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Abstract 
The River Tisza is Hungary’s especially important river. It is significant not only because of the 
source of energy and the value insured by water (hydraulical power, shipping route, stock of fish, 
aquatic environment etc.) but the active floodplain between levees as well. Ploughlands, orchards, 
pastures, forests and oxbow lakes can be found here. They play a significant role in the life of the 
people living near the river and depend considerably on the quality of the sediments settled by the 
river. Several sources of pollution can be found in the catchment area of the River Tisza and some of 
them significantly contribute to the pollution of the river and its active floodplain. In this paper we 
study the concentration of zinc, copper, nickel and cobalt in sediments settled in the active floodplain 
and the ratio of these metals taken up by plants. Furthermore, our aim was to study the vertical 
distribution of these elements by the examination of soil profiles. The metal content of the studied 
area does not exceed the critical contamination level, except in the case of nickel, and the ratio of 
metals taken up by plants does not endanger the living organisms. The vertical distribution of metals 
in the soil is heterogeneous, depending on the ratio of pollution coming from abroad and the quality 
of flood. 
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1. Introduction 
 
Owing to the situation of Hungary in the Carpathian basin, 95 percent of the 
Hungarian rivers originate from beyond the frontier. Thus apart from our 
influential work, the water quality of the Tisza largely depends on the water 
coming from abroad. The object of our research is the River Tisza, which also 
originates from abroad, the Ukrainian Carpathians and enters Hungary at the 
Ukrainian-Romanian border (through Ukraine). Near the bank of the River Tisza 
and its tributaries, several industrial plants can be found and they constantly 
endanger the living organisms by neglecting the environmental directives. In the 
first place, mining (the barrows) and ore refining (the use of polluting 
technologies) cause the most significant environmental risk (Lakatos et al. 2003).  
 
In the catchment area of the Tisza, in Romania 26, in Hungary 11, in Slovakia 1 
and in Ukraine 6 hazardous potential pollution emitters can be found. Among them 
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there are active pollution sources as well: without any kind of treatment the 
sewage of many companies flows continuously into the River Szamos, the River 
Maros etc. and their tributaries (e. g. the liquid dung of the pig farm in Bonţida, 
the sewage of the paper mill in Dej, the sewage of the Therapy Pharmaceutical 
Factory in Cluj-Napoca), while in other cases contamination can potentially occur 
owing to external factors (Winkelmann-Oei et al. 2001). Some companies comply 
with the environmental directives, so the occurrence of an accident is less possible, 
and some of them do not cause pollution for the most part of the year, but a 
catastrophe can result in due to the unsafe ramparts. Among the former ones (i. e. 
the environmentally safe ones) the MOL plant in Tiszaújváros and Szolnok or the 
Tisza Chemical Group Public Limited Company, and among the latter ones the 
generally known ore refining plant of Baia Mare and Baia Borşa (accidents caused 
by them: 30th January, 2000. Baia Mare; 15th March, 2000. Baia Borşa) can be 
mentioned. These accidents occurred due to the adverse weather conditions and 
the intense rainfalls within a short time. In addition, contaminated slurry from 
mines is drained off from time to time, generally at the high-water stage of rivers 
and brooks so the diluted (even below the limit) contaminants get into the surface 
water bodies. Contaminants in water can appear in two different ways:  (1) in 
dissolved state and (2) attached to suspended matters. Thus dissolved 
contaminants can become diluted, and the concentration of suspended matters is 
also lower in higher river flows. However, the concentration of contaminants 
attached to colloidal particles can be very high and can exceed the limit 
concerning soils and sediments, settling onto the active floodplain (Szalai, 1998, 
Hum and Matschullat, 2002, Braun et al. 2003, Szalai et al. 2005, Papp et al. 
2008). 
 
The traces of river pollution can be found in the sediment of the river bed or the 
active floodplain, and it can be proven that the contaminations in 2000 were not 
single cases (although they certainly resulted in high concentrations). 
 
In this paper we examine what quantities of heavy metals can be found on the soil 
surface and in the deeper layers of the active floodplain in a sampling area of the 
Upper Tisza. Furthermore, our aim was to study what quantities of metals plants 
are able to intake and whether it endangers the organisms.  
 
 
2. Materials and methods 
 
In 2007 ten surface soil samples have been collected from the active floodplain of 
the River Tisza called Boroszló-kert (approximately 701 river km, near Gulács, 
Fig. 1). The soil samples were taken from the depth of 0-25 cm and homogenized 
8-10 subsamples to make composite samples in order to decrease the errors 
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originated from the microheterogeneity of soil. The samples derive from 
ploughlands and orchards (grass among beds). 
 
From the sampling site 5-6 stock of maize (Zea mais, from ploughlands) and 
stinging nettle (Urtica dioica, from orchards) was collected for metal content 
examinations. We chose this two plant species because we could find them 
everywhere in the examined area. 
 
High resolution vertical sampling was also carried out: a 1-meter-deep soil profile 
was dug about 50 meters away from the mean-stage river bed inside the summer 
levee and sampled every two centimetres (Fig. 1, S-labelled point). In the case of 
sampling like this, it is very important that the area should not be disturbed 
(cultivated or erosion surface) because it gives rise to the mixing of the layers 
settled during floods, making the results unusable. So only the elder wooded areas 
can be taken into consideration. 
 
 
 
 
 

 

 
Fig. 1. The situation of the examined area and the sampling points of the Boroszlókert Dead Tisza 
region. Legend: S: soil profile; G11-20: surface soil samples; : levee 

 
The soil samples were dried at 40 °C and then passed through a 2 mm sieve. The 
granulometric composition (with Köhn-pipette), the humus content (after Tyurin’s 
scheme) and the active and potential acidity (pHH2O, pHKCl, y1, y2) of soil samples 
were determined according to the valid Hungarian standards (MSZ-08-0210:1977, 
MSZ-08-0205:1978, MSZ-08-0206-2:1978). The quality of humus was carried out 
after Hargitai’s method (1982): absorbances of 1% NaF and 0.5% NaOH extracts 
were measured at 533 nm (with SECOMAM spectrophotometer). 
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The metal content of soils has been determined according to the MSZ-08-1722-
3:1989 Hungarian standard (cc. HNO3+H2O2 acid digestion) with FAAS and ICP-
OES. Analysis of the surface samples was carried out with Perkin-Elmer 3000 
FAAS appliance (Co, Cu, Ni, Zn) at the University of Debrecen, Department of 
Landscape Protection and Environmental Geography. Samples from the soil 
profile were analysed for the same elements at the Central Chemical Laboratory of 
the Centre of Agricultural Sciences (University of Debrecen). 
 
Total metal content by itself does not give enough information about the dangers 
caused by metals, since, depending on their form of occurrence, they are available 
for plants to a different extent. Therefore, in the case of surface samples the 
available quantity for plants has also been determined with Lakanen-Erviö 
extraction (NH4-acetate + EDTA, Lakanen and Erviö, 1971). 
 
The plants were washed (it was especially important in the case of roots), dried 
and separated into root, stem and leaves. The samples were digested (cc. 
HNO3+H2O2), and the metal content of them was measured with an FAAS 
appliance.  
 
The data were visualized by C2 (Juggins, 2003) and ArcGIS 9.0 software. In the 
course of data processing correlation analysis was carried out with SPSS 15.  

 
 

3. Results and discussion 
 
Table 1 contains the soil characteristics of the collected samples. These are little 
clayey, sandy-silty samples with neutral, slightly acid pH and various humus 
contents. 
 
Table 1. Characteristics of soil samples (mean ± standard deviation) 

landuse sand % silt % clay % humus % pH (H2O) 
ploughland 40.0 ± 9.2 48.3 ± 7.4 11.4 ± 2.3 4.5 ± 1.5 6.84 ± 0.5 
orchard 45.4 ± 9.7 43.5 ± 8.6 11.0 ± 2.6 5.2 ± 1.6 6.84 ± 0.2 

 
 
3.1. Metal content of the soil samples 
 
The zinc contents of surface soil samples varied from 99 to 187 mg∙kg-1, 140 
mg∙kg-1 on average. This amount is more than the background level but does not 
reach the critical contamination level (200 mg∙kg-1, 10/2000 VI.2. KöM-EüM-
FVM-KHVM directive). The amount of zinc extracted by the Lakanen-Erviö 
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reagent is 5-13 mg∙kg-1, i. e. less than 10% of the acid-extractable concentration. 
The relative standard deviation of both is 18%.  
 
The average concentration of copper is 53 mg∙kg-1, the most extreme value is 80 
mg∙kg-1. Similarly to zinc, this amount is also beyond the background level (30 
mg∙kg-1) but does not exceed the contamination level. The available copper 
content is 8 mg∙kg-1. The relative standard deviation of both extractions is 
approximately 25%. 
 
The average concentration of nickel is 75 mg∙kg-1, the data varies between 49 and 
106 mg∙kg-1. According to the 10/2000 directive, this concentration comes under 
the category of ‘contaminated’ (B value, 40 mg∙kg-1). The mobilizable (Lakanen-
Erviö soluble) metal content is 5 mg∙kg-1 on average. The relative standard 
deviation is 24%. It can be seen from the available amount that the concentration 
is higher than the limit but it does not indicate potential danger to the biota. 
 
In the surface soil samples, the average amount of cobalt is 20 mg∙kg-1, varying 
between 17 and 23 mg∙kg-1. The relative standard deviation of these data is the 
smallest (9%). The background limit is 15 mg∙kg-1, the critical contamination level 
is 30 mg∙kg-1 so the concentrations determined by us does not exceed the critical 
contamination level – similarly to the previous cases. The Lakanen-Erviö soluble 
fraction contains 3 mg∙kg-1 of cobalt, and this is the only case when the relative 
standard deviation does not correspond with that of the acid-extractable amounts 
(13%). 
 
It can be seen that, in spite of the chemical pollution sources mentioned above, the 
concentration of the examined metals does not exceed the critical contamination 
level. In our earlier work the metal content of the active floodplain and the 
reclaimed side was compared, and it was determined that the concentrations of the 
examined metals were significantly higher in the active floodplain (Szabó et al. 
2008). Since these metals are essential trace elements, the higher concentration 
does not necessarily cause harm to the living organisms. They generally have 
phytotoxic effects only at very high concentrations (approximately at the double of 
the amount determined by us) (Hangyel, 1996, Szabó and Fodor, 1998, Naidu et 
al. 2003, Farsang et al. 2007, Mezősi et al. 2008.).  
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Fig. 2. The total acid-extractable metal contents 
of the surface soil samples 

Fig. 3. The Lakanen-Erviö (LE) soluble metal 
contents of the surface soil samples 

 
The standard deviation of the data refers to the heterogeneous character of the 
floodplain soils. The used sampling was composite sampling. It is a preferred 
method applied in the practical environmental protection, and its aim is to 
minimize the occurrence of extreme results caused by the inhomogeneity of soils 
(Kádár, 1998). Extremely high or low concentrations can also occur in the active 
floodplain, similarly to contaminated areas where large concentration differences 
can be found meter by meter and the effects of these extreme concentrations can 
only be minimized there. This can be explained by three main (closely related) 
reasons. (1) First, the vertical structure of soils in active floodplains is very 
complex due to the sediments settled by floods: depending on certain flood events, 
layers with different thickness, granulometric composition, humus content and pH 
settle and provide different conditions for the adsorption of metals. The second 
reason (2) is that sediments contaminated by heavy metals get regularly to the 
active floodplain due to the industrial activity beyond the frontier in the catchment 
area of the River Tisza. During the average sampling layers with different metal 
content (not known in advance, can be explored subsequently only by repeated 
sampling with large-scale uncertainty due to the microheterogeneity of soils) were 
taken and homogenized but – as it is apparent – great differences can be reflected 
even with this method. (3) As a third reason it can be mentioned that the soil is 
regularly ploughed in the agricultural area, which mixes the sediments in the 
surface soil (see above). Our results also support this: every examined soil 
characteristic (including metal concentrations) was significantly (p<0.05) different 
between the orchards and the ploughlands.  
 
The diversity of vertical metal distribution is shown in Fig. 4. The metal 
concentrations vary in every layer and sampling area. The profile shown in the 
figure represents a particular instance. The intensity and the character of 
accumulation are different even in the nearby points of the active floodplain 
depending on the distance from the river, the vegetation type (roughness), the 
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growing season, the period of flood and the number of tributaries joined to the 
flow (and sediment transport) in the upper course. 
 
In the profile (Fig. 4) the concentration of the examined metals are above the 
background level in the case of all metals but does not exceed the critical 
contamination level (10/2000 directive), only the amount of copper and zinc 
approaches it. Considering the endangerment of plants and – due to 
bioaccumulation and biomagnification – animals, it is important that the sediment 
settled in the past years has the highest metal content. The potentially available 
metal contents were measured exactly in the soil layer where the main absorbing 
root surface of plants can be found.  
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Fig. 4. The metal distribution (cobalt, copper, nickel, zinc) of the profile in the sampling site near the 
River Tisza (the grey line shows the background level according to the 10/2000 directive) 

 
 

3.2. Metal content of plant samples 
 
Plant samples were collected and prepared in order to estimate the real risk caused 
by sediments with high metal content. 
 
The zinc content of plants and plant organs (maize roots: 67.7 mg∙kg-1, stems: 66.3 
mg∙kg-1, leaves: 16.8 mg∙kg-1; stinging nettle roots: 22.4 mg∙kg-1, shoots: 19.6 
mg∙kg-1) does not exceed the metal content of soil (140±30 mg∙kg-1). The results 
show that the examined plants are not hyperaccumulator species (Fig. 5 and 6), 
this amount does not endanger the living organisms. In the case of maize, the crop 
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can even be the place of accumulation but we could not take samples from it 
during the sampling. The distribution of zinc is constant in the different organs of 
maize plants so zinc did not accumulate in the grain crop (Szabó, 2000). On the 
other hand it should also be noted that zinc is an essential trace element and can be 
harmful only at high concentrations (the lack of zinc often causes problems too). 
Neither the zinc content of the soil nor the concentration in the plants exceeds the 
health norms. 
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Fig. 5. The percentage of the Lakanen-Erviö 
soluble (LE) zinc and the zinc content in the 
plants compared to the total acid-extractable zinc 
content of soils  

Fig. 6. The zinc concentration in the plants (mg∙kg-1) 
 

 
In maize the average amount of copper is higher in the roots than in the shoots 
(roots: 6.4 mg∙kg-1, shoots: 0.9 mg∙kg-1). However, the opposite can be observed in 
the case of stinging nettle: shoots contain more copper than the roots (roots: 0.9 
mg∙kg-1, shoots: 4.6 mg∙kg-1). In Fig. 7 and 8 it can be seen that the amount of 
copper accumulated in roots and shoots on average is lower than the available 
metal content of soil. 
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Fig. 7. The percentage of the Lakanen-Erviö 
soluble (LE) copper and the copper content in the 
plants compared to the total acid-extractable 
copper content of soils 

Fig. 8. The copper concentration in the plants  
(mg∙kg-1) 
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Maize plants accumulated more nickel than stinging nettle (Fig. 9). However, 
considering the distribution of this metal the following difference can be observed 
in the two plants: in the case of maize more nickel is accumulated in the roots, but 
in stinging nettle larger quantity of nickel can be found in the shoots (Fig. 10, 
maize roots: 7.0 mg∙kg-1, stems: 2.4 mg∙kg-1, leaves: 2.2 mg∙kg-1; stinging nettle 
roots: 3.5 mg∙kg-1, shoots: 4.9 mg∙kg-1). 
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Fig. 9. The percentage of the Lakanen-Erviö 
soluble (LE) nickel and the nickel content in the 
plants compared to the total acid-extractable 
nickel content of soils 

Fig. 10. The nickel concentration in the plants  
(mg∙kg-1) 
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Fig. 11. The percentage of the Lakanen-Erviö 
soluble (LE) cobalt and the cobalt content in the 
plants compared to the total acid-extractable 
cobalt content of soils 

Fig. 12. The cobalt concentration in the plants  
(mg∙kg-1) 
 

 
In the case of both maize and stinging nettle larger quantities of cobalt 
accumulated in the shoots. This and the amounts concentrated in the roots differ 
significantly from the Lakanen-Erviö soluble cobalt concentration: in the plants 
cobalt concentration is less than the easily soluble amount in the soil (Fig. 11-12). 
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On average, more cobalt accumulated in maize than in stinging nettle (maize: 1.5 
mg∙kg-1, stinging nettle: 1.1 mg∙kg-1). 
 
’The available element content’ does not give real description of the accumulated 
amount: it underestimates (Zn) or overestimates (Co, Cu) the concentrations. It is 
taken evident since metals react differently in various solvents and, on the other 
hand, plants do not accumulate metals to the same extent, the strategy of metal 
uptake can be different in every genotype (Liu et al. 2003). 
 
 
3.3. Correlations of soil-plant system 
 
Close significant correlation is observed between the soluble copper and zinc 
content of soils (r=0.79, N=10, p<0.05). It proves that copper accumulation 
prevents zinc uptake (Sipos 2004). Close connection can also be shown between 
copper concentration and humus content (r=0.68, N=10, p<0.05). It has been 
reported that humus plays a significant role in the preservation of metals and the 
regulation of their uptake (Livens 1991). 
 
Close significant correlation is observed among the amount of nickel in the 
Lakanen-Erviö extract of soils and the plant roots and shoots. Examining the 
digested samples close connection was found with zinc (r=0.64, N=10, p<0.05). 
Literature proves that the presence of copper may influence the accumulation of 
nickel, but it is not illustrative conversely (Sipos, 2004). 
 
During the examination of the easily mobilizable metals negative connection of 
cobalt with the medium-grained sand fraction appeared (r=-0.84, N=10, p<0.05). It 
can be explained by the weak adsorption on the grains of sand (Stefanovits et al. 
1999). 
 
 
4. Conclusions 
 
Summarizing the results we can say that the metal content of the two examined 
plants in the active floodplain does not reach the values that limit the possibilities 
of utilization. Metal content changes vertically in the soil; enrichment can be 
observed especially in the soil surface-root zone. It may not cause any harm to 
plants in the region of Gulács even in the cases of zinc, copper, cobalt and nickel 
since they are essential trace elements. The examination of the layers from the 
profile helps to explain the metal content of the surface samples and the regional 
heterogeneity. Furthermore, the identification of the layers with extremely high or 
low metal concentration facilitates the age determination of them so the average 
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rate of sedimentation can be estimated (Kiss et al. 2004, Sándor and Kiss, 2006, 
Sándor and Kiss, 2007). 
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