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Exact multielectronic electron-concentration-dependent ground states for disordered
two-dimensional two-band systems in the presence of disordered hoppings
and finite on-site random interactions
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We report exact multielectronic ground states dependent on electron concentration for quantum-mechanical
two-dimensional disordered two-band-type many-body models in the presence of disordered hoppings and
disordered repulsive finite Hubbard interactions, in fixed lattice topology considered provided by Bravais
lattices. The obtained ground states lose their eigenfunction character for independent electron approximation,
are perturbatively not connected to the noninteracting but disordered case, and describe a localization-
delocalization transition driven by the electron concentration, being highly degenerated and paramagnetic.
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[. INTRODUCTION wires, dots, mesoscopics, proximity to critical points, pres-
ence of long-range order, or of some kind of order in
In the real life, the crystalline state is an exception rathegeneraf® presence of quantum interferendéstc.
than a rulé: and as a consequence, disorder exists every- On this background, the first steps towards exact results
where, ranging from few impurities or interstitials in a peri- for disordered systems have been made. On this line espe-
odic host up to the completely disordered glassy and amoteially nonperiodic models of different types were analyzed.
phous structures, alloys, and compounds. Given by this, thie these models, the nonperiodicity is considered as introduc-
effects of the disorder are intensively analyZeshecial at- ing the effect of the disorder in the Scdinger equation,
tention being given in the last period to two-dimensionaland is taken into account in different ways, for example, as
(2D) systems, where the observation of metallic behavior imonanalytic behavior in the potentidl, incommensurate
2D high-mobility sample’ contradicting the conventional potential’® quasiperiodicity,’ topological disorder con-
noninteracting scaling thedhpas underlined the special im- nected to tessellatiolf local bond-orientational ordé?,etc.;
portance of electron-electron interactions in disordered syshese possibilities presenting also interdependences between
tems, at least when its value is relatively higor when the  them. This way of describing the disorder cannot be consid-
competition between disorder and interaction demands thered as representing the level of simple toy models only,
consideration of botA 12 since besides the fact that real physical systems holding such
Deep rooted in the difficulty of describing the effects of properties are knowh!>'%%there are concrete cases where
the disorder in a nonapproximated manner, on the theoreticdl is also known that a such type of representatifor ex-
side the interpretations are given almost exclusively based oample, through quasiperiodicjtgive analogous behavior for
approximations. In the last decade however it became cledhe system as random or disordered potentral§.
that this is not a fortunate situation, since not only the non- In D=1 the majority of studies leading to exact results
interacting scaling theory has been affected by new experiwere given for Fibanocci type of latticé3?*?*and the in-
mental results but also other approximated schemes consiterested reader will find more extended information on the
ered previously indisputablébetween them, all aspects of 1D subject in review papers, such as Ref. 2. Bor1,
the Boltzmann description even for the weak-disorder limitwhich is of interest in this paper, the first exact results have
in the treatment of the low-temperature resistitiithave  been obtained for quasicrystalline systems, where first, theo-
been forced to be reanalyzed. Based on these facts, suggesms dealing with structure have been formulated, such as
tions to follow new roads have been made, underlining thathose involving inflation rules, or Conway’s theoréftf?
the disordered materials cannot be understood by evading theter on, in few cases, even exact eigenfunctions have been
real issue, and forcing the disorder into a mold of procedurededuced for Penrose lattiden 2D.24=?" This type of lattice
standard for ordered systethsrurthermore, it has been being a prototype of quasicrystalline systéfnelearly ex-
stressed that the nonperturbative view on disorder could leacedes the level of curiosity of pure mathematical character
to significant advancement in the understanding and descrigsince it is related to nearest-neighbor bond-orientational or-
tion of such system¥. At the same time, several recent de- der which is observed, for example, in simulation of super-
velopments in the field require the nonapproximated solutiorcooled liquids and metallic glass¥s, attracting clear
of the wave equation for disordered and interacting systemiterest?® In the 2D Penrose lattice, in a simplified view, flat
as a key feature for a much deeper understanding of thand thin rhombuses cover the plane completely, forcing the
emerging processes, and their interpretation, especialliesulting pattern to be nonperiodic and introducing disorder
where it is expected, or experimentally is seen, that the eledn the system. For these systems, in 2D exact eigenstates
trons are maintaining their long-range phase coherence antere obtained by Kohmoto and Sutherl&hébr a strictly
retain their wave nature, as in the case of solid grains, shotbcalized state including in the Hamiltonian on-site disor-
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dered potential as well depending on the number of bonds a fixed lattice topology, but randomly distributed Hamil-
entering in a given site; Sutherlafidbtaining a self-similar  tonian parameters.

state taking into account as well on-site potential which may The procedure we use originates from developments lead-
have eight different values depending on the nature of théng to the first exact ground states for the periodic Anderson-
site; Arai et al?® obtaining new strictly localized states in type models obtained at a finite value of the interaction in
comparison with those described (Ref. 24: and Repetow- 1D,**7*°2D,****'and 3D’? which have been made here ap-
icz et al?’ obtaining eigenstates even in the presence oplicable inthe djsordered case as well. Our model is built up
plaquette-diagonal hoppings. The knowledge of these resul@" @ 2D graph i space, whose all vertices are of the same
has clarified puzzles related to the influence of the disorder if@"K (four edges are collected by every vepteso the topol-

several aspects, to the extent to which only exact results cap@y IS fixed. Four neighboring nearest-neighbor vertices
provide. We note on this line clarifications of disputes origi- form elementary plaquettes, and hoppiigluding the non-

nating from the interpretation of numerical resdftsevi- chal hybridization as wellis possible along the edges and
dences for the self-similarity of some ground states in disordiagonals of elementary plaquettes. On each vertex local on-
dered system®, evidences for singular features of ground S'€ potentials are acting, and on ea(_:h vertex local on-site
states in certain nonperiodical systefhmccurrence of de- Hubbard-type repulsion is present as interaction.

generacy proportional to the system size in eigensftes, 1he remaining part of the paper is organized as follows.
scaling properties of the exact ground stafeeelative sta- Section Il presents the Hamiltonian, Sec. Il describes an

bility of the confined states on boundary conditidhgos-  €*act transformation of the Hamiltonian which allows the
sible existence of allowed and forbidden sites in thededuction of the presented results, Sec. IV analyzes the dis-

eigenstate etc. order present in the system and provides concrete examples

We underline that the above-mentioned exact eigenstatd8r the emergence of the model conditions necessary for the

are valid only for independent electrons, e.g., they were deSolutions to occur, Sec. V presents the exact ground states,
duced from models built up on a tight-binding Hamiltonian Sec. VI describes ground-state expectation values, and fi-

in r space describing a single electron moving on an aperina”yv Sec. VII concluding the paper closes the presentation.

odic grapht’ Because of this reason, and in the light of the

facts previously presented, it would be extremely stimulating Il. THE HAMILTONIAN OF THE MODEL
for the field to see to what extent the deduced exact proper- The fixed topology of the described system allows us to
ties at independent electron level remain or are not valid iR+ ihe problem in a 2D tight-binding Hamiltonian defined
exact terms for a really multielectronic and interacting SYSain space on a 2D Bravais lattice with disordered Hamil-
tem as well in the presence of disorder. In our knowledge

exact results of this tvpe. up to this moment. are not knoWntonian parameters. For this system we consider a unitl cell
. ype, up ’ ."described by the primitive vectors,f), and we take into
In this paper, we report, to our knowledge, for the first

. . nt tw f electron n h rticle index
time exact ground states depending on the electron conceﬁlCCOLI t two types of electrons denoted by the particle inde

tration for multielectronic and interacting 2D systems in the” aSp_de' Irj the§e conditions our starting Hamiltonian has
presence of disorder. The ground states are paramagnetf8® formH=Ho+Hiy, where
lose their eigenstate nature in the independent electron ap-
proximation, present properties known in the Penrose lattice Hy= >, > >,
(for example, strong degeneracy proportional to the system p=df p'=qf o
size), describe a localization-delocalization transition driven
by the electron concentration, and in the localized case +tfi%ﬂ|5i’faf)i’4,
present clear evidence for long-range phase coherence.
The results are reported for two-band-type models. The

presence of two bands does not diminish the applicability of N pAp Ap

. \ \ : Hin= > upfaf.aP . (1)
the results since, from one side, real materials are of multi- p=d,f I e
band type, and the theoretical description is given usually by .
projecting the multiband structure in a few-band pictifre, In the one-particle partiy, the “length” of the hopping de-
which is stopped only for its relative simplicity at the one- noted byr with possible nonzero valuesy,y+x,y—x, is
band extreme level, when this is possible. From the othegllowed to extend only to distances contained,ine., near-
side, the experimental one, several materials treated tradésSt neighborsxy) and next-nearest neighborg+x,y—x)
tionally in a two-band picture have been experimentally(see Fig. 1 Denoting byN, the number of lattice sites in
found to contain disorder and present extremely interestinghe system, the random naturedfis given by(a) the 2N,
properties (as non-Fermi liquid behavior, for exampte independent, noncorrelated, randémpulsive on-site Hub-
whose emergence is considered connected to the presencefrg interactionsU?, p=d,f contained inf;,, and (b)
the disorder(see for example, Refs. 32 and 33, and cited
references thereinConcerning the presence of real random

p.p" AT A
E ti,i+r,r,o'pi,a-pi-%—r,g-'i'H.C.)
r+0

2N, new independent, noncorrelated, randdgparameters

systems holding two type of electrons, we mention the in_chosen(as will be clarified belowfrom the (site, direction,

tense activity related to rare-earth and actinide compound@nd spin dependentf;t,  , amplitudes. We underline that
which behave as random Kondo insulatér§3?holding two  thetPP’ coefficients contain hybridizatiorpé p’), and on-
types of electronsd andf), whose properties are described site potential (=0) terms as well.
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1+y i+X+y i+L-1 i, i+L+1
® ®
a) i— i i+
y
i-L-1 7L jpL41
ity i+x+y
1 i+x n=4  n=3
FIG. 1. Unit celll at sitei. The vectors,y denote the primitive b) Il
vectors of the unit cell, and arrows indicate the possiblealues
allowed for the hoppings. n=1 n=2
i i+x

We demonstrate below that for certain local conditions
. p,p' . . .
imposed fort parameters which maintain the number of lattice around the lattice site and(b) the unit celll; placed at an

4N, independent npncorrelgted random variables in th_e Sy arbitrary lattice site, together with thé independent notationn(
tfam, the exact multielectronic ground-state wave function OL 1 2 3'4) of sites insidé; . (x,y) are the primitive vectors of the
H in the interacting case can be explicitly given in an elec-unit cell.

tron concentration dependent manner.

We mention that the spin-dependent nature offthepa-  In the following section we are presenting a transformation
rameters is not essential for our deduction. Hygparam-  of H in a form that allows us to obtain exact ground states in
eterscan bein principle spin dependent as well, and we jts spectrum.
underline this aspect, in order to extend the applicability of
the results also to Hamiltonians with nondiagonal
hopping$34°~4"too. Furthermore, concerning the type of the IIl. THE TRANSFORMATION OF THE HAMILTONIAN
model we use, we mention that fat!=0, theH from Eq.
(1) represents alisordered pderiodic Anderson mode{or jeqer numberl in the studied 2D lattice containinty
Anderson latticg while for Ui'+0, Efq. (1) describes a dis-  —| x| |attice sites, starting from the down-left corner in the
ordered two-band Hubbard mod@); #0 always. Our re-  |gwest row (=1), going from left to right up to the end of
sults are applicable in both cases. For physical realization ahe first row (=L), then going upward and continuing with
such type of systems see, for example, Ref. 34. the second row again from left to right, and so on. In this

We further consider that the mobility of the two types of manner, for example, around an arbitrary lattice siteum-
electrons present in the systethgndf) is different, and the  pered byl =i, we find the site numbering notations presented
ratio in mobility is the same on all lattice sites. As a conse-p Fig. 2(a). The introduced notation allows us to turn from a
quence, from the point of view of hopping amplitudes, start,ectorial site notation to a scalar one, which simplifies as

FIG. 2. (&) The numbering of sites in anXx L two-dimensional

Let us introduce a numbering of the lattice sites by the

ing from amplitudes written fod electrons, we have well the notation of the Hamiltonian parameters. For ex-
ample, thetP?, for r=x (r=y) at sitel=i becomes
ti’?ig/r’rﬂ:wﬁp,f'*'5p’,ftid’iir’r’0' 2 thhixe, (thLy,) [see Fig. 2a)]. Similarly, the next-

nearest-neighbor ~ components xHy,y—X)  become

p.p’ PR
wherew is a (site independehptmeasure of the mobility ra- Ui 1L xcry,o t'+_1"+'-'y—><10' R )
tios betweenf and d electrons. We mention that hopping  Let us further introduce a plaquette operafgy, defined

amplitudes between different orbitals often satisfy such type&or every arbitrary cell; taken at sité [see Fig. 2b)]. The
of relations in real systenfS. cell I; is denoted by its down-left cornér The sites insidé;

are numbered in a cell independent manner by the inmdex

behavior of particles given by the disordered hoppings and 1+2:3:4 starting from the siteand counting anticlockwise
interactions, we only consider situations for which the Iocal—'ns"d_e the unit cell; [see F"g' B)]. In these conditions we
ization of particles in local trapping centers is avoided, i.e.obtain forA; , the expression

we have

Concerning again the”P’ terms, being interested in the

4
tp’p >0. (3) Ai,azngl (an,dai+rn,a-+an,ffi+rn,a)a (4)

1,i,0,0
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wherea, , are numerical coefficients, the same in all unit the initial disordered parameters of the startigin Eq. (1)
cells, andr,=0, ry=x, rs=x+y, r,=y (detailed descrip- are they, , =t  variables whose number i$\2 , and the

tion of this procedure can be found in Ref. 40. For unit-cellEi new disordered parameters from E) are obtained
independent notation of the coefficieats, see Ref. 42 Let fr(')'?n these by a linear transformation

us further connect to every unit ce|_;, two random vari-

ablese; ; ande; | . _ ' . M0=|a1dl’€ ot 22dl%€i 1ot |Agal €110

Our results are based on the observation that if we define )
the plaguette operator parametars, via the nonlinear sys- +lagdl€i-Lo, ®
tem of equations which contains also I8, equations. Since they, , disor-

dered parameters are independent, in this view one can con-
sider thatH, besides the randomnessHi,;, possesses also
d’d _ “ H H ” A H

t = afj4g€i o1 B3 gB34€ 10 diagonal disorder” at the level oH in Eq. (2).

d,d A% *
it 1x0= @1482d€i 0T 7483 d€ L o

by Alternatively, one can consider in E@5) the unit-cell
. . . ded d,d .
tf’,‘idﬂﬂ,ﬁy,(,:a’f,das,dfi,(r: diagonal hopping amplltudeasi’qﬂ’y,m,ti,HHL’HW) di-

rectly proportional tce; , as the source of the disorder in the
tfj#dl,iﬂ,yfx,g:aﬁ,da4,d6i,a, one-particle part of the Hamiltoniaf, in Eq. (1). In this
case,H is considered to contain besides the randomness in
H;, also “nondiagonal” disorder at the levél,.

+laggl€i-L o (5) In_both cases, the remair_1ing equalities in E%).must b_e
considered as local constraints necessary for the solutions to

anda, ;=wa, 4 holds, where the parameter[see Eq.(2)] . ~ . .
is real but arbitrary, then taking into account periodic bound-2¢SH" Since the number f, parameters in E¢1) is much

» ) A ; ] higher than the numberN, of random one-particle vari-
ary conditions, the one-particle pait of the starting Hamil-  gpjes; these constraints do not alter the random nature of the
tonian from Eq.(1) becomes

disordered variable P, 7; .}, or{U? € ,}). Rather, they
. <y lead to(1) interdependences betweEha parameters not con-
HOZLZU €, oA oo - (6) taining the disordered variables ari#) connect other,
parameters tay; , or €; , disordered variables. These con-
Comparing the last equality of Eq5) to Eg. (3), we  straints emerge in the process of the transformation of Eq.
obtain the conditior¥; ,>0, althoughe; ,, are random vari- (1) into Eq.(7), and we underline that our solutions are valid
ables. As a consequench, in Eq. (1) becomes positive only in the case when this transformation can be dorme,

thho=lardl%€ o+ azdl?€i 1o+ |A3gl €611 o

semidefinite: Eq. (5) holds|. Both cases mentioned above as nondiagonal
and diagonal disorders i, will be analyzed in detail
H:E 6i,UAi+(,Ai ot E 2 UipﬁipTﬁipl' @) below.
Lo T p=de T AT

. . - . B. Connections to the solutions obtained for Penrose tilin
and this property preserves the potential possibility to obtain g

the explicit form of the ground state in the interacting case. Considering the disorder i, as nondiagonal, the solu-
tions presented here can be viewed as arising from extension
IV. THE DISORDER IN THE SYSTEM of the conditions used in the exact study of the Penrose til-

ing. In order to understand this statement, let us introduce the

constantsK; =a¥ a4, K;=a34a44, and observe that since
Before going further, we should analyze the kind of ran-¢; , are random, the diagon&hext-nearest neighbphop-

domness we have in the system. We start with the observasing matrix elements in every unit cell, namely,tid’;

tion thatH in Eq. (7), which will be analyzed further on, is =t%%,,, ., ,andt®, =t"%,, . excepting their ra-

clearly disordered since it containdN4 independent, non- tio (K,/K,), remain random as well

correlated (non-negativg arbitrary random variables;

andUP. However, the randomness must be understood not thy =Ki€i o, th, =Ko, 9

only at the level of the transfoArmed Hamiltonian, Eg), but Considering for example the hopping amplitudes without di-

also at the level of the starting presented in Eq1). Since  rectional dependence, i.¢%, =t and taking for sim-

the disorder inF;,, is the sames in Eqg1) and (7), this  plicity K;=K,=1, we obtain

guestion relates to only the randomnessﬂi@ In order to a

understand the source of the disordeFigfrom Eq. (1), we ti20= €0 (10

have two different alternatives. which (excepting the fixed sign og; ,>0) means com-
One possibility for this is to observe the linear relation- pletely random and independent unit-cell diagonal hoppings

ship between the on-site energy Ieveﬂﬁoﬂ ande; , inthe  for all spins in all unit cellSsee Fig. 3. As a consequence,

last row of Eq.(5). As a consequence, we can consider thabased on Eq(9) or its particular form from Eq(10), we see

A. The presence of randomness in the model
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d
ti,2,c5

1 i+1

d
ti+2,2c5
i+3

d
tit1,20

1+2

FIG. 3. The independent diagomﬁba hopping amplitudes in-
dicated by arrows in different unit cells.

that the randomness given WP € ,} in Eq. (7) can be
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i-L-1

i-L

FIG. 4. Thetid"” amplitudes at sité for (a) v=x, (b) v=y, and

o

(c) v=0, respectivelytﬁ;,” is denoted by full arrow ina), (b), and

considered to originate from the randomness given byy a circle in(c). Dotted arrows with+ label indicate thet}’;f

{UP 1%~ at the level of the startingl presented in Eq(l).

I, o

random amplitudes that enter in the expressiongfpresented in

In this case, once the hopping amplitudes along the diagonafg€ Plots(@), (b), (¢) from Eq. (12). In all plots the notation of the

of every unit cell have been randomly chosen, the remainin
PP’ parameters can be determined based on them. The stu

of Eq. (5) shows that fixing theti‘”f values, we have the

d,+
i,o 1

z:it celll; at sitej containingtﬁ'; is also presented. For example, in

) |; defined at sité containst
M containst?: |

i—-L,o"

andl,_, defined at the sité

liberty to choose independently two more constants relatingows) which start from the same siieand intercalate® X
o~

the one-particle part of the Hamiltonizﬂb, namely,K5 and
K4 (sgnK>0K=K,K3K,) based on which

1

dd  _ o 4dd d.d
it ixo= Kail s 1jy-—xo™T KSti,i+1+L,x+y,a’

1

dd _ d,d d,d

ti,i+|_,y,a—K4ti,i+|_—1,y—x,a+K_4ti,i+1+|_,x+y,a1

g _Kio  Ka

i,i,0,0 K ii+L+1x+y,o Kl i—L—1ix+ty,o
Ky Ks

D3yad

d,d
+ K_gti,i+L—1,y—x,a+ K4 —L+1j,y—x,01 (11)

and the numerical coefficients present in Eg).in function
of K, (m=1,2,3,4), arbitrary parameters becomgjaz g
=Ky, ag,da4,d:K2a aidaZ,d:KllK& a’{,da4,d_: K1/Ky,
a3q23a=KoKs, a5qa3a=KoKs, laggl®=KI/K, [apgl?
=K,K4/Ks, |asg|?=K, and|asq|?=K,K3/Ky. In order to
have real value for aliP?’ parameters, aK,, must be real.

Similar situation is present fdl‘,’},’ in y direction [see Fig.
4(b)], while tﬁf,’ as seen in Fig. @) is determined by the four
t9= “plaquette-diagonal” amplitudes that start from the
same sitd.

Concerning Eq(12), we mention that in the study of dis-
ordered systems, constraifit®rrelation$ between bond and
site properties are often considered. The constrairgsori
introduced can be in some cases even of long-range®fype,
as taken, for example, in the case of isotropically correlated
random potential& correlated network®’ etc., and even
calculation techniques have been developed in order to deal
with “constrainted” disorder, for example, in the form of
correlated random numbet$pr random matrices with sym-
metry properties or holding constraifffsin our case, local
constraints exist which connect the plaquette-diagonal bond
hoppings(considered as the true independent random vari-

ables ofH,) to edge(nearest-neighbdmbond hoppings and
local one-particle potentials. Since the plaquette-diagonal
bond can be unambiguously connected to the plaquette, in
the described case, random plaquette propefites random
bonds connected to plaquetteshrough local constraints
presented in Eq(12), fix nearest-neighbor or local ampli-

To understand in detail E¢11), let us introduce short nota- tydes.
tions as well for nearest neighbor and local amplitudes in the Concrete physical situations where in disordered systems

dx_yd,d dy_ sdd d0_ .d.d
form ti =t 150, tiy=t o=t

ii+Ly,o 1,00, Which
represent theid”g” amplitudes ford electrons with spinr in
unit cell I; for v=|r|. Using these notations, E4ll) be-
comes
d,x_ d,— —1.d,
th=Kati ,+ K3,

i,o i,o 1

dy_ o +d— ~1.d,
=Kt o+ Ky Tty

i,o

tﬁg: thﬂ; + RI ltlderil‘a_‘f' R2t|dL7].,0'+ RE lt-d'7

i—L,o°

12

WhereR1=K1/K andR,=K,/Kj3. As shown in Fig. 4, the
tid',,” amplitudes presented in E(L2) are determined by the
td* unit-cell diagonal amplitudes that surroumﬁ,f. For
example, as seen from Fig(al, the tﬁ'{’,‘ nearest-neighbor
hopping amplitudéfull line arrow) is given by thetﬂ'(,+ and
tide’(, random unit-cell diagonal amplitudédotted line ar-

the random plaquette properties determine nearest-neighbor
or local amplitudes are also known in the literature. For ex-
ample, in the case of topologically disordered system of Caer
type™ using random mosaics, very similar to Voronoi tessel-
lation generated from disordered arrangement of partiles,
random flips of plaquette-diagonal bonds performed with a
given probability determine the local nearest-neighbor hop-
pings, and introduce in this way the disorder in the systém.
Concerning disordered on-site one-particle terms generated
by random bonds connected to plaquette properties, we men-
tion, for example, the Penrose lat#éé® case, where the
on-site one-particle potentials have been introduced by the
local coordination humbéf. In the mentioned case, practi-
cally the random on-site one-particle potential at Sitis
determined by the number of bonds entering in theisi@ur
on-site potentiat”:®, given in Eq.(12) and presented in

1,i,0,0

054204-5



ZSOLT GULACSI PHYSICAL REVIEW B69, 054204 (2004

Fig. 4(c) has clear similarities with this choice, since it re- (1) The next-nearest-neighbor hoppings surrounding a
duces to a such type of behavior in the case in whicltgdyg:ll nearest-neighbor hoppirjgee Figs. &) and 4b), and first
unit-cell diagonal hoppings are equal, and, for example, fotwo equalities from Eq(12)] must be related at the level of
all m, K,=1. The difference between E{L2) and Ref. 24 hopping amplitudes. These conditions are not specific for the

from the point of view of the random on-site potential is that presented disordered model, but are rather connected to the

in our case, the on-site potential is determined bywilele  ethod tself. Indeed, in such conditions we find solving

of the random bonds entering in the site, while in Ref. 24, by - _ )
the numberof the bonds entering in the site. So contrary tonondlsordered cases as weske Refs. 39-42and the ob

Refs. 24-26, where the study has been concentrated on tﬁ%ined hopping amplitude rati_os are de_limitating parameter
effects of the lattice topology alone, in this paper we analyze$pace r(;glons where the Obt?]'ged SOIUtI'IO r(1j_s are vlalt|1d.

the problem in a fixed topology, concentrating on random . @ T @ next-nearest-neig __c(unlt-ce |agona)_ op-
tPP" values. We further mention that in the Penrose latticd’ 9S> Starting from a given siteare all together linearly
case, when also the plaquette-diagonal hopping amplitud 1€ I?;edt ttoh theitoinisne tehnerlgytlevéﬂolﬁsu:rer;d Ed(éi(;)rderred
are taken into account at the level of exact independent ele =re at the sitel [see he fast equaity ro » O

tron eigenstate¥, solutions are found only when constraints aI'Fernatlve_Iy Eq.(8_)_, and Fig. 4c)]. This local constraint, in
are present between hopping amplitudes. this form, is specific for the random case studied here.

Let us consider a concrete physical example in support of Even if the condition¢1) and(2) presented above seem to
Eq. (12) which demonstrates as well that solutions deduced® quite specific at first view, we show below that they are
in the context of Penrose lattfleuse quite similar condi- Ccompatible with the presence of the diagonal disorder on
tions. For this, let us take a simple spin-independent casBhysical grounds. For this to be visible, we analyze a simple
tﬁ'j’?rrvgztﬁ'j?r',,(,:tﬁ'jf’r' , and consider a situation for which Ee:q?ﬁ’gt?;ga;:?,'vr;]:ndse(ffxnijfg §_ht%'?v‘1'[‘§t§i‘setd,vlh_'°t*§‘35
randomly positionedA or B atoms in the middle of the el- _y dv=2 L L S A Pl

d.2 T 2
ementary plaquettes providing the random unit-cell diagonartifarth_rti h?gdr}%r_tﬁr{(?j’ th_tltﬁsef Ec?l(r?)]ﬁ Liett
hoppingst:* =t& introduce the randomness . In this o o CONSIAET TOT IS StdY that The random on-site po-

DAL - tential #; is created by the randomly positionéd atom at
= d,= d,+ i
situation,tj"~ is eithert™~(A) or t™=(B), depending on the * gjaj of the lattice with lattice spacing, where the index-

type of atom situated in the middle of a unit-cell'. For thi§ fixes the type of the atom. In this manner, if the atagwill
example Eq(12) expresses the fact that the hopping amph-be placed at site, it creates the on-site energy level|

tude along a bondnearest-neighbor hopping$™ andt{"y_) = 5,. After this step, we must model the expression of the
depends on the randomly situated atofandB placed i gistance dependent hopping amplituge) for the electron
the.nelgh.borgood of the bond, and that the on-site energy Qfhich starts the hopping froim Taking into account a simple

a given site ("% depends on the randomly positionadind exponential distance decrease, we may simply take)

B atoms in the neighborhood of the site, which are physically— c.B.(Ay)e™*", where the constant describes the dis-
quite acceptable conditions. The linearity of these interdeignce decrease r¢0 is considered The amplitude
pendences can be physically motivated by the small i”ﬂUCiBi(Av) is built up from the componer@; = C, depending
ence of the atoma or B not situated directly on the bond or ,, the energy level at site(the atomA_ present at sité)

: - d= (g1 : -
on the site. For the presented exampfe; (A), [t*=(B)]in  and the average effect of all surrounding atoms felt atisite
the Penrose lattice case would correspond to the notationgnoted byB,(Auv). Since onlyt® and t%2 hoppings are

" I I

d,,d,, (d3,d,) used in Ref. 27. Furthermore, in Ref. 27
t9*=t3Y=1 is considered, and ott’ is denoted by; . The
conditions in which solutions are obtained for the Penros
lattice casdsee Eqs(3.9), (3.11), and(3.13 in Ref. 27 are

in fact linear relations of the type of our E(L2). The main ; : : :
diﬁ?rence between our modelygnd that of Iglef). 27 at the lev r((a)tnqetrh éhsrgtr-:n : Zﬁzl[nsge eag}glslt.uég;a Zr{gr‘(&? pa[IJrI]I’(;gtSh ewg (;(;r;”s_tart
of Hg is that in our case, the plaquettes describe@’bY(A) ties relatingt®! from Eq. (12)], providing the condition
andt®*(B) can emerge completely random, while in Ref. 27 jea(2-1) Ko+ (1/Ko). As can be seen, conditidf) deter-

the plaquettesrhombi described by ¢;,d;) and [ds.ds)  mines in fact the strength of the hoppirigarametera)
emerge only with the randomness allowed by the Penrosg, ., 4 the constartt,, and is not specific for the random

tiling. Because of this reason, our solutions extend the exallase  as mentioned above. Rather. it fixestfétd? ratio
solution possibilities known in Penrose lattice case to non- . ' ’

icrvstalline disordered ¢ i th mftroducing limits for the validity of the solutions in the
quasicrystallineé disordered systems even in the presence ol phase diagram of the starting Hamiltonian. As a conse-
electron-electron interaction.

quence, we can further analyze conditi@ consideringx a
known parameter.

Condition (2) [Fig. 4(c), and the equality relatingy;
=t" from Eq. (12] links together four next-nearest-

Considering the source of the disordeig diagonal, the  neighbor hoppings which again start from the same site. As a
random parameters of the model becobi® and »; ,. In  consequence, taking into account that the afonis placed
this case Eq(5) requires two supplementary conditions to beon the lattice sitei, we find »,=C.Bi(Av)[2+R;
satisfied as follows. +(1/R;)]e *?%@ The remainingB;(Av) coefficients must

considered, we have for the"! (t°?) case ther=a (r
=a\/2) argument value i;(r).

€ After these considerations, the conditiofi and (2)
mentioned above look as follows. Conditigfh) links to-

C. The disorder seen in the one-particle part ofd
as diagonal disorder
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be deduced at each site from the conditifip=t; ;. As can
be seen, conditioi2) through the parametdR; relates the

PHYSICAL REVIEW B 69, 054204 (2004

function of H given in Eq.(7) for N<N, (i.e., at and below
quarter filling can be always written in the form of E(L7).

disordered on-site energy level values to the hopping ampIiAs a consequence, fon= NA the ground state becomes
tude componentg; .

As presented above, the conditions necessary to be ful-
filled for the solutions to emerge are present in disordered
systems, being compatible to a truly acceptable physical
background. Taking into account more compllcated paramfor N<N, , since thej sites in Eq.(17) can be arbitrarily
etrizations fort;(r), the equation ofy; (,—tI - in Eqg. (12 chosen, the complete ground state becomes
(since it has in its right side the same/alue reduces to an
equation for the amplitudes of thefunction int;(r), while
the remaining equalities in Eq.(12) determine the

t,(a)/t;(a\/2) ratios.

Ny

[Wg(N=N,))= H[oT 00/, 10). (19

[W(N<Ny)=2 aRNJH [O] ,+v,0] - 1]|0>,
' (19

where the suntg is made over all differenRy domains
containingN<N, lattice sites from the system, ang;, are

numerical coefficients. Furthermore, it is important to under-
line that Eqs(18) and(19) represent the ground state only in
the interacting casat least one of on-site two-particle inter-
actionsUP must be nonzero at all sités since otherwise,
because of the presence of the double occupateg.,

O/, O] _, products in the ground state wave funcliothe
expression of ¥ ) in Eq. (17) is no more valid.

In my knowledge, Eqs(18) and (19 contain the first
exact multielectronic ground-state wave functions obtained
in 2D for a disordered system in the interacting case. As
explained above, Eq$18) and(19) areno more eigenstates
for the independent electron approximatiore., U%=U
=0. Since the ground state in the interacting case, even for
infinitesimal interaction, changes qualitatively in comparison
to the noninteracting case, Eq48) and(19) cannot be con-
nected in a perturbative way to the ground state of the dis-
ordered but noninteracting system.

The ground state$GS'’s) presented above are strongly
degenerated. Their degeneracy at quarter filling is given by
theN arbitraryv; values, and the arbitraput nonzerpw, is
proportional to the size of the system. The existence of such
type of states for 2D Penrose-type lattices has been first con-

R jectured by Semba and NinomRfaand Kohmoto and
> A Sutherland* and further analyzed in Refs. 26 and 54. From
he the reported results here it can be seen that this property

Since|¥) introduces fermionsd or f) with arbitrary spin, 1S Present also for other systems as well in the multi-

strictly on different sites, double occupancy is avoided, angelectronic and interacting case t0o, at leastNor N, . We
stress however that in the cabe<N,, the degree of the

degeneracy strongly increases given as well by the geometri-
cal degeneracy present in EQ.9). The order of magnitude

of the degeneration becomes in this cabig=N,!/
[NI/(N,—N)!T.

V. THE GROUND-STATE WAVE FUNCTION

Starting from the positive semidefinite structureFfin
Eq. (7), the ground-state wave functid® ) is obtained for

H|\Ifg> 0. Now, let us concentrate first on tii, compo-
nent of H presented in Eq(6). Taking into account Eq(4),

and as shown in Eq5), a, ;=wa, 4, Wherew is arbitrary
but real, we realize that

4
| o Z an,d(ai+rn,rr+W’fi+rn,0’)v (13)

so in the right side ofd, in Eq. (6) only operators of the
form O; ,=(d; ,+wf; ,) are present. If now we define

OT _dT __fT

Jo

(14

which satisfies; ,0', ,=—0/, 0, then taking|¥)
=11,[0] ,+v,0!

i, ,U]|0>, wherell; is taken over different
(although arbltrarylattice sitesp; are arbitrary coefficients,
and |0) is the bare vacuum with no fermions present, we
obtain

A | W)=0. (15)

E E uPnP,nP [¥)=0 (16)
oS

holds as well. Since the minimum possible eigenvaluélof
in Eq. (7) is zero, the ground state for arbitraN<N,,
whereN represents the number of electrons within the sys-
tem, becomes

VI. GROUND-STATE EXPECTATION VALUES
A. The localized case

Despite the possibility to chose the Hamiltonian param-
eters in a spin-dependent way, the obtained GS is globally
paramagnetic. At 1/4 fillingNl=N,), the GS contains rig-

In Eq. (17), theH]N product must be taken ovgsites which  orously one electron on each site, so the hopping is com-
can be arbitrarily chosen, and differgntalues must be re- pletely forbidden in GS, and as a consequence, the system is
lated to strictly different lattice sites. The ground-state wavdocalized, holding long-range density-density correlations.

[T gy = H [O] ,+v,0! _,1/0). (17)
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Indeed, calculating the ground-state expectation valueserved,|¥,(N,)) indeed describes a paramagnetic, com-

through Eq.(18), in this case we find for arbitrary#j and

al o,0'

<aiT,o-aj,U’>:0’ <fT f] o‘> O
<dT fj o’ > 0, <,fiT,o-aj,o">:O! (20)
where (- - ) =(Wg(Np)|- - [W(NA))(Wg(Ny)[Wg(Ny)),

|\P9(NA)) is presented in E¢(18), and(W (N ,)|¥4(N,))
M2+ |w] ) (1+]vi]?)]. The reason for Eq(20) is

S|mple |\I’g(NA)> contains exactly one electron on each lat-

tice site, so|Wy(p.p"))=Pp/,P] ,[¥4(N4)), wherep,p’

pletely localized ground state containing long-range density-
density correlations. At quarter filling, sin¢§'g(N=NA)>
coherently controls the particle number occupancy at all lat-
tice sites forbidding the hoppin@nd nonlocal hybridization

in the same time, the GS clearly presents phase coherence
over the whole lattice.

B. The delocalized case

Under quarter filling, empty sites emerge in the GS,
Eqg. (20) deduced through Eq19) does not hold, hopping
is no more forbidden, and as a consequence, a delocal-
ization occurs, the system becoming itinerdrémaining

=d,f andi+#] contain a double occupancy, and as a consefyrther paramagneticindeed, in this case, &<N, , based

quence|¥(p,p’)) and|¥4(N,)) are orthogonal. We un-

derline that since Eq.20) holds for arbitraryv; , it remains
the same after the average over the disor@dervariables.
Denoting the translational invariant averages @y - - ))
=[P{v;})(IT;dv;){- - - ), whereP({v;}) describes the dis-
tribution of the disordered variablgbeing arbitrary hene
and [P({v;})(I;,dv;) =1 holds by definition, Eq(20) auto-
matically implies as well((p{,p| ,.))=0 for all p,p’
=d,f, all o,¢’, and alli #j.

Furthermore, introducing foi#j the notationD(i,j)
=[(1+[w| ") (1+|vil?)(1+]v5]?)]2 we find

(i ,nf y=D(,j), (nf_,nf_y=1]vilv;|?D(i.j),

<nl o ]o’) |W| 4D(| J)

|il?|o;]?

<ﬁif,ftrﬁj,*0'>_ D( )
|wl*
2
() =l 2000, (R DG,
2
(R¢_ Al )= v '|| ||”‘| D(i.}),
cg np o loil?
(R0 )= 15D(0). 21)

Starting from Eq(21), for n,=3
(21) one obtains

An? +nf ), based on Eq.

where the second equality holds as explained below ).

Introducing  now  §7=(1/2)[(n,+n/,)—(n! +n/ )],
based again on Eq21), for i#j we have

(&&=, (23)

where py=(1—|v,|?)/(1+]|v,|?) takes arbitrary values in

the domain 1,+1), so((S5'S’))=0 arises. As can be ob-

on Eqg. (19, the GS wave function can be written as
[W4(N))=Zg ar |¥(Ry)), where| W (Ry))=|Vg ({vi}))

Dg, ({vi}) HJeRN(OJr +v; O]T_U)|O> build up an or-
thonormalized wave-function set containiNg components,
and we hav®r ({vi})=(1+|w|?)"; g (1+]vj|?), and
ag, are coefficients independent of the disordefed set.

The operators of the typp/ ,p[,, wherep,p’=d.f, now
have nonzero matrix elements between ground-state compo-
nents| ¥ (Ry)),|W(Ry)) describingRy,Ry domains of the
form Ry=Dy_1+i, Ry=Dy_1+], whereDy_, represents

an arbitrary region of the lattice containing—1 lattice
sites, and,j are representing two different but arbitrgnot
necessarily nearest-neighbaites of the lattice. We have,
for example,

(1+|w?)*

JZ+ [P (1+]vD)

(¥(Ry)|d] ,d; .| W(RY)=

(1+|w[?) ™
V(L + i) (1+]v;]?)

(PRITT T W (RY)=
(24)
Since the disordered variables emerge in E4l) through
lvil,lvj| non-negative numbers, the average over the disorder
maintains the nonzero values in E@4). As a consequence,
the hopping being no more forbidden, the system becomes
indeed itinerant. Since as seen from E24) all d or f elec-
trons can hop everywhere in the ground state, the wave func-
tion in Eq.(19) is clearly an extended state. The conducting
nature of the extended states can be demonstfats] for
example, Ref. 5pthrough the variation of the chemical po-
tential as the number of electrons vary. For this reason, let us
observe that the ground-state wave function from @)
acting on the Hamiltonian from Ed7), by the construction
of the wave function as explained in Sec. V, has the property
H|WG(N<NL))=Eg(N)|¥4(N<N,))=0, whereE4(N) is
the ground-state energy fot particles in the system. Since
|\Ifg(N< N,)) is a wave function with nonzero norm, this
relation meansEy(N)=0. As a consequence, fod<N,
—1, we have foru " =E4(N+1)—E4(N) and u~=E4(N)
—E4(N—1), the expression

ut—p=0. (25
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Therefore, the state we analyze is conductiisge also teraction. All these conditions make unlikely the major influ-
Ref. 56. ence of Griffiths phases, especially when fheparameters
Furthermore, thé‘;IZ‘S_Z operator will have nonzero matrix are all maintained perfectly random at all sites as mentioned
elements only along the diagonal Ry variables, and in below Eq.(23), prohibiting in this way the local formation of
conditions mentioned fop; after Eq.(23) we further have @nomalously strongly coupled clusters.
(&) =0. _ o
As can be seen, Eqgl8) and(19) describe a localization- VII. SUMMARY AND CONCLUSIONS
delocalization transition driven by the electron concentration We deduced exact multielectronic concentration depen-

pn. Which emerges adiﬁ=cll4, the delocalized phase being gent ground states for disordered and interacting two-
present in the regiop,<p,. The occurrence of this transi- dimensional quantum-mechanical systems at and below
tion is intimately connected to the multielectronic nature ofquarter filling. The ground states describe a localization-
the description which is made in the presence of the intergelocalization transition driven by concentration and provide
particle interaction and absence of trapping centers. Indeegaramagnetic behavior. The ground-state nature is lost in the
the problem considered at the level of independent electrogbsence of the interaction, e.g., independent electron ap-
approximation(e.g., absence of interelectronic interacjion  proximation. The deduced results are nonperturbative and
the presence of trapping centers leads to a one-particle probannot be perturbatively reached from the noninteracting, al-
lem in the presence of an attractive potential, which ends Ughough disordered case. The studied system is of two-band

usually at small energies with localization. Here all these a'%ype, and the disorder is present independently in ﬂ;hm

avoided. - S . .
Concerning the possibility of the emergence of Griffiths"’md'_|0 parts of the Hamiltonian, the trapping centers belng
phases in influencing the described transition, we mentioﬁXCIU.d.e.q' The prese_:nted procedure extends the exact solufuon

' ossibilities known in 2D Penrose lattice case to nonquasic-

that the Griffiths singularities arise due to the presence o : : .
statistically rare clusters that are anomalously strongl)fySt‘T’l”'ne d|sorde.re.d systems as well, even in the presence of
Iae interelectronic interactions.

coupled, and hence they are unique features of the disorderd
system (see, for example, Ref. 57The effect becomes
weaker with increasing dimension, increasing interaction, ACKNOWLEDGMENTS
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