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Chapter 1

Introduction

”"Don’t judge each day by the
harvest you reap, but by the
seeds that you plant.”

Robert Louis Stevenson

In the recent years pattern recognition and its applications definitely
entered into everyday life. People have smart devices recognizing spoken
commands, applications are able to recognize friends on photos and even
digital cameras can recognize smiles in real time to take the best pictures.
Industry puts more and more efforts and resources to analyse unimaginable
amounts of data searching for patterns and causalities to predict the future,
like the behaviour of customers or the development of economic processes.
One famous and revolutionary example is the Netflix PrizeE] from 2009,
which was awarded to the team providing the best solution to predict
user ratings for movies. Since then, many start-up companies have been
founded with the flag of pattern recognition and machine intelligence,
graduation programs have been started, online communities and platforms
appearedE] to share and solve problems similar to the Netflix Prize. Many
fields of natural sciences became dependent on pattern recognition since
the increasing amount of more and more complex and diverse data acquired
by digital sensors can hardly be filtered, processed and evaluated without

Lwww.netflixprize.com
2w kaggle.com
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intelligent software solutions. A good example is the Higgs Boson Machine
Learning Challenge. The famous discovery of the boson meant the beginning
of a long quest to measure its characteristics as accurately as possible: a
sufficiently large amount of Higgs related signals have to be extracted from
the unbelievable amounts of data (1 petabyte per seconds) acquired by
the ATLAS detector, and this is the point where pattern recognition was
applied in particle physics: a competitionlﬂ was started on Kaggle to find
the best software solution which is able to classify numeric vectors to the
classes signal and background accurately. As stated on the webpage of the
competition: ”No knowledge of particle physics is required”. These simple
examples illustrate the various areas where pattern recognition is applied
successfully. But this is only the present. We can expect that the upcoming
results, solutions and applications will change life, industry and science in
a fundamental way.

Deep under the hood, most of the pattern recognition driven applica-
tions are built on the concept of measuring the similarity or the inversely
proportional dissimilarity of real world objects described by numerical vec-
tors. Correspondingly, similarity and dissimilarity are usually formulated
in terms of mathematical functions operating on vectors. Obviously, what
similar and dissimilar mean, depends on the problem and field of applica-
tion. As a common property, (dis)similarity functions are usually desired to
be invariant to some certain classes of transformations. For example, one
can see the well-known image of Lena and its distorted variants in Figure
[I.1} despite the various distortions like under- and over-exposure, noise,
geometric and color space transformations, the human mind can recognize
that the images contain the same face in the same scene. Thus, in face
recognition applications — having similar performance as human mind — the
(dis)similarity measure is desired to be invariant to all of these distortions,
since they definitely conserve the piece of information important from the
application’s point of view: the face. In pattern recognition the require-
ments of the application define which transformations a (dis)similarity
measure has to be invariant to, and the invariance implies that the infor-
mation (pattern) is conserved under this class of transformationsﬁ If the

Shttps://www.kaggle.com/c/higgs—boson
4As a slightly philosophical remark, one can recognize an analogy with one of the
basic principles of theoretical physics. The systems described by physics may have so
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coordinates of the vectors can be interpreted similarly (e.g. all pixels of a
grayscale represent an intensity level; all elements of stock price time series
are prices), the needs of most applications can be satisfied by (dis)similarity
measures invariant to some general classes of transformations, like linear,
non-linear, monotonic or non-monotonic ones. Consequently, the research
of (dis)similarity measures invariant to some of these classes is of high
value in the various fields and applications of pattern recognition.

1.1 Outline

In this work, original results of my recent research activity are pre-
sented. The results are organized into three main chapters, each of them
closely related to (dis)similarity measures and their applications. Although
(dis)similarity measures are the common divisor, the problems described
and solved have different background. For the ease of discussion, the moti-
vation and overview of related work are arranged into the first sections of
the three main chapters. The main part of the dissertation is organized as
follows:

1. In Chapter 2 two novel dissimilarity measures are derived, both of
them are approximately invariant to even non-linear monotonically
increasing transformations and can be computed in linear time. The
proposed measures are tested and evaluated in various scenarios of
template matching and compared to other techniques designed to be
invariant to monotonic transformations. The results show that the
measures are highly competitive, in certain cases giving remarkably
better performance than conventional techniques. The measures are
independent from the spatial dimensionality of the objects being

called symmetries. In this context a symmetry means that some transformation of the
system does not change its description and behaviour. For example, if a system can be
described by the very same laws and formulation in times ¢y and ¢1, it is said to have time
symmetry. Another systems may have translation symmetry or rotation symmetry, if the
formulation of its description does not change by the spatial translation or rotation of the
system. All of these symmetries induce conservation laws. Time symmetry implies that
the energy of the system is conserved; the translation and rotational symmetry imply
that the momentum and angular momentum of the system is preserved, respectively.
Thus, invariances to some transformations imply that some quantitative properties of
the system are conserved.
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Figure 1.1: The Lena image (a) and some distorted variants: grayscale (b), under-exposed
(c), over-exposed (d), Gaussian noise (e), salt-and-pepper noise (f), color transformation
(g), mirroring (h)

compared, thus, besides template matching in images (which we use
for demonstration and evaluation) both of the proposed measures
can be used to compare and measure the dissimilarity of 1D time
series or even 3D images.

2. In Chapter 3 a problem related to general pattern recognition tech-
niques is discussed. The so called kernel trick (replacing the inner
product to a bivariate function which acts like an inner product
in a high dimensional space) is a well-known technique to adapt
the general formulation of machine learning techniques to a specific
problem or improve their properties in some sense, by keeping the
computational demands similar to the inner product based variants.
For example, Support Vector Machines (SVM) are usually used with
non-linear kernels for classification — although they are formulated
with the conventional inner product — and the kernel PCA is also a



well-known and theoretically established technique to extract infor-
mation from noisy, distorted vectors. Similarly, the kernel trick can
be applied to (dis)similarity measures if they can be formulated as
the linear combinations of inner products (like the Euclidean distance
and the correlation coefficient) to improve their discrimination power.
We have examined the kernelization of the Pearson correlation co-
efficient (PCC) and centered Euclidean distance (cEUC) measures
with the commonly used polynomial kernel and found that there are
infinitely many different ways to compute them in the polynomial
kernel space, and out of them at least one can be calculated in terms
of kernel evaluations. The discrimination power of the kernelized
PCC and cEUC measures is evaluated in classification problems
using the k-nearest neighbour classifier. The results show that the
performance of the kernelized measures is highly competitive, and in
certain problems better than that of the non-kernelized variants.

3. In contrast with the mainly theoretical problems and results of the
previous chapters, in Chapter 4 we go to the field of applications and
propose a novel technique for the segmentation of the vasculature
in retinal images. The method is based on template matching oper-
ators, and correspondingly, on the use of (dis)similarity measures.
The template matching framework we developed for the accurate
representation of the vasculature can be generalized to many other
problems of pattern recognition. The proposed method was tested
on the images of two publicly available datasets and compared to
many previously published techniques in terms of the conventional
measures of binary classification. We found that the proposed method
outperforms the previous techniques on the de facto standard image
databases, showing that the template matching based representation
of the vasculature is a reasonable technique and the features extracted
by the method have high discriminative power.

The discussion of the new results is followed by a summary in Chapter 5.
Although some of the discussed problems are closely related to the field
of computer vision, we emphasize that most of the ideas, methods and
approaches presented in the three main chapters can be used in a wide
variety of applications in pattern recognition and data science, none of



them is restricted to images.

1.2 Notations

Throughout the dissertation we use the following notations. Lowercase,
boldface and uppercase letters are used to denote scalars, vectors and
matrices, respectively (e.g. 2 € R, d,b € N, t € R%, a € R, § € R?*Y). The
coordinates of vectors and elements of matrices are referred by subscripts
(e.g. t; denoting the ith coordinate of vector t and S;; denoting the element
in the ith row and jth column of matrix S). Sets are denoted by calligraphic
letters (like Z C {0, 1,...,d}). We use the notation U([a, b]) for the uniform
probability distribution on the interval [a, b], and G(m, o) stands for the
Gaussian distribution with mean m and standard deviation o. Further
notations used only in some specific parts of the document are introduced
in the body of the text.



Chapter 2

Novel dissimilarity measures
invariant to monotonic tone
mappings

2.1 Motivation and Introduction

Many (dis)similarity functions have been proposed in the literature of
pattern recognition, some of them being developed to satisfy the needs of
particular applications, others being general enough to be applied in various
problems efficiently. The general ones are usually invariant to certain

e geometric transformations — enabling the recognition of similar pat-
terns when geometric distortions like rotation and scaling are present;

e photometric transformations — enabling the recognition of similar
patterns in images taken under various lighting circumstances and
by various acquisition techniques (like patterns in corresponding CT
and PET images).

Throughout this chapter we focus on photometric invariance. Even if
images of the same scene are taken, the changes in the lighting conditions
and the usually differing optical transfer functions of various imaging
devices can introduce non-linear deviations in the intensity distributions
of the images. Thus, (dis)similarity functions invariant to certain classes



of non-linear intensity transformations are especially useful in computer
vision applications.

As a novel contribution to the field, a dissimilarity function called
Matching By Tone Mapping (MTM) was proposed recently [1]. The au-
thors show that the MTM measures are invariant to non-linear intensity
transformations; has extremely low computational demands (can be com-
puted in terms of some convolution operations); can be considered as an
extension of PCC for non-linear transformations; and outperform many
previous measures in certain template matching and registration scenarios.
Interestingly, the applications of MTM are somewhat limited by its most
advantageous property: its invariance to non-linear intensity transforma-
tions. Particularly, the MTM dissimilarity of a vector and its additive
inverse is zero, although, there are many problems where the distinction
of such patterns is necessary. The issue is illustrated in Figure by an
example from the widely researched field of retinal image analysis. Figure
2.1(a)| shows a fragment of a retinal image containing two vessels running
parallel. There are many techniques proposed for the segmentation of the
vasculature by template matching [2, 3| |4], using the correlation coefficient
of the image content and an ideal vessel template as the primary feature
of segmentation. Clearly, the deviation of real vessels from ideal vessel
templates can rarely be described by linear transformations, thus, the per-
formance of the segmentation techniques could be improved by replacing
the correlation coefficient with the MTM measure. Accordingly, we have
selected a real vessel segment template (white frame in Figure , and
applied template matching using MTM. The outcome is expected to have
low scores at the center lines of vessel segments being parallel with the
one in the template, since MTM is invariant to the possible non-linear
deviations in the intensity profiles of vessels. However, as one can see in
the outcome (Figure , low scores appear between the vessels, as well,
since the inverse of the template is similar to the thin stripe of background
between the parallel vessels. In order to enable the use of MTM in problems
where invariance to only monotonic intensity transformations is desired, we
formulate the measure Matching by Monotonic Tone Mapping (MMTM)
by keeping the outstanding properties and discriminative power of MTM,
but restricting it to be invariant to monotonic intensity transformations
only. For illustration, we anticipate the outcome of template matching



(c)

Figure 2.1: Illustration of a problem where MTM can not be used: a segment of a retinal
fundus image and a template marked by white rectangle (a); the result of template
matching by MTM (b); the result of template matching by the proposed MMTM measure

(c)

using the proposed MMTM measure in Figure one can qualitatively
assess that the proposed technique gives the expected response.

The chapter is organized as follows. We give a brief overview of the
most widely used techniques and measures in Section 2.2} in order to enable
the qualitative comparison and positioning of the proposed methods in the
world of (dis)similarity functions. Then, we give a short introduction to the
Matching by Tone Mapping measure in Section [2.3]and derive the Matching
by Monotonic Tone Mapping measure as a novel contribution to the field
in Section MMTM is evaluated and compared to other (dis)similarity
measures in Section 2.5 some conclusions are drawn in Section [2.6] and
a brief outlook is given in Section [2.7] The results of this chapter can be
found in the paper [5].

2.2 Brief overview of similarity functions

Although the terms similarity and dissimilarity are widely used in pattern
recognition and related fields, no single definition can be given: on the one
hand the terms are highly intuitive, on the other hand, what similarity and
dissimilarity mean highly depends on the problem. Given a set of vectors
X C R?, basically any bivariate function of the form F : X x X — R can



be considered as a similarity or dissimilarity function, as well. Particularly,
one can find a problem and construct a representation X, where F' can be
used as a similarity measure or a dissimilarity measure. For the sake of
completeness, we give two general definitions based on the most common
properties and use the terms in this sense in the rest of the dissertation.

Definition 2.2.1. (Similarity measure) Let X C R%, then, we call the
function S : X x X — R a similarity measure, if for any x € X,

S(x,x) = gﬂéﬁ(S(x,y). (2.1)

Definition 2.2.2. (Dissimilarity measure) Let X C R%, then, we call the
function D : X x X — R a disimilarity measure, if for any x € X,

D(x,x) = ;Iél/IYl S(x,y). (2.2)

In words, what we expect from a similarity measure is that no vector
can be more similar to x than x. Analogously from a dissimilarity measure
we expect that no vector can be less dissimilar from x than x.

One can readily see that similarity and dissimilarity measures can be
transformed into each other in many ways. For example, for any similar-
ity measure S, a dissimilarity measure can be constructed in the form
D(x,y) = —S(x,y), and vice versa. Due to this duality of similarity
and dissimilarity functions, in the rest of the dissertation we neglect the
composite term (dis)similarity. Depending on the topic we use either sim-
ilarity or dissimilarity. Nevertheless, whenever we talk about the higher
or highest score of a similarity function, the statements are equally true
for dissimilarity functions by changing the adverbs to lower or lowest,
respectively.

For the ease of discussion, we use the terminology of template matching
in this chapter: let t € R? denote a template compared to each window w €
R? of an image, seeking for the window of highest similarity score. By the
term monotonic we mean monotonically increasing functions throughout
the chapter.

2.2.1 The simplest methods

The simplest general purpose similarity functions are based on the inner
product of the vectors. We can mention the inner product itself, but it is

10



rarely used in practice due to its unbounded nature:
Sip(t,w) = (t,w). (2.3)

Invariance to translations can be added to S;p by subtracting the mean of
the elements from the vectors. This measure is called covariance:

Scov(t,w) = (t — 1, w — w1), (2.4)

where t denotes the mean of the elements in t and 1 denotes the vector
consisting of all ones. Although Scoy is invariant to translations, that is,

Scov(t,t +al) = Var(t), (2.5)

for any a € R, again, it is rarely used in practice due to its unboundedness.
The correlation coefficient (CC)
(t,w)
Sco(t,w) = oL (2.6)
’ It wll’
can be considered as another extension of the inner product measure. It
can be readily seen that Sco¢ is bounded and invariant to scaling:

Sco(t,at) =1, (2.7)

for any a € R, a # 0. The last variant of IP based measures is the so
called Pearson correlation coefficient (PCC) (also known as centered or
mean-shifted correlation coefficient):

Spcc(t, w) = (¢ —t,w—wi) , (2.8)
Vit — Tt — T (w — wi,w — wi)

which is well-known to be invariant to linear transformations (both scaling
and translation). Particularly,

Spco(t,at +b1) =1, (2.9)

for any a,b € R, b # 0.

11



Probably the simplest dissimilarity functions are the L, distances
(L1 and Lo also known as Manhattan and FEuclidean distance (EUC),
respectively):

Dy, (t,w) (Z It; —wZ|P> , (2.10)

where p € R, p > 1. These measures reflect the natural concept of dis-
similarity, without invariance to any transformations: it can be readily
seen that there are no vectors w # t providing D, (t,w) = 0. One can
observe that starting from the inner product measure the widely used
PCC can be constructed in two steps: subtracting the mean (centering) to
ensure invariance to translations and dividing by the norms (normalization)
of the vectors to add invariance to scaling. The question arises: can we
do the same steps and extend the L, distances to be invariant to linear
transformations? The answer is positive, and for the Euclidean distance
some analogies can be observed with the inner product based similarity
measures. We can add invariance to translation, scaling or both translation
and scaling to the Euclidean distance and introduce the centered (cEUC),
normalized (nEUC) and both centered and normalized (cnEUC) Euclidean
distances:

d 2

D.guc(t,w) = (Z (ti —t—wi—i—w)z) , (2.11)
=1
4 e W 3

Drpuc(t,w) (Z (t - U’)Q> : (2.12)

L (ti-t wi—-w) ?
DanUC(tyw) = Z( : - > s (213)

=1\ 7t Tw
where oy and oy denote the sample standard deviation of t and w, that is,

1< _ 1
oy = (d Z(tl — t)2> , Ow = (d Z(Wl — W)2> . (214)

i=1 =1

The analogy between the IP based similarity measures and the variants
of EUC comes from the fact that EUC can be rewritten in terms of inner

12



products:
Dgyc(t,w) = (t,t) + (w,w) — 2(t, w). (2.15)

Exploiting the bilinearity of the inner product, one easily derives

1

D.puc(t,w) = (gf +ow? — QSCOV(t,w)>§ : (2.16)
DnE‘UC(t7W) = \/5(1 - SCC(tvw))% ) (217)
DanUC(t,W) = \@(1 - SPCC(tvw))% : (218)

It can be readily seen, that D,gyc and D.,gyc are shifted and scaled
variants of Soc and Spoc, thus, we do not deal with them in the rest of the
dissertation. On the other hand, although Scov is part of D.gyc, there is
an important difference: D.gyc has a lower bound at zero. Particularly,
for w = t + al, D.gyc(t,w) = 0. Due its boundedness, D.pyc can be
used to infer on the dissimilarity: if D.gyc is relatively small, the vectors
are similar. Although these simple measures and their variants (like the
Tanimoto measure |6]) are invariant to linear photometric transformations
at most, they usually serve as building blocks of the more advanced
techniques.

2.2.2 Advanced techniques

A large family of similarity measures (like Spearman’s Rho coefficient [7|,
Kendall’s tau coefficient [8, 9], the greatest deviation [10], and the ordinal
measure [11]) is based on the rank transformation R : RY — Z¢ assigning
the rank of t; to R(t);. Most of these methods use some of the already
mentioned simple techniques to measure the similarity of R(t) and R(w)
instead of t and w. Although these techniques are invariant to monotonic
intensity transformation (since monotonic transformations do not change
the rankings), a common drawback is that the outcome of R is highly
sensitive to noise and ties among the elements of t and w. Another class of
commonly used measures is based on the number of sign changes [12, |13} 14]
in the vector (t — w). These techniques provide the best performance if the
intensities of t and w vary slowly and only small amount of zero mean noise
is present. Several widely used similarity functions |15} [16, 17| are based on
information theoretical approaches by measuring the mutual information

13



(MI) content in the intensity distribution of t and w. Some variants of MI
are based on the joint distribution of derived local quantities, like phase
[18] or gradient orientation [19]. The MI based measures are intended to
be invariant to even non-linear intensity transformations, although, the
proper estimation of joint densities can be challenging, especially in the
case of small templates. Following a different approach, correlation ratio
and its variants [20, 21| measure the degree at which w is a single-valued
function of t. In registration problems these measures are shown to give
comparable results as the widely used MI based techniques [22]. Invariance
to certain photometric and geometric transformations can be achieved by
extracting invariant features from t and w and measuring the similarity of
the feature vectors. Hu’s descriptors |23),24] (combinations of statistical
moments) and local binary patterns (LBP) 25| |26] (based on the intensity
differences of a pixel and its neighbors) are two representative examples
of these approaches. Both of these measures are invariant to geometrical
rotations and LBP is also invariant to monotonic intensity transformations.
The drawback of LBP is its high sensitivity to additive noise. There are
many techniques developed to be invariant to even affine or projective
geometrical transformations: instead of characterizing the entire template
by a feature vector, these methods usually identify keypoints, describe
their local environment and try to find keypoints with similar descriptors
in the target image. Examples for these descriptors are the histogram of
gradients (HOG), scale-invariant feature transform (SIFT) 27|, speeded up
robust features (SURF) [28], gradient location and orientation histograms
(GLOH) [29], local energy based shape histogram (LESH) [30]. Obviously,
these techniques cannot be used efficiently if the templates are small or do
not contain characteristic keypoints.

Recent advances in the field include methods to reduce the computa-
tional demands of various similarity functions |31} 32] and the development
of measures being invariant to specific geometric transformations [33, [34],
noise [35] and non-linear intensity transformations [36]. Novel approaches
based on higher order statistics [37] and evolutionary computations [3§]
are also proposed. Some excellent overviews of similarity functions can be
found in the books [39], [40], [41], [42].

Our contribution to the field is the development of novel dissimilarity
functions being approximately invariant to monotonic non-linear intensity
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transformations. Before we give a detailed description of the proposed
measures, we give a short introduction into the Matching by Tone Mapping
technique, that inspired our work.

2.3 Brief Introduction to Matching by Tone Map-
ping

Following the notations of [1], a special class of functions called intensity
transforms (or tone mappings in the terminology of [1]) are denoted by
calligraphic letters, like M : R — R. With this formalism M(t) denotes
the application of the function M to each coordinate of t, independently.
The MTM dissimilarity [1] of t and w is defined as

D(t,w) = %n{”M(t)_W’z} (2.19)

dvar(w)

In words, the numerator measures how close t can be transformed to w
by applying some tone mapping M coordinate-wise and the denominator
ensures the invariance to intensity scaling. It is worth noting that is
not symmetric: another measure can be defined by interchanging t and w in
the minimization problem. In the rest of the chapter we focus on the form
(2.19) referred as the Pattern-to-Window (PtW) case in [1], but emphasize
that all results can be derived analogously for the Window-to-Pattern
(WtP) case.

2.3.1 Piecewise constant approximation

Obviously, the minimization problem cannot be solved explicitly,
however, approximate solutions can be obtained by the linearization of
the optimization problem, namely, replacing the term M (t) with a linear
approximation. In order to introduce the linearization, we suppose that tone
mappings are piecewise constant (PWC) functions and t is also replaced
with a PWC approximation. Let the coordinates of t be quantized into
b € N bins and let the boundaries of the bins arranged into the vector
q € R supposing that q; < min;t;, max;t; < quq; and each bin
[di,Qit1], © = 1,...,b contains at least one element. One can form the
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PWC slice transform matrix S(t) € {0,1}9%? of t as

1, ifqgj <t; <qjti, (2.20)
0, otherwise. ’

It can be readily seen that the matrix S(t) contains structural information
about t, each column is related to a bin, and the 7th element of column j
is set to 1 only if t; falls in the bin [qj, qj4+1[. The columns of the matrix
S(t) are also referred as slices. Given S(t), one can approximate t in the
form t ~ S(t)B, using B € R?,

_ 95 T q5+1

By= g (2.21)

or B, =q;.

Sjimilajrly to the approximation of t, the matrix S(t) can be used to
approximate various coordinate-wise transformations of t, for example,
the vector u = S(t)8, B, = q]2- can be considered as an approximation
of the vector M(t) € R? derived from t by applying the tone mapping
M(zx) = 22 coordinate-wise. Analogously, for any B € R’ the expression
S(t)B can be considered as the PWC approximation of some possibly
non-linear coordinate-wise transformation of t. Obviously, the quality of
approximation highly depends on the intensity distribution of t, the number
of bins, and the smoothness of M. Nevertheless, the linearization of the
minimization problem by M(t) ~ S(t)B is reasonable, and the
PWC MTM becomes

DYVC (t,w) = min

min . (2.22)

{HS(t)ﬂ - WIIQ} _IS@®)8 — w|?

dvar(w) dvar(w)

where B denotes the exact optimal solution of the linear minimization
problem in the numerator:

B=argmin [S(6)8 - wi = (" (©)5(0) T (Ow.  (223)

Clearly, the PWC approximation ignores the fine details within the
slices, since each element within a slice is approximated by the same
scalar. If the fine details within the slices matter, better results can be
expected if the PWC approximation is replaced by piecewise linear (PWL)
approximation.
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2.3.2 Piecewise linear approximation

In the PWL approximation the PWC slice transform matrix S(t) of t is
replaced by the PWL slice transform matrix Q(t) € [0, 1]4*(¢+1),

1 —r(ti,q5,q5+1), if t; € [d;,9541],

Q(t)ij = { r(ti, qj, qj41), if t; € [q;-1, 9], (2.24)
0, otherwise,
where
r — al
La1,as) = . 2.25
r(x,a1,a9) p—— (2.25)

The elements of (t) can be interpreted in the following way: row ¢ contains
the coefficients of the linear interpolation scheme reconstructing t; from

b+1
the bin boundaries q. Particularly, t; = Y- Q;;(t)q;, and the vector t can
j=1

be perfectly reconstructed by the product t = Q(t)q. Similarly to the case
of the PWC approximation, replacing q with an arbitrary vector ¢ € R0*1,
the product Q(t)¢ can be considered as the approximation of a vector
M(t), where M denotes an unknown tone mapping. Thus, one can replace
the term M(t) by Q(t)¢ in ([2.19), and the PWL MTM becomes

DEWE (¢ w) — min {|rc2<t><—wu2}_||@<t>2:—wu2 2.26)

MTM CERbH1 dvar(w) dvar(w) '

where ¢ = (QT(t)Q(t)) ' QT (t)w denotes the exact optimal solution of
the linear minimization problem in ([2.26)).

The approximate invariance of the MTM measures to non-linear tone
mappings is a consequence of their design: if M is relatively smooth, the in-
tensities falling in the same bin are transformed similarly, and the structure
of M(t) remains similar to that of t. Accordingly, both DPI¥C (¢, M(t))

and DPVL (£, M(t)) become small and indicate high similarity.

2.4 Matching by Monotonic Tone Mapping

One can readily see that DEWS (t, —t) is close to zero (proportional to

the error of the PWC approximation), and DYWL (t, —t) = 0. As we have
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demonstrated in the introduction, there are problems where invariance
to non-linear transformations is too permissive, and invariance to only
monotonic non-linear intensity transformations would be desired. The
main goal of this work is to derive dissimilarity measures giving the same
results as DYVC (¢, M(t)) and DEYE (£, M(t)) if M is a monotonic tone
mapping, and smoothly deviate from the results of the MTM measures as
M deviates from being monotonic.

2.4.1 Piecewise constant approximation

In this subsection we introduce the proposed Matching by Monotonic Tone
Mapping (MMTM) measure with piecewise constant approximation. For
the ease of notations we leave the argument of the PWC slice transform
matrices S(t), however, we emphasize that S is always a function of
the template t and the vector of bin boundaries q. Based on the PWC
approximation of MTM , the desired dissimilarity function can be
formulated easily:

ISy —w|?
Ty (E W) VHGIE}) dvar(w) )
subject to v; < vy < -+ <. (2.27)

Two questions arise: can we solve this constrained optimization problem
exactly? If so, can we solve it efficiently? From the general point of view, this
problem is a quadratic optimization problem with linear constraints (QPLC)
[43]. If the the quadratic form appearing in the target function is positive
definite (i.e. the optimization problem is convex), exact solutions can be
found by standard techniques (like the ellipsoid method) in polynomial time
[44]. The numerator of the target function can be expanded by utilizing the
bilinearity of the inner product: || Sy —w||? = (S, Sv) +2(S~vy, w) +(w, w),
and the quadratic term can be rewritten as (S=v,S~v) = v’ Ay, where
A = STS. Since the columns of S are orthogonal and S € {0, 1}4%?) A is
diagonal and the element A;; equals the cardinality of slice . Thus, A has
only positive eigenvalues, that is, A is positive definite, and polynomial time
techniques can find the exact solution of . However, the execution
of a polynomial time algorithm for each pixel of an image would make
MMTM inefficient in practice. In the next subsection we show how the
optimization problem can be solved efficiently.
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2.4.2 Transformation of PWC MMTM to an isotonic re-
gression problem

The main result of this subsection shows that (2.27) can be transformed
into a weighted isotonic regression problem and solved in linear time.

Theorem 2.4.1. For any t,w € RY, Af/[%%M(t,w) is equivalent to

15y —wl?

Dﬂv]v\/[%M (t7 W) - d’UO//’(W)

b
Y = arg min Z <—A-2,
4 gveRb;\ il(v; — Bs)
subject to 1 < yg < -+ <y, (2.28)

where B is defined by and Z; C {1,...,d} denotes the set of indices
corresponding to slice i, that is, j € I; if t; € [Qi, Qit1].

Proof. First we note that due to the special structure of S, the elements
of B = (STS)~1STw can be written in the form

X 1
B = T > wj (2.29)

JEZ;

We have to show that the optimal solution vector 4 of also minimizes
the optimization problem in and vice versa. We use indirect reasoning.
Suppose, 4 minimizes the optimization problem in , but 4 does not
minimize the numerator of . Then, there must be a vector § € R?,
satisfying 61 < d5 < ... < 8y, and

1S(£)8 — wl|* < [|S(t)5 — wl|*. (2.30)
Expanding both sides of the inequality, one gets

zb: Z (622 — 26, w; + WJQ) < Zb: Z (’722 — 24,w; + W?) . (2.31)

i=1j€L; i=1j€T;

b
Subtracting > > W]z from both sides and utilizing ([2.29)),

i=1jeT;
b R b .
SoITil (67 - 20:B;) < 31Tl (5% — 24:Bs) - (2.32)
i=1 i=1
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b A
Adding ) |Ii|BZ2 to both sides,
i=1

b b
STl (62208 +8) < Tl (3 - 248+ B) . (2:39)
=1 =1

implying

b

i=1
that is, 4, is not the optimal solution of ([2.2§ : contradiction. The other
direction of the statement can be proved by applying the same steps of
derivation backwards. O

One can observe, that the optimization problem in is a weighted
isotonic regression problem in Lo morm, thus, exact solution can be found
in O(b) linear time by the well-known and many times rediscovered Pool
Adjacent Violators Algorithm (PAVA) [45, 46], given in Algorithm [l The
input of PAVA is the vector 8 € R?, and the cardinalities |Z;], i = 1,...,b
playing the role of the weights in the weighted isotonic regression problem.
The output of PAVA is proved [45, 46] to be the optimal solution 4 of the

minimization problem in (2.28)).
As a summary, we define the proposed PWC MMTM dissimilarity as

formulated in (2.28), where 3 is defined by (2.23), and 4 is determined by
PAVA as the exact solution of the minimization problem in .

According to |1] the time complexity of computing PWC MTM for all
windows of an image containing p pixels is O(dp+bp), where d and b denote
the size of the template and the number of bins used to construct the slice
transform matrix, respectively. From (2.22)) and (2.28)) one can readily see
that the only additional operation required to turn PWC MTM into PWC
MMTM is PAVA. Since PAVA runs in O(b) time, the time complexity of
PWC MMTM remains linear O(dp + 2bp).

2.4.3 Properties of the PWC MMTM

In this subsection some properties of PWC MMTM are discussed from
the theoretical point of view. So far, we have supposed that the vector
of bin boundaries q is fixed for a given template t. In this subsection we
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Algorithm 1 Pool Adjacent Violators Algorithm

1. Initialize the partitioning of coordinates 1,...,b into the sets P; = {i},
i=1,...,b.

2. PAVA iteratively seeks for adjacent sets violating the constraints pu(P;) <
w#(Piy1), where pu(P;) denotes the weighted mean corresponding to the
indices in P;: .
Zp 1Z;18,
JE€EP;

p(Py) = e

> 17l

JEP;

(2.35)

3. Suppose P; and P;41 violate the constraints, i.e. u(P;) > u(Pit1). The
violation is resolved by unifying the sets: updating P; to P; U P; 41, and
removing P; 1 from the partitioning.

4. When no more adjacent pairs violating the constraints remain, the parti-
tioning consists of m < b sets and u(P;) < u(Pit+1),i=1,...,m — 1 holds.
The optimal solution vector 4 € R® is constructed by the rule

Y1 =F2=""" :’7|p1\ = u(Py)
’A7|7>1|+1 = ’3’\7>1|+2 == ’?|P1\+|P2\ = p(Pz)
Vor | P41 = Vo P42 = = o = H(Pm)- (2.36)

deal with various bin configurations, therefore, we introduce the notations
DPWC (t,w|q), S(q) and Z;(q) to emphasize that these quantities are
functions of the bin boundaries. We also introduce B(t,b) C R**! denoting
the set of all vectors specifying b bins for t. Particularly, B(t,b) = {q €
RO+ |q; < min; t;, max;t; < qpe; and each bin [q;, q;41[ contains at least
one element of t}. First, a general property of PWC MTM is described: the

finer the quantization is, the smaller the dissimilarity of t and w becomes.

Proposition 2.4.1. Let t,w € R%, q € B(t,b), p € B(t,b—1), p =
(41, ,9i-1,9i+15- - -, dpy1)- Then,

DS, wla) < Dyjrir(t, wip). (2.37)
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Proof. Introducing s;(q) = > wj, PWC MTM becomes

J€Zi(a)
b si(q) ?
R T - ;I -
vt wla) = dvar(w) (2.38)
Expanding and simplifying both sides of (2.37)), one gets
Zi(@)] [ Ziva(a)l ~ [ Zi(q) UZiyi(q)]
This expression has the form
2 2 2
oy (r1 +72)7 (2.40)

z1 z92 21 + 22

z
with 71,79 € R, 21,20 € Z*. Introducing x = 22 and simplifying the

expression, one gets the second order inequality b

r%xz — 2r1rox + 7"% > 0. (2.41)
The only solution of the second order equation on the left hand side
isz = :—i Thus, the strict inequality holds for any configuration of
r1,79,21 and 2z, except when z—i = :—? However, the latter case implies

si(@) _ sivi(a)

Zi(a)|  |[Ziva(q)l ,
falling in different bins can not be the same. Consequently, the strict

inequality of the statement is valid. O

, which can never hold, since the mean of elements

The following proposition provides an interesting insight into the oper-
ation of PWC MMTM: using appropriately chosen bin boundaries, PWC
MTM can reproduce the outcome of PWC MMTM. In other words, the
effect of the monotonicity constraints can be considered as a rule for the
automated adjustment of bin boundaries in PWC MTM.

Proposition 2.4.2. Lett,w € R?, q € B(t,b) and suppose PAVA resolves
v violations in DYWVC (t,w|q). There exists p € B(t,b—v), {p;} C {a:}
such, that

Di751 (6, wIp) = Difiizas (6, wla). (2.42)
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Proof. Suppose DYIVE. (t,w|q) is computed. Supposing that PAVA re-

solved v violations, a partitioning of indices {1,...,b} into the sets
P1,Pa, ..., Py is determined, where m = b — v. Since the sets P; C
{1,...,b}, j = 1,...,m contain consecutive indices, and i € {1,...,b}

corresponds to the bin [q;, q;+1], the partltlonmg implies a rebmmng Let
p R p, = (i), where z(i) = 1+ Z |P;j|. Then, p € B(t,b —v) and

{pi} C {q;} holds. In order to prove that satisfies DYIVE., (¢, wlq) =
Dﬂ%\%(t,wlp), it is sufficient to show that the vectors S(q)%(q) and
S (p)B(p) appearing in the numerators of the measures are the same.
Suppose j € Py and t; € [q;,q;+1[C [pk,pk+1[ Then,

(S(P)B(P))i = Bi(p) = !Ik( T leg( )wz, (2.43)
z 1Zi(a)|By(q)
(S(a)¥(@)); =F(a); = u(Pr) = z§> Q)] (2.44)
Since Zi(p) = Uiep, Zi(q), (2.43) and (2.44) are equal. O

The most important properties of PWC MMTM are summarized in
the next theorem as the consequences of the previous propositions.
Theorem 2.4.2. Let t,w € R?, q € B(t,b),

1. if M is a monotonic intensity transformation, DYWC., (t, M(t)|q) =

DS (6, M(t)|a);
2. Dﬁ%%M(tvw|q) > Dﬁ%ﬂ%(t7w|q);'

Proof. 1. Since a monotonic transformation M implies that the elements
of B € R? are also monotonically increasing, PAVA resolves v = 0
violations and PWC MMTM turns into PWC MTM.

2. Suppose t,w,q, p and v satisfy the conditions of Proposition [2.4.2
If v = 0, equality holds as a consequence of 1). Let v > 1. Then,
one can construct a sequence of vectors ro = q, r; € B(t,b—1),i =
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1,...,u—1,r, = p such, that the conditions of Proposition [2.4.1 hold
for each adjacent pair of vectors. As a consequence of Proposition

BT and 213

Dy (6, wla) < Dy (6, wirn) < ...

< Diprip (6, wlre—1) < Dipriy(t, wip) =

= Difyiru (¢ wlq). (2.45)

3. The third statement is the consequence of Proposition [2.4.2] and the
fact that PWC MTM is normalized into [0, 1].
O

Theorem shows that PWC MMTM meets the requirements we
formulated at the beginning of the section. On the one hand, the advan-
tageous properties of PWC MTM (like being an absolute measure and
being approximately invariant to monotonic intensity transformations)
are inherited by PWC MMTM. On the other hand, since the number of
violations resolved by PAVA can be considered as a qualitative measure of
how M deviates from being monotonic, implies that the deviation of
DPWC (6, M(t)|q) from DPWC (£, M(t)|q) increases with the deviation
of M from being a monotonically increasing transformation.

2.4.4 Piecewise linear approximation

Formally, the PWC and PWL MTM measures are highly similar. In both
cases, the slice transform matrix S or ) contains structural information
about t and a kind of weight vector 8 or ¢ is determined to transform
the structure of t as close to w as possible. However, there is a signif-
icant difference in the slice transform matrices: S is orthogonal, but @)
is not. Changing (3, alters only the elements belonging to the ith bin in
SB. On the contrary, changing ¢, alters the elements of Q¢ belonging
to bin ¢ and ¢ 4+ 1, as well. This complicated encoding of structure and
intensity transformation gives rise to some strange properties of PWL
MTM: the monotonicity of M does not imply the monotonicity of ¢ in
DPWL (£, M(t)). We use a simple example to demonstrate this behaviour.
Let t = (2,3,8)" be quantized into two bins defined by q = (1,5,10)7,
and let the tone mapping be the strictly monotonic sigmoid function
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M(z) = 1 +1e*$‘ Then, M(t) = (0.88,0.95,0.99)7, ¢ = (0.8,1.0,0.93)T
and Q¢ = (0.88,0.95,0.99)T. DPWL (t, M(t)) = 0, since t is perfectly
reconstructed by Qé’ , but é’ is not monotonic. Consequently, adding mono-
tonicity constraints to ¢ in the formulation of PWL MTM is not the
appropriate way to develop the PWL MMTM measure, since the outcome
of PWL MTM and PWL MMTM may differ even if M is monotonic. In
the development of the proposed PWL MMTM measure we have taken
into consideration the following natural requirements: for a monotonic
tone mapping M, DYVL (¢, M(t)) = DYWL (£, M(t)) is desired and the
outcome of PWL MMTM should deviate from PWL MTM as M deviates
from being monotonic; PWL MMTM should be normalized into the range
[0,1] and computed in linear time.

We found that all the requirements can be fulfilled by adding a penalty
term to PWL MTM, penalizing the non-monotonic relationship between t
and w:

Ditean(t,w) =Did (6, w) + (1= DFfr(6,w)) P(t,w),  (2.46)
P(t,w) =Dz (8, SB). (247)

The penalty term is based on the quantities computed in PWC MMTM and
measures how much the optimal monotonic PWC tone mapping (%) deviates
from the optimal PWC tone mapping (B) The reason why the PWC
MMTM distance of t and SB is used instead of that of t and w is to get
rid of the PWC representation error. In this formulation the penalty term
becomes zero if M is monotonic and DYWE., (t, M(t)) = DIVE (t, M(t))

holds.
Theorem 2.4.3. Using the notations introduced before,

1. if M is a monotonic intensity transformation, DYWL, (t, M(t)) =

DEFF i (6, M(1));
2. Dﬁ%%M(taw) > D]}\.}VY[{]%(EW);
8. DIVEL (6, w) €10,1].

Proof. All statements are simple consequences of the structure of (2.46)),
the properties of PWC MMTM and the fact that PWL M'TM is normalized
in the range [0, 1]. O
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The authors of [1] give an O(2p(d + b)) algorithm for the computation
of the PWL MTM dissimilarity of a template and all windows of an image
containing p pixels. We have previously seen that the time complexity of
PWC MMTM is O(p(d + 2b)), thus, the complexity of the proposed PWL
MMTM measure remains linear: O(p(3d + 4b)).

2.4.5 The Window-to-Pattern cases

The authors of [1] give a detailed description of the Window-to-Pattern
(WtP) measures and also give linear time algorithms for their computa-
tion. Due to the analogies of the WtP and PtW cases, the monotonicity
constraints can be added to the WtP measures in a straightforward way,
carrying out the same steps we did in the previous subsections. We do not
repeat the derivations here, but highlight that analogous statements can
be formulated for the MMTM WtP measures as the ones we made in the
PtW case. As expected, the time complexity of the WtP measures remains
linear.

2.4.6 Pattern-to-Window or Window-to-Pattern?

As mentioned before, the MTM and MMTM measures are not symmetric:
the outcome of the PtW and WtP variants is usually different. One can
create symmetric measures based on the MTM or MMTM principles in
many ways, e.g. the sum or minimum of the PtW and WtP measures is
symmetric. In practice, we found that there is no need to calculate both
of the measures. Under the natural assumption that the template being
sought for has some characteristic structure, one can expect the WtP
measures to have better performance than the PtW ones. We illustrate this
strange property with an example. In Figure one of our test images can
be seen with two windows zoomed-in. Suppose one wants to do template
matching with the template in Figure Either MTM or MMTM
PtW measure is used, the window in Figure gives an almost perfect
match, since even a monotonic tone mapping can transform the text on
the spine of the book into the corresponding blank region of Figure [2.2(c)
However, using the WtP measures, this is not the case. The blank region
can not be mapped to the one with structures, so the WtP measures
won’t indicate a good match. As a summary, supposing that the template
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Figure 2.2: The template in (a) and (b) almost perfectly matches the window (c) when
a PtW measure is used

has some characteristic, detailed pattern, the use of the WtP measures is
recommended.

2.5 Tests and Results

In the previous section we have introduced the PWC and PWL MMTM
measures. In this section we compare the performance of the proposed
techniques to that of other measures in various scenarios of template
matching. The scenarios are similar to the ones used in 1| and for the
evaluation of (dis)similarity measures in template matching.

2.5.1 The measures used for comparison

For comparison we have selected (dis)similarity measures designed to be
more-or-less invariant to monotonic intensity transformations: Spearmans’s
Rho coefficient (SR) [7]; Kendall’s Tau coefficient (KT) [8]; the L; distance
of the rank vectors (RD) [40]; local binary patterns (LBP) [25]; and
the Pearson correlation coefficient (PCC). In order to demonstrate the
improvements, the test results are also compared to that of the PWC and
PWL MTM measures.

Generally, in each of the test scenarios we found that LBP has signifi-
cantly worse performance than the other measures. This is in accordance
with the results reported in . In our interpretation the reason for this is
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Figure 2.3: Some test images followed by their distorted variants

the high sensitivity of LBP to the distortions used in the tests (monotonic
tone mappings, additive noise). In order to improve the readability of the
charts and figures, we do not plot and do not discuss the results of LBP in
the rest of the chapter.

2.5.2 Simulated images

Similarly to the evaluation in , the measures are tested on images
distorted by simulated tone mappings and noise. These experiments enable
the comparison of performance as a function of the amount of distortion.

2.5.2.1 Test cases and the measure of performance

In the simulations we used the images of the Berkeley Image Segmentation
Dataset . In every test case we randomly choose an image I from the
dataset, and randomly select a window having standard deviation larger
than a specific threshold. This window is considered to be the template T'.
The selection rule ensures that the template has some structure, which is
a natural assumption in template matching scenarios. Then, a randomly
generated monotonic tone mapping is applied to I, Gaussian white noise
is added and template matching is carried out to find 7" in the distorted
image. The position of the highest similarity score is considered to be
the detected position of the template. We consider the match correct if
the location is inside the window we used as template. The measure we
compute to characterize the performance of the various (dis)similarity
functions is the matching rate defined as

the number of correct matches

2.48
the total number of tests ( )
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Algorithm 2 Recursive procedure to generate random monotonic tone
mappings

1: procedure MONMAP(b € Z, e € Z, m € {0,...,255}2)
2 c [ (b+e)/2]

3 if b # c then

4: m; < r € U({mp,mp+1,...,m.})

5: MoNMAP(b, ¢, m)
6

7
8

MoNMAP(c, e, m)
else
: return
9: end if
10: end procedure

In each experiment we carry out 1000 tests.

The random monotonic tone mappings are generated in the following
way. In the usual 8 bit grayscale representation of images, an arbitrary
tone mapping can be represented by a vector m € {0,...,255}%%. The
tone mapping is considered to map the intensity m; to the gray level 1.
The first element of the random monotonic mapping is set to zero (m; = 0)
and the last element to a random integer in the range [1,255]: moss =1 €
U({1,...,255}). Then, we apply the recursive method of Algorithm 2 to
fill the rest of the mapping m by calling MoNMAP(1, 256, m).

In order to illustrate the effect of random monotonic tone mappings
and additive noise, some images of the Berkeley dataset and their distorted
variants are visualized in Figure |2.3

2.5.2.2 Varying the number of bins

In the first experiment we examined the performance of the proposed
MMTM measures as the number of bins used for the slice transform
is varied. We used the testing methodology described in the previous
subsection. The number of bins was set to 4,8, ..., 24; the noise level and
the linear extent of the templates were selected from the ranges [1,25] and
[11,31], respectively. The results are plotted and compared to that of the
MTM measures in Figure

Generally, the PWC measures have low performance when the number
of bins is low, but the matching rates increase rapidly as the number of bins
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Figure 2.4: The sensitivity of performance to the number of bins (a); template size (b);
and level of noise (c)

increases and the performance saturates near 16 bins. The PWL measures
seem to be quite insensitive to the number of bins, although a slight drop
in performance can be observed when the number of bins exceeds 8. One
can observe that there is a remarkable difference in the performance of the
MMTM and corresponding MTM measures. Moreover, despite the PWC
representation error, even PWC MMTM outperforms PWL MTM when
the number of bins is greater than 12. The reason for the relatively low
matching rates of MTM is the issue described in the Section the MTM
measures do not take into consideration the monotonicity properties of
the pattern, thus, they may detect the inverse of the template, as well.
We illustrate the problem in Figure 2.5} one can see a test image and a
randomly selected template (yellow frame, zoomed-in) in Figure [2.5(a)
and the distorted image (random monotonic tone mapping and additive
noise) with the windows detected by MTM (red frame) and MMTM (yellow
frame) in Figure The MMTM measures find the template correctly,
but the MTM measures fail: although the structure of the window in red
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Figure 2.5: The test image and the template in yellow frame (a); the distorted image
and the windows identified by MMTM (yellow frame) and MTM (red frame) (b)

frame is similar to the structure of the template, the intensities are inversely
related.

As a side-result of the experiment we can select the appropriate number
of bins to use for the slice transform: in the rest of the chapter we use the
PWC measures with 16 bins and the PWL measures with 8 bins.

2.5.2.3 Varying the size of the template

In the second experiment we examined the sensitivity of performance to
the size of the template. In each test case the level of noise was selected
from the range [1,25]. The results are plotted in Figure Although
some convergence can be observed as the size of the templates increases,
PWL MMTM has the best performance all over the range of template sizes.
PWC MMTM has similar performance as PWL MTM, which means that
the improvement achieved by taking into consideration the monotonicity
properties of the template is comparable to the improvement achieved by
using PWL approximation instead of PWC in MTM. The only measure
having remarkably better performance than PWC MMTM is PCC at the
template size of 11 x 11 pixels: a template consisting of 121 pixels seems to be
too small for an accurate PWC representation using 16 bins. Interestingly,
the rank based techniques have remarkably worse performance than PCC:
we can conclude that PCC is less sensitive to additive noise and the possible

31



0.9

0.8

oS
3

Matchigg rate
o

54
B

. .
PWLMMTM & ™ K / PWL MMTM 0.6 PWL MMTM
04 PWC MTM N\ K PWC MTM PWC MTM
—— PWLMTM OB 065- 14 —— PWLMTM —— PWLMTM
-=-RD Y -=-RD --RD
-O- SP uak} -O- SP -O- SP
-A- KT s -Ac KT -A- KT
031 .3 pcc B & 3 PCC 0.5- 3 PCC

(Dis)similarities
- PWC MMTM

0.80-

g ratf:c

Matchin,
4

(Dis)similarities
- PWC MMTM

0.9-

o
o

Matcging rate
3

(Dis)similarities
- PWC MMTM

ool S 02 03
Distance from identity mapping

(a)

15 20 25 30 35
Linear extent of the pattern (pixels)

(b)

15 20 25 30 35
Linear extent of the pattern (pixels)

()

Figure 2.6: Matching rates as the simulated tone mappings deviate from monotonic (a);
test results on the Robust Pattern Matching performance evaluation dataset (b); tests
results on own images (c)

loss of details (due to the monotonic tone mappings) than the rank based
techniques.

2.5.2.4 Varying the level of noise

In this experiment the sensitivity of the measures to additive noise is
examined. Again, the template sizes were selected from the range [11, 31].
As one can observe in the results plotted in Figure , PWL MMTM
outperforms the other techniques almost all over the range of noise lev-
els. Interestingly, when the level of noise is close to zero, the rank based
techniques have higher matching rates than PCC, PWC MTM and PWC
MMTM. This can be explained by recalling that the rank based techniques
are exactly invariant to monotonic tone mappings. At low levels of noise
their performance is deteriorated only by the loss of details (due to de-
generated monotonic tone mappings), while PCC and the PWC measures
are also affected by the non-linearity of the tone mapping and the PWC
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representation error, respectively. As the level of noise increases, the perfor-
mance of the rank based methods deteriorates rapidly showing their high
sensitivity to additive noise. Although the performance of PCC shows the
slowest decrease by the increasing level of noise, the average performance
of the MMTM measures — especially that of the PWL MMTM - is highly
competitive with that of the other techniques.

2.5.2.5 Sensitivity to the deviation from monotonic tone map-
pings

In the last experiment of simulations, we examined the performance of
the (dis)similarity measures in the presence of slightly non-monotonic tone
mappings. The template size and the level of noise were selected randomly
from the same ranges as before. The random non-monotonic tone mappings
were produced by generating a monotonic tone mapping and randomly
interchanging some elements of the mapping vector. The deviation of a non-
monotonic tone mapping m from the identity mapping i is characterized
by computing DYV, (i, m) using 256 bins. It is worth noting that the
use of PWC MMTM for the quantification of the non-monotonicity of
the mapping does not introduce any bias for the proposed methods. As
one can see in Figure the MTM and MMTM techniques highly
outperform the rank correlation based methods and PCC as the tone
mapping deviates from being monotonic. Interestingly, up to a certain
point (DEWC.) (i, m) &~ 0.2), the PWL MMTM method outperforms the
MTM measures and even PWC MMTM performs on par with them. We
can conclude that the use of monotonicity constraints may improve the
performance of the MTM measures even if the tone mappings are not
perfectly monotonic.

2.5.3 Real images

In the previous subsection we have shown that the proposed measures
perform on par and in certain cases better then previous techniques. How-
ever, in real scenarios it is usual that non-monotonic and spatially varying
tone mappings appear on the images. In order to demonstrate how the
monotonicity constraints improve the performance of the MTM measures
in real scenarios, we carried out experiments on real images and summarize
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Figure 2.7: Sample images from the Robust Pattern Matching performance evaluation
dataset

the results in the rest of this subsection.

2.5.3.1 Robust Pattern Matching performance evaluation
dataset

In the literature of image processing we found only a limited number of
datasets used for benchmarking (dis)similarity measures. One publicly
available database is the Robust Pattern Matching performance evaluation
dataset containing 10 photos of a structured scene. The images were
taken under various lighting conditions and using various imaging devices.
The images also contain some geometric distortions: the scene is slightly
rearranged and the position of the camera is also varied to some extent.
For illustration, some sample images from the dataset are visualized in
Figure 2.7

The testing methodology is similar to the one we used in the previous
subsections, except that the simulated distortion of an image is replaced
by the random selection of another image from the database. As before,
we carried out 1000 tests and plotted the matching rates in Figure
by varying template size. One can observe that MTM, MMTM and PCC
highly outperform the rank based measures. The reason for this is that
the rank based measures are highly sensitive to geometric distortions: if
the template and the target window do not overlap perfectly, the rankings
may become far from each other and the matching fails. Regarding the
proposed techniques, one can also observe that the MMTM measures give
remarkably better results than the MTM techniques and in most of the
cases outperform PCC, as well. Two strange things can be observed at
the linear size of 31 pixels. On the one hand, the performance of the
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Figure 2.8: Some sample images from the database we prepared

MTM, MMTM and PCC measures saturates: the reason for this is that the
deteriorating effect of geometric distortions (like slight rotations) increases
with the size of the templates. On the other hand, there is a drop in the
performance of rank based techniques. We found the reason for this strange
behaviour in the presence of highly non-monotonic local distortions (like
the spotlight in Figure . As the size of templates exceeds 25 x 25
pixels, the probability that a randomly selected structured template is
affected by the spatially limited highly non-monotonic distortions increases
rapidly and the rank based techniques seem to fail in these situations since
the ranking of the template and the window becomes highly different. As
the size of templates increases further, the deteriorating effect of spatially
limited distortions decreases (as their relative size within the template
decreases) and that of geometric distortions dominates: the matching rates
increase and just like in the other cases, the performance seems to saturate
near the level of 0.74.

2.5.3.2 Own images

Since the publicly available dataset used in the previous experiment is
pretty small, we have prepared a larger dataset of test images. The images
are arranged into 10 series, each of them containing 20 images of the
same scene. The images are taken under various lighting conditions, at
various levels of CCD sensitivity and some of them contains out-of-focus
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Figure 2.9: A test image and the template in white frame (a); the corresponding region of
another test image (b); In each distance map the pixel with the highest score is located
in the middle of the small white frame, which is zoomed-in below the distance maps
for better visibility: MMTM PWC (c); MMTM PWL (d); MTM PWC (e); MTM PWL
(f); RD (g); SR (h); KT (i) and PCC (j). The scale of false coloring: maz and min are
related to the best and worst score (k)

blur. For illustration, one can see some sample images in Figure We
carried out similar experiments as before and plotted the results in Figure
2.6(c)l The most conspicuous thing is that the rank based techniques
have higher matching rates than in the previous experiment, moreover,
they outperform PWC MTM almost all over the range of template sizes.
This can be explained by the lack of heavy geometric distortions (like
rearrangement) and the limited amount of non-monotonic local intensity
distortions. Similarly to the previous experiments, PWL MMTM has the
best performance, and in most of the cases even the matching rates of PWC
MMTM are higher than that of the other measures used for comparison.
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2.5.3.3 Qualitative illustration of the discrimination power

The test results presented so far suggest that — in the presence of monotonic
or slightly non-monotonic tone mappings and additive noise — the MMTM
measures can distinguish a structured template from the background
more efficiently than the methods used for comparison. In Figure 2.9 we
demonstrate this characteristics qualitatively. Figure 2.9(a) shows a segment
of a test image and a template in white frame. The template was sought
in the slightly over-exposed test image of Figure 2.9(b) and the distance
maps produced by the various measures are shown in Figures 2.9(c)-2.9(j).
For the ease of visualization false coloring is used; the neighborhoods of
the best matching pixels (small white frames) are zoomed-in and both
the similarity and dissimilarity scores are normalized into the range [0,1],
where 0 and 1 denote the worst and best match, respectively. Although
each measure finds the template, one can observe that the distance maps
of the MMTM measures are less noisy than that of the others, the peaks
are sharper and better localized.

2.6 Discussion and Conclusion

In this chapter, two dissimilarity measures referred as PWC and PWL
MMTM have been proposed, both of them based on principles of Matching
by Tone Mapping. The measures are approximately invariant to monotonic
tone mappings and can be computed in linear time. The derivation of
PWC MMTM leads to a constrained optimization problem, for which we
managed to find a linear time solution using the PAVA algorithm. In the
PWL case we showed that due to the complex encoding of structure and
tone mappings, it is not straightforward to put monotonicity constraints in
the formulation of the measure. Instead, the constraints are incorporated
into a penalty term to construct PWL MMTM from PWL MTM. We have
carried out several experiments on simulated and real images to evaluate the
discrimination power of the measures and compare their performance to that
of other techniques designed to be invariant to monotonic tone mappings.
Regarding the sensitivity to some specific distortions (like additive noise
and monotonic tone mappings), we found that the proposed measures are
highly competitive with previous techniques: in most of the experiments
PWL MMTM produced the highest matching rates and PWC MMTM
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had similar results as the best performing method from the competitors.
We emphasize that throughout the derivation of the measures we have not
utilized the dimensionality of the signal, thus, the proposed methods can
be used to measure the dissimilarity of 1D or 3D signals, as well.

Finally, the first thesis of the dissertation is formulated as follows.

Thesis 1.

1. I have introduced the Matching by Monotonic Tone Mapping
(MMTM) dissimilarity measure and its piecewise constant (PWC)
and piecewise linear (PWL) approximations, both of them being ap-
proximately invariant to monotonic, even non-linear transformations.

2. I have shown that both of the measures inherit the advantageous
properties of the MTM measures, they are absolute measures and can
be computed efficiently.

3. Based on the test results I can state that the discrimination power
of the MMTM measures is highly competitive with that of previous
techniques, the measures can be used efficiently in problems, where
a dissimilarity measure invariant to monotonic transformations is
required.

2.7 Outlook

We have some preliminary results on how the quantization affects the
performance of the MTM measure [49], namely, it can be showed theo-
retically that the k-means clustering based quantization can improve the
recognition of patterns on noisy backgrounds. Another interesting problem
is the extension of the MMTM measure to multichannel images by finding
a proper representation of structure using information from all channels.

38



Chapter 3

Translation invariant
(dis)similarity measures in
kernel space

In the previous chapter we have given a brief introduction to (dis)similarity
functions and presented the Matching by Monotonic Tone Mapping measure
as a novel contribution to the field. In this chapter we go further and
examine some properties of (dis)similarity functions used in general machine
learning and pattern recognition applications.

3.1 Motivation and Introduction

Some of the measures mentioned and discussed so far operate directly on the
vectors being compared (like the Euclidean distance, or the PCC). Other
measures, like LBP and the rank correlation based techniques, apply some
transformation and measure the (dis)similarity of the transformed vectors
using one of the simplest (dis)similarity measures. In numerous problems the
transformation of vectors can be beneficial, since the important attributes
and characteristics of vectors can be emphasized by a properly chosen
transformation (like the rank transformation which extracts the rankings of
vector coordinates, providing invariance to monotonic distortions). Formally,
a non-linear so called feature mapping can be considered in the form ¢ :
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R — R\, to map the vectors into a so called feature space. Usually, n >> d.
The aim of feature mapping is to boost the performance of (dis)similarity
measures by providing a better distribution of the data and emphasizing the
most important characteristics of the vectors. As a shorthand, it is usually
ambiguous to find a proper mapping ¢, and the optimal transformation
can map to a very high (possibly infinite) dimensional space. The high
dimensionality of F makes it expensive both in terms of memory and
time to compute and store the high dimensional feature vectors used
for comparison instead of the primary vectors. Thus, besides improving
discrimination power, efficiency issues need to be addressed, as well.

One can overcome the efficiency problems if proper knowledge on the
feature mapping is not required for the comparison of the mapped feature
vectors in F. For example, having a dissimilarity measure expressed in
terms of inner products, one can consider the dissimilarity in the high
dimensional image space by replacing the inner product in the dissimilarity
by (¢(x), ¢(y)), x,y € R If one can find a function (kernel) k : RTx R? —
R which represents an inner product in the image space F of ¢ without
computing ¢(x) and ¢(y) explicitly, that is, satisfying

k(x,y) = (¢(x),6(y)), Vx,y € RY, (3.1)

then, replacing the inner products of input vectors in the dissimilarity func-
tion by kernel evaluations , the discrimination power of the measure
can be enhanced (the data may become better separable in the high dimen-
sional space) and the computational demands may remain acceptable. This
replacement is called the kernel trick [50] in the field of machine learning.
In practice, the kernel trick is performed in the opposite way: there are
several functions on R% x R? proved to be an inner product after mapping
the parameters into a high dimensional space and these functions are used
as kernels to improve the discrimination power of (dis)similarity functions
in certain applications. Numerous kernel functions are proposed and used
in the literature of machine learning; for a thorough overview see [51, [52],
some well known and widely used ones are the polynomial kernel [53]

k(x,y) = (v + alx,y))?, (3.2)

v,a € R, g € N, which can be shown to operate in finite dimensional
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feature spaces and the Gaussian kernel [53]

k(x,y) = exp (_]X—yH2> , (3.3)

202

o € RT, which can be shown to operate in an infinite dimensional feature
space.

Regarding (dis)similarity measures, Scholkopf proposed the kernel trick
to improve the discrimination power of the Euclidean-distance [50]:

N

Diye(xy) = (k(x,x) + k(y,y) — 2k(x,y))?, (3.4)

and it can be readily seen that the normalization of any kernel [54] computes
the correlation coefficient in kernel space:

k(x,y)

Sec(x,y) = k(x, x)k(y,y)

Both of these kernelized measures are constructed by simply replacing
the inner product in the original formulation of the measures to a kernel
function k. Similarly to the Euclidean distance, the kernelized Euclidean
distance is not invariant to linear transformation in the kernel space, and
just like CC, kernelized CC is invariant to only scaling in the kernel space.

Besides the kernelization of (dis)similarity measures, many of the most
commonly used machine learning techniques are built or generalized to
use kernel functions, like Support Vector Machines |54], nearest neighbor
algorithms [55], semi-naive Bayesian classifiers [56], clustering methods
[57] and principal component analysis [58]. As characteristic fields of
applications, we can mention numerous topics in bioinformatics (gene
and cancer research [59)]), face recognition [60], speech recognition [61],
computer vision [53], etc.

The main advantage of working with kernels is that they enable calcula-
tions in high (possibly infinite) dimensional feature spaces efficiently, how-
ever, the operations we can perform in the kernel space efficiently are limited
to kernel evaluations. Consequently, the kernelization of (dis)similarity mea-
sures that cannot be formulated as linear combinations of inner products
is not straightforward. For example, in spite of its popularity, there are no
results on the kernelization of the widely used PCC measure. The difficulty

(3.5)
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in the kernelization of PCC is its translation invariance, namely, one has
to know the mean of the coordinates of the feature map to compute PCC
in the kernel space. In this chapter we examine the kernelization of the
centered Euclidean distance (cEUC) and that of PCC in general, and for
one particular kernel: the widely used polynomial kernel function. We show
that under mild conditions, there are infinitely many ways to calculate
these translation invariant measures in the kernel space, and there are
countably infinitely many ways to do it in terms of kernel evaluations. To
show the advantages of the application of centered dissimilarities in kernel
space, we have carried out several tests with simulated and real data in
kNN based classification scenarios. The results show that adding transla-
tion invariance in the kernel space does not deteriorate the performance
of the dissimilarity measures, moreover, in certain cases better results are
achieved by the proposed improvements.

The chapter is organized as follows. In the first part of Section [3.2] we
give some general results on the kernelization of the cEUC and PCC mea-
sures. In the second part of the section the results related to kernelization
by the polynomial kernels are summarized. In Section [3.3] the experimental
tests and corresponding results are discussed, and finally, some conclusions
are drawn in Section [3.4 and a brief outlook is given in Section [3.5] In
the lack of space we do not discuss all our results in related to translation
invariance in kernel space. Some further, minor results can be found our
corresponding paper [62].

3.2 Translation invariance in kernel space

As mentioned earlier, in the rest of the chapter we focus on the simplest
translation invariant measures, namely, D.gyc, and Spoc, and examine
how they can be kernelized with the polynomial kernel. For kernelization,
the functions D.gyc and Spoe should be composed as the linear combi-
nation of inner products of single data vectors, since centering the vector
in the input space and then replacing the inner products with possibly
non-linear kernels does not give centering in the feature space due to the
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possible non-linearity of ¢:

k(x—%x1,y-y1) = (p(x—x1), p(y—y1)) # (¢(x)—o(x)1, $(y)—p(y)1).
(3.6)
The centralized (dis)similarity measures Spcc and D gy (introduced in

Section [2.2.1)) can be expanded by exploiting the bilinearity of the inner
product:

<X7Y> — d}_{}_’
(((x,x) — d=*)({y,y) — dy*))/*

Spco(x,y) = (3.7)
and

1

D.pve(x,x) = ((X,x> +{y,y) — 2(x,y) — dx? — dy?® + 2dﬁ>E . (3.8)

Using the expansions above, the kernelized variants of Soc, Spcco, Deuc
and D.gyc become:

k k(x,y)
etV = ) H k) 39
ke (xy) = k(X»Y);czhrfl(aﬁ)W oly) S
(k(x,x) — dim(¢)p(x) )2 (k(y,y) — dim(d)d(y) )2
3.10)
Dipo(x,y) = (k(x,%) + k(y,y) — 2k(x,y)), (3.11)

DESe(x,y) = (k(x,x) + k(y,y) — 2k(x,y)—

dim(¢)p(x)" — dim(9)(y)” + 2dim(9)6(x) 3(y))?, (3.12)

/‘\

where dim(¢) denotes the dimensionality of the feature space ¢ is mapping

into, and
dim(¢)

Z ¢i(x)/ dim(¢b). (3.13)

We introduce the notation k and ¢ in superscripts to indicate that a
(dis)similarity function is kernelized and the centralization is carried out
with the feature mapping ¢. Note that the kernelization of So¢ and Dgyc

43



depends only on the kernel, but the kernelization of the centralized measures
Spocc and D.gyc also depends on the feature mapping. The deduction
above is symbolic, since in the dimensionality of the feature mapping
may be infinite and therefore the sum and the denominator may be infinite,
as well. However, as we will see later on, the infinite dimensional case can
be handled, as well.

The questions we are addressing in the rest of the chapter are the
following ones: In general, can centralized dissimilarity measures be ker-
nelized in a uniquivocal way? Can centralized dissimiliarty measures be
kernelized by the polynomial kernel and efficiently computed in terms of
kernel evaluations?

3.2.1 General results

Generally, the feature space can be any space in which an inner product is
defined. For example, for any kernel function one can construct the so called
Reproducing Kernel Hilbert Space (RKHS) [63], which contains functions
of the type R? — R. However, as we have showed in the previous section,
for the centralization of translation invariant dissimilarity measures, one
has to work with the sum or mean of feature map coordinates, which
can hardly be interpreted with feature mapping into such abstract spaces.
Therefore, in the rest of the section we focus on feature mappings that
map into the space of absolute convergent sequences El, or into a finite
dimensional vector space R?, d € N.

We start with giving some general statements for feature mappings
into ¢!, particularly, we show that for these mappings, the centralized and
non-centralized kernelized measures are the same.

Proposition 3.2.1. Let k : R? x R — R be a kernel function, which
can be given in the form k(x,y) = (¢(x), d(y)), where ¢ : RT — £1. Then,

ng’Uc and SPCC belonging to the feature mapping ¢ are equivalent to
DEUC and SCC: respectively.

Proof. The term dim(¢) ¢(x) ¢(y) in the expanded forms of D" EUC 1)
and D?’;’gc 1) can be written in a symmetric form:

> 6ix) 3 ou(y)
\/dlm ) /dim(¢)
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Note that the dimensionality of the feature space dim(¢) = oo in this case.

Thus, (3.14) can be written as:

L > di(x) %: ®i(y)

dim(9) §(x) $(y) = lim ~———r

Now, since ¢(x) € £!, )Y |¢i(x)| < o0, thus, - ¢;(x) < oo holds, and the

(3.15)

(2
limit in (3.15)) equals 0. Consequently, Sllf,’gic reduces to Sgc and DfE?UC

to D%Uc in this case. O

For the ease of notations, based on the symmetric form (3.15) we
introduce the concept of the centralizer function:

Definition 3.2.1. Let k be a kernel k : R* x R* — R, which can be given in
the form k(x,y) = (¢(x), ¢(y)), where ¢ : R? — R", n € N. The function
c® : R = R defined as:

2 ¢i(x)
A (x) == Ll\/ﬁ

1s called a centralizer function of the kernel k belonging to the feature
mapping ¢.

(3.16)

Using the centralizer function the kernelized measures can be rewritten
in a simpler and symmetric form:

N|=

Diue(x.y) = (k(x,%) + k(y,y) — 2k(x,¥y) = (¢*(x) = (¥))?)
(3.17)

k(x,y) — ¢?(x)c(y)
(k(x, %) — c(x)c?(x))2 (k(y, y) — c?(y)e?(y))?
The following theorem shows that for a kernel having a finite dimen-

sional feature mapping, at least countably infinitely many different central-
izer functions can be constructed.

Spéo(x,y) = (3.18)
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Theorem 3.2.1. Let k : R4 x R? — R be a non-zero kernel with the finite
dimensional feature mapping ¢ : RY — R™, for which k(x,y) = (¢(x), #(y)).
Given the centralizer function ¢®, for any n' > n, n' € N, there ezist a
feature mapping ¥ : R* — R™ | for which ¥ (x) = \/—‘/gc(b(x), Vx € RY,

Proof. The proof is constructive, for any n’ > n we construct a feature
mapping satisfying the conditions. Let ¢ : RY — R™ be given in the

following form:
¢Z' (X)7 v S n
((x) = ) 3.19
Yilx) {07 > n. ( )
It can be readily seen that v is a feature mapping of k, since the value of
the inner product (¢(x), ¢(y)) equals (Y(x ),w( )). Moreover, 1) maps into

an n’ dimensional space, but Z Vi(x) = Z ¢i(x). Therefore, we have:

=1

"z i) 3 i(x)
c”b(x) - =

\/ﬁ
NN

Although we showed that countably infinitely many different central-
izer functions exist for a non-zero kernel with a finite dimensional feature
mapping, it is still unclear if these different centralizer functions lead
to different kernelized (dis)similarity measures. Let ¢ and ¢ denote cen-
tralizer functions of the kernel k. Two kernelized measures based on ¢
and 1 are considered to be different, if there exist x’,y’ € R?, such, that
DF2(x!y') # DM (x',y'), or similarly S¥?(x',y’) # S*¥(x’,y’). In the
following theorem we show that under mild conditions the measure cEUC
can be kernelized in countably infinite different ways.

Theorem 3.2.2. Let k : R? x R — R be a kernel with finite dimensional
non-zero feature mapping ¢ : R* — R™ for which k(x,y) = (¢(x), #(y))
for any x,y € R%. Suppose, there exist X',y € RY, such, that

D o(x,y') # D%, (X y). (3.21)
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Then, there exist countably infinitely many feature mappings {¢'};, 1 € N,
such, that for any two ', 7, i,j € N, i # j we have

J
Do # Dhiie. (3.22)

Proof. The condition DEUC(X y') # DCEUC(X y’) implies that there are
at least two vectors x’,y’, for which the kernelized centralized and non-
centralized measures give different results. What we want to prove is that
this property remains true for countably infinitely many feature mappings.
Similarly to the construction in the proof of the previous theorem, let
PR — R [ € N defined by

Yi(x) = {@(X)’ b= (3.23)

0, 1> n.

Clearly, the functions 1! are feature mappings and ¥ = \/‘z%cd’ are

centralizer functions of k. Substituting these functions into the formulation
of D¥picy we get

DEY (X y) = (k(X,x) + k(y',y') — 2k(x',y')—

() - )

According to the condition D%, ,(x',y") # DcEUC(x y'), the term
(c?(x) — ?(y")) cannot be zero. Consequently, for any i,j € N,

ngUC(X y') and DcEUC(X y') must be different values. O

In the previous theorem we have given some conditions and a construc-
tion rule for countable infinitely many ways to kernelize the cEUC measure.
In the next theorem we give similar results for the PCC measure.

Theorem 3.2.3. Let k : R xRY — R be a kernel with a finite dimensional
non-zero feature mapping ¢ : R4 — R™ satisfying k(x,y) = (¢(x), #(y)) for
any X,y € R™. Suppose, there exist X',y € RY, such, that c®(x') # c?(y’),

() # 0, Oy') # 0, B*(x,¥) # k(x',xX)k(y,y"), DEc(x,y') < o
Dfpgc(x y') < oo, and

DéC’(ley) e Dpcc(x y ) (3.24)
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Then, there exist countably infinitely many feature mappings {1'};, | € N
such, that for any two ', 7, i,j € N, i # j we have

ey’ b
Div 2 Dl (3.25)
Proof. Similarly to the proof of the previous theorem, we can construct
a sequence of feature mappings and corresponding centralizer functions
NG
U(x) =
vn+1

tion of the S’;’CC measure, one gets

k(X’,y)*mC"b( x')c?(y’)

¢(x). Writing these centralizer functions into the formula-

gk

PocXy') =

N|=

(k(x/,X) — 22c?(x')c? (%) 2 (k(y', ¥) — 7250 (y))e?(y)

(3.26)

Squaring the right hand side of -, introducing the variable s = ;1
and considering the expression as a function of s, we get

2
) (kG y') = se? ()b (y"))
k(%) = s (X)) (kY y) — s () (y))

and expanding the multiplications,

r(s) =

(3.27)

s2c?(x')2c?(y')? — s2k(x,y')c?(x)c?(y') + k(x',y')?

s2e (X2t (y')? = s(k(x', X ) (y')? + k(Y', ¥)e?(x')?) + k(X' X )k(y', ¥')
(3.28)
One can recognize, that r(s) is a rational function of s in the form
P(s)
r(s , 3.29
)= 50 (3.29)

where P and @) are second order polynomials of s. The coefficients of the
highest degree term s? are the same in P(s) and Q(s), and according to
the assumptions of the theorem, c?(x’)2c?(y’)? is not zero, thus, P(s) # 0
and Q(s) # 0 holds. On the other hand, due to the assumption k(x’,y’)? #
k(x',x")k(y,y’), the zero order terms are different, thus, we can conclude,
that P(s) #Z Q(s). Consequently, r(s) and its derivative have only a finite
number of singularities and roots, implying that Sk POC (x',y’) gives different
values for countably infinite s = nL—l—l’ [ € N numbers. ]
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We close this section with a short summary. In Proposition we
showed that for a kernel with a feature mapping into ¢! the kernelized
centered and non-centered dissimilarity measures are the same. In Theorems
and we showed that if a kernel has a finite dimensional feature
mapping, under mild conditions there are countably infinite different ways
to calculate the centered kernelized dissimilarity measures. In the next
subsections we examine the case of the homogeneous and inhomogeneous
polynomial kernels in details.

3.2.2 Homogeneous polynomial kernel

The (inhomogeneous) polynomial kernel defined as

k(x,y) = (v + alx,y))’, (3.30)

v,a € R, ¢ € N, is a widely used kernel in machine learning problems,
numerous papers report its successful application in various problems and
disciplines (see e.g. [64] for medical research, [65] for face and [61] for
speech recognition). The homogeneous polynomial kernel is a special case
of the inhomogeneous polynomial kernel at v = 0 and o = 1, thus, the
homogeneous polynomial kernel can be defined as

k(x,y) = (x,y)%. (3.31)

Although the inhomogeneous and homogeneous kernels are closely related,
we discuss them in separate sections, since it is easier to introduce the
main ideas through the simple homogeneous case, and generalize them for
the inhomogeneous one, than introducing the complicated formulas for the
inhomogeneous kernel from scratch.

First, we construct a feature mapping for the homogeneous polynomial
kernel by the heuristics of variable separation. Expanding the inner product
and applying the multinomial theorem [66], we get:

k(x,y) = (x,y)? = (x1y1+ -+ + Xmym)? =

2 (al!az Y !) (x1y1)* -+ - (xaya)™,

l...
aitazx+--+a4=q ) @d:
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where a; > 0 for i = 1,...,d. For shorter notation, we will use multiindices:
o= X SIS SRR
a ailas!---ayg!
la|=q aitaz+--t+aqi=q

with @ = (a1, ...,a4) € N |a| = a;+as+---+agy, x € RY By rearranging
the equation above, we get:

1 1
a\’ af4
k(x,y)= <a> X”( ) y* = (o(x),¢(y)),
lal=q
where X
q\?
da(x) = ( > x?. (3.32)
For the feature mapping deduced in (3.32)), the centralizer function becomes:

> ¢al(x)
Px) =2 (3.33)

Vdim(g)

q—1 _
dim(¢) = 3 (q Z, 1) (2 f 1) (3.34)

1=0

where

is the dimensionality of the feature mapping, i.e. the number of compo-
nents after expanding the exponentiation. The feature mapping deduced
above can be found in the literature (see e.g. [51]) for the illustration of
constructing feature mappings by variable separation. However, as the
following results show, more feature mappings can be constructed for the
same kernel with the same parameters, and each of them leads to a different
centralizer function.

Proposition 3.2.2. The feature mapping ¢ with coordinates ¢q; : R? — R,
aeN |a|=q,i=1,...,n4, nq €N defined as

$a,i(X) = BaiX", Ba,i € R>o, (3.35)
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is a feature mapping of the kernel k(x,y) = (x,¥y)?, if we have:

S8, = (Z) (3.36)
i=1

foralla: |a|l = q.

Proof. It can be readily seen, that after computing the inner product of
the feature maps, we get exactly k(x,y):

0696 = Y 3 faix®Buiy = Y- (j)x“yaz .y (3:37)

lal=g i=1 lal=q
O

In other words, the previous proposition says that the only require-
ment for a function of the form (3.35) to be the feature mapping of the
homogeneous polynomial kernel is that the squared sum of coefficients

corresponding to a term x® has to be 7). n Table 3.1| we illustrate the
a

statement for the case ¢ = 3, d = 2. In column ¢® we give the feature

mapping arising from the application of the multinomial theorem, and in

columns ¢® and ¢¢ we give two further feature mappings satisfying the

conditions of Proposition It can be readily seen that each of the
Na

feature mappings satisfy the condition > 52, = 7). For example, for
i= ’ a

a 211!
2
for ¢, we have nq =1 and 35, = V3, ( gl> = 3. In the case of ¢°, we

3
the term x3xs, we have a = (2,1), (q) = ( ) = 3, correspondingly,

Na 2
have n, = 2, 5371 =2, 6372 =1,and (53 l) = 3, finally, in the case
i=1 ’

of ¢¢, we have ng = 3, 851 = g2 = Ba3 = 1, and again, ni ( 5”)2 = 3.

In Proposition [3:2.2] we have given a sufficient Conditiz)n1 for functions
to be finite dimensional feature mappings of the homogeneous polynomial
kernel. In the following theorem we show that these feature mappings lead
to continuum many different centralizer functions for the homogeneous
polynomial kernel.
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Table 3.1: Some feature mappings for the homogeneous polynomial kernel. In the last
row we give the value of the centraliezer functions for the vector 1 to illustrate that the
centralizer functions are also different. In the first column the coordinates are indexed

by natural numbers, and in the last column the composite indices ¢a,i, ¢ = 1,...,nq are
used
feature mapping o #° 0N
dimensionality 4 6 8 coordinate

¢1(x) X:f Xif Xi)’ ¢(3,0),1(X)
P2(x) | V3xIx2 | V2x3x2 | XIxo P(2,1),1(%)
P3(x) | V3x1x3 | V2x1X3 | x1X3 | d1.2)1(x)
P4 (x) x5 x5 x5 ¢(0,3),1(X)
¢5(x) Xixy | X1X2 | ¢(2,1)2(X)
b6 (%) X1X3 | X1X3 | ¢(1,2)2(X)
¢7(x) Xixa | ¢(2,1)3(x)
Ps(x) X1X5 | $(1,2)3(x)
(1) | 2.73 2.78 | 2.82

Theorem 3.2.4. Let k : R? x R — R, d > 2 denote the homogeneous
polynomial kernel k(x,y) = (x,y)?. There are continuum many different
centralizer functions of k.

Proof. Without the loss of generality, let ¢ denote a feature mapping
of the homogeneous polynomial kernel k£ = (x,y)?, in which n, = 1,

Ba1 = (q) for all |a| = q, except a’ = (¢,0,0,...,0). For @’ we have
a

Ng' = 2, and

9 s [a) _ q gt
/8(1,/71 + /Ba,/72 - (a/> - <a,1'a,2‘ - a&') — a = 1. (338)

q—1 -1
For the dimensionality of ¢ we have dim(¢) =1+ (q , , j 1). In
i=0 ? ?

other words, ¢ is a feature mapping we constructed at the beginning of
the section (the multinomial coefficients are not decomposed to several
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coordinates), except the multinomial coefficient corresponding to a’, which
is decomposed to two coordinates with coefficients 3,/ 1 and B4/ 2. One can
readily see that this latter condition can be satisfied by continuum many
different configurations of 34/ 1 and B/ 2, since the condition is basically the

equation of a hypersphere of non-zero radius ( q,> , which has continuum
a

many points (Bq 1, Bar 2). Thus, in the feature mapping ¢ the parameters
Ba’ 15 Bar,2 are not determined totally, one can construct continuum many
different feature mappings differing only in B4 1 and B4 2. We want to
show that there is at least one vector x for which the centralizer functions
corresponding these continuum many feature mappings give continuum
many different values. Let x = (1,0,0,...,0). One can readily see that
o Ba’,l + Ba’,2
T Jdmg)
Considering the latter expression as the function of 3,/ 1 and B4 2, one can
readily see that it is the implicit equation of a line in the 2D Euclidean
space: fgr1 + PBarg = w, w = c?(x)y/dim(¢). We want to show that for
continuum many different w values one can find B4 1, Bar 2 € R, satisfying
Bar1 + Barp = w as well as 52/,1 + 52,72 = 1. In other words, we want to
show that there are continuum many parallel lines intersecting the circle
of radius 1, which is trivially true. O

for the feature mapping defined before, we have c¢(x)

For the homogeneous polynomial kernel we showed that the number of
different centralizer functions is continuum. However, it is still unclear if
these continuum many centralizer functions lead to different (dis)similarity
measures.

Theorem 3.2.5. Let k : RY x R — R, d > 2 denote the homogeneous
polynomial kernel k(x,y) = (x,y)4. There are continuum many different
ways to kernelize the cEUC and PCC measures using the kernel k.

Proof. The statement of the theorem is proved, if we manage to find two
vectors X',y € R? and continuum many feature mappings ¢*, w € € such,
that Slkg’gé(x/ ,y') and nggc(x’ ,y’) give continuum many different values
for w € Q. The proof is based on the construction we used in the proof of
the previous theorem.

Particularly, let x’ = (1,0,0,...,0) and y’' = (0,1,0,...,0), and let ¢*,
w € Q C R denote a feature mapping of k such, that except the coefficient
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corresponding to @’ = (¢,0,0,...,0), the multinomial coefficients
a

are not decomposed. The coefficient corresponding to a’ = (q,0,0,...,0)
is decomposed to ng = 2 coordinates with coefficients (41 and g 2,
satisfying Bg, |+ BZ, 9 =1, Bar1+ Bar2 = w, w € ), where () is a set of
continuum cérdinali‘éy according to the construction in the proof of the
previous theorem. Obviously, each function ¢“ is a feature mapping of k.
First we focus on the kernelized cEUC measure. Substituting x’ and y’

into the (3.12)) and utilizing that k(x’,x’)lz L k(y,y)=1kx,y)=0,

¢ (x)) = — ¢ (y) =
(%) = Tm(o”) and ¢ (y') = dlm(¢w),weget

DX y) = (2+ (¢w)(w—1)2>2, (3.39)

and it can be readily seen that this expression is a continuous function of
w, giving continuum many different values for the centralized dissimilarity
DfEd’Uc(x y') of X' and y’ as w € Q varies. Thus, there are continuum
many ways to centralize the measure cEUC. Similarly, we can substitute
x’ and y’ into the kernelized PCC measure (3.10):

—Ww

(dim(¢*)? + w?(1 4 dim(¢+)) — dim(¢))

Spoox,y) = . (3.40)

N

again, considering S PCC( x',y’) as the function of w, it can be readily
seen that we have a non-constant function having only a finite number of
singularities and roots, thus, it gives continuum many different values as
w € ) varies. O

The previous theorem shows that there are continuum many ways to
kernelize the centralized dissimilarities. In order to make centralization
in kernel space useful in practice, we have to find centralizer functions
which can be plugged into the formulations and efficiently: it
is desired to find centralizer functions that can be computed in terms of
kernel evaluations. As the following theorem shows, there are countably
infinite different such centralizer functions for the homogeneous polynomial
kernel, and they lead to countably infinite different kernelized cEUC and
PCC measures.
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Theorem 3.2.6. The function

d4
c(x) = \/\/;k(x, 1) (3.41)
is a centralizer function of the kernel k : R x R = R, k(x,y) := (x,y)?

for allmn > d?, n € N, and leads to countably infinitely many different
kernelized cEUC and PCC measures.

Proof. For n = d? a possible feature mapping belonging to c is the function
¢RI o R, Gai(x) =x%foralli = 1,..., (%), la| = ¢, a € N9,
a

particularly, all 3,; coordinates are equal to 1. An illustration for this
feature mapping can be found in column ¢¢ of Table for the ¢ = 3,
d = 2 case.

To prove the second part of the statement, one can observe that the
structure of is similar to the one we used in Theorems and
. Since the feature mapping ¢ we just constructed in the n = d¢
case is finite dimensional, all we have to do is to find two vectors x’ and y’
satisfying the conditions of Theorems and . First, we focus
on the cEUC measure. Let x’ = (1,0,0,...,0) and y' = (0,0,0,...,0).
Then, we have k(x',y') =0, k(x',x') = 1, k(y',y') = 0, ¢?(x') = \/lch and
?(y') =0, thus

1 2\ 2
ngUC(ley/) = (1 + (dq> ) #1=Diyo(x,y"). (3.42)

The conditions of Theorem ([3.2.2)) are satisfied, and we can apply Theorem
3.2.2) to construct countably different centralizer functions in the form
3.41)). For the PCC measure let x' be the same as before, but y’ =

(0,2,0,...,0). Now, k(x',y') = 0, k(y',y") = 2%, ?(y') = 25, and we
have

_2
Spéo(,y') = . £0=SEA(x,Y).  (3.43)

1

2d 2

(=) (=)
Again, we can apply Theorem (3.2.3) to construct countably infinitely
many different feature mappings in the form (3.41]). O
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3.2.3 Inhomogeneous polynomial kernel

In the rest of the chapter we give similar results for the inhomogeneous
polynoial kernel defined by

k(x,y) = (v + alx,y))?, (3.44)

g €N, aeR,veR, as we did in the previous section for the homogeneous
polynomial kernel. First, we construct a feature mapping by the separation
of variables. Expanding the inner product and applying the multinomial
theorem with multiindices, we get:

k(x,y) = (v +axy)! = (v +axiy1 + -+ + aXmym)? =
S alelya-la (Z)xaya. (3.45)
la|<d

Comparing with the homogeneous case, one can observe, that in
there can be terms in the sum consisting of less than ¢ variable com-
ponents, and there are also some tunable parameters a and v in the
expansion. After variable separation, we get a feature mapping with

L (I 4
di = dinates:
im(¢) 121 z‘go (z) (z N 1) coordinates

¢ : R — RI™@) with (3.46)

ba(z) = <q> ’ 515 e, (3.47)

The centralizer function of the feature mapping based on the multinomial
expansion becomes:
> dalx)

_ lal<q

®
?(x) = ———.
) =" /a9
In the first proposition we give some general conditions on the finite
dimensional feature mappings of the inhomogeneous polynomial kernel.

(3.48)

Proposition 3.2.3. The feature mapping ¢ with coordinates ¢q; : R? — R,
la] < q,i=1,...,nq, ng € N defined as

Pa,i(X) = Ba,ix?, Ba,i €R, (3.49)
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is a feature mapping of the kernel k(x,y) = (v + a(x,y))?, if

< 7\ ol gla
Yosei= <a>a |ya=lal (3.50)
i=1

holds for all a : |a| < d.

Proof. Similarly to the proof of Theorem (3.2.2)), after computing the inner
product of two mappings ¢(x) and ¢(y), we get the multinomial expansion
of the inhomogeneous polynomial kernel. O

For illustration of some feature mappings see Table the column
of ¢ contains the feature mapping arising from the application of the
multinomial theorem, ¢® and ¢¢ is a demonstration of Proposition
As before, one can readily check that the coefficients in ¢®, ¢® and ¢¢
satisfy the conditions of Proposition Again, in the last row we have
given the response of the centralizer functions for the vector 1. As one can
see, not only the feature mappings, but the centralizer functions are also
different.

The following theorem states that there are continuum many different
centralizer functions for the inhomogeneous polynomial kernel.

Theorem 3.2.7. Let k: R? x R? - R, d > 2 denote the inhomogeneous
polynomial kernel k(x,y) = (v + a(x,y))?. There are continuum many
different centralizer functions of k.

Proof. The proof is analogous to the proof of Theorem [3.2.4] O

Theorem 3.2.8. Let k: R? x RY - R, d > 2 denote the inhomogeneous
polynomial kernel k(x,y) = (v + a(x,y))?. There are continuum many

different ways to kernelize the cEUC and PCC measures using the kernel
k.

Proof. The proof is analogous to the proof of Theorem O

Finally, we show that out of the continuum many centralizer functions,
there exist a countably infinite number of centralizer functions that can be
computed in terms of kernel evaluations.
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Table 3.2: Feature mappings for the inhomogeneous polynomial kernel with ¢ = 2, d = 2.
In the first column the coordinates are indexed by natural numbers, and in the last

column the composite indices ¢q,i, t = 1,...,nq are used
feature mapping o @b o
dimensionality 6 8 9 coordinates

$1(x) V2 V2 V2

P

Pa(x) | /2yax; Nares! Vax: | @)X
¢3(x) | VZyaxe | Aaxs | JAaxs | $o.1)1(X)
Pa(x) \/CTQX% \/07X% \/CTQX% ?(2,0),1 (x)
¢5(x) | Va?x} Va2x3 Va?x3 | ¢2)1(x)
d6(x) | V2a2x1xs | V2a2x1%9 | Va2xixs b(1,1),1(x)
¢7(x) Vyaxy VYax1 | é,0),2(x)
P3(x) VYaxs VYax2 | P0,1),2(%)
P9(x) VaZxixy | ¢1)2(x)
(1) 7.82 7.79 7.93

Proposition 3.2.4. The function ¢ : R — R,

(d+1)9
NG

is a centralizer function of the kernel k : R x R — R, k(x,y) := (v +
a(x,y))4, v € Rsg, for alln > (d+ 1)4, n € N, and these centralizer
functions lead to countably infinitely many different kernelized cEUC and
PCC measures.

c(x) = k(x,1) (3.51)

Proof. Similarly to Theorem for n = (d + 1)?, the feature mapping
belonging to ¢ is the function ¢ : R? — RED? "¢, i(x) = alalya-lelxe

foralli=1,..., 4 , la] < ¢, a € N4 For n > (d + 1)9, analogously to
a

the proof of Theorem [3.2.6] one can easily show that the conditions of
Theorems [3.2.2] and [3.2.3 hold for some specific X,y € R vectors. O
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3.3 Tests and Results

In the previous section, we have deduced centralizer functions for the
homogeneous and inhomogeneous polynomial kernels, which can be used
to centralize the centered Euclidean distance and the Pearson correlation
coefficient in the polynomial kernel space, and we also derived centralizer
functions which can be computed by kernel evaluations. In order to evaluate
the effect of centralization in kernel space, we have carried out several tests
in k Nearest Neighbor (kNN) classification scenarios using dissimilarity
measures based on the previous derivations:

k(x,y) — ?(x)c(y)
Dico(xy) = 1= Shoo(x.y) = (k(x,x) — c¢}EX)2)(k(y,Y)y— c?(y)?)’

(3.52)
Dipro(x,y) = k(x,x) + k(y,y) — 2k(x,y) — (¢?(x) = ?(y))?,  (3.53)

respectively, where ¢ is a feature mapping of k. The kernels we used and
the corresponding centralizer functions are summarized in Table 3.3} ¢;
refers to centralization in input space, when no kernelization is applied;
chm denotes centralization in the homogeneous polynomial kernel space
for the feature mapping achieved by the multinomial theorem; ¢y, refers
to centralization by kernel evaluations for the homogeneous polynomial
kernel. Similarly, ¢;, denotes the centralization function for inhomogeneous
polynomial kernels achieved by the multinomial theorem; and c¢;, refers to
centralization in the inhomogeneous kernel space by kernel evaluations.
In the classification scenarios we used own data and some of the
commonly cited databases from the UCI repository [67], see Table for
the description of the datasets. The classification accuracy is measured by
leave-one-out cross validation. The kernels as well as the kNN classifier
have some free parameters. The proper selection of these parameters (called
model selection in the literature) is a crucial point since the parameters may
affect the performance of classification heavily. To overcome the problem of
model selection, in each test scenario and for each dissimilarity measure, we
run grid search in a reasonable part of the parameter space to find the best
configuration. The grid of parameters was constructed by the combinations
of k € {1,3,5,7}, a € {0.2,0.5,0.8,1,2,3,4}, v € {-3,-2,-1,0,1,2,3}
and ¢ € {1,2,3,4,5}. For each combination of kernel, centralizer and
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Table 3.3: The centralizer functions used in the empirical analysis

kernel centralizer
in
(x.¥) ei(x) = =1
= (1)
(x,¥) | cam(x) = o
- -1
()
(x,y)° e (x) = 3
d2
<q>%a;vd_2alxa
(r+alx ) | emlx) = LEY :

(v + af{x,y))?
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Table 3.4: Details of the test databases

.. attributes
training vectors - - classes
rational | integer

IRIS (UCI) 150 4 0 3
Liver (UCI) 346 0 6 2
Dermatology (UCI) 358 0 34 6
Microaneurysm (own) 666 5 0 2
Artificial data (own) 200 8 0 2

dissimilarity measure, the accuracy score corresponding to the best model
is reported only. For the sake of completeness, the parameters of the best
models are also given.

In the following subsections we give the quantitative results for four
datasets from the publicly available UCI repository [67]. Then, the results
of microaneurysm recognition are presented, and finally, the classification
results of an artificial dataset are discussed.

3.3.1 UCI datasets
3.3.1.1 IRIS database

The classification results corresponding to the various kernels, centralizer
and dissimilarity functions are summarized in Table 3.5] One can see that
centralization in kernel space does not improve the accuracies achieved by
correlation based measures, however, the centralization of the kernelized
Fuclidean distance improves the accuracy scores. Interestingly, comparing
the performance of the kernelized and non-kernelized measures, one can
see that kernelization improves the accuracy scores in each case.

3.3.1.2 Liver database

The corresponding results are presented in Table [3.6]in a similar way as
in Table For this dataset the figures are very demonstrative: adding
translation invariance in the input space decreases the accuracy for both
correlation and Euclidean distance, on the other hand, adding translation
invariance in kernel space increases it in both cases. Moreover, kernelized
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Table 3.5: Results for the IRIS database

kernel centralizer | dissim. acc. « v | q
cEUC 0.9666 - -
PCC 0.9800 - -
cEUC 0.9733 - -
PCC 0.9733 - -

none

Cq

k

5

3

7

- |3

one ¢cEUC | 09666 | - | -] 15

PCC | 09800 | - | - |23

(x.3) o ¢cEUC | 09733 | - | - 2|7
’ i PCC | 09733 | - | - |23
o ¢cEUC | 09800 | - | - | L |7

m PCC | 0.9800 | - 3|3

o ¢cEUC | 00800 | - | - |21

PCC | 09866 | - | - |43

oo cEUC | 09733 |02 | 2] 2|7

PCC | 09866 | 0.8 | 1|2 |3

¢cEUC | 09733 | 3 | 1|3 |7

(v + alx, y))? Ci PCC 09733 | 3 | 0|55
o ¢cEUC | 09866 | 1 | 1] 2|3

im PCC | 09866 | 1 | 0| 1|7

- cEUC | 09866 | 1 | 2 | 1|7

ik PCC | 09866 | 05| 2|2 |3

PCC gives the highest accuracy with the centralizer function based on fast
kernel evaluations.

3.3.1.3 Dermatology database

The results for this dataset are summarized in Table Except the case
of the homogeneous polynomial kernel with multinomial centralization,
translation invariance does not decrease accuracy. Again, the best results
are achieved by PCC in kernel space using the proposed kernel evaluation
based centralization.

3.3.2 Microaneurysm database

In this subsection the test results achieved on image data are presented
and discussed. The proposed techniques are applied to distinguish microa-
neurysms and background tissue on fundus images, which is a key problem
in the diagnosis of diabetic retinopathy [68]. To have an impression for
the appearance of this lesion, see Figure In the experiments we have
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Table 3.6: Results for the Liver database

kernel centralizer | dissim. acc. «@ 0 q
cEUC 0.6878 - - -
PCC 0.6907 - - -
cEUC 0.6791 - -
PCC 0.6734 - -

none

Cq

k
7

7

5

-7

one cEUC | 0.6878 | - B

PCC | 0.6907 | - - 2|7

(. y)a - cEUC | 0.6791 . 1[5
' : PCC | 0.6734 | - -2 |7
o cEUC | 0.6907 | - 2[5

m PCC | 0.6965 | - -2 |7

o cEUC | 0.6791 - 37

PCC | 0.6820 | - - |37

one cEUC | 0.6878 | 2 2 [1]7

PCC | 0.6907 | 2 2 |27

cEUC | 0.6791 | 2 2 [1]5

(v + afx,y))? Ci PCC | 06763 | 02| —2 |2 |7
= cEUC | 0.6907 | 2 2 | 1] 7

im PCC | 06994 | 08| 2 [3 |7

o cEUC | 06907 |05 ] 2 |27

ik PCC | 0.6994 | 1 2 | 5|7

used the publicly available database of the Retinopathy Online Challenge
(ROC) [69], which contains manually selected microaneurysms in 50 images.
Unlike in the UCI classification problems, for the ROC dataset we have to
define the feature vectors on our own. We have considered 5 local features
to characterize the local neighborhood of microaneurysms: the features at
pixel p are the lowest intensity values in rings around p with inner and
outer radii (0,2), (2,4), (4,6), (6,8), (8,10), respectively. These features
can amplify the most conspicuous properties of microaenurysms: since
the center of a microaneurysm is relatively dark, one can expect that the
first feature has the lowest value, and values of the features increase with
the radii of the regions characterized by them. On the contrary, back-
ground regions have quasi-constant feature vectors, while other anatomical
parts (like vessels) are expected to have feature vectors without systematic
structure. Based on the 5 dimensional feature vectors we have prepared a
classification dataset of 333 microaneurysms and 333 randomly selected
background regions.

Caused by various acquisition circumstances, the brightness of retinal
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Table 3.7: Results for the Dermatology database

kernel centralizer | dissim. acc. « v | q
cEUC 0.9022 - -
PCC 0.9664 - -
cEUC 0.9078 - -
PCC 0.9692 - -

none

Cq

k
3

1

T

-1

one ¢cEUC | 09022 | - | -] 13

PCC | 09664 | - | - | 2|7

(x5} o ¢cEUC | 09078 | - | - | 1|1
' g PCC | 09692 | - | -] 2|1
o cEUC | 08994 | - | -1 |1

m PCC | 09664 | - 2|1

o ¢cEUC | 00078 | - | - | I |1

PCC | 09692 | - | - | 1]1

one ¢cEUC | 09022 | 2 |2 |13

PCC | 09664 | 2 | 2] 2|1

cEUC | 090078 | 2 |2 |11

(v + alx, y))? G PCC 09692 | 2 | 2] 2|1
o ¢cEUC | 09022 | 1T |2 2|1

im PCC | 09692 | 4 | 2|11

- cEUC | 09078 | 1T |2 1|1

ik PCC | 09692 | 02 |3 |1 |7

images varies. Therefore, computing simply the Euclidean-distance of the
input vectors is not sufficient for accurate classification. One can expect
that the normalization and/or centralization of the vectors may enhance
the classification results.

We have carried out the same tests as in the previous sections and
summarized the results in Table As the results show, the highest scores
are achieved by using centralization in the homogeneous polynomial kernel
space. The reason for this behaviour is that — due to the product features
of polynomial kernelization — the inhomogeneities are amplified, while
centralization makes the measurement independent from the brightness of
the images.

3.3.3 Artificial data

In order to measure the performance of the proposed techniques as the
function of noise, we carried out the classification of alternating and
homogeneous patterns. Based on the vectors x = (1,2,1,2,1,2,1,2) and
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Figure 3.1: A standard fundus image with a microaneurysm in the middle of the black

circle marker (a); the microaneurysm zoomed-in (b)

Table 3.8: Results for the Microaneurysm database

(b)

kernel centralizer | dissim. acc. «a o1 q | k
one cEUC | 0.7417 | - [ I

PCC | 0.7717 | - - -7

- cEUC | 0.7732 | - N I

i PCC | 0.6141 - - -15

one cEUC | 0.7462 | - - 33

PCC | o.7717 | - - |27

(x5} o cEUC | 0.7852 | - 57
g i PCC | 0.6141 - - |21]s
o cBEUC | 0.7417 | - 133

m PCC | 0.7882 | - - |37

cEUC | 0.8048 | - 5[5

Chk PCC | 0.6816 | - -5 7

one ¢cEUC | 0.7462 | 3 3 |33

PCcCc | 07777 |05 | 3 | 2|7

. _ ¢cEUC | 07942 | 08 | —2 | 5| 7

(v +alxy)) € pcc | 07957 |05 | 3 | 2|7
o ¢cEUC | 07492 |08 ] 3 | 3|5

im PCC | 07822 |08 | 3 |2 |7

o cEUC | 0.7552 | 1 2 [1]5

ik PCC 07792 | 02| 2 | 3|7

vy =1(2,2,2,2,2,2,2,2), we have generated 100 samples for the alternating
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Table 3.9: Results for the artificial data

k | cent. | diss./o 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7
cEUC .96 .87 .83 775 755 .685 .665 .6 .59
PCC 985 | .905 .81 765 .69 .66 .64 .605 .59

none

o cEUC 955 | .855 .78 .7 .62 .575 .56 .54 .52
¢ PCC .93 .805 | .725 | .645 .61 .55 .545 | .525 | .505
Euc. .97 .87 .83 775 755 .685 665 | .625 | .605

none  poc | 985 | 905 | 81 | 765 | .69 | .66 | .64 | .605 | .59

cEUC 955 | .855 .78 .72 .68 .64 .585 | .585 | .555

% G PCC 93 | 805 | .725 | .645 | .61 55 | 545 | .525 | .505
EN ¢cEUC | .06 | .895 | .835 | .765 | .75 | .705 | .66 | .63 6

hm | poc | 985 | .895 | .84 | .77 | 725 | 685 | .67 | .63 | .625

cEUC | 955 | 855 | .8 | .725 | .605 | .66 | .645 | .625 | .595

Chk PCC | 955 | .85 | .79 | .725 | 685 | .66 64 6 575

one | CEUC | 975 [ 98 | 84 | 775 | 755 | .12 | .675 | .655 | .635

= PCC | .985 | 915 | .87 | .81 75 7 .65 64 | .625
EXl cEUC | .965 | .865 | .795 | .74 7 655 | 615 6 58

*® i PCC | 955 | .86 | .805 | .715 | .66 | .635 | .59 | .56 | .565

3 , cEUC | 985 | 9 82 | 785 | 755 | 735 | 68 | .66 | .64b
+ | Gm PCC | 985 | .92 | .86 | .805 | .76 69 | 665 | .65 63

£ cEUC | 07 | 015 | 84 | .78 | .765 | .725 | .675 | .645 | .645

Cik PCC .99 .92 .87 | .815 | .755 .71 .685 .65 .635

class and 100 samples for the homogeneous class, by

x! =ux+vl+s, i=1,...,100, (3.54)
y. =uy +vl+s, i=1,...,100, (3.55)

where wu,v € U[—-2,2] and s € Gg[0, 0], that is, the patterns are scaled and
shifted by uniform random numbers from the range [—2, 2], and Gaussian
noise with standard deviation o is added to each of their coordinates. The
noise level ¢ was varied from 0.1 to 1.7. For each level we carried out
similar tests as in the previous test scenarios and summarized the results
in Table [3.9] It can be seen that except the case o = 0.3, the proposed
method (i.e. centering in the kernel space) outperforms those ones which
do not use centering or do it in the input space. One can also observe that
in four cases the highest accuracy scores are achieved by the centralizer
function based on kernel evaluations.
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3.4 Discussion and Conclusions

In this chapter, we have examined the kernelization of the centralized
Euclidean distance and the Pearson correlation coefficient. Due to the
structure of the cEUC and PCC measures, the kernelization depends on
the feature mapping we associate with the kernel. Our contributions to the
field can be summarized as follows. We showed that for feature mappings
into ¢!, the centralized and non-centralized measures are the same in kernel
space. For finite dimensional feature mappings we found that under mild
conditions, the kernelization of the centralized measures can be carried
out in countably infinitely many different ways, each of them leading to a
different (dis)similarity measure. We have examined the homogeneous and
inhomogeneous polynomial kernels in details and gave a characterization of
their finite dimensional feature mappings. We found that for these kernels
continuum many different centralizer functions can be constructed and
there are countably infinitely many that can be computed in terms of kernel
evaluations, which is highly desired in practice. We also showed that these
countably infinitely many centralizer functions lead to countably infinitely
many different kernelized cEUC and PCC measures. Considering the test
results, we can conclude that adding translation invariance in kernel spaces
does not deteriorate the classification results, in general. When invariances
are present in the input space, not only centralization in the input space,
but centralization in the feature space can also improve the discrimination
power of the dissimilarity measures.

Based on the derivations and test results, we can formulate the second
thesis of the dissertation as follows.

Thesis 2.

1. Having a kernel with an associated feature mapping into ¢', the
kernelized translation invariant (dis)similarity measures cEUC and
PCC are equivalent to the EUC and CC measures, respectively.

2. Having a kernel with o finite dimensional feature mapping into R",
under some mild conditions the cEUC and PCC measures can be
kernelized at least in countably infinitely many different ways.

3. Using the homogeneous or inhomogeneous polynomial kernels, the
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translation invariant measures cEUC and PCC can be kernelized in
continuum many different ways,

4. out of which there exist at least countably infinitely many ones that
can be computed in terms of kernel evaluations.

3.5 Outlook

Centralization in the kernel space using feature mappings that can be
computed in terms of kernel evaluations is a novel idea. Consequently,
there are many questions arisen: For the homogeneous and inhomogeneous
kernels are there further centralizer functions that can be computed in
terms of kernel evaluations? Do the kernelizable centralizer functions
constitute some mathematical structure, like a group or vector space? Are
there further (dis)similarity measures or mathematical techniques that can
be kernelized using the polynomial kernels and the developed centralizer
functions which can be computed in terms of kernel evaluations? Are there
further kernels with centralizer functions that can be computed in terms
of kernel evaluations? These exciting questions point out a new direction
in the research of kernels and kernel methods, and the test results suggest
that it may be worth to study.
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Chapter 4

Segmentation of retinal
vessels by template
matching and contour
reconstruction

In the previous chapters we have given some novel theoretical results on
(dis)similarity measures and their properties. In this chapter we go to the
field of applications and describe a method for the segmentation of vessels
in retinal images. The proposed method is based on template matching
and as such, the proper selection and use of (dis)similarity measures is a
crucial point.

4.1 Motivation and Introduction

Retinopathies are indicators of various diseases of the eye and the body.
Since the examination of the retina enables in vivo screening, the automated
processing of retinal images is a widely researched area in the field of medical
image analysis. For several reasons the automated segmentation of the
vasculature (see Figure for the illustration of the problem) is a crucial
task. On the one hand, the first sign of diabetic retinopathy is the presence
of tiny capillary dilations called microaneurysms [70], appearing usually
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near thin vessels. Since microaneurysms have similar visual features as
high-curvature and junction points of thin vessels, the vast majority of
microaneurysm detection algorithms ignore the pixels of the vasculature [71,
72|, consequently, the accurate segmentation of the vascular system aids the
detection of microaneurysms indirectly. The vascular system is also masked
out during the segmentation of other retinopathies, like drusen |73]. Besides,
the characteristic shape of the vascular system can aid the localization of
other, occasionally degenerated anatomical parts like the optic disc |74], or
macula |75]. Recent studies have pointed out that the geometrical features
of the vascular system are in correlation with various diseases. The authors
of |76] analyse the temporal changes of retinal vessel width and tortuosity
related to retinopathies of prematurity. In [77] the relation of tortuosity
and the Fabry disease is discussed, while in 78] an automated system for
tortuosity diagnosis is described. In [79], the associations between peripheral
vascular disease and the abnormal arteriolar diameters at bifurcations of the
vasculature are investigated, and automated methods for the measurement
and characterization of bifurcations is described in [80]. The novel study
[81] discusses the associations between the changes of retinal vascular
geometry and the progression of retinopathies. Age related rarefraction
in the fractal dimensions of the vascular system and the correspondence
between the fractal dimension and the risk of stroke is discussed in [82,
83|. According to the thorough and excellent overview of image processing
issues related to retinal images in [84], there is substantial interest in
automatically segmenting the vasculature and measuring its properties.
Recently, we have developed a robust and highly accurate technique
[85] for the segmentation of the vasculature in retinal images. The proposed
method has two main steps. First, a rough but high precision segmentation
is carried out in a template matching framework. In this context the term
precision refers to the widely used measure of performance in the field of
machine learning, and high precision means that the pixels identified as
vessel are likely to be true positive matches. The second step reconstructs
the vessel walls by an iterative region growing technique to improve the
quality of the segmentation. The method was evaluated in two de facto
standard databases and we found that the proposed technique outperforms
the previous methods in terms of segmentation accuracy. In the rest of
the chapter the proposed segmentation technique is described in details.
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(b)

Figure 4.1: Illustration of vessel segmentation: a retinal images (a) and the manual
annotation of its vasculature (b), as the target of segmentation

Particularly, in Section [£.2] we give a brief overview of previous techniques
developed for the segmentation of retinal vessels, in Section [4.3]the proposed
method is described, in Section [I.4] the tests and results are discussed,
some conclusions are drawn in Section and finally, a brief outlook is
given in Section [£.6]

4.2 Overview of related work

One of the earliest result on the segmentation of the vascular system comes
from 1989, where the use of matched line segment filters with Gaussian
profiles was proposed . In the first half of the 90’s, several papers were
published on the segmentation of the vasculature in angiograms, in
a recursive tracking algorithm is described, and the vessel profiles are
modelled by Gaussian functions and an adaptive tracking technique is used
in . Although these methods can be adapted for the segmentation of
the vascular system in regular retinal images, many further methods have
been proposed in the upcoming two decades.

A neural network based method is described in for the classification
of rectangular regions of the fundus image, the pixelwise neural network
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based classification is preceded by principal component analysis in [90] and
fuzzy c-means clustering is applied along vessel profiles for segmentation
in [91]. A method based on the tracking of Gaussian and Kalman filter
responses is proposed in [92] and dual edge tracking in the Canny edge
map is applied in [93].

The work [94] has boosted the development of vessel segmentation
techniques by publishing a database (STARE) containing 20 fundus images
and two manual annotations for each image. Later on, another database
called DRIVE has been made available [95], and in a corresponding paper
the authors gave a k-nearest neighbor classification based solution in [96].
Although these two databases can be considered as the de facto standards
of evaluation, it is worth to notice that they contain images of much lower
resolution than the ones used in today’s practice.

In 97|, a threshold probing approach is described, while the authors of
[98] and |99 extended the multiscale analysis by some tracking features.
In [100], 2D Gabor filter responses are used as features for supervised
multivariate Gaussian mixture model based classification. Various matched
filtering based techniques are proposed in [101} [102] and the vasculature
is modelled by Hermite polynomials in [103, |104]. Unsupervised texture
classification is proposed in [105] and support vector machine (SVM) based
classification using line operator features is described in [106]. Specialized
snake algorithms and active contour models are proposed in [107] and
[108]. The divergence of gradient vector fields is utilized for segmentation
in [109]. Some authors [110, [111] apply morphological operators utilizing
that vessels are usually darker than their background.

Recently, the authors of [70] used gray-level features and grayscale
invariant-moments with SVM classification. In [112] and |113] probabilistic
Bayesian methods are extended by spatial constraints. The authors of
[114] use RANSAC-fitting of ideal vessel templates, while [115] integrates
the extraction of the optic disc with the segmentation of the vasculature
to increase efficiency. In [116], AdaBoost is used with several features,
including Frangi-vesselness [117], while the authors of [118] apply ensemble
classification techniques for segmentation. Novel multi-scale approaches
are described in 119, (120]. In [121], an SVM based method is described
with connectivity constraints on the segmentation. The authors of [122]
recently introduced a novel publicly available database containing high
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resolution fundus images (HRF), and proposed a multiconcavity based
technique for the segmentation of vessels. Surveys and overviews of retinal
vessel segmentation algorithms can be found in [95] and [123]. A thorough
overview of the current issues of retinal image processing (including the
segmentation of vessels) can be found in the study [84].

4.3 The proposed method

The majority of the techniques described in the previous section follow the
general approach of statistical learning and segmentation: extract some
numerical features from the local neighborhood of pixels; train some binary
supervised classifier to differentiate vessel pixels from the background and
use this classifier for the segmentation of unseen input images. These
techniques implicitly assume that all the vessel pixels can be separated
from the background with the very same set of features. Our assumption
is that better results can be achieved if the segmentation of the entire
vasculature is divided to two main tasks. First, one has to detect the vessel
pixels near the center-lines of the vessels: these pixels have characteristic
visual features in their local neighborhoods, like a kind of symmetry due to
residing near the center of the more-or-less symmetric vessel profile. In a
second step, one has to refine the previous segmentation by reconstructing
the vessel walls. The segmentation of the pixels near the vessel walls is more
ambiguous, since the visual features of these pixels are less characteristic
than that of the pixels near the center-lines.

4.3.1 The proposed template matching framework

The main goal of template matching is to yield a highly precise segmentation
of vessel pixels. The vessel contours are going to be reconstructed from
these pixels by an iterative region growing technique described in the next
section. During the development of the method we have taken into account
the following considerations:

1. Vessels have highly varying profiles — the intensity of vessels changes
with the amount of oxygen transported by the blood flowing in
them (veins are darker than arteries); images are usually taken under
varying illumination conditions and imaging devices have varying
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optical transfer functions affecting the level of noise and contrast.
Even though vessels are relatively simple structures in retinal images
(dark stripes on a bright background), these issues lead to many
possible shapes of vessel profiles.

2. Vessels vary smoothly — shifting a vessel segment a little along the
vasculature it is still highly similar to the underlying image content.
Having a template representing one specific type of vessel segments
accurately, islands of vessel pixels can be detected by extracting the
pixels where the similarity of the template and the image content is
sufficiently high.

According to the second observation, a template matching framework
may be suitable to identify vessel pixels accurately. However, when the
template matching framework is developed, we have to decide how to
handle the issues related to the variability of vessel profiles. There are
basically three choices:

1. Handling at the level of the image — many authors use some kind
of preprocessing step to normalize the intensity variations in retinal
images. Global and local intensity normalization techniques (like
histogram equalization, background subtraction, etc. [124]) can reduce
the intensity variations caused by the varying illumination conditions
or large bright lesions but one can hardly expect that these simple
techniques could transform each vessel to have a specific, for example
sinusoidal profile (which is implicitly assumed in many techniques
using Gabor filters to model vessels).

2. Handling at the level of similarity functions — there are many ad-
vanced similarity functions being invariant against even non-linear
intensity transforms (like the widely used mutual information [125] or
the MMTM measure introduced Chapter 2). When these similarity
functions are used, there is no need for global or local normalization,
since one can suspect that the similarity function focuses on the struc-
tural similarity of the template and the image content independently
from slight variations of intensity profiles.

3. Handling at the level of templates — the third way is to handle the
variability of vessel profiles at the level of templates, namely, one
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can use a large set of templates covering almost all possible vessel
shapes and a relatively simple similarity function to measure the
similarity of the image content and the individual templates. If any
of the individual similarity scores is high enough, the image content
can be considered to contain a vessel. The drawback of this technique
is that dealing with a relatively large set of templates increases the
computing demands of the template matching.

We have a strong motivation to follow the third way: one can suspect
that vessels with relatively sharp walls can be recognized better than
vessels fading into the background smoothly, even though they have the
same width. In order to reach as high accuracy as possible, we have to
approach the segmentation of vessel segments with different vessel profiles
in different ways. This leads us to choose the third way, namely, using a
large number of templates with various profiles and a simple (dis)similarity
measure to characterize the similarity of the template and the underlying
image content.

4.3.2 The introduction of weak segmentation operators

Along the considerations regarding the template matching based segmen-
tation of vessels, we introduce weak segmentation operators, each of them
corresponding to a particular kind of vessel template. The term "weak”
refers to the expectation that one operator does not extract the entire
vasculature, rather, one operator extracts only patches of vessels being
similar to the template corresponding to the operator. A large set of these
weak segmentation operators (each of them corresponding to a particular
vessel structure) is applied to the retinal image, and the resulting patches
are fused to get a highly precise segmentation of vessels.

In order to realize the weak segmentation operators, we need to find an
appropriate (dis)similarity function; some parametrizable vessel segment
templates; and a way to binarize the outcome of template matching which
is expected to be an image containing the similarity scores of a particular
template and the image content.
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4.3.2.1 Generalized Gabor function based templates

The use of convolutional Gabor filters is a commonly accepted way to
emphasize linear structures in digital images. In its general formulation
a Gabor filter is composed as the product of a complex wave and a 2D
Gaussian. For linear structures being darker than their background:

82 | 222 o
G(0,0,\,~|r, ¢) = exp (J”;VZC) cos (%i + 77) . (41)
7 =rcosf + csind, (4.2)
¢ = —rsinf + ccos¥, (4.3)

where ¢ denotes the standard deviation of the Gaussian controlling the
spatial decay of the filter, # and X\ denote the orientation and wavelength
of the linear structure emphasized by the filter, and ~ is the aspect ratio
of the filter. In practice, the spatial extents of the filter along the local
coordinate axis corresponding to coordinate r should be limited to only one
valley of the cosine wave. Accordingly, the filter is considered to contain
a discrete point (r,¢) if (7,¢) € [—op,...,00] X [—0¢,...,0.] holds, where
o, = 0, 0. = 0/v, and we suppose that for the given wavelength parameter
A the spatial decay o is selected to let approximately one valley appear in
the filter. This choice of spatial extents results filters having approximately
sinusoidal profiles with some exponential decay near the boundaries of the
filter making them smoothly fade into zero.

Since linear structures can have arbitrary orientations, Gabor filters
are usually used in matched filtering frameworks. Particularly, N distinct
filters are generated by fixing the parameters o, A, v, and varying 6 in
the range [0,7]. Each of the convolutional filters is applied to a given
pixel (i,j) of the input image and the response of matched filtering is
defined as the maximum of the responses of the individual filters at pixel
(i,7). Clearly, the discretized Gabor filter can be considered as a template,
and the matched filtering approach can be turned into an orientation
independent template matching technique if the convolution operation is
replaced by a similarity function. However, a given Gabor function based
template can represent only one specific type of vessel segments accurately:
having approximately sinusoidal profiles and fading into the background in
both directions +6. In order to enable the representation of a wider range
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Figure 4.2: Templates based on various parametrizations of the function H(c, 0, \,~, q, 3).
In both cases, the settings o = 10, A =16, 0 =0, v = 0.7, ¢ =1 are varied by changing
one of the parameters: o; = 8+14, \; = 8+2i, p; = 1772 ¢ = ig,0i=1ig,7=0.7+0.2

of vessel structures, some further shape parameters and the generalized
Gabor function H are introduced. Particularly, in the rest of the paper,
we use the templates based on the function

42 2.2
H (0,0, 7. 4, 8Ir. ) = exp (—2(?”) Ar), (@)
A(r) = sgn (cos (27T§ + 7T)> cos <27r§ + ¢) q, (4.5)

where 8 € {0,1} and ¢ € R holds. First, the role of the binary parameter
B used to disable the term 72¢% in the exponent is discussed. Simple
Gabor function based templates have an exponential decay in every spatial
direction, including +6 and 6 4+ 7/2, so they can represent only those parts
of the vascular system properly, where the intensities are increasing along
the vessels in both tangential directions 6. By setting # = 0 and disabling
the term 72¢2, the exponential decay in the directions 46 is removed, thus,
the template can represent those parts of the vascular system, where the
profiles of vessels do not change along the vasculature significantly. We
highlight that when the exponential decay in directions +6 is disabled by
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setting 8 = 0, the parameter y still affects the template by controlling its
spatial extent as described before. The role of the exponential parameter ¢
is to enable non-linear deviations from the sinusoidal profile. Clearly, the
templates based on H can represent a wider variety of vessel segments than
templates based on G, since G is a special case of H, by choosing ¢ = 1
and § = 1. Some templates corresponding to specific parameter settings
are visualized in Figure |4.2

4.3.2.2 The similarity measure

Since the possible vessel structures are assumed to be represented by a large
set of templates, the similarity function does not have to handle the possible
non-linear deviations of one template and the real vessels. Accordingly,
there are only a few requirements against the desired similarity function.
The function should be an absolute measure to make the binarization
of the results easier; and the function should be invariant against linear
intensity transforms to make the template matching independent from the
brightness of the background and the variance of the image content covered
by the template. Probably the simplest and fastest similarity function
satisfying these conditions is the Pearson correlation coefficient (PCC).

In order to qualitatively validate the choice of PCC as a similarity func-
tion, we have performed template matching by a specific set of orientation
invariant Gabor templates using inner product (IP), simple correlation
coefficient (CC) and PCC as similarity function and compared the results
in Figure As one can see in the subfigures, both IP and CC are affected
by the brightness of the image content, therefore, the border of the optic
disc gives similar responses as relatively thin vessels. On the contrary, PCC
gives low responses at the border of the optic disc, although the noise of
the background is definitely larger. Nevertheless, the PCC responses at
vessel pixels are still higher than the responses on the background, thus,
we can expect that even a simple binarization technique can differentiate
vessels from the background when PCC is used.

4.3.2.3 Binarization of the outcome of template matching

For a given combination of parameters o, A, v, ¢, 5 one can generate an
orientation invariant set of generalized Gabor function based templates,
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Optic disc

(a) Input image (b) IP

Figure 4.3: The extended green channel image I and the result of template matching
with various similarity functions for the parameter setting c =3, A =8, ¢ =m, v = 0.5,
0 €{0,7/30,...,m —7/30}

carry out template matching with PCC as a similarity function and get
an intensity image, where high scores are related to vessel structures. In
order to extract patches of vessels being similar to the vessel templates
represented by the parameters, one has to binarize the outcome of template
matching.

Since the binarization of images is one of the basic problems of image
processing, there are countless methods published in the literature. For
example, a thorough overview of more than 50 image thresholding tech-
niques (histogram based methods, clustering techniques, entropy based
approaches, fuzzy techniques, higher order probability based techniques
and local methods) can be found in [126]. In the choice of the method we
have taken into account the following considerations:

1. The method should have some tunable parameters to enable the
training of binarization and the tailor-made segmentation of the
various (possibly underrepresented) vessel structures.

2. In order to enable the fast numeric training and optimization of
parameters, the method should be fast.

Observing some analogies with edge detection (where the image of edge
magnitudes has to be binarized by tracing the ridges of the edge map),
we have chosen a method similar to the hysteresis thresholding technique
applied in the well-known and widely used Canny edge detector. First,
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(a) (b) (c) (d)

Figure 4.4: Seed points (black) and foreground pixels (gray) after segmen-
tation by weak segmentation operators W (4,12,0.5,1,0,1,0.7,0.6) (a)-(b) and
W(4,12,0.5,1,0,1,0.5,0.4) (c)-(d)

the image containing similarity scores is thresholded at level ¢; and the
foreground pixels are considered to be the seed points of an iterative region
growing method. Then, pixels having intensities larger than ¢; and being
connected to seed points are added to the set of seed points recursively.
When no further pixels can be added to the set of seed points, the operation
stops and the final set of seed points is considered as the foreground of
binarization. With properly selected t; and ¢; thresholds one can extract
vessel pixels having local environments similar to the template described
by the parameters o, A, v, ¢, § and function H. In Figure 4.4 we have
visualized the seed points and the result of hysteresis thresholding applied
to the outcome of template matching. As one can observe, some settings
of t; and t; lead to highly precise segmentations in the sense that only
real vessel pixels are segmented as foreground (as desired), while other
combinations lead to noisy, practically useless results.

The proposed binarization technique can be considered as a special case
of the widely used fuzzy segmentation [127] techniques, with a Heaviside
membership function and 4-neighborhood connectivity term. We empha-
size that one could use the advanced form of this segmentation technique
(smoother membership functions and connectivity terms), as well. However,
the general form of fuzzy segmentation has more free parameters. As we
point out in the following sections, the ¢; and ¢; parameters of the binariza-
tion technique are trained using manually annotated training databases.
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Since the parameters of binarization may change as the parameters of
the templates are varied, a large number of training operations have to
be carried out. Thus, adding further free parameters to the binarization
technique would highly deteriorate the performance of the training process.
Since the structure of vessels is pretty simple, we assume that a binarization
technique with two free parameters should be flexible enough to extract
one specific type of vessel pixels precisely.

4.3.2.4 The weak segmentation operators

As a composition of template matching by generalized Gabor function
based templates and hysteresis thresholding, we introduce weak segmenta-
tion operators W (o, A, 7, q, 8,tn, t;) by the following operation: W applies
orientation independent template matching using the templates specified
by H(o,in/N,\,7,q,8), i =0,...,N, PCC as similarity function, and
performs hysteresis thresholding on the outcome of template matching with
thresholds ¢;, and ¢;. As a technical detail we mention that the empirical
choice N = 30 was found to give satisfactory results, thus, the angular
resolution we used is 6°. Due to the limited spatial resolution of images,
increasing the resolution does not improve the quality of segmentation
remarkably, however, decreasing the resolution below N = 20 deteriorates
the outcome of template matching with relatively small templates notica-
bly. Nevertheless, small changes of the resolution do not affect the overall
performance.

As a possible future improvement of the proposed method, the an-
gular resolution of template matching could be selected by taking into
consideration the size of the templates, that is, template matching with
relatively large templates could be carried out at lower angular resolutions
to decrease the computational demands of the method.

4.3.3 Training of weak segmentation operators

The parameters of the weak segmentation operators can be divided into
two groups. Parameters A, v, ¢ and [ are responsible for the intensity
distribution of the template, thus, these parameters determine the shape
of the vessel structure recognized by the operator. Later on, we intend to
use a large set of weak segmentation operators by specifying the shape

81



descriptor parameters explicitly to make the templates corresponding to the
operators cover the possible vessel structures (by making the parameters
cover the reasonable range of the parameter space uniformly). Contrarily,
the parameters o, t;, t; are related to the nature of the problem: the level
of noise in the images, the contrast of the vessel borders, etc. For a given
setting of shape descriptors A, v, ¢, 8 the proper values of o, t, t; have to
be trained.

4.3.3.1 Training of one weak segmentation operator

In order to simplify the notations, we introduce two multidimensional
parameters for the weak segmentation operators, namely s = (A,7,q, )
is related to the shape of the template, n = (o,tg,t1) is related to the
nature of the problem and the notation of a weak segmentation operator
is simplified to W (s, n).

Given an explicit setting of the shape descriptor parameter s, the goal of
training is to find the parameter n leading to a highly precise segmentation
of vessel pixels. The training goes on by following a simulated annealing
[128] based stochastic optimization process respecting the maximization of a
target function measuring how precise the segmentation is. In the rest of the
paragraph we give the outline of training by simulated annealing. Let n(*)
denote the parameter combination at the kth iteration of the optimization
process and T'(n®)) the corresponding value of the target function. For
a random combination n**1) the operator W (s, n(kH)) is applied to the
images of the training database, the segmentation results are evaluated
and the target function 7'(n(*+1)) is determined. The combination n(*+1)
is accepted if the target function has increased (T(n*+Y) > T(n®)), or

T(n*+)) — 7(n®)
exp ( 7 )) > (4.6)

holds, where Z denotes the temperature of the system being decreased as
the iterations go on and r denotes a uniformly distributed random number
in the range [0, 1]. Otherwise, the update of the parameter is reverted:
n*+t1) = n®) Tt is worth noting that any other randomized optimization
method could be used, as well.

We emphasize again that we do not expect one weak segmentation
operator to segment all vessel pixels, rather, we expect one operator to find
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vessel pixels surely belonging to the foreground. Accordingly, the target
function we have chosen to navigate towards the optimal parameter 7 for
a given s is based on the precision (referring to the performance measure
in binary classification), also known as positive predictive value (PPV') of
the segmentation: let TP denote the number of correctly classified vessel
pixels in the database and AP the overall number of pixels classified as
vessel; then, the positive predictive value is defined as PPV = T P/AP.
Higher PPV means more real vessel pixels and less background pixels
classified as foreground. Since segmentation always has errors, the desired
highest PPV values are usually reached when TP is small and TP ~ AP.
In order to extract more pixels, the conditions are slightly weakened: small
errors are allowed by introducing e-insensitive PPV as the target function
of optimization. Particularly,

PPV, if PPV <1 —¢,

) (4.7)
TP, otherwise.

T(n) = {

Maximizing the target function means to find the parameter setting n
that provides PPV > 1 — € and TP is as large as possible. Obviously,
the target function leads to misclassified foreground pixels, however, we
expect that these errors do not interfere when several weak segmentation
operators with various parameters are used, and can be removed by simple
image processing techniques in a later step. If the condition PPV > 1 —¢
cannot be satisfied for a given shape descriptor parameter s, the operator
with parameters s is discarded. This can be interpreted as the setting
s = (A, 7, q, ) describes templates that cannot be distinguished from the
background and noise precisely enough.

The method described in this paragraph can be used to train the
parameter n of one specific weak segmentation operator W(s,n) for a
given shape descriptor s. In order to gain a highly precise segmentation of
the entire vasculature, we have to train many weak segmentation operators
with various settings of s related to the various types of vessel structures
and unify the results of the individual operators.

We introduce the notation S = A x I' x Q x B for the set of reasonable
parameter combinations of shape descriptors and W(S) to denote the set of
weak segmentation operators W (s, n), where s € S holds and n is trained
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by the method described before. For example, using the parameters

A={6,7,...,24},
I ={04,05,...,1.2},

0 = {0.166,0.2,0.25,0.33,0.5,1,2, 3,4, 5,6},

B = {0,1}, (4.8)

and € = 0.05, the cardinality of the set S becomes 3762. After the training
of weak segmentation operators on the 20 training images of DRIVE, the
cardinality of W(S) becomes 3340, showing that there were approximately
400 combinations of shape descriptors that cannot represent vessel struc-
tures with sufficiently high PPV scores. The smallest wavelength A = 6
pixels appearing in A is selected by the following consideration: if the
wavelength of a sinusoidal wave is 6 pixels, the width of one valley be-
comes 3 pixels, that is, the cross section of the template contains one dark
pixel in the middle having one bright pixel on both of its sides. Clearly, a
template having a profile like this represents vessels of width 1 pixel. As a
general rule, we can state that independently from the resolution of the
images, the use of weak segmentation operators having wavelengths smaller
than 6 pixels is worthless. Similar considerations were used to select the
maximum wavelength A\ = 24 pixels, taking into account the width of the
thickest vessels appearing in the DRIVE database. The smallest parameter
in the set I' corresponds to vessel segment templates having more than
two times larger length than width. Considering the nature of vessels, it
is unlikely that much longer straight vessel segments would appear. The
largest parameter v = 1.2 in the set I' defines vessel segment templates
having slightly larger width than length. If the ~ is further increased, the
templates do not represent line segments any more. Finally, due to the
non-linear effect of the exponential parameter ¢, and the fast convergence
of x4, x € [0,1] as ¢ — 0 or ¢ — o0, the settings ¢ € [0,0.166[ or ¢ > 6 lead
to highly similar templates as the ones ¢ = 0.166 or ¢ = 6, respectively.

4.3.3.2 Finding the optimal set of weak segmentation operators

Depending on the cardinality of set S, W (S) can contain thousands of weak
segmentation operators, making the proposed method computationally
intractable in practice. In order to reduce the computational demands and
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Figure 4.5: Manual segmentation (ground truth) (a); fused outcome of the operators
Wred(8) (b); the outcome of contour reconstruction (c)

achieve better segmentation results, the raw set W(S) of weak segmentation
operators is reduced. Computational demands can be decreased by removing
the subset O C W(S) if the pixels classified by the operators in O as
vessel are classified by the operators in W(S)/O in the same way. Better
segmentation can be achieved by removing the subset O C W(S) that
produces interfering true positive but less interfering false positive matches
with the operators in W(S)/O.

Examining all subsets of W(S) is computationally infeasible. Subop-
timal but acceptable results can be achieved by applying the commonly
used backward feature subset selection (BFSS) method to the set W(S)
with a properly chosen target function. Namely, let W = W(S) initially.
Then, we repeat the following step while the target function increases: for
each W € W’ the images of the training database are segmented by the
weak segmentation operators in the set W /{W}, the binary outcomes are
unified by applying pixel-wise "or” operation and the target function is com-
puted; if the highest value of the target function is reached at W'/{W*},
let W' = W /{W*}. The target function we have chosen for the BFSS
method is the accuracy of the segmentation results: the ratio of correctly
classified pixels and all pixels of the training database. After the iteration
has finished, the set W' contains the reduced set of weak segmentation
operators, denoted by W4(S) for better readability.
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For illustration, we have applied the proposed BFSS technique to the
set W(S) of 3340 operators introduced in the previous paragraph. In the
resulting set W%(S) the number of operators decreased to 384 having
tractable computation demands.

4.3.3.3 Combining the outcomes of weak segmentation opera-
tors

So far, we have trained and selected the computationally tractable WWe4(S)
set of weak segmentation operators. After the preprocessing of an unseen
input image, the operators in WTed(S) are applied to the input image,
yielding [Wre4(S)| binary images, each of them corresponding to a specific
kind of vessel structure. In order to yield one binary image as the outcome
of Step 2, the results of the individual operators are fused by applying a
pixel-wise "or” operation. However, since the outcomes of the operators may
contain some foreground pixels related to noise, some shape based filtering
is applied to the connected components of the binarized images. Particularly,
the connected foreground components in the outcomes of the individual
operators are extracted (the objects in Figure show examples for
these components), and the sufficiently elongated components are added
to the fused result by pixel-wise "or” operation. The elongatedness can be
measured by the circularity of the component defined by 4w A/P?, where
A and P denote the area and the perimeter of the object. Obviously, the
more elongated a component is, the smaller its circularity becomes, thus,
an object is added to the outcome of Step 2 if its circularity is smaller than
the threshold t“"¢. We have found empirically that the choice t“"¢ = 0.3
gives satisfactory results, independently from the source of images being
segmented. We also note that small variations of this threshold do not
change the results at all.

To illustrate the fusion of the individual binary segmentations and
enable the comparison with the ground truth annotation, we have used the
set W¢(S) containing 384 operators (being introduced in the previous
paragraph) to apply Step 2 of the proposed method to a test image and
visualized the binary outcome and the ground truth annotation in figures
4.5(b)| and [4.5(a)|, respectively.
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4.3.3.4 A note on the combination of features

The method described in this sebsection uses weak segmentation operators
to extract the pixels corresponding to various types of vessel profiles and
fuses the binary results to produce a highly precise segmentation. Contrarily
to the previous methods published in the literature, the pixels corresponding
to different types of vessel profiles are segmented independently. This
behaviour of the proposed method enables the accurate representation of
even underrepresented vessel structures: if there is a template similar to
a vessel structure, there will be a dedicated weak segmentation operator,
thus, a dedicated segmentation model.

Clearly, there are many ways to fuse the results of template matching,
even before the binarization of the images. In the following paragraph we
overview and discuss some of the obvious possibilities.

1. One could combine the outcomes of template matching operations
for example by taking the pixel-wise maximum of the similarity
scores and binarize the resulting image. However, the similarity
scores corresponding to templates of different sizes and intensity
distributions are not comparable directly. Due to the higher level
of relative noise, the similarity scores corresponding to thin vessel
templates are generally lower than that of thick vessel templates.
Thus, this kind of fusion would smooth out the fine details and the
interpretation and accurate segmentation of the fused image would
be extremely difficult.

2. The outcomes of the various template matching operations could
be combined into higher dimensional feature vectors and advanced
machine learning techniques (like SVM, neural networks) could be
used to transform the segmentation problem into a binary classifi-
cation problem. The drawback of this approach is that the binary
classification techniques tend to produce smooth classification sur-
faces to avoid overfitting, and this smoothness usually represses the
underrepresented structures. Thus, the segmentation of relatively
rare vessel structures can hardly be guaranteed to be accurate.

3. In order to keep the dedicated modeling of underrepresented
strucutres, one could introduce class labels for the various vessel
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profiles and use multiclass classification techniques to train the seg-
mentation models. In this way the underrepresented structures would
still have a dedicated model, however, it would become difficult to
classify the vessel profiles of the training database accurately and
the training of multiclass classification techniques is computationally
expensive.

As a summary, the method is based on the natural assumption, that the
best feature for the precise segmentation of one specific type of vessel is the
outcome of template matching by the corresponding vessel template. We
emphasize again, that this step is not intended to extract all the vessel pixels,
the main goal is to get a highly precise initial segmentation. According
to the discussion above, the independent segmentation of various vessel
profiles is not a drawback, rather, this is how rare and underrepresented
structures can be modeled properly.

4.3.4 Reconstruction of vessel contours

So far we have introduced some simple weak segmentation operators and a
fusion technique to yield highly precise segmentations in the sense that the
majority of foreground pixels in the fused outcomes of template matching
are real vessel pixels. Since the individual weak segmentation operators
extract mainly the center lines of vessels, we cannot accept the fused result
as final segmentation: many false negative classifications appear along
the borders of vessels. In the current step we focus on the reconstruction
of vessel contours to gain a highly accurate segmentation of the entire
vasculature.

Considering the intensity profile of a vessel, relatively small intensities
appear in the middle and increase towards the vessel walls. Ideally, the
contour pixels of a segmentation should have the same relative intensity
respecting the minimum intensity of the vessel profile and the mean intensity
of the background. Since the sensitivity of the visual perception of human
observers varies with the wavelength of the stimulus [129] and the images
have finite resolution, we assume that this is not the case in practice. We
expect that the position of true vessel contours varies with the width and
contrast of vessels.

In order to validate these expectations, we introduce three measures to
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outer contour pixel (p)

(a) Vessel segment (b) Corresponding manual
segmentation

Figure 4.6: Measuring the width of a vessel

characterize the contour pixels of segmented vessels: the width (w) of the
segmented vessel passing by, the dynamic range (d) of the vessels and the
relative intensity (r) at the contour respecting the minimum intensity of
the vessel profile and the mean intensity of the background.

4.3.4.1 Measuring the width, dynamic range and relative inten-
sity at contour points

It is worth noting that there are some recent studies focusing on measuring
the width of vessels in retinal images . These methods usually fit a
parametric surface model to the vessel and estimate its width by the analytic
parameters of the fitted model. Contrarily, what we need is to estimate
the width of already segmented vessels at their inner and outer contour
points. The method described below gives an extremely fast solution with
satisfactory accuracy.

Let p denote an inner or outer contour pixel of a segmented vessel (for
illustration we have visualized a real vessel segment and the corresponding
manual annotation in figures [4.6(a)| and [4.6(b)|, respectively). In order to
find the width of the vessel being tangential to this pixel, we have to get a
robust estimation of its normal vector. Sobel operators are applied to the
contour pixels of the binary image in a close neighborhood and the mean of
the gradient directions is computed. We have found empirically that a disk
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shaped neighborhood with the radius of 5 pixels gives satisfactory results.
In Figure pixels with dotted border indicate the region, where the
gradient directions are averaged. Let a(p) denote the mean of the gradient
directions. A line segment is fitted to p at angle a(p) (gray dots in Figure
, and the pixels where the line segment intersects the inner and
outer contours of the other side of the vessel are located. Then, if p is an
inner contour pixel, the width of the vessel tangential to p is estimated
as the Euclidean distance of p and the outer contour pixel intersected by
the line segment at the other side of the vessel. Similarly, if p is an outer
contour pixel, the width of the vessel is estimated as the Euclidean distance
of pixel p and the inner contour pixel intersected by the line segment at
the other side of the vessel. In order to make the estimations smooth along
the vasculature, the width w(p) of the vessel tangential to p is defined as
the mean of the estimated widths in the close neighborhood.

Measuring the dynamic range of a vessel tangential to p is carried out
similarly to the measurement of width: the line segment orthogonal to the
vessel walls is divided in two regions: the intersection of the line segment
and the vessel (Ly(p) - denoted by light gray dots in Figure , and
the intersection of the line segment and the background (£p(p) - denoted
by dark gray dots in Figure . The dynamic range is defined as the
difference of the minimum intensity min,, ) covered by region Ly (p)
and the mean intensity mean ) covered by region Lp(p):

d(p) = max {meanﬁB(p) — Ming,, (p) 0} (4.9)

Finally, the relative intensity of the contour pixel respecting the mean
intensity of the background and the minimum intensity of the vessel profile
is defined as:

r(p) = max {min { Lelp] = mingy (p) , 1} ,O} . (4.10)
(P)

Mean, ,(p) — Mang,,

The value r(p) € [0, 1] represents the normalized relative intensity of
the contour pixel p within the range [min,,, (), meanc,(p)], thus, r(p)
characterizes the position of the contour on the normal of the vessel taking
into account only the intensity relations.
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4.3.4.2 Characterization of relative intensities at the contour
points

As mentioned before, we assume that the relative intensities depend on
the dynamic range and width of vessels. Accordingly, we have computed
the means of relative intensities at the inner and outer contour points of
vessels having specific width (w) and dynamic range (d) properties in the
manually annotated training databases DRIVE and STARE; arranged the
values to form two surfaces r;(w,d) and ro(w,d) corresponding to the
relative intensities at inner and outer contours, respectively; applied some
smoothing with a small averaging kernel; and plotted some geodesics in
Figure

It can be observed, that the shape and distance of the curves is highly
similar, independently from the scale of the images (the resolutions of
the images in STARE are approximately 1.3 those of DRIVE) and the
dynamic range: for thin vessels the relative intensities are small and increase
until the width of approximately 8 pixels is reached. Then, a slower but
coherent convergence of the curves can be observed as the width of the
vessels increases towards the maximum. Another interesting property is
that independently from the dynamic range or database, the distance
of the curves decreases as the width of the vessels increases. The most
characteristic difference of the curves extracted from various databases is
their vertical position. The height of the curves extracted from STARE
are remarkably higher than that of DRIVE. Based on these observations
we can assert that

1. the position of vessel contours (represented by their relative intensi-
ties) varies with the width of the vessels and slightly varies with the
dynamic range of vessel profile;

2. in order to reach highly accurate segmentation results by the re-
construction of vessel contours, one must take into account the
information about the position of the contours represented by the
relative intensity surfaces.

In order to reconstruct the characteristics of contours measured in
the training database, the contours of the binary outcome of template
matching have to be adjusted. Moreover, it can happen that several layers
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Figure 4.7: Relative intensity curves measured on various databases

of outer contour pixels have to be added to the foreground to reach the
desired similarity of relative intensities extracted from the training database
and measured at the contour pixels of the binary segmentation. For the
sake of readability the description of the proposed contour reconstruction
technique is separated in two subsections: first, the iterative adjustment of
one layer of contour pixels is described, then, the scheduling of the iterative
adjustment involving one layer of contour pixels is discussed.
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4.3.4.3 The iterative solution for one layer of contour pixels

Probably the most obvious and simple way to recover the desired relative
intensities at the contour pixels of a binary segmentation is defining some
target function measuring how the surfaces r7(w,d) and ro(w,d) fit the
current segmentation, and adjusting the binary labels of contour pixels
randomly towards the extremum of the target function.

Let C denote the set of contour pixels being involved in the iterative
optimization procedure. The core of the iteration is a simple, pixelwise
operation described below. For a pixel p € C the score so(p) = s(p) is
computed; the binary label at pixel p is negated if the modification does
not make a connected vessel component disconnected; and the score of
the modified binary image is computed as s1(p) = s(p). The new label
at pixel p is kept, if so(p) > s1(p), otherwise the modification is reverted.
This simple operation is repeated for the contour pixels in C subsequently.
The stopping condition is either convergence (when no more pixels are
changed), or the method is stopped after the local operation is applied
30 times for all pixels of C. As we describe below, the score function s(p)
depends on the relative intensity surfaces extracted from the manually
annotated databases. Correspondingly, the convergence of the method can
hardly be prooved rigorously, since erroneous annotations may lead to
relative intensity surfaces of highly different characteristics, and in extreme
cases the optimization could fall into a loop. In practice, we found that the
relative intensity surfaces extracted from various databases do not lead to
such loops, and the method converges. As a fall-back case, the upper limit
of 30 repetitions was selected empirically, based on the maximum number
of iterations required for convergence.

The score function is defined as follows. Let 7(p), w(p) and d(p) denote
the measured relative intensity, width and dynamic range of the vessel
passing by pixel p, respectively, and let p be an inner contour point. We can
use the measured r7(w, d) surface to estimate the ideal relative intensity at
the contour of a vessel having width w(p) and dynamic range d(p). However,
since the measured surface is known only at some discrete coordinates, while
w(p) and d(p) can take any real value, bilinear interpolation is applied to
evaluate the function r;(w, d) and determine the expected relative intensity
7(p) = r7(w(p),d(p)) at pixel p. If p is an outer contour pixel, the desired
ideal intensity is derived analogously from the surface ro(w,d). Let the
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term

max{0,r(p) — 7(p)},if p is inner contour point, (4.11)
[e— /’"‘ ’

e(p :{max{O,f(p)

measure the error of the estimated and desired relative intensities. This
error term is part of the score function evaluated before and after the
binary label of p is changed. If p is an inner contour pixel and its relative
intensity is smaller than the desired relative intensity, it means that the
pixel is closer to the center of the vessel than the inner contour pixels of
vessels having similar width and dynamic range in the training database.
In this case the error becomes zero, since the pixel should not change its
label during the optimization process. However, changing the label of p to
the opposite, it becomes an outer contour pixel, with a large error, thus,
the error term suppresses to keep the original foreground label of p. The
error term behaves similarly if p is an outer contour pixel and its relative
intensity is larger than the desired one. If p is an inner contour pixel
and r(p) is larger than the ideal, the error term measures the distance of
r(p) from the ideal #(p) intensity. Changing its label to the opposite, the
error term measures the distance of r(p) from the ideal relative intensity
of outer contour pixels of vessels with similar width and dynamic range.
The smaller value of the error term indicates the true label of p. The
error term has similar behaviour if p is an outer contour pixel and r(p) is
smaller than the ideal. Consequently, the error term e(p) suppresses a label
configuration providing relative intensities being similar to the ideal one.
In order to avoid cracked edges, and ensure local smoothness, another term
is added to e(p) measuring the similarity of labels in a local neighborhood.
Particularly, the smoothness term becomes w™ (1 — n(p)/8), where n(p)
measures the number of 8-neighbors of p having the same binary label
as p, and w™ € R is a control parameter responsible for the strength of
smoothing. Then, the score function s(p) becomes:

(p)},if p is outer contour point,

— e(p) wnb _@
) =t (p) d(p) — ri(w(®).dp) (") an

The error term is normalized by the distance of the relative intensity
surfaces of inner and outer contours to prevent the score function from
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preferring thick vessels, where the distance of the curves and consequently
the errors of the reconstruction are smaller.

Based on this score function, the iterative optimization process repeats
the previously described pixelwise operation for all contour pixels in C
until convergence or up to 30 repetitions for all pixels of C. However, filling
C with inner and outer contour pixels leads to ambiguous results, since
the edges of the vasculature may become leaky if an inner contour point is
removed, and a neighboring outer contour point is added to the foreground
in the same time. In order to avoid these situations, the proposed iterative
optimization technique is applied to the layers of inner and outer contour
pixels subsequently as described in the next subsection.

4.3.4.4 The contour reconstruction process

The strategy of the proposed contour reconstruction technique is summa-
rized in the following points:

1. We can expect that the adjustment of vessels having extremely small
dynamic ranges is ambiguous, since they can hardly be differentiated
from the background. Accordingly, a contour pixel is not adjusted if
the dynamic range of the vessel passing by is less than ¢%".

2. In the first phase, C contains the inner contour pixels of the vas-
culature and the iterative optimization described in the previous
subsection is applied until convergence. Since the weak segmentation
operators introduced before tend to extract the center lines of the
vessels, we expect this step to carry out only small adjustments on
the contour of the segmented vasculature, and do not expect that
more adjustment of inner contour pixels is required. Thus, the next
steps involve outer contour pixels only. Two technical details are also
noted here:

(a) The neighborhood term in the score function s(p) is disabled if
p is an inner contour pixel and the width of the vessel passing
by is smaller than 2 pixels, since the local 8-neighborhood of the
inner contour pixel p may contain pixels of the outer contour
of the opposite side of the vessel and lead to undetermined
behaviour.
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(b) When a vessel runs into and ends at the border of a bright
lesion, or fades into the background, the estimated normal of
the vessel at the end point becomes parallel with the vessel
and the brightness of the background can suppress the removal
of inner contour pixels, shortening the extracted vessels. This
undesired behaviour is prevented by extracting the end points of
the segmented vasculature and forbidding the removal of these
foreground pixels during the adjustment of inner contours.

3. In the second phase, C is filled with the outer contour pixels of the
binary segmentation having already adjusted inner contours, and the
iterative optimization technique described in the previous section is
applied until convergence. We expect this step to increase the width
of vessels by adding outer contour pixels to the foreground of the
segmentation, if required. In the case of thick vessels the addition
of one layer of outer contour pixels can rarely reconstruct the real
width of vessels. Thus, the adjustment of outer contour pixels is
repeated layer-by-layer until the set of outer contour pixels becomes
unchanged.

The proposed approach for the reconstruction of vessel contours has
basically two free parameters: the control parameter of the local smoothness
term w™ and the threshold of the dynamic range t%. The values of
these parameters are determined by training on the images of a manually
annotated training database for the highest accuracy. For the illustration
of the proposed technique, Figure presents the test image with
reconstructed contours. The free parameters we used are the ones trained
on DRIVE: w™ = 3.145 and t%" = 10. As one can observe, the widths of
thick vessels became similar to that of the manual annotation, while the
widths of relatively thin vessels have not changed significantly, as expected.

A common weakness of template based vessel segmentation techniques
is that the similarities near junction points of the vasculature (especially
near the junction points of arteries having a bright stripe in the middle)
are usually low, resulting fragmented segmentations (see the junction
points in Figure . As a limitation of the proposed method, these
structures cannot be modelled accurately enough with the Gabor function
based templates we use. Nevertheless, the contour reconstruction technique
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Figure 4.8: Illustration of the iterative contour reconstruction process: the binary segmen-
tation after Step 2 (a), the binary segmentation after contour reconstruction (b). Some
examples for the reconstruction of junction points are emphasized by grey rectangles

implicitly attempts to reconstruct junctions: the relative intensities at the
outer contour pixels of the erroneous end points of vessels are close to zero,
since the estimated normals are parallel with the vessels. Consequently,
outer contour pixels are added near the end points, the vessels are traced
towards the junctions. As Figure shows, many of the junctions
become reconstructed by the proposed method in this way. In order to
make the entire vasculature connected, the reconstruction of all junctions
would be required. This could be accomplished in a Hidden Markov Model
based framework (similar to the one in [130]) by optimizing an energy
function consisting of a connectivity term and a probability term describing
how well the added vessel pixels fit the distribution of nearby vessels.

4.4 Tests and Results

The detailed description of the testing methodology is extremely impor-
tant to make the results comparable with the state-of-the-art approaches.
Although the databases and techniques used for evaluation vary, we try to
follow a protocol which makes the proposed method comparable with the
majority of previous techniques within the available space.



4.4.1 Databases

The majority of vessel segmentation methods are evaluated on two publicly
available databases. The DRIVE database [95] consists of 40 RGB fundus
images of size 565x 584, divided to training and test sets of equal size, both
sets containing healthy and abnormal images, as well. The database contains
the manual annotations of two human observers, and the annotations of
observer 1 are considered to be the ground truth in the literature. The
STARE database [94] contains 10 healthy and 10 abnormal RGB fundus
images of size 700x605 pixels. Similarly to DRIVE, database STARE
contains the manual annotations of two experts, and the annotations of
observer 1 are considered to be ground truth segmentations. In many recent
papers the vessel segmentation techniques are evaluated using only DRIVE
and STARE [131} 112, |132} {119, |122, |70], furthermore, there are some
papers where only database DRIVE is used for evaluation [116]. Thus,
we can consider these databases as the commonly accepted way for the
evaluation and comparison of vessel segmentation techniques.

4.4.2 Measuring segmentation performance

The segmentation performance is characterized by the commonly accepted
measures of binary classification. The test images are segmented by the
proposed method, and the numbers of correctly classified vessel pixels (7' P),
incorrectly classified vessel pixels (F'N), correctly classified background
pixels (T'N) and incorrectly classified background pixels (FP) are deter-
mined in the region covered by the ROI. Sensitivity SE = TP/(T P+ FN)
and specificity SP = TN/(TN + FP) measure the proportion of correctly
classified foreground and background pixels to all foreground and back-
ground pixels, respectively. For both measures, higher values indicate better
results. Positive predictive value PPV = TP/(TP + FP) measures the
proportion of correctly classified vessel pixels to all pixels classified as vessel.
Negative predictive value NPV = TN/(TN + FN) measures the same
for background pixels. Again, higher values indicate better performance.
Accuracy ACC = (TP +TN)/(TP + FP + TN + FN) measures the
proportion of correctly classified pixels to all pixels covered by the ROI.
Most of the authors use ACC as the primary measure to characterize the
performance of vessel segmentation. However, the accuracy scores have to
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be interpreted carefully. Due to the large number of background pixels, the
accuracy of a segmentation containing only background labels is 0.83 in
DRIVE, which is considered to be a fairly good score in many applications
of binary classification. Even in DRIVE — containing the smallest images
used for evaluation — a 0.001 increase of accuracy represents the correct
classification of approximately 200 additional pixels per image.

The authors of machine learning based approaches usually report an-
other measure: the receiver operating characteristic (ROC) curve plots
sensitivity SE as a function of specificity SP, and the corresponding mea-
sure is the area under the curve AUC'. In fact, the AUC score does not
measure the performance of an individual system, although retinal screen-
ing systems are based on automated components. Rather, the AUC' score is
an aggregated measure of classification performance when the parameters
of the system are tuned: AUC measures the trade-off of performance when
the sensitivity of the method is increased to the detriment of specificity.
Although the AUC score is a commonly reported measure, it has to be
treated with reservations when vessel segmentation methods are ranked by
it. On the one hand, measuring the AUC score supposes that there is a
kind of global threshold that can be used to vary SE and SP smoothly.
There are algorithms like the proposed one, where neither global probability
maps, nor continuous tuning parameters are available to measure various
pairs of SE and SP values, plot the ROC curve, and compute the AUC
score. On the other hand, there are several techniques used to handle the
concavities of ROC curves and measure the area under the curve: one can
use simple numerical integration, polynomial fitting, or measure the area
under the convex hull of the curve, and each of these techniques leads to
different AUC scores. There are also recent criticisms of the AUC' score
regarding its misleading properties when classifiers are compared by it [133,
134]. Although the proposed method is not suitable for the computation of
the AUC score, we have generated some SE and SP pairs by manually
varying the thresholds in the weak segmentation operators and the heights
of relative intensity surfaces and calculated the AUC' score in the same way
as described in [118]. Nevertheless, we treat the AUC score as a secondary
measure of vessel segmentation performance and consider the accuracy
score (ACC) as the primary indicator.
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4.4.3 Comparison with existing techniques

The performance of the proposed method is compared to the ones reported
and used for comparison in recent papers. The majority of authors cal-
culated the measures in the region covered by the ROI and we consider
this method to be the preferred way to measure the performance of vessel
segmentation techniques. Nevertheless, some authors used all the pixels of
the images to calculate the performance measures [106, 116]. This can be
easily verified by solving the equations defining ACC, SE and SP for the
unknowns TP, TN, F'P and F'N using the reported values of the measures
and the number of foreground pixels in the test images F'G. For the sake
of completeness, the values TP, TN, FFP and FN are determined by the
expressions:

TP=SE-FG, FN=FG-TP, (4.13)
TP(ACC — 1)+ ACC - FN

FP = : 4.14
AL (1—- ACC) — ACC (4.14)

SpP
TN = —<5FP, (4.15)

In both of the mentioned cases, the sum TP+ FN + FP + TN equals the
number of pixels of the images instead of the number of pixels covered by
the ROI. In order to make the proposed method comparable with these
techniques, we have also computed the performance measures involving all
pixels of the images and these results are referred as Fvaluation without
ROL

4.4.4 Model selection

The parameters of the proposed method are trained as we have described
in Section Especially, for the training of template matching operators,
we have used the sets A, T', @ and B as given in Section [£.3.3] assuming
that the parameter combinations of these sets densely cover the meaningful
and reasonable part of the parameter space. An increased resolution of the
parameter space could slightly improve the accuracy of segmentation, since
more than 90% of the trained weak segmentation operators were discarded
when the optimal set of operators was selected by the BFSS method.
According to the vast majority of previous techniques, the primary indicator
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of performance is the accuracy of segmentation. Thus, the free parameters
w™ and t%" are selected to maximize the accuracy of segmentation using
the training images of databases.

4.4.5 DRIVE database

We have evaluated the proposed method on database DRIVE. At the end
of the training process the set W¢4(S) contained 384 weak segmentation
operators. The surfaces of relative intensities were extracted (some geodesics
can be seen in Figure and the free parameters providing the highest
accuracy scores on the training images have been determined: w™ = 3.14
and 9 = 10.

The proposed method was applied to the images of the test set and the
averages of the previously introduced performance measures were computed.
The mean accuracy, sensitivity and specificity scores are compared to those
of previous techniques in the second column of Table [£.I} One can observe,
that after the reconstruction of vessel contours the accuracy scores are
higher than that of any method published before. One can also observe
that even the template matching step alone is able to outperform several
techniques in the literature. Considering the gaps between the accuracies of
techniques published in the last 10 years, we can assess that the advances of
the proposed method are significant. Since the PPV and N PV scores are
rarely reported, we cannot compare them to those of previous techniques.
Anyway, for the sake of completeness, the average PPV and NPV scores
are 0.8397 and 0.9634, respectively. Regarding the AUC score, there is only
one technique performing better than the proposed one. For illustration,
Figure 1.9 shows the segmentation results of healthy and abnormal images
from DRIVE.

4.4.6 STARE database

The proposed method has been evaluated also on database STARE. We
have separated the images of the database into two sets: 10 training and
10 test images. The training set contains the first five healthy and first
five abnormal images (with identifiers: 0001, 0002, 0003, 0004, 0005, 0162,
0163, 0235, 0236, 0239), and the rest of the images constitute the test set.

At the end of the training process, the set W™(S) contained 288
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Figure 4.9: Illustration of the proposed method on the database DRIVE. Healthy (a),
abnormal (one can observe the presence of bright lesions) (d) images; ground truth
annotation (b), (e); segmentations by the proposed method trained on database DRIVE

(c), (f)

operators. The relative intensity surfaces were extracted, and the free
parameters providing the highest accuracy scores on the training images
have been selected: w™ = 3.12 and t% = 10. Comparing the optimal values
of free parameters to those trained on DRIVE, one can observe, that w™
and t%" are essentially the same, suggesting that these values are related
to the nature of the problem of vessel segmentation.

The trained segmentation model was applied to the complete database
and the averages of the performance measures were computed for the test
images of the database. The results are compared to those of previously
published techniques in Table One can observe, that the accuracy
scores of the proposed technique are much higher than that of any other
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Table 4.1: Test results in DRIVE. The highest accuracy scores are indicated by boldface
typesetting

Measure H ACC SE SP AUC
Method || Evaluated with ROI

Second observer 0.9473 - - -
Jiang and Mojon [97] 0.9212 - - 0.9114
Vlachos and Dermatas [99) 0.9291  0.7472  0.9550 -
Martinez-Perez et al. [98] 0.9181 - -
Espona et al. |135] 0.9352  0.7472  0.9615 -
Nguyen et al. [120] 0.9407 - -
Niemeijer et al. [95) 0.9417  0.6898  0.9696 -
Staal et al. [96) 0.9442  0.7194 0.9773 -
Marin et al. |70] 0.9452  0.7067  0.9801 -
Mendonga and Campilho |132] 0.9452  0.7344 0.9764 -
Soares et al. [100] 0.9466  0.7332 0.9751 0.9614
Lam, Gao, and Liew |122] 0.9472 - - 0.9614
Fraz et al. |118| 0.9480 0.7406 0.9807 0.9747
The proposed method after template matching 0.9420 0.6497 0.9846 -
The proposed method after contour reconstruction 0.9491 0.7344 0.9804 -

Evaluated without ROI

Ricci and Perfetti |106] 0.9595 - - 0.9633

Lupascu, Tegolo, and Trucco |116] 0.9597  0.6728 0.9874 0.9561
The proposed method after template matching 0.9601 0.6495  0.9899 -
The proposed method after contour reconstruction 0.9652 0.7446 0.9864 -

technique published before. The results of the template matching are also
highly competitive: there is only one method giving better results than
the template matching framework. The average PPV and N PV scores are
0.8200 and 0.9768, respectively. The AUC score of the proposed method is
more than 0.5% higher than that of the best performing previous technique
trained and tested on STARE. Figure illustrates the segmentation
results of healthy and abnormal images of STARE.

4.5 Discussion and Conclusions

We have proposed a novel approach for the segmentation of vessels in
retinal images: since the center lines of vessels have more characteristic
visual features than the vessel walls, we have separated the extraction of
pixels near the center lines and the reconstruction of vessel contours; and
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Table 4.2: Test results in STARE. The highest accuracy scores are indicated by boldface
typesetting

Measure || ACC SE SP  AUC
Method || Evaluated with ROI
Second observer 0.9550 - - -
Jiang and Mojon [97] 0.9009 - - 0.9298

Staal et al. |96] 0.9516 - - 0.9614
Marin et al. |70] 0.9526  0.6944 0.9819 0.9769
Mendonga and Campilho |132] 0.9440  0.6996  0.9730 -
Soares et al. |100) 0.9479  0.7207 0.9747 0.9671
Lam, Gao, and Liew |122] 0.9567 - - 0.9739
Fraz et al. |118| 0.9534  0.7548 0.9763 0.9768
The proposed method after template matching 0.9552  0.7126  0.9822 -
The proposed method after contour reconstruction 0.9610 0.8012 0.9788

II Evaluated without ROI

Ricci and Perfetti [106] 0.9646 - - 0.9680
The proposed method after template matching 0.9670 0.7122 0.9872 -
The proposed method after contour reconstruction 0.9714 0.8030 0.9847 -

we have also taken into consideration that some kinds of vessels may be
under-represented in the training databases.

The proposed method uses the trained weak segmentation operators
and the extracted relative intensity surfaces to represent the visual fea-
tures of vessels. Although there are some numerical constants wired in the
method, most of them do not affect the segmentation directly, instead, they
are related to how various quantities (like the width of vessels or relative
intensities) are measured. Changing these constants coherently throughout
the method does not affect the quality of the outcome remarkably. Aside
from these technical constants and supposing that the initial shape descrip-
tor parameters of weak segmentation operators cover the reasonable part
of the parameter space, the proposed method has only two free numerical
parameters that have to be trained using the images of a training database.

Considering that the accuracy of the proposed method outperformed
all the previous techniques in every test case, we can conclude that the
method can become a robust and reliable building block of retinal image
processing systems.

Finally, we formulate the third thesis of the dissertation.
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Figure 4.10: Illustration of the proposed method on the STARE database. Healthy (a),
abnormal (d) images; ground truth annotation (b), (e); segmentations by the proposed
method trained on database STARE (c), (f)

Thesis 3.

1. I have proposed a novel technique for the segmentation of vessels in
retinal images. As a novel contribution to the field, in the development
of the method I have taken into consideration that various vessel
structures are under-represented in the manually annotated training
databases. Correspondingly, the proposed method learns and utilizes
the visual features of a large number of predefined vessel profiles
individually.

2. Based on the test results I can state that the method is highly compet-
itive with the state-of-the-art techniques, and the features the method
is based on have high descriptive power for the representation of the
vascular system.
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4.6 Outlook

The performance of the proposed method could be further increased by
involving weak segmentation operators with templates of other intensity
distributions than the ones derived from the generalized Gabor functions.
For example, Hermite polynomials can model the intensity profile of ar-
teries (having bright stripes at the center lines due to the high level of
oxygen) more accurately than exponential or trigonometric functions [104].
Consequently, the use of weak segmentation operators with templates based
on Hermite polynomials could improve the modelling of the vasculature
and increase the accuracy of segmentation.

Although the method is developed for the segmentation of retinal
vessels, it can be adapted to other problems in which tubular structures
are to be segmented, like road networks in aerial images, or vessel seg-
mentation in volumetric images. In the latter case the 3D generalization
of template matching operators and that of the contour reconstruction
process is needed, which can be done in a straightforward way. The idea
of training a large number of classifiers (each of them responsible for the
high precision recognition of one specific pattern) can be easily adapted to
general classification problems of machine learning.
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Chapter 5

Summary

In the dissertation I have discussed some results of several years of research
carried out in the field of pattern recognition, especially in image processing
and computer vision. According to the title of the dissertation, the results
are closely related to the theory and applications of (dis)similarity functions.

In Chapter 2 two novel dissimilarity measures were derived, both
of them are approximately invariant to even non-linear monotonically
increasing transformations and can be computed for an image in the time
of some convolution operations. The proposed measures were tested and
evaluated in various scenarios of template matching and compared to other
techniques designed to be invariant to monotonic transformations. The
results show that the measures are highly competitive, in certain cases
giving remarkably better performance than conventional techniques. The
measures are independent from the spatial dimensionality of the objects
being compared, thus, besides template matching in images (which we use
for demonstration and evaluation) both of the proposed measures can be
used to compare and measure the dissimilarity of 1D time series or even
3D images.

In Chapter 3 I have examined how the kernel trick can be applied to
translation invariant (dis)similarity measures, like the Pearson correlation
coefficient (PCC) and centered FEuclidean distance (cEUC). I have given
some general results for kernels with finite dimensional feature maps,
namely, showed that under some mild conditions there are countably infinite
ways for the kernelization of these translation invariant measures. Then, I
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have examined the case of the polynomial kernel in details, showed that
using the polynomial kernel the cEUC and PCC measures can be kernelized
in continuum many different ways and there are at least countably many
variants that can be computed efficiently in terms of kernel evaluations.
The discrimination power of the kernelized PCC and cEUC measures was
evaluated in classification problems using the k-nearest neighbour classifier.
The results show that the performance of the kernelized cEUC and PCC
measures is highly competitive, and in certain problems better than that
of the non-kernelized variants.

Finally, in Chapter 4 a novel technique for the segmentation of the
vasculature in retinal images was described. The method is based on tem-
plate matching operators, and correspondingly, on the use of (dis)similarity
measures. The template matching framework we developed for the accu-
rate representation of the vasculature can be generalized to many other
problems of pattern recognition. The proposed method was tested on the
images of two publicly available datasets and compared to many previ-
ously published techniques in terms of the conventional measures of binary
classification. It was found that the proposed method outperforms the
previous techniques on the de facto standard image databases, showing
that the template matching based representation of the vasculature is a
reasonable technique and the features extracted by the method have high
discriminative power.

As we pointed out in the outlook sections, at least as many questions
arose as many we have answered, so we can continue the research in each
of these interesting topics without loss of momentum.
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Chapter 6

Osszefoglalas

A disszertacidoban a digitdlis képfeldolgozas és alakfelismerés teriiletén
végzett tobb éves kutatémunka néhany eredményét foglaltam 6ssze. A dolgo-
zat cimének megfeleléen a bemutatott eredmények elsésorban a hasonldsagi
mérészamok elméletéhez és gyakorlati alkalmazasaikhoz kapcsolédnak.

Az eredmények els csoportjdban (mésodik fejezet) monoton intenzités-
transzformécidkra kozelit6leg invaridns hasonlésagi mértékeket vezettem
be, melyekre az angol terminolégiat hasznalva Matching by Monotonic
Tone Mapping (MMTM) mértékekként hivatkozok. Elméleti titon belat-
tam, hogy a javasolt MMTM fiiggvények szamos kedvezé tulajdonsaggal
rendelkeznek: abszolut mértékek, azaz a [0, 1] tartomanyba képeznek és
néhany konvoliciénak megfelelé idében szdmolhaték egy teljes képre. A
javasolt modszereket alapos tesztelésnek vetettem ala, és az irodalomban
széleskoriien alkalmazott, monoton transzformacidkra invarians hasonlésagi
mértékekkel hasonlitottam 6ssze. A teszteredmények alapjan kijelenthetem,
hogy a javasolt mddszerek a kordbbi (sokszor négyzetes futasidejii) algo-
ritmusokkal 6sszemérhetd teljesitményt nyudjtanak, és bizonyos problémak
esetén jobb eredmények adédnak a javasolt mértékek alkalmazédsival. Bar
a levezetés soran a digitalis képfeldolgozas terminoldogidjat hasznaltam, a
moédszerek fliggetlenek az 6sszehasonlitott objektumok dimenzionalitasatol,
igy képek mellett akar idGsorok vagy volumetrikus adatok Gsszehason-
litasara is hasznalhatok.

A bemutatott eredmények masodik csoportjdban (harmadik fejezet) azt
vizsgaltam, hogy a kernel triikk alkalmazhaté-e az eltolasinvaridns Pearson
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korreldcios egytitthatéra (PCC) és a szintén eltoldsinvarians centralizdlt
euklideszi tavolsagra (cEUC). Sikeriilt belatni, hogy véges dimenzids sajat-
sagfuggvénnyel rendelkez6 kernelek esetén nem tul szigoru feltételek mellett
a PCC és cEUC fiiggvények megszamlalhatéan végtelen sok kiilénbo6zé
moédon kernelizdlhatok. A széleskoriien alkalmazott polinom kernel esetére
belattam, hogy a cEUC és PCC hasonlésagi mértékek kontinuum sok
kiillonb6z6 médon kernelizalhatéak és legalabb megszamlalhatéan végtelen
sok esetben a kernelizalt fiiggvények kiszamithatéak a sajatsagfiiggvények
ismerete nélkiil, kernel kiértékelések segitségével. Igy a gyakorlati alkalmazé-
sok szempontjabdl is hasznos, gyorsan szamithaté kernelizalt hasonlosagi
mértékekhez jutottam. A kernelizdlt cEUC és PCC fiiggvények diszkrim-
inacids erejét altalanos osztalyozasi problémakban vetettem Ossze a nem
kernelizalt fliggvények teljesitményével. A teszteredmények alapjan kije-
lenthetem, hogy &ltalanos esetben a cEUC és PCC fiiggvények polinom
kernellel torténd kernelizalasa nem rontja azok teljesitményét, sot, bizonyos
problémakban jobb osztalyozasi eredményeket kaphatunk a kernelizalt
mértékek alkalmazésaval.

Az eredmények harmadik csoportjaban (negyedik fejezet) egy 1j modsz-
ert javasoltam az érhélézat szegmentdlasara retina képeken. A moddszer Un.
gyenge szegmentald operatorokon alapszik, melyek mindegyike csak egy
bizonyos tipusi érhalézat szegmens felismeréséért felelds. A gyenge szegmen-
talé operdatorokban fontos szerep jut a hasonlésagi mértékeknek, ugyanis
az operatorok miitkodése mintazat illesztésen alapszik. A javasolt mddszert
két publikusan elérhetd, de facto sztenderdnek szamité adatbdzison hason-
litottam Ossze korabbi mddszerekkel. Az eredmények alapjan kijelenthetem,
hogy a javasolt mddszer pontosabban szegmentalja az érhalézatot mint a
korabbi mddszerek; a gyenge szegmentalé operatorokon alapuld reprezen-
tacio, illetve a sajatsdgok, amelyek alapjén a szegmentécié torténik magas
leir6 erével birnak.

Bar a dolgozatban szamos kérdésre valaszt adtunk, munkank legalabb
ugyanennyi tovabbi kérdést vetett fel, igy szamos érdekes irdnyba foly-
tathatjuk a kutatomunkat ezen érdekes témakban és teriileteken.
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