
 

 

 

Abstract—Non-parametric regression models (e.g. kernel 

smoothing techniques, support vector regression model) have 

been widely used in statistics and recently in econometrics and 

engineering as well. Regression functions can be effective tools 

in the solution of engineering optimization problems. In the 

investigation of complex technical systems the class of the 

function describing the connection between the input and 

output data is generally unknown, moreover the “classical” 

least square fitting method is not flexible enough to provide an 

effective regression function in the case of higher dimensional 

optimization problems. In this paper regression functions 

obtained in different models are compared graphically in one 

dimensional case. Calculations were made using Maple, R, and 

MS Excel software.  
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I. INTRODUCTION 

HE smoothing techniques and the non-parametric 

approach have a long tradition in empirical analysis. 

The intensive interest in smoothing over the previous 

decades had two reasons: “statisticians realized that pure 

parametric thinking in curve estimations often does not 

meet the need for flexibility in data analysis and the 

development of hardware created the demand for theory 

of now computable nonparametric estimates.” [1] 

Kernel smoothing is an effective regression technique 

for engineering optimization as well. It has the advantage 

that the function defining the non-linear relation between 

the input and output data does not need to be given in 

explicit form. As an example the shape optimization 

problem of rubber bumpers can be mentioned that was 

investigated by the second author in his doctoral thesis 

[7]. 

To present the flexibility of the kernel smoothing and 

the support vector regression we give the regression 

function for certain input data (one dimensional case).  

II. KERNEL FUNCTIONS 

Let us consider a data set (frequently called training 

date set) 

     1N

PP11 Rd,t,...,d,t
 ,      (1) 

where it  are (possibly one dimensional) input vectors, id  

are associated targets ( R is the set of reals). The goal is 

to fit a function RR:f N   which approximates the 

relation between the data sets. Any regression algorithm 

has a loss function   d,tfL  which describes how the 

estimated function deviated from the true one. In this note 

we refer to the following two types of loss function: the 

quadratic loss function (least square fitting) 

     2
iiii dtfd,tfL         (2) 

and the  -insensitive (Vapnik’s) loss function 
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where   is a fixed positive parameter. 

It is well-know that in the linear model (with the 

quadratic loss function) 

  mindbtw
w

P

1i

2

ii 


     (4) 

the regression function can be expressed as a linear 

combination of so-called kernel functions 

  ii txxk          (5) 

in the form 

   



P

1i

ii

opt
bxkbxwxf ,   (6) 

where  denotes the inner product [5]. 

In non-linear models the situation is similar: applying a 

suitable transformation MN RR:   the problem will be 

linear in 
MR  and the regression function is a linear 

combination of kernel functions 

     
ii txxk         (7) 

[3], [4] in the form 
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Since function   and, consequently, functions ik  are 

generally unknown in practice, one of the recommended 
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kernel functions is chosen in the model to build f . The 

most used kernel in technical literature is the radial base 

Gaussian kernel function 

 
2

itx

i exk


 ,       (9) 

where   is a parameter determining the shape of the 

kernel function. The role of   is presented graphically in 

section III. 

III. APPLICATION OF GAUSSIAN KERNEL FUNCTION 

As an input data set consider the set of the following 

points {(ti,di)|i=1,..,P}={(1,16),(2,19),(3,9),(4,16),(5,25), 

(6,10),(7,5),(8,4),(9,24),(10,20)} (Fig.5.) and solve the 

quadratic optimization problem 
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for P

P1 R),...,(    and Rb , where   is a fixed 

positive number. 

The following figures show graphically the regression 

functions obtained for certain values of  . (Calculations 

and plotting were carried out using Maple). 
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Fig. 1. The regression functions (solutions of the optimization 

problem (10)) when =0.05 and =0.1 

15.0
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Fig. 2. The regression functions (solutions of the optimization 

problem (10)) when =0.15 and =1 
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Fig. 3. The regression functions (solutions of the optimization 

problem (10)) when =2 and =3 

It can be seen that the smaller values of   result flatter 

regression functions (see e.g. Fig.1.) but the deviation of 

these “flat” functions at the learning points can be 

relatively high. Large values of   lead to regression 

functions varying too fast and the shape of the regression 

functions do not seem to be reasonable (see e.g. Fig.4.). 

Analyzing the pictures it can be seen that the values 

2..1  mean an acceptable compromise between the 

flatness of the function and the accuracy at the learning 

points (Fig.2., Fig.3.). 
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Fig. 4. The regression functions (solutions of the optimization 

problem (10)) when =5 and =6 

IV. SUPPORT VECTOR REGRESSION MODEL 

Application of the  -insensitive loss function (3) leads 

to a quadratic convex optimization problem and the 

regression function can be expressed by kernel functions. 

In the linear model the regression function is sought in 

the form 

  Rb,Rw,bxwxf
N  .   (11) 

The flatness of f  in this case means that one seeks a 

small w , that is, the norm w  is to be minimized. The 

related convex optimization problem is the following: 

 
 

.P,...,1i,
dbtw
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tosubject 
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2

1
minimize
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 (12) 

Inequalities in (12) mean that the regression function is 

required to approximate the pairs  ii d,t  with   

precision. Sometimes the convex optimization problem is 

infeasible with the given constraints and some “errors” 

must be allowed. For this purpose so-called slack 

variables was introduced by Vapnik in [2]. The modified 

convex optimization problem with slack variables i  and 

'i  is the following 
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The positive constant C  determines the trade-off 

between the flatness of f  and the amount up to which 

deviations larger than   are tolerated. 

According to the standard dualization method [6] we 

introduce the Lagrange function 
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where  0',,', iiii  . The dual optimization problem 

is the following: 
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Solving the dual problem we get 

    btx'xf i

P

1i

ii 


,    (16) 

that is, the solution is a linear combination of kernel 

functions. This form of f  says that the explicit form of 

w  does not need to be computed. Furthermore it can be 

proved that for the learning points inside the  -tube 

0'ii  , that is, f  is determined by the learning 

points having nonvanishing coefficients. These pairs are 

called support vectors. 

As it mentioned before, in non-linear model the 

application of a suitable transformation function 
MN RR:   leads to a linear problem. It can be proved 

that in this case regression function is a linear 

combination of kernel functions      ii txxk   . 

The convex optimization problem is the following 
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The dual problem is 

      

   

  ].C,0[',   and   0'    tosubject  

t''

tt''
2

1
    maximize

ii

P

1i

ii

i

P

1i

ii

P

1i

ii

jijj

P

1j,i

ii



















 (18) 

Solving the dual problem we get 

        btx'xf i

P

1i
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,   (19) 

that is, the solution is a linear combination of kernel 
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functions. 

Using the SVR package of the R software we present 

the role of parameters  ,   and C  in the SVR model. 

We consider the same input data set as in section II: 

{(ti,di)|i=1,..,P}={(1,16),(2,19),(3,9),(4,16),(5,25),(6,10), 

(7,5),(8,4),(9,24),(10,20)} (Fig.5.) and choose the 

Gaussian kernel function (9). (Plotting was carried out 

using MS Excel.) 

 
Fig. 5. The set of input data 

Fig.6. shows the role of the “penalty” parameter C . 

Application of a higher value of C  results a regression 

function with small deviation even in outlying learning 

points, while low value of C  gives a flat function with 

large deviation at certain points. 

 
Fig. 6. The role of the “penalty” parameter C 

(C=0.1,1,10, =5, =0.05) 

 

 
Fig. 7. The role of the parameter  (=2,5,8, C=10, =0.05) 

 

 
Fig. 8. The role of the parameter  

(=0.05,0.1,0.3,0.5, =5, C=10) 

Fig.7. shows the role of the parameter   (it was 

described also in section II). Fig.8. shows the role of the 

parameter  . The learning points are possibly 

(depending on the value of the slack variables) in an  -

tube or near the  -tube. 

Examples presented in this note show the flexibility of 

the regression methods using kernel functions. In 

engineering applications this flexibility can have an 

important role when the model has to be adjusted to the 

special characteristics of the input data set or to the 

requirements related to the regression function.  
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