we have
a relation Marks(id, course, score, year/semester) in which we want to record for
each student their identify number, course name, score, and year/semester. Each
tuple (d,c,s,y) indicate that student with identify number d has taken course c¢ in

semester y and obtained score s. As you can suggested, we set id as relevant



attribute, year/semester as ordered attribute, and other columns (course and score)
as analysis attributes. According to id column values, main table Marks partition
into subsets that each one holds information about specific student. Finding the
patterns may help to capture some ordering of students’ course taking. Following
patterns are several useful and important pattern results.
= More than 60 percent of students fail Programming course.
=  While Operating System is not prerequisite of Database but at least 80
percentages of students take it before Database.
=  Students who take Data Mining always observe following ordering:

Programming — Data Structure — Database — Data Mining

4) Primary Proposed Parallel Algorithm

We will first describe a standard algorithm (STA) for mining multidimensional
sequence patterns within the entire sequence data. We use data parallelism such
that subsets are distributed among the workers and each worker performs same
operation on it.

Let us first analyze search space before discussing about main method. Given a
subset with length ¢ (c-sequence), and suppose that each element of vector d; for
1<i<c shows number of tuples with equal time dimension. Number of sequences

with length 7,2, ... ,c for this subset computed as follows:

Number of sequences with length 1: 2(2”” -1)

i=1

c—1 c
Number of sequences with length 2: 2(2””' -1) 2(2‘1] -1)
i=1

J=i+l



c=2 c—1 c
Number of sequences with length 3: > (2 -1) >- (2 -1) >_(2* -1
i=1

Jj=i+l k=j+1

Number of sequences with length c: H(Zd' -1)

i=1

As you observe, search space is quite large and the serial algorithms are not
scalable. In parallel environment, each worker scans datasets to find patterns with
length one (/-patterns) according to the predefined support threshold. Next steps
generate the sequences by joining the patterns in the previous step. Dataset is
scanned to check the support of candidates. We can use Apriori property to
develop breadth first search algorithm to find sequence patterns. The main idea is
that, if a sequence is not pattern, we do not looking for any super-sequence of it.

Schematic diagram of primary proposed method shows in Figure 1. It is obvious
that phases 1 and 2 have been repeated once and phase 3 repeats until there is no

sequence to be mined.

Partition the Main Table } Phase 1

r

Distribute Partitions } Phase 2
amcng Workers

_ 3 - N
Find k-sequence in
each Worker
> Phase 3
Compute k-pattern
/
i

Figure 1: Schematic diagram of proposed algorithm



Our algorithm conducts a level-by-level candidate generation and test pruning
following the Apriori property in workers independently. At each level, only

potentially frequent candidates are generated and tested.

4.1) Partition the Main Table

In first phase of algorithm, one worker (processor) known as coordinator,
partitions table 7 into P sequence datasets (subsets). For our proposed algorithm,
this process does in the three following steps:
I. The main table should be partitioned into subsets according to current
values of relevant attributes.
II. We assign a simple code to each combination of current analysis attribute
values. It is easier and faster for algorithm to works with smaller dataset.

II. Merge tuples with equal time value into identical segment.

4.2) Subsets Distribution

In this phase, coordinator distributes m subsets among n workers regardless of
length of subsets. This way, subset; is assigned to worker P; ;04 », for i=0,...,m-1.
Thus, worker P; owns the subsets j, j+n,..., j + n.((m/n—‘— 1) for j<m mod n and
JoJ F Py j+ n.(’_m/n-‘— 2) for (m mod n) Gj<n.

For example when we set n=4 and m=10 the subsets distribution results are such
that P; for j<2=(10 mod 4) owns the subsets j,j+4,j+4*3-1) and P; for 2<j<4

owns the subset j,j+4%(3-2).



Following we can see in this example what subset goes to which processor:
Py: owns subsety, subsety, subsets

P;:owns subset;, subsets, subsetg

P>: owns subset,, subsets

P;: owns subset;s, subset;

4.3) Patterns Mining

In iteration k, every worker mines all k-sequence and computes its support (local
support) and then sends to coordinator. Coordinator collects results and discards
some sequences in which its support is less than min_support and sends k-patterns
to workers.

While the general procedure of this phase is simple, the new sequence generation
is non trivial. As mentioned previously, every worker scans subsets once to find
all /-sequence and computes local support and then sends to coordinator.
Coordinator collects results and sends back /-patterns to workers. After generating
I-patterns, the set of candidate k-sequences (for £>1) are generated by joining the
(k-1)-patterns found in the previous step. New scans of each subset collect the
support for candidates and then send to coordinator to find the new set of patterns.
Two patterns with length k& can be joined if (i) patterns have equal length and
(i1) value of time dimension .-/ segments of two patterns are identical.

We assume that S,=<xpx;..xe > and S,=<y;yz..ykvk+1> are two k-patterns
(k>1), where each x; (/<i<k) and y; (/<j<k+1, j#k) are a tuple or consists of some
tuples with identical value of time. Without loss of generality, we assume that
subscripts show time dimension value for segments. As you know, both patterns

have equal length (k) and based on subscripts of each segment, values of time .-/

10



segments of two patterns are same. The conditions satisfied and join of Sy and S, a
new (k+1)-sequence is generated: Sy,=<(x;y1)(X2y2) ... (k- 1Vk-1) (X1) Vic+1)>. While in
each segment the ordering of tuples is not important (x;;=yx;), duplication of
tuples is not allowed. In other words, when segments x; and y; are merged, every

tuple appears once and repetitions are removed.

5) IMP: Improved STA Algorithm

The STA algorithm can be improved further. The number of candidate patterns of
a certain level is typically an exponential function of number of discovered lower
level. Consequently, coordinator became a bottleneck. Message passing between
workers and coordinator can be heavy especially when number of patterns and
their length grow up. Besides, we usually have no good load balance and the more
workers are idle. Since the time cost of the passes over the datasets plays an
important role to performance of algorithm, we made two following rules to

improve STA algorithm.

5.1) Rule 1: Distribution

Using a suitable data distribution can be useful to obtain good load balancing.
This simplifies the parallel programming and supports a good performance. The
load imbalance is generally defined as:

Load Imbalance=Max (RT},...,RT,)/Min(RT},...,RT,), Where RT; is runtime on
worker or processor i. Ideally, this value is very nearly to 1. The larger the load
imbalance, the more processors are idle. The main goal of this improvement rule

is to assign the subsets such that a good load balancing results.

11



In improved algorithm (IMP), we present a cyclic data distribution. Cyclic
distributions are one of the most useful distributions for increasing the
performance of embarrassingly parallel computations. The set of processors is
denoted as P={P,Pj,...,P,;} and the subsets is denoted as S={S),S;,...,Sm-1},
where S; is a subset, i.e., Length(Sy)<Length(S;)<... <Length(S,.;) for 0<i<m-1.
We assign subsets to processors in round robin two ways so that subset S; is
assigned to processor P moq 2n) for (i mod 2n)<n, and processor P2,.1)-i mod 2n)

when (i mod 2n)>n. Figure 2 shows how to distribute m subsets among n

Processors.

Po Pl Pn—Z Pn—l

Sc- S‘l Sn-z Sn— 1 e,

SEn—l Sanz Sn+1 Sn 9

SEn 82:1 1 S_n SBn-l [
""" SBH 9

B s s

Sm-n Sm-n+l Sm-Z Sm—l

Figure 2: Distribution of m subsets among » processors

For the example n=4 and m=18 the subsets distribution

Py: owns subsety, subset;, subsets, subset;s, subsets

P;:owns subset;, subsets, subseto, subset;s, subset;,

P>: owns subset,, subsets, subset;y, subset;;

P;3: owns subset;, subset,, subset;;, subset;,

Results, where subset; for (j mod 8)<4 belong to processor Pj mod 8), and send to
processor P7_ mod 8y When (j mod 8)>4.

This distribution is only based on length of subsets. We know that each subset

with length & usually has cardinality (number of tuples) more than £. If we can use

12



length of subset along with cardinality to distribute subsets, we will achieve more

performance, surly.

5.2) Rule 2: Efficient Pattern Mining

In algorithm STA, the check process is quite straightforward; by scanning the data
the support counts of these candidate sequences can be obtained. By comparing
them with the support threshold we can get those frequent sequential patterns.
In IMP approach, our strategy first constructs the 2-sequences and 3-sequences
and then mine whole of 2-patterns and 3-patterns, similar to STA algorithm. After
this, each worker generates sequence with length larger than three and discover
patterns, independently. Every worker uses all of patterns with length two and
three to generate new patterns. The algorithm will iteratively generates new
candidate (k+1)-sequence using the frequent sequence with length k& (k-pattern)
found in the previous iteration.
Given sequence S,=<x;X;..xpxx> and S,=<y;yz..yk1k2> are two k-patterns
(k>1), where each x; and y; (i is in {1,2,....k-1,k1,k2}) are a tuple or consists of
some tuples with identical value of time, and subscripts show time value. Thus,
there are (k-1) segments in which have equal time value. New sequence S
generates depends on ordering between £/ and k2.
B So=<y)Oy). oy ) )0)> i kI<k2

" S =YY R Y ) )= Y kIPk2
According to second improvement rule, the new sequence Sy, (or S,,) is a pattern
with length (k-1) if two following conditions are satisfied.

(1) The 2-sequence <(xx;)(Vi2)> (or <(Viz)(xr;)>) is pattern.

13



(2) The 3-sequences <(xjy;)(xk1)(Vi2)> (or (X)) (Viz)(xk1)), where [<i<k-1 are
pattern.

For example, consider the case where S,=<(ab);,(a)s(cde)s> and
S,=<(b)1,(d)s,(bcd)s>. New sequence generates S=<(ab);(d)s (a)s(cdeb)s>.
While STA algorithm scan all of subsets, and coordinator collects their support
value to check S is pattern or not, in IMP algorithm according to second rule, we
must test 2-sequence <(d);(a)s> and two 3-sequences <(ab);(d)s;(a)s> and
<(d)s,(a)4 (cdeb)s> are patterns or not. If so, S is pattern otherwise S does not
satisfy the rules and is not a pattern.
In modified algorithm IMP, each worker keeps two tables consist of 2-patterns
and 3-patterns. This way, algorithm must check at most k-7 sequences to test one
k-sequence may be pattern or not. Consequently, every worker is able to check
whether new sequence is pattern or not, independently. In other words, after
mining patterns with length two and three, communication between coordinator
and workers will be terminated.
Theoretically, the all of identified patterns using this rule are not guaranteed to be
valid because we only consider some subsequence of candidate and do not count
support of corresponding patterns. Number of extra patterns is not high and in
near all our experiments, number of patterns is equal. In other words, there are no
any extra patterns when we have sequences with length less than /5. In fact, using
this rule is made to generate further patterns but we will see that number of extra
generated patterns increase slowly when length of patterns grows. Experiments in

the next section demonstrate the power of these two modification rules.
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6) Experimental Results

All algorithms were implemented in MATLAB with Parallel Computing Toolbox.
Our machine environment consists of a network of 8 computers (2.6 GHz CPU)

with 2 GB memory running Windows XP operating system.

6.1) Sequence Datasets

To gain insight on how algorithms behave under various setting, we choose two
most common used resources UCI Repository and IBM Data Generator.

The UCI Machine Learning Repository is a collection of real databases that are
widely used by the researchers for the empirical analysis of algorithms [12]. For
evaluation of our algorithms in practical experiment, we selected four datasets
from UCI Repository. The training datasets were chosen to include a wide range
of domains and are summarized in Table 1. Datasets are used with some
modifications because we must adjust the datasets to suit our multidimensional
sequence model. For example, the chosen dataset may be contained of attributes
with missing values or as mentioned previously we need at least one dimension

whose its domain is totally ordered.

Table 1: Real dataset descriptions for test

Name of Dataset Data Types Number of Number of
Instances Attributes

Adult Multivariate 48842 14

Localization Data for Univariate,

Person Activity Sequential, Time 184860 8

series

Spoken Arabic Digit Multivariate, 8800 13
Time series

Thyroid Disease Multivariate, 7200 21

Domain Theory

We also used IBM Synthetic Data Generator with minor modification. Table 2

summarizes the main parameters of the datasets. For the purpose of evaluation of
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the algorithms, we use some synthetically generated sequences, based on
parameters shown in Table 2.

Table 2: The Parameters of the Datasets Generator

Notation Meaning Default Setting
Nieq Number of subsets (sequences) 100,000
Nira Average number of time values per subset 10
Lia Average number of tuples with identical time value 2.5
Nup Number of different tuples 10,000
R Repetition level for tuples 0

6.2) Discussion

We ran many experiments with various datasets. We obtain results over several
criteria including minimum support, size of dataset, number of workers, number
of sequence (pattern), length of sequence (pattern), and maximum length of
sequence (pattern).

Figure 3 plots the effect of minimum support over number of patterns to be mined.
The first observation is that, as the minimum support was increased, number of
patterns reduced quickly. This shows why it is hard to find patterns when
minimum support is low. It is also clear that maximum length of patterns grow up

when value of minimum support reduced (Figure 4).

40000 -
35000 -
30000 -
25000 -
20000 -
15000 A
10000 A
5000 -

Number of Patterns

0.0035 0.004 0.0045 0.005
Minimum Support (%)

Figure 3: Effect of minimum support value over number of patterns
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Figure 4: Effect of minimum support threshold over length of patterns

We have also studied the effect of changing minimum support on the STA
algorithm performance. We used 1, 2, 4, and 8 workers, and support threshold
ranges from 0.0035% to 0.0050%. Figure 5 shows execution time over minimum
support in 4 statuses. It can be seen that STA algorithm scales well but algorithm
has to deal with longer patterns and data transfer between coordinator and workers
extremely grow up. The coordinator becomes a bottleneck and major cost is
counting support value for sequences in which send to coordinator. Even in this
case (Figure 5), STA speed up is obvious and scales almost linearly. But it seems

using more than 4 processors is not as well as less than that.

|—0—1 Processor —s—2 Processors 4 Processors 8 Processors

600 4

500 4

400 4

300 4

Execution Time

200 4

100

0.004 0.0045 0.005
Minimum Support (%)

Figure 5: Effect of minimum support over execution time
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Figure 6: Comparison of subsets distribution

Figure 6 compares subsets distribution of STA and IMP approaches when the size
of dataset (number of transaction) changes. The number of workers is set to 4.
After distribution of subsets among 4 workers, we add length of subsets or
sequences in which assign to each worker and then calculate standard deviation.
As the dataset becomes longer, standard deviation of STA algorithm grows up
while there is no considerable variation in standard deviation of IMP algorithm.
We observe that the work balancing of IMP in terms of length of sequences is
better than STA. The above analysis indicates that IMP is effective and scalable in

mining large database.

—+— 2Prooessars s 4 Prooessas —+— 2Processars s 4 Processars
120
100
am
]
@ a0
=
§ @
§
0
Size of Dataset (Nuber of Transactions) Size of Dataset (Nurrher of Transactions)
(a) (b)

Figure 7: Execution time over database size

Figure 7 plots execution time over dataset size for two approaches separately. The

database size changes from 1500 to 2250 and the support threshold set to 0.004%.
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Figure 7a shows the performance of STA algorithm when it runs with 2 and 4
processors. Figure 7b shows the scalability of IMP algorithm since execution time
grows almost linearly when the size of database (number of transactions)
increases. We observe that the performance of IMP in terms of scalability and
runtime is better than STA.

One of the most important criteria to consider two approaches is length of
sequences. We test the effect of this parameter over execution time. The results
are shown in Figure 8a and 8b for STA and IMP algorithms, respectively. The
length of sequences rang from 15 to 29, database size set to 2000 transactions and

minimum support value is 0.004%.

_o— 2Processars g 4 Processars —+—2Processars —s— 4 Processars

1400 a0

12000 1200
‘E 10000 ‘g 10000
= &0 2 8000
£ £
E 60 = 600
g 4000 4000

2000 200

04 T T T ) 04 : T -
1518 1521 1525 1529 1518 1521 1525 1529
Length of Sequences Length of Sequences
(a) (b)

Figure 8: Effect of length of sequences on execution time

As expected IMP algorithm is faster when length of sequences grows. This is
because STA has to deal with longer sequences and patterns when dataset contains
of longer patterns. While the algorithm IMP rather than scan the datasets many
times for longer patterns, it only use a dataset with all of 2-patterns (patterns with
length 2) and 3-patterns in which every worker keep it.

As stated before, theoretically the number of generated patterns with algorithm
IMP is usually much than that with algorithm STA. In near all our experiments,

number of patterns is equal. Figure 9 shows number of patterns when length of
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patterns changes. We use real datasets and generate some synthetic datasets with

size 2000, and minimum support changes from 0.0035 to 0.005.

40000 -
2
5 30000 -
£
©
o
% 20000 -
3
2
E 10000 -
=]
z
ol e s [
1-4 5-8 9-12 13-16
@ STA 2139 2705 5190 36232
m IMP 2139 2705 5190 36401
Length of Patterns

Figure 9: Number of generated patterns by two approaches

As the length of patterns become larger, there could be many generated patterns
by IMP algorithm which are not patterns but it grows slowly. When length of
patterns is between 1 and 12, number of patterns generated by two algorithms is
same. Number of patterns goes from 36232 to 36401 when length of patterns is
between 13 and 16. The results in Figure 9 show that difference of patterns
number for sequences with length 16 is only 169 patterns. While in real

multidimensional dataset we rarely found patterns with length more than 16.

7) Summary

Multidimensional mining has been attracting attention in recent research into data
mining. Very large search space and data volume have made many problems for
serial algorithms to mine sequential patterns. In order to effectively mine, efficient
parallel algorithm is necessary. In addition, parallelism often can not be fully used

because of communication and processing limits.
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In the main part of this dissertation, we first theoretically utilize a
multidimensional sequence model and then use SPMD (Single Program Multiple
Data) strategy to parallelize multidimensional sequential pattern mining.
According to this method a set of processors execute in parallel the same
algorithm on different partitions of a dataset. From a data mining viewpoint, our
approach has several main advantages over task parallelism. This simplifies
programming and leads to a development time significantly smaller than one
associated with task parallel programming, because a lot of previously written
serial code can be reused. It has also a higher degree of machine architecture
independence, in comparison with task parallelism. In most applications, the
amount of data can increase arbitrarily fast, while the number of lines of code
typically increases at a much slower rate. To put it in simple terms, the more data
is available, the more opportunity to exploit data parallelism.

The main goal of the algorithm is balanced workload among the processors and
good scalability. We use two modification rules to improve the main parallel
algorithm. Using a suitable distribution of dataset and an approximate way to find
patterns led to have good performance for improved algorithm. In other words, an
attractive property of the improved algorithm is good behavior and scalability
when length of patterns grows up while main parallel algorithm faced to very high
computation time in this situation.

We have implemented our parallel algorithm using MATLAB Parallel Computing
Toolbox and several datasets on a network with 8 workstations. In summary our
approach can greatly reduce the number of scans through the sequence dataset by
only examining a small data of patterns with length two and three and a good

work loading as well. In fact, it tries to use parallel techniques for optimizing the

21



local mining at a worker, and uses distributed techniques for construction global
patterns or model, while minimizing the amount of results communicated.

Our experimental results indicate that primary and improved algorithms have a
similar behavior when length of patterns is low. As the length of patterns and
database size grow up, improved algorithm scales better and faster than primary
parallel algorithm but number of patterns generated by improved approach is
usually much than main parallel algorithm. Consequently, while the primary

proposed parallel algorithm scales well, the IMP algorithm is faster than it.

8) Future Works

It is easy to see that the first scan through the dataset to /-sequence construction
takes so much computation. Using some techniques such as sampling can be
efficient for mining /-sequence and reduce time for next steps. It is obvious that
using a suitable data structure can improve our approach. Besides, if we can use
length of subset along with cardinality to distribute subsets, we will achieve more
performance, surly.

The future research issues in multidimensional sequential pattern mining can be:
multidimensional sequential pattern mining with constraints, interactive
multidimensional sequential pattern mining or multidimensional sequential pattern

mining integrated with taxonomies and hierarchies.
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