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Abstract: Fungal mycotoxins are secondary metabolites that can be present in green forage, hay,
or silage. Consumption of contaminated plants or agricultural products can cause various animal
and human diseases, which is why problems associated with mycotoxins have received particular
attention. In addition, public pressure to produce healthy food and feed is also increasing. As the
results of several surveys indicate that yeasts can decrease toxic effects by binding or converting
secondary metabolites or control growth of harmful fungi, this article provides an overview of the
yeast species that can have great potential in detoxification. The most important antagonistic yeast
species against toxigenic fungi are described and the mode of their inhibitory mechanisms is also
discussed. We provide an insight into toxin binding and biotransformation capacities of yeasts and
examples of their use in silo. Issues requiring further study are also mentioned.

Keywords: food and feed safety; yeast; fungal mycotoxin; secondary metabolites; bio-detoxification;
antagonism; silage

1. Introduction

Mycotoxins are secondary metabolites produced by several genera of fungi, such
as Fusarium, Aspergillus, and Penicillium [1–6]. These fungi are able to produce various
chemically different toxins [1–4]. The most potent toxins are Aflatoxins (AFs), ochratoxins
(OTs), fumonisins (FBs), zearalenone (ZEA), or trichothecenes [1,2]. Aflatoxins are difura-
nocoumarin derivatives, produced mainly by Aspergillus species and have four different
types (B1, B2, G1, and G2) [1,2,4]. Ochratoxins are weak organic acids consisting of a dihy-
droisocumarin moiety joined by a peptide bond to 1-phenylalanine, secreted by Aspergillus
sp. and Penicillium sp. [1,2]. OTs come in three forms (A, B, C). Fumonisins are thought be
synthetized by condensation of alanine into an acetate-derived precursor and produced by
Fusarium species [1,2,6]. ZEA is biosynthesized through a polyketide pathway by Fusarium
species [1]. Trichothecenes constitute a large family of mycotoxins. They are produced
by various fungal species like Fusarium or Trichoderma and others. The trichothecenes
have a common 12,13-epoxytrichotechene skeleton and an olefinic bond with various side
chains. They are classified as macrocyclic and non-macrocyclic. Deoxynivalenol (DON)
and T2 toxin belong to the best studied trichotechenes. Besides the toxins mentioned above,
further compounds like patulin, fusaric acid, gliotoxin, roquefortine, enniatin, and so on
are also be produced by these toxigenic fungi [1,2].

One species can simultaneously produce several toxic compounds [6,7]. However,
we have to mention that filamentous fungi do not always produce toxins [8,9]. The toxin
production of these fungi strongly depends on environmental circumstances, such as
weather conditions [3,10–14]. Higher water activity and about 28–30 ◦C temperature
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mostly support growth and toxin production of these fungi [3,14]. That is, occurrence of
mycotoxins is more frequent in areas with a hot and humid climate. In addition, in vitro
experiments show that stress factors can also contribute to fungal toxin production [15–17].

Various molecular techniques and bioinformatic methods allowed us to reveal the
mechanism and genes of the toxin production. Products of ZEA genes are required for
synthesis of the zearalenone, while biosynthesis of the trichothecene and fumonisins
correlates with gene expression of the TRI and FUM genes. These toxin genes are arranged
on the chromosome in clusters, highly conserved in the different species, as revealed by
the comparisons of the fungal genome sequences [18–25].

The rapidly developing analytical methods allowed us to detect these fungal toxins [3,26].
These analyses pointed to the fact that the different toxins can be found not only in raw feed
or food materials, but also in food samples, because they can remain stable during food
processing [27–32]. In addition, co-occurrence of certain toxins can also happen [3,10,32–34].

The toxin producing fungal species and their toxins can cause great yield losses in
agriculture and can also lead to animal or human diseases, because the toxins can enter
both the animal and human body [12,13,35–37]. They can cause a broad spectrum of health
damage, such as nail or pulmonary infections or cancer [30,38–41]. The toxigenic fungi
and their metabolites are especially dangerous for immune-compromised persons [42–46].
Consequently, one of our current tasks is to decrease occurrence of fungi and concentration
of toxins in food and feed. This is also necessary, because the allowed toxin levels are
regulated [13,47,48].

To prevent or decrease cell division of fungi and mycotoxin contamination, we need
integrated agricultural practices, which include correct pre-harvest and soil management,
proper harvest time and techniques, or ensuring appropriate storage parameters and post-
harvest procedures. Besides, control of the toxin-producing fungi is very important, if not
the most important factor for decreasing or preventing toxin contamination. Generally,
fungicidal chemicals are the most frequently used methods to prevent growth of harmful
fungi. As these fungicides can cause environmental pollution and health problems, public
demand is increasing to reduce chemicals and produce more healthy food and feed. That
is why application of antifungal microorganisms as biocontrol agents to inhibit growth
of the destructive and harmful fungi seems to be a promising and environment-friendly
alternative solution along with or instead of the commonly used methods.

The purpose of this review is to give an insight into those possibilities where yeast
species can be used as alternatives to synthetic chemicals in plant protection or bio-
detoxification of the different agricultural products.

2. Yeasts and Yeast-like Fungi Can Have Growth Inhibitory Effects against Toxin
Producing Fungi

Various microbes live together in nature, from the rhizosphere to the phyllosphere. A
large group of them belong to the yeasts, which are eukaryotic unicellular microorganisms.
This group is quite heterogeneous and has diverse biological activities. Consequently, they
have great potential from the food and beverage industry to agriculture or preservation of
the agricultural products.

Numerous studies have investigated the interactions between yeasts and other mi-
crobes. Their data suggest that the microbial interaction is a complex process, which
can be either stimulation or growth inhibition, which, in addition, is based on different
mechanisms [49–55]. When a yeast species is able to inhibit the growth of an adjacent
microorganism, a clear zone can be seen around the yeast cells on the laboratory medium
(Figure 1).
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Figure 1. Growth inhibition of Botrytis cinerea by yeasts (yeasts were streaked onto the middle region 
of the Botrytis cinerea lawn and were cultured on PDA medium, at room temperature, and photo-
graphed after 7 days). (A): Pichia kudriavzevii (11-460), (B): Wickerhamomyces anomalus (11-502), (C): 
Metschnikowia fructicola (11-579), (D): Saccharomyces cerevisiae (11-481). (11-460, 11-502, 11-579, 11-
481: collection number of the strains in the collection of Department of Genetics and Applied Mi-
crobiology) (photos were taken by Enikő Horváth). 

The appearance of the inhibitory zone strongly depends on the partner microorgan-
ism and the culture factors like composition of the medium, pH, or temperature [54–61]. 
That is, the same yeast species can inhibit certain microbes, while others are not inhibited 
under the same environmental conditions. Alternatively, growth of a given species is in-
hibited at a lower pH, while not at a higher pH [54,55]. The results of Giobbe are in line 
with this, because she found that Pichia fermentans was effective on the surface of apples, 
while its inhibitory capacity disappeared on peaches [62]. Further in vitro experiments on 
fruits proved that Candida tropicalis significantly decreased anthracnose disease of post-
harvest bananas, while Metschnikowia sp. inhibited rotting of pears or apples caused by 
Botrytis or other fungal species [52,63,64]. The Pichia species could inhibit growth of As-
pergillus flavus or Monilinia [62,65]. Further yeast or yeast-like species that have shown 
growth inhibitory effects either on laboratory media or on the surface of fruits are listed 
in Table 1. 

Table 1. Antagonistic yeast species. 
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Aureobasidium pullulans 

Fusarium cerealis [66] 
Fusarium graminearum [66] 

Fusarium sporotrichioides [66] 
Penicillium verrucosum [66] 

Fusarium culmorum [67] 
Botrytis cinerea [49,68] 

Penicillium expansum [49,68] 
Aspergillus niger [49] 
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Aspergillus carbonarius [71] 
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Fusarium avenaceum [66] 
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Figure 1. Growth inhibition of Botrytis cinerea by yeasts (yeasts were streaked onto the middle region of the Botrytis cinerea
lawn and were cultured on PDA medium, at room temperature, and photographed after 7 days). (A): Pichia kudriavzevii
(11-460), (B): Wickerhamomyces anomalus (11-502), (C): Metschnikowia fructicola (11-579), (D): Saccharomyces cerevisiae (11-481).
(11-460, 11-502, 11-579, 11-481: collection number of the strains in the collection of Department of Genetics and Applied
Microbiology) (photos were taken by Enikő Horváth).

The appearance of the inhibitory zone strongly depends on the partner microorganism
and the culture factors like composition of the medium, pH, or temperature [54–61]. That
is, the same yeast species can inhibit certain microbes, while others are not inhibited under
the same environmental conditions. Alternatively, growth of a given species is inhibited at
a lower pH, while not at a higher pH [54,55]. The results of Giobbe are in line with this,
because she found that Pichia fermentans was effective on the surface of apples, while its
inhibitory capacity disappeared on peaches [62]. Further in vitro experiments on fruits
proved that Candida tropicalis significantly decreased anthracnose disease of postharvest
bananas, while Metschnikowia sp. inhibited rotting of pears or apples caused by Botrytis or
other fungal species [52,63,64]. The Pichia species could inhibit growth of Aspergillus flavus
or Monilinia [62,65]. Further yeast or yeast-like species that have shown growth inhibitory
effects either on laboratory media or on the surface of fruits are listed in Table 1.

Table 1. Antagonistic yeast species.

Yeast Species Having Growth Inhibitory Capacity Inhibited Microorganism Reference

Aureobasidium pullulans

Fusarium cerealis [66]

Fusarium graminearum [66]

Fusarium sporotrichioides [66]

Penicillium verrucosum [66]

Fusarium culmorum [67]

Botrytis cinerea [49,68]

Penicillium expansum [49,68]

Aspergillus niger [49]

Monilinia laxa [61,68,69]

Candida krusei Fusarium guttiforme [70]
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Table 1. Cont.

Yeast Species Having Growth Inhibitory Capacity Inhibited Microorganism Reference

Candida intermedia
Aspergillus carbonarius [71]

Aspergillus flavus [72]

Candida sake
Fusarium avenaceum [66]

Fusarium cerealis [66]

C. saitoana

Aspergillus ochraceus [66]

Fusarium species [66]

Penicillium verrucosum [66]

Candida parapsilosis Fusarium proliferatum [73]

Candida famata Penicillium digitatum [74]

Candida friedrichii
Aspergillus flavus [72]

Aspergillus carbonarius [71]

Candida stellimalicola Penicillium italicum [75]

Cryptococcus albidus

Fusarium avenaceum [66]

Fusarium sporotrichioides [66]

Penicillium expansum [76]

Botrytis cinerea [76]

Debaryomyces hansenii

Botrytis sp. [77]

Penicillium nordicum [78]

Mucor circinelloides [79]

Aspergillus sp. [79]

Fusarium proliferatum [79]

Fuasarium subglutinans [79]

Penicillium expansum [80]

Penicillium verrucosum [80]

Penicillium digitatum [81]

Hanseniaspora uvarum Colletotrichum capsici [82]

Kloeckera apiculata Penicillium italicum [58]

Kloeckera apis Fusarium guttiforme [70]

Lachancea thermotolerans

Aspergillus carbonarius [71]

Aspergillus parasiticus [83]

Penicillium verrucosum [83]

Fusarium graminearum [83]

Aspergillus flavus [72]

Metschnikowia andauensis

Botrytis cinerea [84]

Penicillium expansum [85]

Penicillium digitatum [85]

Penicillium italicum [85]
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Table 1. Cont.

Yeast Species Having Growth Inhibitory Capacity Inhibited Microorganism Reference

Metschnikowia pulcherrima

Penicillium expansum [58,63,86]

Penicilliumroqueforti [63]

Aspergillus oryzae [63]

Aspergillus parasiticus [63]

Aspergillus niger [87]

Fusarium sp. [88]

Botrytis cinerea [50,51,58]

Metschnikowia fructicola Botrytis cinerea *

Pichia guilliermondii

Fusarium species [66]

Penicillium species [66,89]

Alternaria alternata [90]

Pichia membranifaciens

Botrytis sp. [77,91]

Penicillium expansum [92]

Penicillium italicum [85]

Pichia kudriavzevii Botrytis cinerea *

Rhodotorula pinicola Fusarium avenaceum [66]

Rhodosporidium fluviale Botrytis cinerea [93]

Saccharomyces cerevisiae

Penicillium italicum [75]

Fusarium oxysporum [94]

Fusarium graminearum [60]

Aspergillus flavus [59]

Aspergillus parasiticus [59]

Penicillium italicum [75]

Botrytis cinerea *

Wickerhamomyces anomalus (Pichia anomala)

Botrytis cinerea * [90]

Aspergillus flavus [90]

Penicilliumroqueforti [90]

Aspergillus candidus [90]

Penicillium italicum [90]

Penicillium expansum [90]

Penicillium glabrum [90]

Penicillium digitatum [90]

Cladosporium cladosporioides [90]

Paeciliomyces variotii [90]

Monascus ruber [90]

* result of Enikő Horváth (Figure 1).

In certain cases, the antagonistic effect requires close contact and physical inter-
action between the yeast and pathogen cells, while in other cases, such contact is not
necessary [49,67,74,95,96]. Types of contact depend probably on the mode of the inhibitory
mechanism.
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Growth Inhibition Happens via Different Mechanisms

Some of these antagonistic yeasts have been widely studied. These studies have
revealed that the antagonistic yeasts function via different mechanisms [53,97]. The
Metschnikowia species are mainly known for their red pigment production, which can
cause iron depletion in the environment [50,52,98]. As iron can be a component or a cofac-
tor of several enzymes, a lack of it can inhibit many cellular processes and, thereby, cell
multiplication of “adjacent” microbes [99]. The relation between pigment production and
antagonistic capacity is supported by the fact that the pigment-less M. pulcherrima mu-
tants lacked antifungal activity [50,88]. Further studies have suggested that Metschnikowia
species were able to produce proteases, cell wall degrading enzymes, or the cells competed
for nutrients and space, and all these capacities could also contribute to their antagonistic
capacity [50,52,53,55,100].

Similarly, the mode of inhibition was found to be quite varied in other species [101].
Antagonism of the yeast-like fungus Aureobasidium pullulans probably involves competition
for nutrients, because the addition of exogenous nutrients reduced its antagonistic activ-
ity, while a lower nutrition concentration improved it [49,61,68]. Besides, production of
extracellular enzymes, such as β-1,3 glucanase, chitinase, and iron-chalating siderophore,
was also detected in this species [49,68,102]. The Kloeckera apiculata competes with the
phytopathogens for nutrients and vitamins [58], while the Saccharomyces cerevisiae is able
to produce killer toxin and chitinase [101,103]. Volatiles are also frequently produced
materials as inhibitory substrates. Cyberlindnera jadinii and Candida friedrichii inhibited
Aspergillus flavus by volatiles [72]. Similarly, Wickerhamomyces species inhibited the microbes
by the production of volatile compounds; however, these species are also able to produce
hydrolytic enzymes (glucanases, chitinases) or killer toxins [65,103–105].

These data demonstrate well that the antagonistic species use various, albeit mostly
similar, mechanisms, which separately or together can contribute to the wide spectrum of
their inhibitory capacity. Interestingly, the inhibitory effects are related to the living cells,
because some studies have shown that the inactivated cells or culture filtrate had no effect
on the pathogens [68,106].

As the group of the inhibitable species and details of these inhibitory mechanisms
are not fully known, an important task for researchers is to identify those species that can
be inhibited by a given yeast and determine the optimal conditions of its antagonism. All
these data can help us to set the parameters of a later field or a post-harvest application
precisely and can lead to forming new commercially available bio-fungicides, which can
expand the range of existing products [53,97].

3. Decrease in Mycotoxin Contamination

The various yeast species can also be very useful in decreasing mycotoxin contamina-
tions. According to research results, numerous yeast species are able to bind the toxins or
alter them to become less toxic metabolites.

3.1. Toxin Binding

Several authors have reported that yeasts, like Saccharomyces cerevisae or certain Candida
species, are able to decrease fungal toxins, such as aflatoxins [107], while others, e.g.,
Kloeckeraapiculata or S. bayanus cells, could bind OTA [108]. Both intact and heat inactivated
S. cerevisiae cells have been found to be effective [108–110]. Their toxin adsorption was
fast and dependent on cell concentration [109,110]. The positive effect of the living cells
also appeared in those experiments where S. cerevisiae and S. pastorianus strains were
able to reduce DON and ZEA levels during wort fermentation [111]. At the end of the
fermentation, 11–17% of DON and 31–72% of ZEA were removed by the yeasts [111].
Similarly, selected Saccharomyces species and Schizosaccharomyces pombe strains successfully
removed the fungal toxins from grape juice [110,112]. This is a remarkable result, because
the presence of OTA is also rather a difficult problem in wine making. It has been found in
various countries both in red and white wine; therefore, the maximum level of OTA has to
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be regulated [47,113,114]. However, we have to mention that the degree of OTA binding
has been found to be strain-dependent [108,112], thus one of our tasks is to select the most
proper yeasts strains.

The results have pointed to the fact that the wall of the yeast cells has an important
role in toxin binding, because protoplasts (living cells without cell wall) had lost their
adsorption ability [109]. This was confirmed by those data that the yeast-originated cell
wall components or their derivatives could also decrease fungal toxin concentration. The
cell wall preparations originated from Saccharomyces cerevisae or Candida utilis bound the
ochratoxins (OTs) or deoxynivalenol (DON) [72,115]. Additionally, sulfoethylglucan, a
derivative of the cell wall glucan prepared from S. cerevisiae, resulted in the reduction in the
level of fusaric acid [116], another fungal toxic compound. Binding of these compounds
is mostly linked to the high adsorption capacity of the cell wall material [115,117–119]. In
order to better understand this binding capacity, the composition of the cell wall isolated
from Saccharomyces cerevisiae was analysed. Its cell wall contained about 25% dry substances,
whose composition was as follows: 40–60% proteins, 25–35% carbohydrates, and a smaller
amount of lipids and minerals [115]. As the Saccharomyces cerevisiae strains having a higher
β-D-glucan content were able to complex larger amounts of ZEA than other strains, it was
suggested that the yeast cell wall component β-D-glucan has an especially important role
in toxin binding [118]. The results of Jouany et al. showed that there were weak hydrogen
and van der Waals bonds in the β-D-glucan-toxin complex [120]. However, protein content,
pH, and the size of the cell wall samples and type of the mycotoxins severely affected the
binding of the toxins [72,117].

3.2. Application of Yeasts as Biotransformation Agents

Numerous studies have investigated biotransformation of fungal toxins. Living cells,
from bacteria and yeasts to animal cells, are able to convert toxins into less toxic or non-toxic
metabolites through biotransformation [121,122]. The conversions can include different
alterations like hydroxylation, oxidation, methylation, demethylation, glycosylation, deam-
ination, and so on [122]. According to previous studies, Candida, Hansenula, Pichia, and
Saccharomyces genera could alter ZEA to α- or β-zearalenol (stereoisomers) [122,123]. The
Trichosporon mycotoxinivorans deactivated all OTA in 2.5 h and OTα (hydrolysis product
of OTA) appeared at the end of the experiment [124]. Further studies, which investigated
the fate of patuline (PAT), reported that S. cerevisiae or Sporobolomyces sp., as well as Rho-
dosporidium paludigenum or Rhodotorula mucilaginosa, could metabolise this toxin [125–128].
Alteration of PAT was an inducible mechanism, which depended on oxygen supply, tem-
perature, and cell density of the yeasts [125,127,128]. A transcriptional analysis revealed
that complex mechanisms were activated in Sporobolomyces cells in the presence of patulin,
and genes of, e.g., oxidation-reduction processes, glutathione, and thioredoxin systems
were up-regulated [129]. Moreover, the Rhodosporidium cells transformed patulin and they
probably produced desoxypatulinic acid as a degradation product, which was not toxic to
Escherichia coli and Arabidopsis thaliana, in contrast to patulin [127].

McCormick and co-workers studied the yeasts of Trichomonascus clade and their
biotransformation capacity. They found that these yeasts have different target sites on
T2 toxin, thus different detoxification mechanisms are responsible for protection against
this toxin. These include 3-OH conjugations: 3-acetylation and 3-glucosylation [130]. In
another study, the main enzymatic detoxification mechanism of the trichothecenes was
acetylation caused by S. pastorianus cells [131].

Although these alterations can result in lower toxicity, we cannot rule out that the
masked forms of toxins may be transformed to their original forms by the intestinal
microbioms after eating [132], thus the best approach can be inhibition of the fungal cell
division, both on the surface of crops and in agricultural products.
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4. Problems Related to Silage

Toxin contamination of food, especially of milk and dairy products, is a serious
problem and can occur in various countries. The toxin level of milk can strongly depend
on seasons and feed [133,134]. As silage is a significant part of feed used for cows, its
quality is very important. The plant materials are not steril, thus silage can contain
various microorganisms from bacteria to toxin producing fungi [135,136]. Generally, these
microbes have an important role, because the fermentation and, thereby, characteristics of
silage depend on them. When, for example, the fermentation process in the silo does not
progress properly, the occurrence of the pathogenic fungi and level of mycotoxins can be
high [48,137]. If toxins are present in the silage, they can cause reduced feed intake or milk
production and contaminated milk [48,133,134].

To decrease the toxin concentration of silage, inhibition of toxin producing fungi could
be achieved by inoculation of the antagonistic yeasts. However, it is difficult to find the
optimal strain because there are special conditions in the silo. In addition, several “in-house”
yeast species can survive in the silo and they often start to grow when the silage is exposed
to air, for example, after silo opening. When these yeast species are lactate-assimilating
species, their growth can result in degradation of lactic acid produced by bacteria, leading
to an increase in pH. These changes allow further undesirable bacteria and molds to grow.
This means that, when we want to use antagonistic yeast in the silo, we have to choose
them very carefully. Only those antagonistic yeast strains that are incapable of assimilating
lactate and can tolerate a lower pH can be suitable. A previous study demonstrated that
Penicillium roqueforti was inhibited in the silo by yeasts [56], while another one proved that
Saccharomyces and Pichia species were able to reduce the growth of Aspergillus flavus in the
mini-silo [106]. This experiment also proved that mixed yeast inoculums can function as
a useful strategy to decrease the number of undesirable fungi [106]. When we can find
the proper yeast species, it or they can also improve the vitamin and protein level of the
silage [138].

5. Conclusions

Although mechanisms involved in yeast antagonism against toxin-producing fungi
and bio-detoxification of agricultural products are not entirely clear and require further
investigations, yeasts can be attractive alternative solutions in detoxification.
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