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Exact multielectronic electron-concentration-dependent ground states for disordered
two-dimensional two-band systems in the presence of disordered hoppings

and finite on-site random interactions

Zsolt Gulácsi
Department of Theoretical Physics, University of Debrecen, H-4010 Debrecen, Poroszlay ut 6/C, Hungary

~Received 17 April 2003; revised manuscript received 19 June 2003; published 18 February 2004!

We report exact multielectronic ground states dependent on electron concentration for quantum-mechanical
two-dimensional disordered two-band-type many-body models in the presence of disordered hoppings and
disordered repulsive finite Hubbard interactions, in fixed lattice topology considered provided by Bravais
lattices. The obtained ground states lose their eigenfunction character for independent electron approximation,
are perturbatively not connected to the noninteracting but disordered case, and describe a localization-
delocalization transition driven by the electron concentration, being highly degenerated and paramagnetic.
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I. INTRODUCTION

In the real life, the crystalline state is an exception rat
than a rule,1 and as a consequence, disorder exists ev
where, ranging from few impurities or interstitials in a pe
odic host up to the completely disordered glassy and am
phous structures, alloys, and compounds. Given by this,
effects of the disorder are intensively analyzed,2 special at-
tention being given in the last period to two-dimension
~2D! systems, where the observation of metallic behavio
2D high-mobility samples3 contradicting the conventiona
noninteracting scaling theory4 has underlined the special im
portance of electron-electron interactions in disordered s
tems, at least when its value is relatively high,5 or when the
competition between disorder and interaction demands
consideration of both.6–12

Deep rooted in the difficulty of describing the effects
the disorder in a nonapproximated manner, on the theore
side the interpretations are given almost exclusively base
approximations. In the last decade however it became c
that this is not a fortunate situation, since not only the n
interacting scaling theory has been affected by new exp
mental results but also other approximated schemes con
ered previously indisputable~between them, all aspects o
the Boltzmann description even for the weak-disorder lim
in the treatment of the low-temperature resistivity1! have
been forced to be reanalyzed. Based on these facts, su
tions to follow new roads have been made, underlining t
the disordered materials cannot be understood by evading
real issue, and forcing the disorder into a mold of procedu
standard for ordered systems.1 Furthermore, it has bee
stressed that the nonperturbative view on disorder could
to significant advancement in the understanding and des
tion of such systems.10 At the same time, several recent d
velopments in the field require the nonapproximated solu
of the wave equation for disordered and interacting syste
as a key feature for a much deeper understanding of
emerging processes, and their interpretation, espec
where it is expected, or experimentally is seen, that the e
trons are maintaining their long-range phase coherence
retain their wave nature, as in the case of solid grains, s
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wires, dots, mesoscopics, proximity to critical points, pre
ence of long-range order, or of some kind of order
general,2,13 presence of quantum interferences,14 etc.

On this background, the first steps towards exact res
for disordered systems have been made. On this line e
cially nonperiodic models of different types were analyze
In these models, the nonperiodicity is considered as introd
ing the effect of the disorder in the Schro¨dinger equation,
and is taken into account in different ways, for example,
nonanalytic behavior in the potential,15 incommensurate
potential,16 quasiperiodicity,17 topological disorder con-
nected to tessellation,18 local bond-orientational order,19 etc.;
these possibilities presenting also interdependences betw
them. This way of describing the disorder cannot be cons
ered as representing the level of simple toy models o
since besides the fact that real physical systems holding s
properties are known,2,15,16,19there are concrete cases whe
it is also known that a such type of representation~for ex-
ample, through quasiperiodicity! give analogous behavior fo
the system as random or disordered potentials.15,16

In D51 the majority of studies leading to exact resu
were given for Fibanocci type of lattices,15,20,21and the in-
terested reader will find more extended information on
1D subject in review papers, such as Ref. 2. ForD.1,
which is of interest in this paper, the first exact results ha
been obtained for quasicrystalline systems, where first, th
rems dealing with structure have been formulated, such
those involving inflation rules, or Conway’s theorem.22,23

Later on, in few cases, even exact eigenfunctions have b
deduced for Penrose lattice22 in 2D.24–27This type of lattice
being a prototype of quasicrystalline systems28 clearly ex-
cedes the level of curiosity of pure mathematical charac
since it is related to nearest-neighbor bond-orientational
der which is observed, for example, in simulation of sup
cooled liquids and metallic glasses,19 attracting clear
interest.29 In the 2D Penrose lattice, in a simplified view, fl
and thin rhombuses cover the plane completely, forcing
resulting pattern to be nonperiodic and introducing disor
in the system. For these systems, in 2D exact eigenst
were obtained by Kohmoto and Sutherland24 for a strictly
localized state including in the Hamiltonian on-site diso
©2004 The American Physical Society04-1
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dered potential as well depending on the number of bo
entering in a given site; Sutherland25 obtaining a self-similar
state taking into account as well on-site potential which m
have eight different values depending on the nature of
site; Arai et al.26 obtaining new strictly localized states i
comparison with those described in~Ref. 24!; and Repetow-
icz et al.27 obtaining eigenstates even in the presence
plaquette-diagonal hoppings. The knowledge of these res
has clarified puzzles related to the influence of the disorde
several aspects, to the extent to which only exact results
provide. We note on this line clarifications of disputes ori
nating from the interpretation of numerical results,24 evi-
dences for the self-similarity of some ground states in dis
dered systems,25 evidences for singular features of groun
states in certain nonperiodical systems,26 occurrence of de-
generacy proportional to the system size in eigenstate26

scaling properties of the exact ground states,25 relative sta-
bility of the confined states on boundary conditions,26 pos-
sible existence of allowed and forbidden sites in t
eigenstates,26 etc.

We underline that the above-mentioned exact eigenst
are valid only for independent electrons, e.g., they were
duced from models built up on a tight-binding Hamiltonia
in r space describing a single electron moving on an ap
odic graph.17 Because of this reason, and in the light of t
facts previously presented, it would be extremely stimulat
for the field to see to what extent the deduced exact pro
ties at independent electron level remain or are not valid
exact terms for a really multielectronic and interacting s
tem as well in the presence of disorder. In our knowled
exact results of this type, up to this moment, are not kno

In this paper, we report, to our knowledge, for the fi
time exact ground states depending on the electron con
tration for multielectronic and interacting 2D systems in t
presence of disorder. The ground states are paramagn
lose their eigenstate nature in the independent electron
proximation, present properties known in the Penrose lat
~for example, strong degeneracy proportional to the sys
size!, describe a localization-delocalization transition driv
by the electron concentration, and in the localized c
present clear evidence for long-range phase coherence.

The results are reported for two-band-type models. T
presence of two bands does not diminish the applicability
the results since, from one side, real materials are of m
band type, and the theoretical description is given usually
projecting the multiband structure in a few-band picture30

which is stopped only for its relative simplicity at the on
band extreme level, when this is possible. From the ot
side, the experimental one, several materials treated tr
tionally in a two-band picture have been experimenta
found to contain disorder and present extremely interes
properties ~as non-Fermi liquid behavior, for example31!
whose emergence is considered connected to the presen
the disorder~see for example, Refs. 32 and 33, and cit
references therein!. Concerning the presence of real rando
systems holding two type of electrons, we mention the
tense activity related to rare-earth and actinide compou
which behave as random Kondo insulators34,35,32holding two
types of electrons (d and f ), whose properties are describe
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in a fixed lattice topology, but randomly distributed Ham
tonian parameters.33

The procedure we use originates from developments le
ing to the first exact ground states for the periodic Anders
type models obtained at a finite value of the interaction
1D,36–38 2D,39–41 and 3D,42 which have been made here a
plicable in the disordered case as well. Our model is built
on a 2D graph inr space, whose all vertices are of the sam
rank ~four edges are collected by every vertex!, so the topol-
ogy is fixed. Four neighboring nearest-neighbor vertic
form elementary plaquettes, and hopping~including the non-
local hybridization as well! is possible along the edges an
diagonals of elementary plaquettes. On each vertex local
site potentials are acting, and on each vertex local on-
Hubbard-type repulsion is present as interaction.

The remaining part of the paper is organized as follow
Section II presents the Hamiltonian, Sec. III describes
exact transformation of the Hamiltonian which allows t
deduction of the presented results, Sec. IV analyzes the
order present in the system and provides concrete exam
for the emergence of the model conditions necessary for
solutions to occur, Sec. V presents the exact ground sta
Sec. VI describes ground-state expectation values, and
nally, Sec. VII concluding the paper closes the presentat

II. THE HAMILTONIAN OF THE MODEL

The fixed topology of the described system allows us
treat the problem in a 2D tight-binding Hamiltonian defin
in r space on a 2D Bravais lattice with disordered Ham
tonian parameters. For this system we consider a unit cI
described by the primitive vectors (x,y), and we take into
account two types of electrons denoted by the particle in
p asp5d, f . In these conditions our starting Hamiltonian h
the form Ĥ5Ĥ01Ĥ int , where

Ĥ05 (
p5d, f

(
p85d, f

(
s

F (
rÞ0

~ t i,i1r ,r ,s
p,p8 p̂i,s

† p̂i1r ,s8 1H.c.!

1t i,i,0,s
p,p8 p̂i,s

† p̂i,s8 G ,
Ĥ int5 (

p5d, f
(

i
U i

pn̂i,↑
p n̂i,↓

p . ~1!

In the one-particle partĤ0, the ‘‘length’’ of the hopping de-
noted byr with possible nonzero valuesx,y,y1x,y2x, is
allowed to extend only to distances contained inI, i.e., near-
est neighbors (x,y) and next-nearest neighbors (y1x,y2x)
~see Fig. 1!. Denoting byNL the number of lattice sites in
the system, the random nature ofĤ is given by~a! the 2NL

independent, noncorrelated, random~repulsive! on-site Hub-
bard interactionsU i

p , p5d, f contained inĤ int , and ~b!

2NL new independent, noncorrelated, randomĤ0 parameters
chosen~as will be clarified below! from the ~site, direction,

and spin dependent! t i,i1r ,r ,s
p,p8 amplitudes. We underline tha

the tp,p8 coefficients contain hybridization (pÞp8), and on-
site potential (r50) terms as well.
4-2
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We demonstrate below that for certain local conditio
imposed fortp,p8 parameters which maintain the number
4NL independent noncorrelated random variables in the
tem, the exact multielectronic ground-state wave function
Ĥ in the interacting case can be explicitly given in an ele
tron concentration dependent manner.

We mention that the spin-dependent nature of theĤ0 pa-
rameters is not essential for our deduction. TheĤ0 param-
eters can be in principle spin dependent as well, and w
underline this aspect, in order to extend the applicability
the results also to Hamiltonians with nondiagon
hoppings43,45–47too. Furthermore, concerning the type of t
model we use, we mention that forU i

d50, theĤ from Eq.
~1! represents adisordered periodic Anderson model~or
Anderson lattice!, while for U i

dÞ0, Eq. ~1! describes a dis-
ordered two-band Hubbard model~U i

fÞ0 always!. Our re-
sults are applicable in both cases. For physical realizatio
such type of systems see, for example, Ref. 34.

We further consider that the mobility of the two types
electrons present in the system (d and f ) is different, and the
ratio in mobility is the same on all lattice sites. As a cons
quence, from the point of view of hopping amplitudes, sta
ing from amplitudes written ford electrons, we have

t i,i1r ,r ,s
p,p8 5wdp, f1dp8, f t i,i1r ,r ,s

d,d , ~2!

wherew is a ~site independent! measure of the mobility ra
tios betweenf and d electrons. We mention that hoppin
amplitudes between different orbitals often satisfy such ty
of relations in real systems.45

Concerning again thetp,p8 terms, being interested in th
behavior of particles given by the disordered hoppings
interactions, we only consider situations for which the loc
ization of particles in local trapping centers is avoided, i
we have

t i,i,0,s
p,p .0. ~3!

FIG. 1. Unit cellI at sitei. The vectorsx,y denote the primitive
vectors of the unit cell, and arrows indicate the possibler values
allowed for the hoppings.
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In the following section we are presenting a transformat
of Ĥ in a form that allows us to obtain exact ground states
its spectrum.

III. THE TRANSFORMATION OF THE HAMILTONIAN

Let us introduce a numbering of the lattice sites by t
integer numberl in the studied 2D lattice containingNL

5L3L lattice sites, starting from the down-left corner in th
lowest row (l 51), going from left to right up to the end o
the first row (l 5L), then going upward and continuing wit
the second row again from left to right, and so on. In th
manner, for example, around an arbitrary lattice sitei, num-
bered byl 5 i , we find the site numbering notations present
in Fig. 2~a!. The introduced notation allows us to turn from
vectorial site notation to a scalar one, which simplifies
well the notation of the Hamiltonian parameters. For e

ample, thet i,i1r ,r ,s
p,p8 for r5x (r5y) at site l 5 i becomes

t i ,i 11,x,s
p,p8 (t i ,i 1L,y,s

p,p8 ) @see Fig. 2~a!#. Similarly, the next-
nearest-neighbor components (x1y,y2x) become

t i ,i 111L,x1y,s
p,p8 , t i 11,i 1L,y2x,s

p,p8 .

Let us further introduce a plaquette operatorÂi,s defined
for every arbitrary cellI i taken at sitei @see Fig. 2~b!#. The
cell I i is denoted by its down-left corneri. The sites insideI i
are numbered in a cell independent manner by the inden
51,2,3,4 starting from the sitei and counting anticlockwise
inside the unit cellI i @see Fig. 2~b!#. In these conditions we
obtain for Âi,s the expression

Âi,s5 (
n51

4

~an,dd̂i1rn ,s1an, f f̂ i1rn ,s!, ~4!

FIG. 2. ~a! The numbering of sites in anL3L two-dimensional
lattice around the lattice sitei, and~b! the unit cellI i placed at an
arbitrary lattice sitei, together with thei independent notation (n
51,2,3,4) of sites insideI i . (x,y) are the primitive vectors of the
unit cell.
4-3
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ZSOLT GULÁCSI PHYSICAL REVIEW B69, 054204 ~2004!
where an,p are numerical coefficients, the same in all u
cells, andr150, r25x, r35x1y, r45y ~detailed descrip-
tion of this procedure can be found in Ref. 40. For unit-c
independent notation of the coefficientsan,p see Ref. 42!. Let
us further connect to every unit cellI l 5 i , two random vari-
ablese i ,↑ ande i ,↓ .

Our results are based on the observation that if we de
the plaquette operator parametersan,p via the nonlinear sys-
tem of equations

t i ,i 11,x,s
d,d 5a1,d* a2,de i ,s1a4,d* a3,de i 2L,s ,

t i ,i 1L,y,s
d,d 5a1,d* a4,de i ,s1a2,d* a3,de i 21,s ,

t i ,i 111L,x1y,s
d,d 5a1,d* a3,de i ,s ,

t i 11,i 1L,y2x,s
d,d 5a2,d* a4,de i ,s ,

t i ,i ,0,s
d,d 5ua1,du2e i ,s1ua2,du2e i 21,s1ua3,du2e i 212L,s

1ua4,du2e i 2L,s , ~5!

andan, f5wan,d holds, where the parameterw @see Eq.~2!#
is real but arbitrary, then taking into account periodic boun
ary conditions, the one-particle partĤ0 of the starting Hamil-
tonian from Eq.~1! becomes

Ĥ05(
i,s

e i,sÂi,s
1 Âi,s . ~6!

Comparing the last equality of Eq.~5! to Eq. ~3!, we
obtain the conditione i ,s.0, althoughe i ,s are random vari-
ables. As a consequence,Ĥ in Eq. ~1! becomes positive
semidefinite:

Ĥ5(
i,s

e i,sÂi,s
1 Âi,s1 (

p5d, f
(

i
U i

pn̂i,↑
p n̂i,↓

p , ~7!

and this property preserves the potential possibility to ob
the explicit form of the ground state in the interacting ca

IV. THE DISORDER IN THE SYSTEM

A. The presence of randomness in the model

Before going further, we should analyze the kind of ra
domness we have in the system. We start with the obse
tion that Ĥ in Eq. ~7!, which will be analyzed further on, is
clearly disordered since it contains 4NL independent, non-
correlated ~non-negative!, arbitrary random variablese i ,s

and Ui
p . However, the randomness must be understood

only at the level of the transformed Hamiltonian, Eq.~7!, but
also at the level of the startingĤ presented in Eq.~1!. Since
the disorder inĤ int is the sames in Eqs.~1! and ~7!, this
question relates to only the randomness inĤ0. In order to
understand the source of the disorder inĤ0 from Eq.~1!, we
have two different alternatives.

One possibility for this is to observe the linear relatio
ship between the on-site energy levelst i ,i ,0,s

d,d ande i ,s in the
last row of Eq.~5!. As a consequence, we can consider t
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the initial disordered parameters of the startingĤ0 in Eq. ~1!
are theh i ,s5t i ,i ,0,s

d,d variables whose number is 2NL , and the
e i ,s new disordered parameters from Eq.~7! are obtained
from these by a linear transformation

h i ,s5ua1,du2e i ,s1ua2,du2e i 21,s1ua3,du2e i 212L,s

1ua4,du2e i 2L,s , ~8!

which contains also 2NL equations. Since theh i ,s disor-
dered parameters are independent, in this view one can
sider thatĤ, besides the randomness inĤ int , possesses als
‘‘diagonal disorder’’ at the level ofĤ0 in Eq. ~1!.

Alternatively, one can consider in Eq.~5! the unit-cell
diagonal hopping amplitudes (t i ,i 1L,y2x,s

d,d ,t i ,i 111L,x1y,s
d,d ) di-

rectly proportional toe i ,s as the source of the disorder in th
one-particle part of the Hamiltonian,Ĥ0 in Eq. ~1!. In this
case,Ĥ is considered to contain besides the randomnes
Ĥ int also ‘‘nondiagonal’’ disorder at the levelĤ0.

In both cases, the remaining equalities in Eq.~5! must be
considered as local constraints necessary for the solution
occur. Since the number ofĤ0 parameters in Eq.~1! is much
higher than the number 2NL of random one-particle vari-
ables, these constraints do not alter the random nature o
disordered variables ($Ui

p ,h i ,s%, or $Ui
p ,e i ,s%). Rather, they

lead to~1! interdependences betweenĤ0 parameters not con
taining the disordered variables and~2! connect otherĤ0
parameters toh i ,s or e i ,s disordered variables. These co
straints emerge in the process of the transformation of
~1! into Eq.~7!, and we underline that our solutions are va
only in the case when this transformation can be done@i.e.,
Eq. ~5! holds#. Both cases mentioned above as nondiago
and diagonal disorders inĤ0 will be analyzed in detail
below.

B. Connections to the solutions obtained for Penrose tiling

Considering the disorder inĤ0 as nondiagonal, the solu
tions presented here can be viewed as arising from exten
of the conditions used in the exact study of the Penrose
ing. In order to understand this statement, let us introduce
constantsK15a1,d* a3,d , K25a2,d* a4,d , and observe that sinc
e i ,s are random, the diagonal~next-nearest neighbor! hop-
ping matrix elements in every unit cellI i , namely, t i ,s

d,1

5t i ,i 111L,x1y,s
d,d andt i ,s

d,25t i 11,i 1L,y2x,s
d,d , excepting their ra-

tio (K1 /K2), remain random as well

t i ,s
d,15K1e i ,s , t i ,s

d,25K2e i ,s . ~9!

Considering for example the hopping amplitudes without
rectional dependence, i.e.,t i ,2,s

d 5t i ,s
d,6 , and taking for sim-

plicity K15K251, we obtain

t i ,2,s
d 5e i ,s , ~10!

which ~excepting the fixed sign ofe i ,s.0) means com-
pletely random and independent unit-cell diagonal hoppi
for all spins in all unit cells~see Fig. 3!. As a consequence
based on Eq.~9! or its particular form from Eq.~10!, we see
4-4
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that the randomness given by$Ui
p ,e i ,s% in Eq. ~7! can be

considered to originate from the randomness given

$Ui
p ,t i ,s

d,6% at the level of the startingĤ presented in Eq.~1!.
In this case, once the hopping amplitudes along the diago
of every unit cell have been randomly chosen, the remain
tp,p8 parameters can be determined based on them. The s
of Eq. ~5! shows that fixing thet i ,s

d,6 values, we have the
liberty to choose independently two more constants rela
the one-particle part of the HamiltonianĤ0, namely,K3 and
K4 (sgnK̄.0,K̄5K2K3K4) based on which

t i ,i 11,x,s
d,d 5K3t i 2L11,i ,y2x,s

d,d 1
1

K3
t i ,i 111L,x1y,s
d,d ,

t i ,i 1L,y,s
d,d 5K4t i ,i 1L21,y2x,s

d,d 1
1

K4
t i ,i 111L,x1y,s
d,d ,

t i ,i ,0,s
d,d 5

K1

K̄
t i ,i 1L11,x1y,s
d,d 1

K̄

K1
t i 2L21,i ,x1y,s
d,d

1
K4

K3
t i ,i 1L21,y2x,s
d,d 1

K3

K4
t i 2L11,i ,y2x,s
d,d , ~11!

and the numerical coefficients present in Eq.~5! in function
of Km (m51,2,3,4), arbitrary parameters becomea1,d* a3,d

5K1 , a2,d* a4,d5K2 , a1,d* a2,d5K1 /K3 , a1,d* a4,d5K1 /K4 ,

a2,d* a3,d5K2K4 , a4,d* a3,d5K2K3 , ua1,du25K1
2/K̄, ua2,du2

5K2K4 /K3 , ua3,du25K̄, andua4,du25K2K3 /K4. In order to
have real value for alltp,p8 parameters, allKm must be real.
To understand in detail Eq.~11!, let us introduce short nota
tions as well for nearest neighbor and local amplitudes in
form t i ,s

d,x5t i ,i 11,x,s
d,d , t i ,s

d,y5t i ,i 1L,y,s
d,d , t i ,s

d,05t i ,i ,0,s
d,d , which

represent thet i ,s
d,n amplitudes ford electrons with spins in

unit cell I i for n5ur u. Using these notations, Eq.~11! be-
comes

t i ,s
d,x5K3t i 2L,s

d,2 1K3
21t i ,s

d,1 , t i ,s
d,y5K4t i 21,s

d,2 1K4
21t i ,s

d,1 ,

t i ,s
d,05R1t i ,s

d,11R1
21t i 2L21,s

d,1 1R2t i 21,s
d,2 1R2

21t i 2L,s
d,2 ,

~12!

whereR15K1 /K̄ andR25K4 /K3. As shown in Fig. 4, the
t i ,s
d,n amplitudes presented in Eq.~12! are determined by the

td,6 unit-cell diagonal amplitudes that surroundt i ,s
d,n . For

example, as seen from Fig. 4~a!, the t i ,s
d,x nearest-neighbo

hopping amplitude~full line arrow! is given by thet i ,s
d,1 and

t i 2L,s
d,2 random unit-cell diagonal amplitudes~dotted line ar-

FIG. 3. The independent diagonalt i ,2,s
d hopping amplitudes in-

dicated by arrows in different unit cells.
05420
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rows! which start from the same sitei and intercalatet i ,s
d,x .

Similar situation is present fort i ,s
d,y in y direction @see Fig.

4~b!#, while t i ,s
d,0 as seen in Fig. 4~c! is determined by the four

td,6 ‘‘plaquette-diagonal’’ amplitudes that start from th
same sitei.

Concerning Eq.~12!, we mention that in the study of dis
ordered systems, constraints~correlations! between bond and
site properties are often considered. The constraintsa priori
introduced can be in some cases even of long-range typ52

as taken, for example, in the case of isotropically correla
random potentials,48 correlated networks,49 etc., and even
calculation techniques have been developed in order to
with ‘‘constrainted’’ disorder, for example, in the form o
correlated random numbers,50 or random matrices with sym
metry properties or holding constraints.49 In our case, local
constraints exist which connect the plaquette-diagonal b
hoppings~considered as the true independent random v
ables ofĤ0) to edge~nearest-neighbor! bond hoppings and
local one-particle potentials. Since the plaquette-diago
bond can be unambiguously connected to the plaquette
the described case, random plaquette properties~i.e., random
bonds connected to plaquettes!, through local constraints
presented in Eq.~12!, fix nearest-neighbor or local ampli
tudes.

Concrete physical situations where in disordered syste
the random plaquette properties determine nearest-neig
or local amplitudes are also known in the literature. For e
ample, in the case of topologically disordered system of C
type44 using random mosaics, very similar to Voronoi tess
lation generated from disordered arrangement of particle51

random flips of plaquette-diagonal bonds performed with
given probability determine the local nearest-neighbor h
pings, and introduce in this way the disorder in the system18

Concerning disordered on-site one-particle terms gener
by random bonds connected to plaquette properties, we m
tion, for example, the Penrose lattice22,23 case, where the
on-site one-particle potentials have been introduced by
local coordination number.24 In the mentioned case, pract
cally the random on-site one-particle potential at sitei is
determined by the number of bonds entering in the sitei. Our
on-site potentialt i ,i ,0,s

p,p given in Eq. ~12! and presented in

FIG. 4. Thet i ,s
d,n amplitudes at sitei for ~a! n5x, ~b! n5y, and

~c! n50, respectively.t i ,s
d,n is denoted by full arrow in~a!, ~b!, and

by a circle in ~c!. Dotted arrows with6 label indicate thet j ,s
d,6

random amplitudes that enter in the expression oft i ,s
d,n presented in

the plots~a!, ~b!, ~c! from Eq. ~12!. In all plots the notation of the
unit cell I j at sitej containingt j ,s

d,n is also presented. For example,
~a! I i defined at sitei containst i ,s

d,1 , and I i 2L defined at the sitei
2L containst i 2L,s

d,2 .
4-5
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Fig. 4~c! has clear similarities with this choice, since it r
duces to a such type of behavior in the case in which allt i ,s

d,6

unit-cell diagonal hoppings are equal, and, for example,
all m, Km51. The difference between Eq.~12! and Ref. 24
from the point of view of the random on-site potential is th
in our case, the on-site potential is determined by thevalue
of the random bonds entering in the site, while in Ref. 24,
the numberof the bonds entering in the site. So contrary
Refs. 24–26, where the study has been concentrated o
effects of the lattice topology alone, in this paper we anal
the problem in a fixed topology, concentrating on rand
tp,p8 values. We further mention that in the Penrose latt
case, when also the plaquette-diagonal hopping amplitu
are taken into account at the level of exact independent e
tron eigenstates,27 solutions are found only when constrain
are present between hopping amplitudes.

Let us consider a concrete physical example in suppor
Eq. ~12! which demonstrates as well that solutions dedu
in the context of Penrose lattice27 use quite similar condi-
tions. For this, let us take a simple spin-independent c

t i , j ,r ,s
p,p8 5t i , j ,r ,2s

p,p8 5t i , j ,r
p,p8 , and consider a situation for whic

randomly positionedA or B atoms in the middle of the el
ementary plaquettes providing the random unit-cell diago
hoppingst i ,s

d,65t i
d,6 introduce the randomness inĤ0. In this

situation,t i
d,6 is eithertd,6(A) or td,6(B), depending on the

type of atom situated in the middle of a unit-cell. For th
example Eq.~12! expresses the fact that the hopping amp
tude along a bond~nearest-neighbor hoppingst i

d,x and t i
d,y)

depends on the randomly situated atomsA and B placed in
the neighborhood of the bond, and that the on-site energ
a given site (t i

d,0) depends on the randomly positionedA and
B atoms in the neighborhood of the site, which are physica
quite acceptable conditions. The linearity of these inter
pendences can be physically motivated by the small in
ence of the atomsA or B not situated directly on the bond o
on the site. For the presented example,td,6(A), @ td,6(B)# in
the Penrose lattice case would correspond to the notat
d1 ,d2 , (d3 ,d4) used in Ref. 27. Furthermore, in Ref. 2
t i
d,x5t i

d,y51 is considered, and ourt i
d,0 is denoted bye i . The

conditions in which solutions are obtained for the Penr
lattice case@see Eqs.~3.9!, ~3.11!, and~3.13! in Ref. 27# are
in fact linear relations of the type of our Eq.~12!. The main
difference between our model and that of Ref. 27 at the le
of Ĥ0 is that in our case, the plaquettes described bytd,6(A)
andtd,6(B) can emerge completely random, while in Ref.
the plaquettes~rhombi! described by (d1 ,d2) and (d3 ,d4)
emerge only with the randomness allowed by the Penr
tiling. Because of this reason, our solutions extend the e
solution possibilities known in Penrose lattice case to n
quasicrystalline disordered systems even in the presenc
electron-electron interaction.

C. The disorder seen in the one-particle part ofĤ
as diagonal disorder

Considering the source of the disorder inĤ0 diagonal, the
random parameters of the model becomeUi

p and h i ,s . In
this case Eq.~5! requires two supplementary conditions to
satisfied as follows.
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~1! The next-nearest-neighbor hoppings surrounding
nearest-neighbor hopping@see Figs. 4~a! and 4~b!, and first
two equalities from Eq.~12!# must be related at the level o
hopping amplitudes. These conditions are not specific for
presented disordered model, but are rather connected to
method itself. Indeed, in such conditions we find solvi
nondisordered cases as well~see Refs. 39–42!, and the ob-
tained hopping amplitude ratios are delimitating parame
space regions where the obtained solutions are valid.

~2! The next-nearest-neighbor~unit-cell diagonal! hop-
pings starting from a given sitei are all together linearly
related to the on-site energy level~considered disordered
here! at the sitei @see the last equality from Eq.~12!, or
alternatively Eq.~8!, and Fig. 4~c!#. This local constraint, in
this form, is specific for the random case studied here.

Even if the conditions~1! and~2! presented above seem
be quite specific at first view, we show below that they a
compatible with the presence of the diagonal disorder
physical grounds. For this to be visible, we analyze a sim
pedagogical spin-independent hopping case which isx-y
symmetric as well, sot i ,s

d,x5t i ,s
d,y5t i ,s

d,n515t i
d,1 , t i ,s

d,65t i ,2,s
d

5t i ,s
d,n525t i

d,2 , andK35K45K0 ,R251 @see Eq.~12!#. Let
us further consider for the study that the random on-site
tential h i is created by the randomly positionedAt atom at
site i of the lattice with lattice spacinga, where the indext
fixes the type of the atom. In this manner, if the atomAt will
be placed at sitei, it creates the on-site energy levelh i
5ht . After this step, we must model the expression of t
distance dependent hopping amplitudet i(r ) for the electron
which starts the hopping fromi. Taking into account a simple
exponential distance decrease, we may simply taket i(r )
5CiBi(Av)e2ar , where the constanta describes the dis-
tance decrease (rÞ0 is considered!. The amplitude
CiBi(Av) is built up from the componentCi5Ct depending
on the energy level at sitei ~the atomAt present at sitei ),
and the average effect of all surrounding atoms felt at sii
denoted byBi(Av). Since only t i

d,1 and t i
d,2 hoppings are

considered, we have for thet i
d,1 (t i

d,2) case ther 5a (r
5aA2) argument value int i(r ).

After these considerations, the conditions~1! and ~2!
mentioned above look as follows. Condition~1! links to-
gether three hopping amplitudes for hoppings which s
from the same sitei @see Figs. 4~a! and 4~b!, and the equali-
ties relating t i

d,1 from Eq. ~12!#, providing the condition
eaa(A221)5K01(1/K0). As can be seen, condition~1! deter-
mines in fact the strength of the hopping~parametera)
through the constantK0, and is not specific for the random
case, as mentioned above. Rather, it fixes thetd,1/td,2 ratio
introducing limits for the validity of the solutions in theT
50 phase diagram of the starting Hamiltonian. As a con
quence, we can further analyze condition~2! consideringa a
known parameter.

Condition ~2! @Fig. 4~c!, and the equality relatingh i

5t i ,s
d,0 from Eq. ~12!# links together four next-neares

neighbor hoppings which again start from the same site. A
consequence, taking into account that the atomAt is placed
on the lattice site i, we find ht5CtBi(Av)@21R1

1(1/R1)#e2A2aa. The remainingBi(Av) coefficients must
4-6
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EXACT MULTIELECTRONIC ELECTRON- . . . PHYSICAL REVIEW B 69, 054204 ~2004!
be deduced at each site from the conditiont i , j* 5t j ,i . As can
be seen, condition~2! through the parameterR1 relates the
disordered on-site energy level values to the hopping am
tude componentsCi .

As presented above, the conditions necessary to be
filled for the solutions to emerge are present in disorde
systems, being compatible to a truly acceptable phys
background. Taking into account more complicated para
etrizations fort i(r ), the equation ofh i ,s5t i ,s

d,0 in Eq. ~12!
~since it has in its right side the samer value! reduces to an
equation for the amplitudes of ther function in t i(r ), while
the remaining equalities in Eq.~12! determine the
t i(a)/t i(aA2) ratios.

V. THE GROUND-STATE WAVE FUNCTION

Starting from the positive semidefinite structure ofĤ in
Eq. ~7!, the ground-state wave functionuCg& is obtained for
ĤuCg&50. Now, let us concentrate first on theĤ0 compo-
nent ofĤ presented in Eq.~6!. Taking into account Eq.~4!,
and as shown in Eq.~5!, an, f5wan,d , wherew is arbitrary
but real, we realize that

Âi,s5 (
n51

4

an,d~ d̂i1rn ,s1w f̂ i1rn ,s!, ~13!

so in the right side ofĤ0 in Eq. ~6! only operators of the
form Ôj ,s5(d̂ j ,s1w f̂ j ,s) are present. If now we define

Ô̄ j ,s
† 5d̂ j ,s

† 2
1

w
f̂ j ,s

† , ~14!

which satisfiesÔj ,sÔ̄ j 8,s8
†

52 Ô̄ j 8,s8
† Ôj ,s , then takinguC&

5) j@ Ô̄ j ,s
† 1v j Ô̄ j ,2s

† #u0&, where) j is taken over different
~although arbitrary! lattice sites,v i are arbitrary coefficients
and u0& is the bare vacuum with no fermions present,
obtain

(
i,s

e i,sÂi,s
1 Âi,suC&50. ~15!

SinceuC& introduces fermions (d or f ) with arbitrary spin,
strictly on different sites, double occupancy is avoided, a

(
p5d, f

(
i

U i
pn̂i,↑

p n̂i,↓
p uC&50 ~16!

holds as well. Since the minimum possible eigenvalue oĤ
in Eq. ~7! is zero, the ground state for arbitraryN<NL ,
whereN represents the number of electrons within the s
tem, becomes

uCg&5)
j

N

@ Ô̄ j ,s
† 1v j Ô̄ j ,2s

† #u0&. ~17!

In Eq. ~17!, the) j
N product must be taken overj sites which

can be arbitrarily chosen, and differentj values must be re
lated to strictly different lattice sites. The ground-state wa
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function of Ĥ given in Eq.~7! for N<NL ~i.e., at and below
quarter filling! can be always written in the form of Eq.~17!.
As a consequence, forN5NL the ground state becomes

uCg~N5NL!&5)
j 51

NL

@ Ô̄ j ,s
† 1v j Ô̄ j ,2s

† #u0&. ~18!

For N,NL , since thej sites in Eq.~17! can be arbitrarily
chosen, the complete ground state becomes

uCg~N,NL!&5(
RN

H aRN )
j PRN

@ Ô̄ j ,s
† 1v j Ô̄ j ,2s

† #J u0&,

~19!

where the sum(RN
is made over all differentRN domains

containingN,NL lattice sites from the system, andaRN
are

numerical coefficients. Furthermore, it is important to und
line that Eqs.~18! and~19! represent the ground state only
the interacting case@at least one of on-site two-particle inte
actionsUi

p must be nonzero at all sitesi, since otherwise,
because of the presence of the double occupancy,~e.g.,

Ô̄ j ,s
† Ô̄ j ,2s

† products in the ground state wave function!, the
expression ofuCg& in Eq. ~17! is no more valid#.

In my knowledge, Eqs.~18! and ~19! contain the first
exact multielectronic ground-state wave functions obtain
in 2D for a disordered system in the interacting case.
explained above, Eqs.~18! and~19! areno more eigenstates
for the independent electron approximation, i.e., U i

d5U i
f

50. Since the ground state in the interacting case, even
infinitesimal interaction, changes qualitatively in comparis
to the noninteracting case, Eqs.~18! and~19! cannot be con-
nected in a perturbative way to the ground state of the
ordered but noninteracting system.

The ground states~GS’s! presented above are strong
degenerated. Their degeneracy at quarter filling is given
theN arbitraryv i values, and the arbitrary~but nonzero! w, is
proportional to the size of the system. The existence of s
type of states for 2D Penrose-type lattices has been first
jectured by Semba and Ninomiya53 and Kohmoto and
Sutherland,24 and further analyzed in Refs. 26 and 54. Fro
the reported results here it can be seen that this prop
is present also for other systems as well in the mu
electronic and interacting case too, at least forN5NL . We
stress however that in the caseN,NL , the degree of the
degeneracy strongly increases given as well by the geom
cal degeneracy present in Eq.~19!. The order of magnitude
of the degeneration becomes in this caseNR5NL!/
@N!(NL2N)! #.

VI. GROUND-STATE EXPECTATION VALUES

A. The localized case

Despite the possibility to chose the Hamiltonian para
eters in a spin-dependent way, the obtained GS is glob
paramagnetic. At 1/4 filling (N5NL), the GS contains rig-
orously one electron on each site, so the hopping is co
pletely forbidden in GS, and as a consequence, the syste
localized, holding long-range density-density correlations
4-7



ue

at

se
-

-

-

m-
ity-

lat-

ence

S,

cal-

s

po-

,

rder
,

es

nc-
ng

-
t us

rty

e
s
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Indeed, calculating the ground-state expectation val
through Eq.~18!, in this case we find for arbitraryiÞ j and
all s,s8

^d̂i ,s
† d̂ j ,s8&50, ^ f̂ i ,s

† f̂ j ,s8&50,

^d̂i ,s
† f̂ j ,s8&50, ^ f̂ i ,s

† d̂ j ,s8&50, ~20!

where ^•••&5^Cg(NL)u•••uCg(NL)&/^Cg(NL)uCg(NL)&,
uCg(NL)& is presented in Eq.~18!, and^Cg(NL)uCg(NL)&
5) i 51

NL @(11uwu22)(11uv i u2)#. The reason for Eq.~20! is
simple:uCg(NL)& contains exactly one electron on each l
tice site, souC1(p,p8)&5 p̂i ,s

† p̂ j ,s8
8 uCg(NL)&, where p,p8

5d, f and iÞ j contain a double occupancy, and as a con
quenceuC1(p,p8)& and uCg(NL)& are orthogonal. We un
derline that since Eq.~20! holds for arbitraryv i , it remains
the same after the average over the disorder (v i variables!.
Denoting the translational invariant averages by^^•••&&
5*P($v i%)() idv i)^•••&, whereP($v i%) describes the dis
tribution of the disordered variables~being arbitrary here!
and*P($v i%)() idv i)51 holds by definition, Eq.~20! auto-
matically implies as well^^ p̂i ,s

† p̂ j ,s8
8 &&50 for all p,p8

5d, f , all s,s8, and all iÞ j .
Furthermore, introducing foriÞ j the notationD( i , j )

5@(11uwu22)(11uv i u2)(11uv j u2)#2, we find

^n̂i ,s
d n̂j ,s

d &5D~ i , j !, ^n̂i ,2s
d n̂j ,2s

d &5uv i u2uv j u2D~ i , j !,

^n̂i ,s
f n̂ j ,s

f &5uwu24D~ i , j !,

^n̂i ,2s
f n̂ j ,2s

f &5
uv i u2uv j u2

uwu4
D~ i , j !,

^n̂i ,s
d n̂j ,s

f &5uwu22D~ i , j !, ^n̂i ,s
d n̂j ,2s

f &5
uv j u2

uwu2
D~ i , j !,

^n̂i ,2s
d n̂j ,2s

f &5
uv i u2uv j u2

uwu2
D~ i , j !,

^n̂i ,2s
d n̂j ,s

f &5
uv i u2

uwu2
D~ i , j !. ~21!

Starting from Eq.~21!, for n̂i5(s(n̂i ,s
d 1n̂i ,s

f ), based on Eq.
~21! one obtains

^n̂i n̂ j&51, ^^n̂i n̂ j&&51, ~22!

where the second equality holds as explained below Eq.~20!.
Introducing now Ŝi

z5(1/2)@(n̂i ,↑
d 1n̂i ,↑

f )2(n̂i ,↓
d 1n̂i ,↓

f )#,
based again on Eq.~21!, for iÞ j we have

^Ŝi
zŜj

z&5
pipj

4
, ~23!

where pn5(12uvnu2)/(11uvnu2) takes arbitrary values in
the domain (21,11), so^^Ŝi

zŜj
z&&50 arises. As can be ob
05420
s
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served, uCg(NL)& indeed describes a paramagnetic, co
pletely localized ground state containing long-range dens
density correlations. At quarter filling, sinceuCg(N5NL)&
coherently controls the particle number occupancy at all
tice sites forbidding the hopping~and nonlocal hybridization!
in the same time, the GS clearly presents phase coher
over the whole lattice.

B. The delocalized case

Under quarter filling, empty sites emerge in the G
Eq. ~20! deduced through Eq.~19! does not hold, hopping
is no more forbidden, and as a consequence, a delo
ization occurs, the system becoming itinerant~remaining
further paramagnetic!. Indeed, in this case, atN,NL , based
on Eq. ~19!, the GS wave function can be written a
uCg(N)&5(RN

aRN
uC(RN)&, whereuC(RN)&[uCRN

($v i%)&

5ADRN

21($v i%)) j PRN
( Ô̄ j ,s

† 1v j Ô̄ j ,2s
† )u0& build up an or-

thonormalized wave-function set containingNR components,
and we haveDRN

($v i%)5(11uwu22)N) j PRN
(11uv j u2), and

aRN
are coefficients independent of the disordered$v i% set.

The operators of the typep̂i ,s
† p̂ j ,s8 , wherep,p85d, f , now

have nonzero matrix elements between ground-state com
nentsuC(RN)&,uC(RN8 )& describingRN ,RN8 domains of the
form RN5DN211 i, RN8 5DN211 j , whereDN21 represents
an arbitrary region of the lattice containingN21 lattice
sites, andi,j are representing two different but arbitrary~not
necessarily nearest-neighbor! sites of the lattice. We have
for example,

^C~RN!ud̂i ,s
† d̂ j ,suC~RN8 !&5

~11uwu22!21

A~11uv i u2!~11uv j u2!
,

^C~RN!u f̂ i ,s
† f̂ j ,suC~RN8 !&5

~11uwu2!21

A~11uv i u2!~11uv j u2!
.

~24!

Since the disordered variables emerge in Eq.~24! through
uv i u,uv j u non-negative numbers, the average over the diso
maintains the nonzero values in Eq.~24!. As a consequence
the hopping being no more forbidden, the system becom
indeed itinerant. Since as seen from Eq.~24! all d or f elec-
trons can hop everywhere in the ground state, the wave fu
tion in Eq. ~19! is clearly an extended state. The conducti
nature of the extended states can be demonstrated~see, for
example, Ref. 55! through the variation of the chemical po
tential as the number of electrons vary. For this reason, le
observe that the ground-state wave function from Eq.~19!
acting on the Hamiltonian from Eq.~7!, by the construction
of the wave function as explained in Sec. V, has the prope
ĤuCg(N,NL)&5Eg(N)uCg(N,NL)&50, whereEg(N) is
the ground-state energy forN particles in the system. Sinc
uCg(N,NL)& is a wave function with nonzero norm, thi
relation meansEg(N)50. As a consequence, forN<NL

21, we have form15Eg(N11)2Eg(N) andm25Eg(N)
2Eg(N21), the expression

m12m250. ~25!
4-8
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Therefore, the state we analyze is conducting~see also
Ref. 56!.

Furthermore, theŜi
zŜj

z operator will have nonzero matri
elements only along the diagonal inRN variables, and in
conditions mentioned forpi after Eq.~23! we further have

^^Ŝi
zŜj

z&&50.
As can be seen, Eqs.~18! and~19! describe a localization

delocalization transition driven by the electron concentrat
rn , which emerges atrn

c51/4, the delocalized phase bein
present in the regionrn,rn

c . The occurrence of this trans
tion is intimately connected to the multielectronic nature
the description which is made in the presence of the in
particle interaction and absence of trapping centers. Ind
the problem considered at the level of independent elec
approximation~e.g., absence of interelectronic interaction! in
the presence of trapping centers leads to a one-particle p
lem in the presence of an attractive potential, which ends
usually at small energies with localization. Here all these
avoided.

Concerning the possibility of the emergence of Griffit
phases in influencing the described transition, we men
that the Griffiths singularities arise due to the presence
statistically rare clusters that are anomalously stron
coupled, and hence they are unique features of the disord
system ~see, for example, Ref. 57!. The effect becomes
weaker with increasing dimension, increasing interacti
and increasing number of the componentsN̄ of the dynami-
cal variables. In our caseN̄53 ~for example, for spin!, the
dimension of the~quantum mechanical! description isD
52, and the results are not valid at zero interelectronic
ov

a

od

ev
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teraction. All these conditions make unlikely the major infl
ence of Griffiths phases, especially when thepi parameters
are all maintained perfectly random at all sites as mentio
below Eq.~23!, prohibiting in this way the local formation o
anomalously strongly coupled clusters.

VII. SUMMARY AND CONCLUSIONS

We deduced exact multielectronic concentration dep
dent ground states for disordered and interacting tw
dimensional quantum-mechanical systems at and be
quarter filling. The ground states describe a localizatio
delocalization transition driven by concentration and prov
paramagnetic behavior. The ground-state nature is lost in
absence of the interaction, e.g., independent electron
proximation. The deduced results are nonperturbative
cannot be perturbatively reached from the noninteracting,
though disordered case. The studied system is of two-b
type, and the disorder is present independently in bothĤ int

and Ĥ0 parts of the Hamiltonian, the trapping centers bei
excluded. The presented procedure extends the exact sol
possibilities known in 2D Penrose lattice case to nonqua
rystalline disordered systems as well, even in the presenc
the interelectronic interactions.
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31M. Gulácsi, Philos. Mag. B76, 731 ~1997!.
32O.O. Bernal, D.E. MacLaughlin, H.G. Lukefahr, and B. Andrak

Phys. Rev. Lett.75, 2023~1995!.
33E. Miranda, V. Dobrosavljevic, and G. Kotliar, Phys. Rev. Le

78, 290 ~1997!.
34E. Miranda and V. Dobrosavljevic, Phys. Rev. Lett.86, 264

~2001!.
35J.C. Cooley, M.C. Aronson, Z. Fisk, and P.C. Canfield, Phys. R

Lett. 74, 1629~1995!.
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