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1. INTRODUCTION 

Dietary fat is a macronutrient which delivers substrates to generate metabolic energy and 

mediators to influence biochemical pathways regulating lipid metabolism and inflammatory 

responses [1]. More importantly dietary fat provides fatty acids (FA) to build and maintain 

cellular membranes surrounding cells and cellular compartments [2]. The main FAs 

incorporated into cellular membranes belong to the family of saturated fatty acids (SAFA) 

and monounsaturated fatty acids (MUFA) [3]. Additionally polyunsaturated fatty acids 

(PUFAs) can be found in cellular membranes. In this thesis the content of MUFA, SAFA and 

PUFA in membrane phospholipids was investigated whether determined by gene expression 

of specific metabolizing enzymes (SCD1, ELOVL6, FADS1, FADS2 and ELOVL5) or by 

diet derived FAs. Stearoyl-CoA desaturase-1 (SCD1) and elongase 6 (ELOVL6) are major 

metabolizing enzymes of MUFA/SAFA metabolism [4]. The regulation of their gene 

expression is strictly associated with the MUFA and SAFA content in phospholipids (PL) of 

cellular membranes. PUFAs on the other hand are metabolized by fatty acid desaturase 1 

(FADS1), fatty acid desaturase 2 (FADS2) and elongase 5 (ELOVL5) but their content in PL 

seems mainly determined by dietary fat. This thesis aims to investigate associations of FA 

composition incorporated into PL to gene expression of FA metabolizing enzymes and 

dietary fat intake. 

2. THEORETICAL BACKGROUND 

Dietary fat and fatty acids are primarily known to provide energy but more importantly they 

are basic structures of membrane building PLs and regulators of fat metabolism. For this 

purpose it is important to explain first the characteristics of intervened dietary fats, their 

classification, regulation and functions known until now.  

2.1. Dietary Fat – Sources and Subclasses of Fatty Acids 

Each dietary fat is characterized by its fatty acid (FA) profile. The specific FA composition is 

strongly dependent on its source, which can origin from animals or plants (Table 1). FAs are 

grouped into several subclasses. They can be distinguished according to the number of double 

bounds between carbon atoms into saturated fatty acids (SAFAs) without any double bound, 

monounsaturated fatty acids (MUFAs) containing one double bound and polyunsaturated 

fatty acids (PUFAs) containing two and more double bounds (Figure 1) [2]. FAs are further 

classified within each subgroup depending on the number of carbons of the carbon chain as 
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short-chain (SCFA) <8 carbons, middle-chain (MCFA) 8-12-carbons and long-chain (LCFA) 

>14 carbons FAs [5]. The location of the first double bound counted from the last carbon 

(acid group is considered first carbon C1) indicates the family of or n3-, n6-, n7- or n9-

fatty acids [6, 7] (Figure 1). 

 

C1
C10

C16

Number of Carbon

7 (n7)

Classification of  is

dependent on the position of

first double bound counted

from the last carbon

C16:1n7 – Palmitoleic acid

 

Figure 1. Classification of FAs by the example of MUFA palmitoleic acid 16:1n7 (16–number of carbons (C1-first position 

acid group, first carbon, C16-last position, last carbon), 1–number of double bounds, 7 (n7)-position of double bound, 7 

carbons counted from C16 [8].  

Table 1. Selected FAs and their natural resources [6, 7, 9-11]. 

fatty acid shorthand 

notation 

natural resource 

n6-PUFAs 

linoleic acid (LA) 18:2n6 plant oils (corn oil, sunflower, soybean, safflower oil) 

-linoleic acid (GLA) 18:3n6 evening primrose oil, borage oil, blackcurrant 

arachidonic acid (AA) 20:4n6 mosses, liverwort, fern, fungus 

n3-PUFAs 

-linolenic acid (LN, ALA)  18:3n3 
plants (canola, soybean, rapeseed, linseed, walnuts, 

flaxseed) 

eicosapentaenoic acid (EPA) 20:5n3 
algae, fish (salmon, white tuna, mackerel, rainbow 

trout, sardines), seal, higher plants  

docosahexaenoic acid (DHA) 22:6n3 fish oil, brain, retina, algae, not higher plants 

docosapentaenoic acid (DPA) 22:5n3 fish oil, seal oil 

MUFA 

palmitoleic acid (POA) 16:1n7 
major: plant oils (macadamia nut oil, sea buckthorn 

oil) minor: animal oils 

oleic acid (OA) 18:1n9 major: olive oil, minor: animal fats, plant fats 

vaccenic acid (VC) 18:1n7 
major: as trans-fatty acid in dairy products (e.g. 

butter) 

eicosenoic acid (EA) 20:1n9 plants, nuts 

SAFA 

palmitic acid (PA) 16:0 major: palm oil, coconut fat, minor: olive oil 

stearic acid (SA) 18:0 
major: lard, milk derived fats, hydrogenated fats 

minor: plant fats, marine oils 
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2.2. Monounsaturated (MUFA) and Saturated Fatty Acids (SAFA)  

Monounsaturated fatty acids (MUFAs) – MUFAs contain one double bound which can 

appear in different positions. They are incorporated into cell membranes by up to 45% 

depending on type of tissue and cell compartment and they are therefore one of the most 

abundant FAs in cellular membranes [2, 12]. The most important members of the MUFA-

family distributed in human cellular membranes are palmitoleic acid (POA, 16:1n7), oleic 

acid (OA, 18:1n9) and vaccenic acid (VC, 18:1n7) [2]. POA revealed regulatory influences 

on lipogenesis, desaturation and -oxidation if added to bovine treated adipocytes [13]. Oleic 

acid (OA), as the main fatty acid in olive oil, contributes to health benefits such as reduction 

of accumulation of hepatic triglyceride and improved glucose response in insulin resistant 

subjects [14]. Further OA is suggested to modulate innate and adaptive immune response 

[15]. MUFAs are not essential. They can be synthesized endogenously by de-novo synthesis 

or obtained from diet (Table 1) [7, 10, 16]. The typical Mediterranean diet pattern contains 

high amounts of MUFAs due to usage of olive oil as the main dietary fat source combined 

with a high intake of PUFAs deriving foods like fish and vegetables [17]. Benefits for health 

and survival associated with this diet include all-cause mortality, the prevalence of certain 

chronic diseases, including cardiovascular disease (CVD), metabolic disorders and various 

types of cancer [18]. The fat composition of the Mediterranean diet is one of the major 

differences to other diet patterns such as Western diets (rich in SAFA and trans-FAs). [18].  

Saturated fatty acids (SAFAs) – SAFAs are found in animal derived fats like lard and butter 

and in plant derived fats like coconut oil (Table 1) [19]. They are not essential and distributed 

in animal tissues by 30-40% in phospholipids [20]. The most common SAFAs are palmitic 

acid (PA, 16:0) contained in animal tissue between 15 and 25% and stearic acid (SA, 18:0) 

and contribute to animal tissue between 10 and 20% [20, 21]. PA (16:0) and SA (18:0) are 

also the most abundant SAFAs in human cellular membranes [2]. Consumption of diets high 

in SAFAs as in Western diet are not recommended because associations to development of 

metabolic and cognitive disorders, obesity and obesity related disorders were found [22-25]. 

Additionally diets high in SAFA are suggested to elevate blood cholesterol in humans [19] 

and to contribute therefore to the development of CVDs which is currently under discussion 

[26, 27]. Already after short term consumption of diets high in SAFA and simultaneously low 

in essential PUFAs a deficiency of essential fatty acid can cause skin impairments and 

reduced reproductive ability [28, 29]. However despite their negative health impact SAFAs 

are crucial for regular cell function. PA is a co-regulator of protein-membrane interactions 
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and subcellular trafficking of proteins by palmitoylation of proteins [20] and is an important 

precursor for the formation of ceramides and sphingomyelins in cellular membranes [30]. SA 

is a poor substrate for the cholesterol synthesis due to its preferred conversion to OA [21]. 

2.2.1. MUFA/SAFA metabolism 

The de-novo synthesis of SAFAs is strictly regulated by e.g. dietary influences [31]. 

However, MUFAs and SAFAs derived from diet can also directly enter into the endogenous 

MUFA/SAFA pool [20]. Dietary MUFAs and SAFAs are further indirectly involved in the 

regulation of gene expression of enzymes belonging to the de-novo synthesis [20, 32]. 

De-novo Synthesis - FAs can be endogenously synthesized from the basic C2-structure of 

acetyl-CoA. One carbon is added irreversibly to acetyl-CoA by acetyl-CoA-carboxylase to 

the product malonyl-CoA, a C3-structure. Malonyl-CoA is the precursor for FA-synthesis by 

the FA synthase multi-enzyme complex [21, 33]. PA (16:0, C16) is the product of this 

synthesis. Gene expression of enzymes involved in the de-novo synthesis is induced by 

insulin, the dietary uptake of SAFAs (until C16), high amounts of carbohydrates and 

cholesterol [21]. The dietary intake of PUFAs and the effect of glucagon on the other hand 

reduce the de-novo synthesis of FAs [21, 31]. Further 16:0 derived from de-novo synthesis or 

from diet can be elongated by ELOVL6 and/or desaturated by SCD1 to SA or POA (Figure 

2) [21, 34]. SA is mainly further desaturated to the product OA performed by SCD1 (Figure 

2) [35, 36]. Together with elongation and desaturation the function of the de-novo synthesis is 

discussed as more for maintenance of membranes and less for the refill of fat storage [33]. 

Dietary fat uptake – Dietary fat mainly in form of triglycerides is digested in the intestinal 

tract to free fatty acids, mono- and dipeptides by lipases and hydrolases [37]. Digesting fatty 

acids and bile salt form additionally an emulsion to enhance FA uptake into enterocyte by 

passive permeation or by active transport via fatty acid transport protein 4 (FATP4), fatty 

acid transporter (FAT/CD36) or fatty acid binding protein plasma membrane (FABPpm) [37, 

38]. MUFA, SAFA and PUFA are following a similar permeation in the intestine uptake, 

however PUFAs require less bile salt emulsion compared to SAFAs [39]. The enterocyte 

forms chylomicrons containing triglycerides and cholesterol which are released into the 

lymph flow. Chylomicrons are then transported within the blood stream and pass peripheral 

organs to arrive as remnants at the liver where they are absorbed [40]. In the hepatocyte 

lipoproteins containing free fatty acids, cholesterol and phospholipids are formed and further 

released into blood stream to reach peripheral body cells. Lipoproteins such as (very low 

density lipoproteins (VLDL), intermediate density (IDL), low density (LDL, high density 
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(HDL)) are distinguished by their fat/protein ratio and differ additionally in their composition 

of the hydrophobic and protein parts [40]. The main function of circulating lipoproteins is the 

transport of fatty acids and cholesterol for distribution to peripheral cells and liver or for their 

removal [40].  

2.2.2. MUFA/SAFA metabolizing enzymes 

Stearoyl-CoA desaturase 1 (SCD1) – SCD1 (-9-desaturase) belongs to the desaturase 

family, mainly expressed in white adipose tissue (WAT) and strongly inducible in liver [21]. 

SCD1 inserts an additional double bound into SAFAs and is the rate-limiting enzyme for 

endogenous MUFAs derived from SAFAs [3, 41]. PA and SA are main substrates which are 

desaturated into POA and OA respectively (Figure 2) [3, 21, 41]. SCD1-/- mice revealed a 

protection against high carbohydrate diet induced adiposity and hepatic steatosis, but 

remained insulin sensitive with high fat diet [42-44]. Furthermore FA composition of 

membranes in SCD1-/- mice revealed reduced SCD1 metabolic product 18:1n9 and increased 

SCD1 substrates 18:0 [3, 21, 33, 45]. SCD1-/- mice display further an altered not always 

beneficial cellular response to inflammation and stress [43]. As it was found that the 

resistance to obesity in SCD1-/- mice is associated with disruption of the epidermal lipid 

barrier causing a severe skin phenotype [46].  

 

Palmitic acid 16:0
ELOVL6

18:0 Stearic acid

SCD1 SCD1

Palmitoleic acid 16:1n7 18:1n9 Oleic acid

ELOVL6 ELOVL

Vaccenic acid 18:1n7 20:1n9 Eicosenoic acid
 

Figure 2. Metabolism of MUFAs and SAFAs by SCD1 and ELOVL6 starting from PA the product of de-novo FA synthesis. 

SCD1-Stearoyl-CoA desaturase1, ELOVL6-elongase6 [3, 21, 34, 47, 48] 

 

Elongase 6 (ELOVL6) – ELOVL6 elongates SAFAs like PA and MUFAs such as POA and 

OA by two carbons [49]. The metabolic products of these reactions are SA, VC and 

eicosenoic acid (EA, 20:1n9) (Figure 2) [21, 49-51]. Overexpression of ELOVL6 proved a 

crucial function of this enzyme to provide SA which is further desaturated to OA by SCD1 

[50]. On the other hand the knock-out model of ELOVL6 revealed the role of this enzyme in 
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MUFA/SAFA metabolism [51]. Obese ELOVL6–/– mice fed a high fat diet develop 

hepatosteatosis, but were protected against hyperinsulinemia, hyperglycemia, 

hyperleptimenia and non-alcoholic liver steatosis [34, 51, 52].  

2.2.3. Specific MUFA/SAFA ratios of SCD1 and ELOVL6 

Enzymatic activity of fat metabolizing enzymes was found to correlate with specific FA 

substrate/product ratio. The ratios of 18:1n9/18:0 and 16:1n7/16:0 describe the enzymatic 

activity of SCD1 known as “desaturation index” or “SCD1 index” [53]. Any alterations in 

gene expression pattern of SCD1 are proposed to correlate with these ratios. However, 

homozygote knock-out of SCD1 in mice reduced the 18:1n9/18:0 ratio only to 50% 

compared to heterozygotic wild type mice [45, 54]. The ratio of 16:1n7/16:0 was diminished 

by two third in the very same model [45, 54]. Further diet enriched by 18:1n9 increased the 

ratio of 18:1n9/18:0 phospholipids and ceramides while supplementation with 16:1n7 in 

bovine adipocyte cultures decreased 16:1n7/16:0 and 18:1n9/18:0 ratios [13, 55]. Chronic 

diseases like heart failure risk correlate positively with 18:1n9/18:0 while mortality cancer 

rates correlate positively with 16:1n7/16:0 [56, 57]. Negative correlation of 16:1n7/16:0 in 

PL, sterols and triglycerides was reported to the prevalence of atopic dermatitis [58].  

ELOVL6 specific FA ratios 18:0/16:0 and 18:1n7/16:n7 decrease in ELOVL6-/- models due 

to less metabolic products of ELOVL6 18:0 and 18:1 [51, 59]. Reduction of these specific FA 

ratios was observed after an n3-PUFA enriched diet [34, 50]. Overexpression of ELOVL6 

increased the elongation activity leading to an increase of its metabolic products [50]. This 

was measured for 16:0/18:0 in hepatocytes cultures in glucose rich medium [48]. 

Table 2. Specific FA ratios and the enzymatic activity of metabolizing enzymes SCD1 and ELOVL6. 

Enzyme / FA ratio Regulations and correlations  

MUFA/SAFA 

SCD1  18:1n9/18:0 correlation with enzyme activity of SCD1 [45, 54, 60-62]/ reduction by 

supplementation with n3-PUFAs and diet rich in n3-PUFAs [55, 63, 64], by AA 

(n6-PUFA) [63], by 16:1n7 (MUFA) [13]/ increase by supplementation with 

glucose [48]/ positive correlation with BMI, waist circumference [65, 66]/ negative 

correlation with training, reduction with increased training [67]  

16:1n7/16:0 correlation with enzymatic hepatic activity of SCD1 [45, 54], in VLDL [61] and in 

SCD1-/- [68], high intake of SAFA diet [69]/ reduction by n3-PUFA enriched diet 

[55, 63], reduction by n6-PUFA (AA) [63]/ positive with prevalence of atopic 

dermatitis [58], with cancer mortality rate [57], risk for heart failure [56]  

ELOVL6 18:0/16:0 correlation with gene expression and activity [48, 50, 51]/ no association in VLDL 

to enzyme activity [61]/ positive correlation with physical exercise [67]/ reduction 

by n3-PUFA rich diets [34, 50]/ increase by supplementation with glucose [48] 

18:1n7/16:1n7 correlation with enzymatic activity [50] / induction by PPAR ligand on lactate-

medium in hepatocytes [48] 
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SAFAs and MUFAs are most abundant in cellular membranes. They are non-essential fatty 

acids and can be provided by diet or synthesized endogenously by de-novo synthesis. The 

main metabolizing enzymes of SAFA and MUFA are SCD1 and ELOVL6. The activity of 

these enzymes is suggested to be represented by specific fatty acid ratios which are known 

for SCD1 as “desaturation index”.   

2.3. Polyunsaturated fatty acids (PUFAs) 

PUFAs, mainly n3- and n6-PUFAs, are essential FAs which cannot be generated in humans 

and have to be provided by diet. A combination of several sources of dietary plant and animal 

fat is recommended to provide sufficient amounts of essential FAs (Table 1) [7, 9, 70-72]. 

Higher n3-PUFAs such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are 

characteristic for animal fat such as fish oil or seal fat while n6-PUFAs like linoleic acid (LA) 

are rather found in plant oils such as corn oil, safflower oil, soybean oil, sunflower oil and 

plant oil based dietary fats like margarine (Table 1) [7, 9, 10, 39]. Sunflower oil contains 

mainly linoleic acid (18:2n6), an n6-PUFA which is one of the main dietary fats consumed in 

Western diet [10, 72]. 

The intake of n3-PUFAs originating especially from fish oil is recommended because of their 

positive correlation to reduce the risk for cardiovascular diseases and their 

immunomodulatory function [7, 9, 10, 70, 73, 74]. However dietary oils high in n6-PUFAs 

like LA are preferably consumed. The imbalance of dietary n3-PUFAs and n6-PUFAs ratio is 

also in discussion to promote the development of chronic diseases like diabetes, cardio 

vascular diseases and obesity [9, 27, 75, 76]. This development can be reversed by increased 

intake of dietary n3-PUFAs [77]. n6-PUFA-rich dietary oils are in general considered a 

healthier substitute to dietary fats rich in SAFAs assuming to reduce possible health risks 

caused by SAFA-rich diets [6, 10, 27, 72]. Negative implications on health caused by high 

intake of n6-PUFAs are proposed to be related to their immunomodulatory function [76]. n3-

PUFAs deliver precursors for anti-inflammatory mediators while mediators derived from n6-

PUFAs are pro-inflammatory [78]. Due to the fact that n3- and n6-PUFAs compete for the 

same metabolic enzymes for the formation of inflammation mediators, a higher intake of n6-

PUFAs leads to an increased generation of n6-PUFA derived pro-inflammatory mediators 

[27, 78, 79]. Therefore a general shift towards higher n6-PUFA derived inflammation 

responses can be observed [27, 79]. 
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2.3.1. PUFA metabolism 

-linolenic acid (ALA)  18:3n3 

n3 PUFA s

18:2n6 Linoleic acid (LA)

18:4n3 

Eicosapetaenoic acid (EPA)  20:5n3 

20:4n3

18:3n6 -linolenic acid (GLA) 

20:4n6 Arachidonic acid (AA)

20:3n6 Dihomogammalinolenic acid (DHGLA)

FADS2 

FADS1 

n6 PUFA s

Docosahexaenoic acid (DHA)  22:6n3 22:5n6

Elongation, 

FADS2,

b-oxidation

ELOVL5 

ELOVL5 

Docosapentaenoic acid (DPA) 22:5n3 22:4n6 

24:5n3

24:6n3

24:4n6

24:5n6

 

Figure 3. Metabolism of n3- and n6-PUFAs. FADS–fatty acid desaturase, ELOVL–elongase (adapted from [1, 10, 80, 81]) 

n3- and n6-PUFAs are mainly metabolized by fatty acid desaturase 1 (FADS1, -5-

desaturase), fatty acid desaturase 2 (FADS2, -6-desaturase) and elongase 5 (ELOVL5) 

(Figure 3) [1]. The metabolism starts with the desaturation of n3-PUFA ALA and n6-PUFA 

LA by FADS2 (Figure 3). FADS2 desaturates ALA to 18:4n3 and LA to GLA. 18:4n3 and 

GLA are further elongated by ELOVL5 to 20:4n3 and DHGLA respectively followed by a 

desaturation by FADS1 to EPA and AA respectively. A further elongation by ELOVL5 leads 

to DPA in the n3-PUFA pathway and to 22:4n6 in the n6-PUFA pathway. FADS2 desaturates 

then DPA to DHA and 22:4n6 to 22:5n6 (Figure 3) [10, 78]. The available amounts of n3- 

and n6-PUFAs by dietary intake influence directly this metabolic competition [16, 76].  

2.3.2. PUFA metabolizing enzymes 

The enzymatic activity of FADS1, FADS2 and ELOVL5 is believed to determine partially 

the endogenous content of PUFAs. Also dietary supplementation with PUFAs can alter the 

endogenous PUFA pool. Dietary supplementation with n3-PUFA, for example, increases the 

content of n3-PUFAs EPA and DPA in humans derived directly from diet or by increased 

enzymatic activity of metabolizing enzymes [82]. On the contrary supplementation with 

dietary fat high in n6-PUFA LA, as typical in Western diet, did not increase the n6-PUFA 

metabolite AA in plasma/serum phospholipids [83, 84]. However, dietary AA 

supplementation did increase AA content in phospholipids in plasma of mice [85]. This 
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suggests a regulation of endogenous available AA derived from n6-PUFAs like LA by the 

metabolizing enzymes FADS1 or FADS2, which are rate limiting for the conversion of GLA 

to AA [83].  

FADS1 – FADS1 has been found rate limiting for endogenous AA content [86]. A significant 

increase of 20:3n6 and reduction of 20:4n6 can be observed in phospholipids in FADS1-/- 

mice compared to their wild type counterparts [86]. FADS1-/- mice face additionally a short 

life span which can be extended comparable to wild type mice by supplementation of the 

FADS1 metabolic product AA [86]. In healthy subjects FADS1 activity was associated with 

increased EPA and DHA content in plasma. Further n3-PUFA rich diet increased FADS1 

specific ratios in wild type mice compared to olive oil diet [55, 81].  

ELOVL5 – ELOVL5 is crucial for the 18:4n3 content, an elongation product of 18:3n6. In 

ELOVL5-/- mice elongation of 18:3n6 and 18:4n3 by 88-90% was reduced [87]. 18:3n6 

accumulates in liver of these mice and the elongation and desaturation product AA (20:4n6) 

was significantly lower. Additionally n3-PUFA downstream product DHA and EPA 

decreased while n3-PUFA substrates of ELOVL5 accumulated [87]. Supplementation with 

AA and DHA compensated the deactivated ELOVL5 enzymatic reaction in ELOVL5-/- [87]. 

On the other hand overexpression of ELOVL5 in mice lead to an altered SAFA and PUFA 

content in liver and plasma, an increase of 20:3n6 in liver and plasma and decrease of 20:4n6 

and n3-PUFA pathway product 22:6n3 [59, 84]. In phenotype ELOVL5-/- mice develop 

hepatic steatosis [87]. 

FADS2 – The knock-out of FADS2 lead to a reduction of enzymatic products (n3-PUFA 

EPA and DHA) and higher level of substrates (n3-PUFA ALA) in phospholipids in mice 

receiving a canola or flaxseed diet both rich in LA [88]. Menhaden oil supplementation rich 

in n3-PUFAs or supplementation with DHA restored partially the liver lipid profile in 

auxotrophic FADS2-/- mice similar to wild type mice [88, 89]. FADS2-/- phenotype reveals 

further resistance to obesity and FADS2-/- male and female mice are sterile [89, 90].  

2.3.3. Specific PUFA ratios for FADS1, FADS2 and ELOVL5 

The most frequently reported FA ratio to reflect FADS1 enzymatic activity is 20:4n6/20:3n6 

(Table 3). This ratio was reported to increase after n3-PUFA rich diet suggesting an increase 

of enzymatic activity in healthy subjects [55]. Inverse correlations were found for waist-hip-

ratio (WHR) and body-mass-index (BMI) in healthy subjects and a positive correlation to risk 

cardio-vascular-diseases [65, 81].  
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The ratio 18:3n6/18:2n6 is frequently proposed to represent FADS2 enzymatic activity which 

increases with n3-PUFA enriched diet, but also reduces in healthy subjects after fish oil 

supplemented diet [55, 91]. Furthermore positive correlations were found for this ratio in AD 

patients, biomarker for diabetes and insulin resistance, biomarker indicating obesity, 

increased BMI and alcohol consumption but not for physical exercise [58, 66, 67, 92].  

Several FA ratios are proposed to represent the enzymatic activity of ELOVL5 (Table 3). 

Increased ratios of 20:3n6/18:3n6, 22:4n6/20:4n6, 22:5n3/20:5n3, 20:5n3/18:3n3, 

22:5n3/18:3n3, 22:5n3/20:5n3 were observed by ELOVL5 overexpression in transfection 

models [59, 93]. Diet related increase of FA ratios of 20:4n6/18:2n6 and 22:6n3/18:3n3 was 

achieved by high fat diet in liver of mice [59, 93]. 
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Table 3. Specific FA ratios and the enzymatic activity of the metabolizing enzymes FADS1, ELOVL5 and FADS2. 

 

PUFAs are essential fatty acids and are in less amounts incorporated into cellular membranes 

compared to MUFAs and SAFAs depending on the type of tissue or organ. Endogenously 

they are metabolized mainly by FADS1, FADS2 and ELOVL5 to form long chain n3- and 

n6-PUFAS. Several fatty acid ratios are suggested to represent enzyme specific activity and 

are associated with different health implications. 

Enzyme / FA ratio Regulations and correlations  

PUFAs 

FADS1 20:4n6/20:3n6 positive association with specific gene cluster for FADS1 [82], partially with 

SNPs of gene [94]/ decrease in triglyceride of trained rats [67]/ inverse 

association to BMI and WHR [65], obesity marker [66], triglyceride content and 

blood pressure in erythrocyte in middle-aged Korean adults [92]/ positive 

association with high risk for CHD [81]/ increase after n3-PUFA rich diet [55] 

20:4n6/18:2n6 higher in Caucasian females using hormone contraception [95] 

20:5n3/18:3n3 male and female similar level in Caucasians and East Asians, but higher in 

Caucasians female using anti-contraceptives [95] 

FADS2 18:3n6/18:2n6 no correlation to training [67]/ no correlation to PUFA intake, significant 

increase by n3-PUFA supplementation in healthy subjects [55]/ positive 

correlation to BMI, waist circumference and alcohol consumption [65, 81]/ 

positive association in patients with atopic dermatitis [58], diabetic parameter 

and insulin resistance in erythrocyte in middle-aged Korean adults [92]/ 

significant correlation to obesity marker [66] 

20:3n6/18:2n6 positive association to FADS2 activity [82, 94]/ lower in triglycerides but higher 

in phospholipids of atopic dermatitis patients [58],  increase in brain of patients 

with bipolar disorder [96]/ positive associated in hepatic PL [61]/ decrease in 

activity after h n3-PUFA diet [91],  reduction by n3-PUFA diet [55], no change 

by SAFA and MUFA diet 

22:6n3/20:5n3 positive association with enzymatic activity [82, 95] 

20:5n3/18:3n3 no correlation to atopic dermatitis diseased patients [58] 

22:6n3/18:3n3 no correlation to atopic dermatitis diseased patients [58] 

ELOVL5 20:3n6/18:3n6 Increased in liver of transfected mice [59] 

20:4n6/18:2n6 Increased after high fat diet [48, 93] 

22:4n6/20:4n6 increased after transfection [59]/ decreased after n3-PUFA supplementation [91] 

22:5n3/20:5n3 increased by transfection in rat primary hepatocytes [59] 

20:5n3/18:3n3 increased in liver by transfection in mice after high fat diet [93] 

22:5n3/18:3n3 increased in liver after transfection in mice after low fat and high fat diet [93] 

22:5n3/20:5n3 Increased after transfection [59] 

22:6n3/18:3n3 reverse association with obesity, increased by transfection, increases after low 

and high fat diet [93] 
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2.4. Gene expression of fat metabolizing enzymes 

MUFA and SAFA metabolizing enzymes SCD1 and ELOVL6 - Regulation of SCD1 and 

ELOVL6 gene expression is mediated through specific TFs like NHRs activated by dietary 

and synthetic ligands [3, 97]. Studies of the SCD1 mouse promoter revealed specific binding 

sites for SREBP-1c (Figure 5) [4]. Thus regulatory impacts on SREBP–1c alter also the gene 

expression of SCD1 [98, 99]. Dietary inducers of SCD1 gene expression are SAFAs, 

cholesterol, glucose and fasting [4, 32, 100]. A diet rich in PUFA or conjugated LA on the 

other hand suppresses the gene expression of SCD1 [101, 102]. This suppression is mediated 

through SREBP-1c shown in liver of wild type and obese mice [1, 85]. 

Figure 5. Promoter region of SCD1 displaying TF areas like SREBP-1c activated by PGC1 (SCD1 - Stearoyl-CoA 

desaturase 1, TF-transcription factor, SREBP-1c - Sterol Regulatory Element-Binding Protein-1c, PGC1 - Peroxisome 

Proliferator-Activated Receptor Gamma Coactivator 1), POL II – RNA polymerase II, PUFARE – PUFA response 

element, IRE – insulin response element, LepRE – leptin response element, LXR – liver X receptor, [4] 

The ELOVL6 gene is also a SREBP-1c target gene [1, 42, 47, 48]. Promoter studies found 

SREBP-1c specific binding sequences within the ELOVL6 promoter (Figure 6) [103]. 

Furthermore the knock-out of ELOVL6 gene inhibits the SCD1 gene expression revealing 

their connection to each other [51]. 

Figure 6. Scheme of the mouse ELOVL6 promoter. E-box – enhancer box, SRE - sterol response elements [103].  

PUFA metabolizing enzymes ELOVL5, FADS1 and FADS2 – Genes of ELOVL5, FADS1 

and FADS2 can be regulated by NHRs which act via SREBP-1c [85, 99]. FADS1 and 

FADS2 gene expression are induced by high carbohydrate diet or high carbohydrate diet 

combined with 18:1n9 and high SAFA [34, 85]. Also gene expression of ELOVL5 is reported 

to be induced by high carbohydrate diet [104]. Although FADS1 and FADS2 are mainly 
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target genes of SREBP-1c additional regulation by activation of LXR for FADS1, FADS2 

and ELOVL5 in secondary manner via the SCREBP-1a pathway has been reported [34, 104, 

105]. Diets high in PUFAs like EPA, DHA and AA suppress the expression of FADS1 and 

FADS2 in liver assumed by the activation of PPAR [34, 106]. 

Sterol Regulatory Element-Binding Protein (SREBP-1c) is a common TF regulating the 

gene expression of MUFA/SAFA metabolizing enzymes SCD1, ELOVL6 and PUFA 

metabolizing enzymes FADS1, FADS2 and ELOVL5 [34, 48, 99]. SREBP-1c is mainly 

expressed in the liver and WAT and plays a major role in the regulation of FA, glycerolipid 

and cholesterol metabolism [98, 107, 108]. Induction of SREBP-1c has been shown by diets 

high in carbohydrates and high in SAFA while n3-PUFA supplemented diets suppress 

SREBP-1c and its function [98, 99, 109]. Further high cholesterol levels increase SREBP-1c 

activity while low intracellular cholesterol is associated with low SREBP-1c activity [108].  

2.4.1. Nuclear Hormone Receptors regulated by Fatty Acids 

Nuclear hormone receptors (NHRs) are transcription factors which after stimulation induce or 

suppress gene expression of their specific target genes [110]. Activation of NHRs can be 

achieved by specific synthetic ligands or by natural ligands derived from diet. FAs are 

potential activators for the group of NHRs peroxisome proliferator activated receptor (PPAR) 

(), but also for the NHR liver-X-receptor (LXR) and several other TFs like the sterol 

regulatory element-binding protein (SREBPs) (Figure 4) [1, 11, 110-112]. LXR and 

SREBP1c can be activated by dietary SAFAs [32, 49, 113-115]. Activation of PPAR and 

PPAR can be achieved by SAFAs as well as by unsaturated FAs like AA (n6-PUFA) 

[111], while PPAR was reported to be sensitive to PUFAs [111]. PPAR and PPAR 

regulate the gene expression of genes involved in fatty acid oxidation while PPAR regulates 

the expression of genes important for adipogenesis and lipid storage [111, 112, 116, 117]. 

LXR activation alters the gene expression of genes involved in lipogenesis [118]. NHRs 

retinoic acid receptor (RAR) and retinoid X receptor (RXR) can be activated by FAs but remain 

more sensitive to forms of vitamin A [119, 120]. PUFAs like DHA, AA and DPA were found 

to bind to the ligand domain of the RXR [119]. RAR, PPAR and LXR are required to 

build heterodimers with RXR for their functionality (Figure 4) [120]. 
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Figure 4. Signal transduction of NHRs after activation. PUFA - polyunsaturated fatty acid, PPAR - peroxisome proliferator-

activated receptor, RXR – retinoid X receptor, RAR - retinoic acid receptor, RA – retinoic acid, LXR - liver X receptor, xRE 

– receptor specific response element, VA – vitamin A, SAFA – saturated fatty acid, MUFA – monounsaturated fatty acid, 

PUFA – polyunsaturated fatty acid, (adapted from [101, 120-123])  

2.4.3. NHRs and Vitamin A 

Vitamin A is a fat soluble vitamin derived from plants as pro-vitamin -carotene and from 

animals as retinyl-ester (RE) (Figure 7) [124]. β-carotene is cleaved in the intestine to retinal 

and transported as retinoic acid (RA) or retinol to the extrahepatic tissue [125]. Vitamin A is 

taken up in intestine as retinyl-ester and transported to periphery by chylomicrons where RE 

is converted to retinol [123, 126]. Bound to retinol binding protein (RBP) RE are delivered to 

all body cells [123]. Main metabolic active forms of vitamin A 9-cis retinoic acid (9-cis-RA) 

and all-trans retinoic acid (ATRA) are accounted for most of the physiological functions of 

vitamin A [110, 120, 124, 127, 128]. NHRs activated by active forms of vitamin A are 

retinoid X receptor (RXR) and retinoic acid receptor (RAR) [112, 117, 120, 129] (Figure 4). 

RAR is more sensitive to ATRA as a ligand while RXR responds to ATRA and 9-cis-RA [40, 

117, 129, 130]. Recently 9­cis­13,14­dihydroretinoic acid has been presented as a more 

potential metabolic forms of vitamin A [131, 132]. RXR fulfils the special role of forming 

heterodimers with other NHRs in order to enable and support their activity (Figure 4) [120]. 

The regulation pathways of vitamin A-activated NHRs includes lipid metabolism and 

thermogenesis [40, 127]. RA content is crucial for the activity of RXR and RAR. RA is 

catabolized to inactive metabolites all-trans-4-oxo-retinoic acid and all-trans-4-hydroxy-

retinoic acid by the enzyme cytochrome Cyp26A1. CYP26A1 plays a major role in the 

clearance of RA content and therefor controls the availability of active RXR ligands [133, 

134]. 
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Figure 7. Scheme of Vitamin A metabolism. Uptake, distribution and secretion of vitamin A in human. RA – retinoic acid, 

STRA6 – stimulated by retinoic acid gene 6 protein, RDH – retinol dehydrogenase, RALDH – retinal dehydrogenase, LRAT 

– lecithin retinoic acyltransferase, ARAT – retinol acyltranferase, REH – retinyl ester hydrolase, RBP – retinol binding 

protein, TTR – transthyretin, RARE – retinoic acid response element [125]. 

 

Connecting vitamin A and fatty acid regulatory pathways by CYP26A1 - Regulatory 

pathways of vitamin A and FAs are crosslinked to each other by the activation of RXR 

(Figure 4, Figure 7). As mentioned in the previous chapter RXR is crucial to form 

heterodimers with other NHRs regulating fatty acid controlled target genes (Figure 4; 2.4.1.). 

An activation of RXR can be achieved by several forms of RA; e.g. as recently published by 

9­cis­13,14­dihydroretinoic acid [131]. The clearance of RA is dependent on enzymatic 

activity of CYP26A1 (2.4.3.). This enzyme is induced by vitamin A but also by n3-PUFAs 

like DHA [135] which could lead to an increased clearance of RA. Less available RA could 

lead to a reduced activation of RXR which could affect the gene expression of its target genes 

including fat metabolizing enzymes [135].  

 

This chapter described fatty acid controlled gene regulation of fatty acid metabolizing 

enzymes. The physiologic function of fatty acids to alter gene expression via activation of 

NHRs was explained including the important role of the SREBP as transcription factor for 

target genes including fat metabolizing enzymes. Crucial for this function is the 

heterodimerisation of NHRs with RXR. A link between vitamin A metabolism, the natural 

ligand for RXR, and fatty acid controlled gene expression regulation could be assumed.  
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2.5. Fatty Acids determine Phospholipids (PLs) and Membrane Composition 

FAs fulfil one of their major roles in providing the basic structures for the construction of 

cellular membranes. Cellular membranes are assemblies of PLs, cholesterol and 

glycoproteins forming a lipid-bilayer that compartments cells and endogenous cell bodies like 

endoplasmic reticulum or lipoproteins [16, 35]. PLs are triglycerides esterified with FAs on 

two hydroxyl positions and a phosphate residue on position one, which classifies as e.g. PL-

choline (Figure 8) [2, 16]. The esterified FAs represent the hydrophobic part of the PL while 

the phosphate residue is hydrophilic. In cellular membranes PLs form double layers 

consisting of two PL-layers. Hydrophobic parts of these two PLs connect leading to 

hydrophobic inner part while the hydrophilic part of the PL forms the outer layer of the 

membrane (Figure 8) [16]. PLs are grouped into several subclasses according to the structure 

of the phosphate-residue [2]. Phosphatidylcholine (PC), sphingomyelins and 

phosphatidylethanolamine (PE) are the most abundant PLs in membranes depending on the 

cell type [16]. Lyso-phosphatidylcholine (LPC) a derivate of PC is generated by cleavage of 

one FA from PC by phospholipases. Therefore LPCs contain only one esterified FA, while in 

other PL two FAs are found [2].  

Figure 8. Structure of phospholipids A) Structure of PLs represented by phosphatidylcholine (PC), Lyso-phosphatidylcholine 

(LPC), phosphatidylethanolamine (PE), SAFA -saturated fatty acid, MUFA - monounsaturated fatty acid. B) Lipid bilayers 

the basic structure of cellular membranes and lipid micelles (modified from [2, 136]) 
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Main FAs incorporated into PLs are MUFAs and SAFAs but also PUFAs can be found in less 

amounts [2, 35, 136]. The constant turnover of cellular membranes allows adaptation of their 

composition depending on the type of dietary fat available [70, 137, 138]. This adaption 

demands up to 20% of available energy for example in the brain [139]. Clinical investigations 

of human blood revealed that alterations of dietary fat intake are detectable in cell membranes 

of erythrocytes leading to an alteration of their phenotype [140]. Diets high in sunflower oil 

increase the content of 18:2 in PLs of cell membranes of erythrocytes whereas fish oil 

enriched diet increase the content of n3-PUFAs like DHA and EPA [140]. This observation 

are reported further in liver, muscle and brain cells [16, 77, 138]. Alteration of composition 

of membranes by e.g. dietary fat influence their fluidity, signal transduction, functionality of 

membrane bound enzymes, cellular metabolic rate and transport proteins leading to altered 

cellular signals but is also of further interest as biomarker for dietary fat intake and for 

association with development of chronic diseases [2, 10, 16, 141-144].  
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3. AIM OF CONDUCTED STUDIES 

All conducted studies aimed to investigate the FA content in PLs depending on the fact 

whether they come from the diet or from hepatic gene expression of FA metabolizing 

enzymes. In our studies different dietary fats, dietary vitamin A but also synthetic NHR 

ligands were applied. To investigate the role of metabolizing enzymes on FA composition in 

PLs specific FA ratios for each enzyme were calculated and compared to the respective gene 

expression pattern.  

Study 1 Influence of dietary fat – The aim of the study was to find out whether the content 

of MUFA, SAFA and PUFA in PLs is regulated by alterations of gene expression of FA 

metabolizing enzymes SCD1, ELOVL6, FADS1, FADS2 and ELOVL5. Our questions was 

whether do the different dietary fats affect the hepatic gene expression according to their 

contained FAs? Further it was investigated whether the suppression of gene expression of fat 

metabolizing enzymes by dietary PUFAs could be caused by vitamin A metabolism.  

Study 2 Synergism of dietary fat and vitamin A – In order to answer the question if 

nutrients interfere with each other on similar target gene expression pattern, different 

amounts of dietary vitamin A capable to induce gene expression of SCD1 and different 

amounts of sunflower oil suppressing gene expression of SCD1 were applied. Furthermore 

the impact of the combined diet containing these nutrients on gene expression of SCD1 and 

ELOVL6 was investigated in a dose dependent manner. 

Study 3 Regulation by NHRs – The aim of this study was to investigate if the synthetic 

ligands are capable to activate NHRs which alters gene expression of target genes like SCD1 

and ELOVL6. The different regulatory impact of several NHRs, like PPAR, PPAR, 

PPAR, RXR, LXR and RAR was investigated on gene expression of SCD1 and ELOVL6.  

Contributions to studies conducted in this thesis  

The author of this thesis designed, fully planned and performed all included studies. Analysis 

of fat metabolizing enzymes by QRT-PCR was conducted by the author as well as data 

analysis and final publication. FA analyses in these studies have been performed by co-

authors of the included publication. Diet preparations as well as performance of the animal 

studies were supported by Dr. Johanna Mihály and Dr. Gamze Aydemir.  
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4. MATERIALS AND METHODS 

4.1. Diet preparation 

Study 1 – Influence of dietary fat - The experimental diets (Table 4) were formulated 

according to Bonilla et al. [145] and contained 415 g/kg diet wheat starch, 280 g/kg diet 

sucrose, 180 g/kg diet casein from bovine milk, 20 g/kg diet cellulose VIVAPUR. The 

content of minerals was 45 g/kg diet (Mineral-Spurenelemente-Vormischung C1000). The 

vitamin content was 10 g/kg diet (Vitamin-Vormischung C1000). The source of dietary fat 

was different in each experimental diet but the content was the same by adding 5 g/kg diet 

which is considered a normal fat content [145]. The fat sources were sunflower oil, fish oil, 

coconut fat and olive oil and margarine.  

Ingredients g/kg diet 

Wheat starch  415 

Sucrose 280 

Casein 180 

Cellulose 20 

Minerals  45 

Vitamins 10 

Dietary fat (sunflower oil/fish oil/coconut fat/olive oil/margarine 5 
Table 4. Composition of diet containing different types of dietary fat 

Study 2 - Synergism of dietary fat and vitamin A - Experimental diets were prepared 

according to the protocol of Bonilla et al. [145]. Sunflower oil was used as dietary fat which 

contained 67.9% of the n6-fatty acid linoleic acid (18:2n6). Vitamin mix (Vitamin-

Vormischung C1000) containing either 2,500 RE (retinol equivalents)/kg diet or no vitamin 

A (deficient diet) was added to diets. The high vitamin A amounts was achieved by adding 

324,000 RE/kg diet of retinyl-palmitate supplement (RETPAL) per kg diet. The final vitamin 

A amount in diets was 0 RE in vitamin A deficient diet, 2,500 RE/kg diet vitamin A normal 

diet and 326,500 RE/kg diet for high vitamin A diet. The content of macronutrients in these 

diets was not based on an isocaloric distribution. According to the aim of the study diets 

containing high, normal and low fat contents of carbohydrate (sucrose) content were altered 

to compensate amount differences per kg diet (Table 5). 
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Ingredients (g/kg 

diet) 

Diet groups 

Low Fat  

(LF, 2%) 

VA normal 

Normal Fat 

(NF, 5%) 

VA deficient 

Normal Fat 

(NF, 5%) 

VA normal 

Normal Fat 

(NF, 5%) 

VA high 

High Fat  

(HF, 25%) 

VA normal 

Starch 430 415 415 415 325 

Sucrose 295 280 280 280 170 

Sunflower oil 20 50 50 50 250 

Casein 180 180 180 180 180 

Mineral mix 45 45 45 45 45 

Vitamin Mix* 10 10 10 10 10 

Total VA content  

(RE/kg diet) 
2,500 0 2,500 326,500 2,500 

Caloric value  

(kcal /kg diet) 
3800 3950 3950 3950 4950 

Table 5. Diet and feeding scheme of different dietary combinations of fat (sunflower oil) and of vitamin A. *- vitamin mix in 

the normal fat diet group provided different amounts of vitamin A: vitamin mix without vitamin A (VA-deficient diet), 

vitamin mix with vitamin A containing 2,500 RE/kg retinyl-palmitate (RETPAL) (VA-normal diet), vitamin mix with high 

vitamin A containing in total 326,500 RE/kg (VA high diet). Sunflower oil was added as dietary fat which contained either 

2% (low fat diet), 5% (normal fat diet) or 25% (high fat diet). 

 

Study 3 - Regulation by NHRs - Mice were fed for two weeks with chow diet and had water 

ad libitum (VRF1, Altromin, D). After the acclimatization period, animals were gavaged 

daily for one week with specific synthetic ligands dissolved in 25% Cremophor EL. The 

vehicle (Cremophor EL) was applied at 5 ml/kg body weight (b.w.). Dosage of each synthetic 

ligand is listed in table 6. For activation of PPARthe ligand rosiglitazone was used, for the 

activation of RXR the ligand LG268, for the activation of RAR the synthetic ligand AM580, 

for the activation of PPARthe synthetic ligand GW7647, for the activation of PPAR the 

synthetic ligand GW0742 and for the activation of LXR the synthetic ligand T0901317. 

 

 

 

 

 

 

 

Table 6. Application of specific ligands for activation of nuclear hormone receptors. Specific ligands were dissolved in 25% 

Cremophore / water (v/v) and gavaged to 6 female mice in each treatment group. 

Receptor  Specific ligand  Daily dosage  Reference 

Vehicle Cremophore / EL 5 ml / kg b.w.  

PPAR Rosiglitazone 3 mg / kg b.w. [146] 

PPAR GW0742 5 mg / kg b.w. [147] 

PPAR GW7647 3 mg / kg b.w. [148] 

RAR AM580 10 mg / kg b.w. [149] 

LXR T090117 20 mg / kg b.w. [150] 

RXR LG268 30 mg / kg b.w. [151] 
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4.2. Animal Studies 

All studies were performed in vivo on a mouse model. In the phase of acclimatization 6-8 

weeks old C57BL6 female mice were fed for two weeks with general animal chow diet 

(VRF1). 8 animals were housed per cage at an average temperature of 22°C with a daily 12h 

light and 12h dark cycle. The animals had access to water and food ad libitum. After the two 

weeks of acclimatization the specific treatment or diets were applied.  

Animal experiments were performed at the Laboratory Animal Core Facility of the 

University of Debrecen (Debrecen, H) in accordance to the ethical guidelines of Hungary.  

Study 1 – Influence of Dietary Fat - Six to eight-week-old female C57BL6 mice, purchased 

from Charles River (Budapest, H), were fed first for two weeks with regular chow (VRF1, 

Altromin GmbH, Lage, D). After the acclimatization period of two weeks, the animals were 

divided into different feeding groups (n = 6 each group) and received for 4 weeks diets 

containing each a different kind of a dietary fat.  

Study 2 – Synergism of dietary fat and Vitamin A - After the acclimatization period 

animals received a vitamin A deficient (0 RE/kg diet) diet containing 5% sunflower oil as 

dietary lipid for 10 weeks, which represented a diet with a normal fat content (Table 4)[145]. 

Animals were divided into different feeding groups (n = 6 per group) and were fed for 4 

weeks with specific diets containing different amounts of dietary fat and equal amounts of 

vitamin A (2,500 RE/kg diet, normal vitamin A). Additionally the normal fat/normal vitamin 

A diet group was augmented by two other normal fat diet groups receiving different amounts 

of vitamin A, 0 RE/kg diet (vitamin A deficient) and 326,500 RE/kg diet (vitamin A high) 

(Table 5).  

Study 3 - Regulation by NHRs - After the acclimatization period, animals were gavaged 

daily for one week with specific synthetic ligands dissolved in 25% Cremophor EL/water 

(v/v).  

 

4.3. Sample Preparation and Analysis 

Sample Preparation - Animals were anaesthetized by halothane and the blood was taken by 

cardiac puncture. Blood and organs were obtained. Organs were frozen immediately in liquid 

nitrogen and plasma was immediately removed and frozen after centrifuging of the blood 

samples at max. speed for 10 minutes. Organs and plasma were stored at -80°C.   
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Analysis of Gene Expression by QRT-PCR - Hepatic gene expression was measured by 

expression level of mRNA of the desired target gene. RNA was extracted from tissue, 

transcribed into cDNA and amplified by QRT-PCR. 

RNA-isolation from Tissue - RNA-isolation from frozen tissue samples was performed via a 

combined protocol using Tri reagent and the Sigma RNA isolation kit to receive pure RNA 

samples free from RNAses. The frozen tissue samples weighted approximately 20 mg - 50 

mg.  

Homogenization: Frozen tissue samples were homogenized in 10mg/100µl of Trizol with a 

mechanical mill (Qiagen Tissue Lyser) for 3 minutes. After incubation for 15 minutes at RT 

the homogenate was centrifuged at 13000 x g for 5 minutes to remove disturbing structures of 

the organ. Supernatants were transferred into a 1.5 ml new reaction tube. 

Extraction: RNA was extracted from the homogenate with chloroform (20µl/100µl Trizol), 

which was added to the homogenate, then thoroughly mixed and incubated for 3 minutes at 

RT. The samples were centrifuged at 13000 x g for 15 minutes and the aqueous phase was 

removed into a new reaction tube and mixed with 700 µl ethanol (70%). 

Loading: The RNA containing ethanol mixture was loaded onto the binding column (Gen 

Elute Binding column) of the Sigma RNA isolation kit which was then centrifuged for 15 

seconds at 13000 x g. The supernatant was discarded after the centrifugation.  

Washing: For the washing of the binding membrane 500 µl of wash buffer (solution Nr. 1) 

was added onto the column, centrifuged at 13000 x g for 15 seconds and then the column was 

transferred to a new 2 ml collection tube. The column was further washed two times with 500 

µl of the wash-solution (solution Nr. 2 containing 96% of ethanol), centrifuged at 13000 x g 

for 15 seconds. 

Elution of RNA: The column was transferred to a new 2 ml collection tube, 50 µl nuclease 

free water was added onto the binding column. The column was then centrifuged at 13.000 x 

g for 1 min. The eluted RNA was stored at -70°C. 

Concentration and purity of the eluted RNA was measured by NanoDrop spectrophotometer 

and the quality was verified by 1% agarose gel electrophoresis. Visibility of RNA under UV-

light was achieved by adding ethidiumbromid to the solution. 
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Synthesis of cDNA - RNA was transcribed to single stranded cDNA by reverse transcriptase 

reaction. 3µg of RNA per sample were used to achieve an equal amount of cDNA for the 

QRT-PCR (Table 7). The reaction was performed in a 2720 Thermal Cycler from Applied 

Biosystems. The reaction was performed according to the following protocol: 10 minutes at 

25°C followed by 120 minutes at 42°C and 5 minutes at 72°C. Finally the reaction was 

cooled down to 4°C. cDNA samples were diluted 1:10 with nuclease free water and stored at 

-80°C. 

Compound used concentration  volume in µl for 1 reaction 

5x SSII buffer  8 

DTT 0.1 M 4 

dNTP 2.5 mM 8 

random hexamer primer 3 µg/µl 0.2 

SSIIMnlv 200U/µl 0.2 

volume of Mastermix  20 

RNA 3µg (final volume + water = 20) 20 

final volume of sample  40 

Table 7. Protocol for the synthesis of cDNA from RNA  

Amplification by QRT-PCR using FAM-TAMRA. - The expressions of the house keeping 

gene Cyclophilin A and the target genes SCD1, ELOVL6, FADS1, FADS2 and ELOVL5 

were amplified and detected with the TAMRA amplification system. Each reaction contained 

5 µl Mastermix and 5 µl cDNA (Table 8). Primer and probe for expression analysis (TaqMan 

Gene Expression Assay) as well as quantitative real-time PCR detection system (ABI-

PRISM, 7900HT Sequence Detection System) were purchased from Applied Biosystems. 

The QRT-PCR reaction was performed according to the following protocol: 1 min at 94°C 

for denaturation of double strand, 40 cycles of 12 sec at 94°C for annealing and 30 sec at 

60°C for amplification. The expression of target genes was normalized to the house keeping 

gene cyclophilin A (house-keeping gene): +primer 77”+”5´-CGATGACGAGCCCTTGG-3´, 

-primer 142”-“5´-TCTGCTGTCTTTGGAACTTTGTC-3´, probe (69+, 96+): FAM-

CGCGTCTCCTTCGAGCTGTTTGCA, quencher tetramethylrhodamine (TAMRA). The 

amplification signal was detected and analyzed via SDS2.1. Sequence Detection System 

Software. The quantification of the specific mRNA expression compared to the housekeeping 

gene was calculated by the comparative CT method. Sequences for primer and probe of the 

target genes ELOVL6, SCD1, FADS1, FADS2 and ELOVL5 were purchased from Applied 

Biosystems, Budapest, Hungary.  
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Compound used concentration  volume in µl for 1 reaction 

Water  2.1 

MgCl2 25 mM 1.2 

10xTaq buffer  1 

dNTP 2.5 mM 0.5 

Taq-Polymerase 5U/µl 0.0625 

primer- 100 µM 0.0375 

primer+ 100 µM 0.0375 

Probe 20 µM 0.0625 

final volume of Mastermix  5 

Table 8. Protocol for the analysis via QRT-PCR 

Analysis of PLs in plasma and FA composition in diet by GC – The analysis of frozen 

plasma (50 µl) and diet samples via GC was performed by Prof. Dr. Tamas Decsi and Dr. 

Tamas Marosvölgyi (University of Pecs, H).  

Diet and plasma samples were analyzed by gas chromatography. For the analysis frozen 

samples were thawed and the pentadecanoylphosphatidylcholine as internal standard was 

added. Lipids were extracted by the addition of 3 ml chloroform and 1 ml methanol according 

to the method of Folch [152]. The mixture was vortexed at 3.000 rpm for 15 min. The lower 

layer was then aspirated into vials and evaporated under an N2 stream. Lipid extracts were 

reconstituted in 70 µl chloroform and lipid classes were separated by thin layer 

chromatography (TLC). The solvent-mix for TLC of plasma lipids was as follows: 

hexane:diethyl ether: chloroform: acetic acid (21:6:3:1, v/v). The bands were stained with 

dichlorofluorescein, removed by scraping and transesterified in 1 ml of 3 N-HCl-methanol 

solution (Methanolic HCl, § N, Supelco, Budapest, H) at 84°C for 45 min [153]. Fatty acids 

were analyzed by high-resolution capillary GC using a Finnigan 9001 gas chromatograph 

(Finnigan/Tremetrics Inc., Austin, TX, USA) with split injection (ratio 1:25), automatic 

sampler (A200SE; CTC Analytic, Zwingen, CH, USA) and flame ionization detector with a 

DB-23 cyanopropyl column of 40 m length (J&W Scientific, Folsom, CA, USA). The 

temperature program was set to the following parameters: temperature of injector at 

80°C/min up to 280°C, temperature of detector at 280 °C, temperature of column area at 

60°C for 0.2 min, temperature increase by 40°C/min up to 180 °C, 5 min isothermal period, 

temperature increase by 1.5 °C/min up to 200 °C, 8.5 min isothermal period, temperature 

increase by 40 °C/min up to 240 °C and 13 min isothermal period. The constant linear 

velocity was 0.3 m/s (referred to 100 °C). Peak identification was confirmed by comparison 

with authentic mixtures of weighed fatty acid (FA) methyl esters (GLC-463: Nu-Chek Prep, 

Elysian, MN, USA; and Supelco 37 FAME Mix: Supelco, Bellefonte, PA, USA). Individual 
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FA response factors determined from these weighed standards were used to calculate the 

percentage by weight for individual FA between 12 and 24 carbon atoms from the percentage 

of area under the curve. In study 1 all values were normalized to coconut fat (=1) to compare 

diet groups with each other and using coconut fat as a reference. The effect of diet on final 

FA profile in phospholipids was expressed as A-C and are shown in each enzyme. 

Analysis of liver and plasma samples by ESI-MS/MS – PLs were analyzed in plasma and 

liver. Frozen tissue samples (20-50 mg) and frozen plasma samples (70 µl) were sent for the 

analysis of FA composition in specific PLs via ESI-MS/MS to Prof. Dr. Gerd Schmitz and 

PD Dr. Gerhard Liebisch (University of Regensburg, D).  

Liver homogenates and plasma were extracted according to the procedure described by Bligh 

and Dyer et al. [154] in the presence of non-naturally occurring lipid species as internal 

standards. Lipids were quantified by electrospray ionization tandem mass spectrometry (ESI-

MS/MS) in positive ion mode as described previously by Brugger et al. and Liebisch et al. 

[155-157]. Samples were quantified by direct flow injection analysis using the analytical 

protocol described by Liebisch et al. [156, 157]. A precursor ion scan of m/z 184 specific for 

phosphocholine containing lipids was used for phosphatidylcholine (PC), sphingomyelin 

(SM) [157] and lysophosphatidylcholine (LPC) [156]. Neutral loss scans of 141 and 185 were 

used for phosphatidylethanolamine (PE) and phosphatidylserine (PS), respectively [157]. 

Ceramide was analyzed similarly to a previously described methodology [158] using N-

heptadecanoyl-sphingosine as the internal standard. The following non-naturally occurring 

lipid species were used as internal standards: PC 28:0, 44:0, LPC 13:0, 19:0 PE 28:0, 40:0, 

PS 28:0, 40:0. Quantification was performed by standard addition calibration to plasma and 

liver homogenates using several naturally occurring lipid species for each lipid class (PC 

34:1, 36:2, 38:4, 40:0; SM d18:1/16:0, d18:1/18:1, d18:1/18:0; LPC 16:0, 18:1, 18:0; PE 

34:1, 36:2, 38:4, 40:6 and PE 16:0/20:4; PS 34:1, 36:2, 38:4, 40:6). All standards were 

purchased from Avanti Polar Lipids (Alabaster, AL, USA). Isotopic overlap corrections of 

lipid species as well as data analysis by self-programmed Excel Macros were performed for 

all lipid classes according to the principles described previously [147]. Lipid species were 

annotated according to the recently published proposal for shorthand notation of lipid 

structures that are derived from mass spectrometry [159]. Glycerophospholipid annotation is 

based on the assumption of even numbered carbon chains only. The amounts of incorporated 

FAs were calculated as percentages. 
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4.4. Statistics 

Results were displayed as mean and standard error mean. Statistical analysis was performed 

by Kruskal-Wallis- test followed by paired analysis in study 1 and by ANOVA followed by 

the Bonferroni post hoc test for study 2 and study 3 using the program SPSS (15.0) (SPSS 

Inc., Chicago, USA). Statistically significant differences were accepted and displayed from a 

value of p < 0.05 and p<0.01. 
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5. RESULTS 

In three in vivo studies on mice main enzymes of the SAFA, MUFA and PUFA metabolism 

were studied and the consequences on fatty acid (FA) contents in phospholipids (PLs). PLs in 

plasma were analyzed in total in their composition by gas chromatography (GC) and for 

selected PLs subgroups measured in plasma in liver by electrospray ionization tandem mass 

spectrometry (ESI-MS/MS). The first study investigated regarding the altered gene 

expression of enzymes of the MUFA/SAFA and PUFA metabolism by several dietary fats. 

The study of PUFA rich dietary fat -sunflower oil- in combination with the micronutrient 

vitamin A examined the synergism of inducing and repressing signals on the gene expression 

of MUFA and SAFA metabolizing enzymes SCD1 and ELOVL6. Furthermore altered 

hepatic gene expression of SCD1 and ELOVL6 by activation of selected NHRs was studied. 

 

5.1. Study 1 – Influence of Dietary Fat 

5.1.1. MUFA/SAFA content in PLs is determined mainly by enzymatic activity of SCD1 

and ELOVL6 regulated by dietary fatty acids  

 

Fatty acid composition of diets  

The composition of selected FAs in diets applied in this study was analyzed by GC (Table 9). 

Coconut fat diet displayed more than 90% SAFAs of all measured fatty acids, especially 16:0 

(18.2%) and 18:0 (20.5%). Margarine contained a mixture of SAFA (31.3%), MUFA (44.6%) 

and PUFA (n6-PUFAs 19.0%, n3-PUFAs 5.03%). The characteristic FA in olive oil was the 

MUFA 18:1n9 (70.4%), while n6-PUFAs (10.6%) and SAFAs (15.2%) were found in less 

amounts. Sunflower oil mainly contained the n6-PUFA 18:2n6 (67.2%), further MUFA 

(20.0%) and SAFAs (11.6%). Fish oil displayed highest amounts of n3-PUFAs (37.1%) 

among the investigated dietary fats, mainly EPA (16.1%) and DHA (13.7%). Further 31.6% 

SAFA and 24.8% MUFA were measured in fish oil diet.  
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COC MAR OLI SUN FIS

SAFA 93.35 31.34 15.24 11.59 31.58

 16:0 18.21 21.24 11.9 6.47 20.56

 18:0 20.47 3.51 2.7 4.07 4.11

MUFA 2.43 44.58 73.56 19.98 24.77

16:1n7 0.06 0.24 1.21 0.02 8.3

18:1n7 0.1 1.92 1.79 0.47 3.22

18:1n9 2.16 40.89 70.4 19.44 10.51

20:1n9 0.08 0.85 0.17 0.05 1.82

n6-PUFA 3.7 18.97 10.63 68.17 5.94

18:2n6 3.23 18.69 10.52 67.86 3.51

18:3n6 <0.001 0.01 <0.001 <0.001 0.26

20:3n6 <0.001 <0.001 <0.001 0.04 0.19

20:4n6 <0.001 0.02 <0.001 0.06 1.02

22:4n6  0.02 0.02 <0.001 <0.001 0.11

22:5n6 <0.001 0.03 <0.001 <0.001 0.46

n3-PUFA 0.32 5.03 0.49 0.20 37.14

18:3n3 0.29 4.79 0.45 0.17 1.29

18:4n3 <0.001 0.14 0.02 <0.001 3.09

20:5n3 <0.001 0.03 0.02 0.03 16.11

22:5n3 0.02 <0.001 <0.001 <0.001 2.77

22:6n3 0.02 0.02 <0.001 0 13.72  

Table 9. Composition of selected fatty acids of experimental diets analyzed by GC and displayed as weight %. COC – 

coconut fat; MAR – margarine; OLI – olive oil; SUN – sunflower oil; FIS – fish oil 

 

Role of SCD1 on MUFA/SAFA content 

Amounts of FAs and FA ratios in diet - In all diet groups FAs of SCD1 metabolism (16:0, 

16:1n7, 18:0, 18:1n9) were analyzed and normalized to the values found in coconut fat 

supplemented diet. Comparisons between all diet groups showed that the amount of 

contained 16:0 in diet was the highest in margarine (21.24%) supplemented diet and lowest in 

sunflower oil (6.47%) supplemented diet (Table 9, Figure 9A). Highest values of 16:1n7 were 

measured in fish oil (8.3%) supplemented diet and lowest in sunflower oil (0.02) 

supplemented diet (Table 9, Figure 9A). 18:0 was measured highest in coconut fat (20.47%) 

supplemented diet and lowest in olive oil (2.7%) supplemented diet (Table 9, Figure 9A). The 

18:1n9 was the highest in olive oil (70.4%) supplemented diet and lowest in coconut fat 

(2.19%) supplemented diet (Figure 9A). The ratio of substrates and products of SCD1 was 

measured to be the highest in olive oil supplemented diet and lowest in coconut fat 

supplemented diet (Figure 9B). The ratio of 16:1n7/16:0 was calculated the highest in fish oil 
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supplemented diet and lowest in coconut fat supplemented diet. The ratio of 18:1n9/18:0 was 

highest in olive oil supplemented diet and lowest in coconut fat supplemented diet (Figure 

9C).   

Gene expression in liver of supplemented mice - The hepatic gene expression of SCD1 was 

highest after margarine supplemented diet and lowest after fish oil supplemented diet (Table 

10, Figure 9D). Significant differences could be shown between gene expression after fish oil 

diet and the coconut, sunflower oil (p<0.05), as well as between fish oil and margarine and 

olive oil supplemented diet groups (p<0.01). Furthermore hepatic gene expression of SCD1 

was significantly higher after coconut fat supplemented diet compared to olive oil 

supplemented diet (p < 0.05).  

Amounts of FAs and FA ratios in phospholipids (PLs) of supplemented animals - In 

plasma PLs, 16:0 and 18:0 were found highest in PLs of animals fed fish oil (37.67%±3.89, 

25.45%±7.99) supplemented diet while lowest amounts were found in animals fed a 

margarine (22.47%±2.37, 16.14%±4.92) supplemented diet (Table 10, Figure 9E). The 

highest content of 18:1n9 and 16:1n7 was measured in those fed with margarine 

(21.62%±6.21, 2.27%±1.73) and lowest in those following a sunflower oil (7.72%±1.14, 

0.48%±0.07) supplemented diet (Table 10, Figure 9E). In PLs the ratio of substrates and 

products of SCD1 was highest in margarine supplemented diet fed mice and lowest after the 

consumption of fish oil supplemented diet (Figure 9F). The highest ratio in PLs of margarine 

supplemented diet group was significantly different to olive oil, sunflower oil (p<0.05) and 

fish oil supplemented diet (p<0.01). The lowest ratio after fish oil supplemented diet was 

further significantly different to coconut fat, and olive oil supplemented diet groups (p<0.01). 

Specific ratios of 16:1n7/16:0 and 18:1n9/18:0 were highest after margarine supplemented 

diet (Figure 9G) which was significantly different for 18:1n9/18:0 in sunflower and fish oil 

supplemented diet groups. Lowest ratio of 16:1n7/16:0 was calculated after consumption of 

sunflower oil supplemented diet which was significantly different in coconut fat (p<0.01) and 

fish oil supplemented diet group (p<0.05). The lowest value of 18:1n9/18:0 calculated in fish 

oil supplemented feeding group was significantly different in coconut fat, olive oil (p<0.01) 

and margarine supplemented diet groups (Figure 9G). 

In summary, the amounts of SAFAs 16:0 and 18:0 measured in diet differed from those 

measured in PLs, which was true for all experimental diets. The only agreement observed 

between diet and PLs was for the MUFA 16:1n7 which was lowest in both diet and PLs after 
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sunflower oil supplemented diet. No other agreement between PLs and diet of the MUFA and 

SAFA composition could be found. A comparison between the hepatic gene expression to 

specific SCD1 ratios in diet and in PLs was only reflected in the ratio of 18:1n9/18:0 in PLs.  
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Figure 9. SCD1. A) SCD1 relevant FAs in diets, in weight/weight %, B) FA ratios (substrates and products of SCD1) in experimental diets, C) Specific SCD1 ratios of FAs in diet groups, D) 

Hepatic gene expression of SCD1, E) SCD1 relevant FAs in PLs, in weight/weight %, F) FA ratios (substrates and products of SCD1) in PLs of several feeding groups, G) Specific SCD1 ratios 

of FAs in Pls. FA composition of diet and PLs in plasma was analyzed by GC. Hepatic gene expression of SCD1 was analyzed by QRT-PCR. All values were normalized to 1 which is the 

coconut diet. Statistic differences were accepted for p<0.05 (regular font) and for p<0.01 (italic/bold). Each diet group was compared to all the other diet groups. Statistical differences are 

marked with the letter of the diet group to which it was compared. COC, C – coconut fat; MAR, M – margarine; OLI, O – olive oil; SUN, S – sunflower oil; FIS, F – fish oil 
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Role of ELOVL6 on MUFA/SAFA content 

Amounts of FAs and FA ratios in diet - 18:1n7 (ELOVL6 product) was highest in fish oil 

(3.22%) supplemented diet and lowest in coconut (0.1%) supplemented diet (Table 9, Figure 

10A). The ratio of substrates and products of ELOVL6 was highest in coconut fat 

supplemented diet and lowest in margarine supplemented diet (Figure 10B). Ratio of 

18:0/16:0 was highest in coconut fat supplemented diet and lowest in margarine 

supplemented diet (Figure 10C). 18:1n7/16:1n7 was highest in sunflower oil supplemented 

diet and lowest in fish oil supplemented diet (Figure 10C).  

Gene expression in liver of supplemented mice - The hepatic gene expression of ELOVL6 

was significantly decreased after fish oil supplemented diet compared to margarine (p<0.01) 

and olive oil supplemented diet group (p<0.05). Furthermore there was a significant 

difference of the higher gene expression value of margarine diet group compared to the lower 

gene expression measured in olive oil diet group (p<0.05, Table 10, Figure 10D).  

Amounts of FAs and FA ratios in phospholipids (PLs) of supplemented animals - Amounts 

of 18:0, 16:0 and 16:n7 in PLs were described previously in SCD1. 18:1n7 was highest in 

PLs in coconut fat (4.95%±0.33) supplemented diet group which was significantly different 

to margarine (p<0.05) and other diet groups (p<0.01). 18:1n7 was lowest in fish oil feeding 

group (1.61%±0.22) and was significantly different to coconut fat, margarine and olive oil 

diet group (p<0.01) (Table 10, Figure 10E). Ratio of substrates and products of ELOVL6 in 

PLs was highest in coconut fat supplemented diet group (significantly different in margarine 

and fish oil supplemented diet group, p<0.05) and lowest in PLs of fish oil supplemented diet 

group (significant different to coconut and sunflower oil supplemented diet group, p<0.05) 

(Figure 10F). Ratio of 18:0/16:0 was highest in PLs in sunflower oil feeding group and 

lowest in PLs in fish oil diet group (Figure 10G). 18:1n7/16:1n7 in PLs was highest after 

olive oil supplemented diet which was significant different to margarine (p<0.05) and fish oil 

(p<0.01) diet group and lowest in fish oil supplemented diet group which was significantly 

different in coconut, olive oil and sunflower oil diet group (p<0.01, Figure 10G). 

In summary, single fatty acids (16:0, 18:0, 16:1n7, 18:1n7) involved in the ELOVL6 

metabolic pathway measured in diet did not reflect the values in PLs. The enzyme specific 

ratios of fatty acids in PLs did not reflect the hepatic gene expression of ELOVL6 except for 

the fish oil fed group which showed lowest values of these ratios together with hepatic gene 

expression. 
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Figure 10. ELOVL6. A) ELOVL6 relevant fatty acids in diets, in weight/weight %, B) FA ratios (substrates and products of ELOVL6) in diets of several feeding groups, C) Specific ELOVL6 

ratios of FAs in diet groups, D) Hepatic gene expression of ELOVL6, E) ELOVL6 relevant FAs in PLs, in weight/weight %, F) FA ratios (substrates and products of ELOVL6) in PLs of several 

feeding groups, G) Specific ELOVL6 ratios of FAs in PLs FA composition of diet and PLs in plasma was analyzed by GC. Hepatic gene expression of ELOVL6 was analyzed by QRT-PCR. All 

values were normalized to 1 which is the coconut diet. Statistic differences were accepted for p<0.05 (regular font) and for p<0.01 (italic/bold). Each diet group was compared to all the other 

diet groups. Statistical differences are marked with the letter of the diet group to which it was compared. COC, C – coconut fat; MAR, M – margarine; OLI, O – olive oil; SUN, S – sunflower 

oil; FIS, F – fish oil 
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5.1.2. FADS1, FADS2 and ELOVL5 influence PUFA content only marginal, mainly 

dietary PUFAs determine PUFA content in PLs 

 

Role of FADS1 and FADS2 on PUFA content 

Amounts of FAs and FA ratios in diet. The highest amounts of 18:2n6 measured 67.86% 

were found in sunflower oil supplemented diet while 18:3n6 (0.26%) and 20:4n6 (1.02%) 

were highest in fish oil (0.26%, 1.02%) supplemented diet (Table 9, Figure 11A). The FAs 

20:3n6 (0.19%), 20:5n3 (16.11%), 22:5n3 (2.77%) and 22:6n3 (13.72%) were found to be the 

highest in fish oil supplemented diet (Table 9, Figure 11A). The margarine supplemented diet 

displayed 18:3n3 (4.79%) in the highest amount. Contrary, the lowest amounts of 18:3n3 

(0.17%) were measured in sunflower oil supplemented diet while 20:5n3 (<0.001%) was 

lowest in coconut fat supplemented diet (Table 9, Figure 11A). The specific FADS1 ratio 

20:4n6/20:3n6 was highest in fish oil supplemented diet (Figure 11B) and lowest in olive oil 

supplemented diet (Figure 11B). FADS2 specific FA ratios 18:3n6/18:2n6 and 22:6n3/22:5n3 

were highest in fish oil supplemented diet (Figure 11B) and lowest in sunflower oil diet. 

Ratios of 20:4n6/18:2n6 and 20:5n3/18:3n3 were highest in fish oil supplemented diet. 

20:4n6/18:2n6 was lowest in sunflower oil supplemented diet and 20:5n3/18:3n3 was lowest 

in margarine diet (Figure 11B). 

Gene expression in liver of supplemented mice. The hepatic gene expression of FADS1 was 

significantly reduced in animals fed fish oil supplemented diet compared to other diets 

(p<0.01, Table 10, Figure 11C). Hepatic gene expression of FADS2 was significantly 

reduced in animals fed fish oil supplemented diet compared to other diets (p<0.01) (Table 10, 

Figure 11C). Further hepatic gene expression of FADS2 in coconut fat supplemented diet was 

also significantly increased compared to olive oil supplemented diet group (p<0.01) (Table 

10, Figure 11C). 

Amounts of FAs and FA ratios in phospholipids (PLs) of supplemented animals. The FAs 

18:2n6 (19.07%±0.61), 18:3n6 (0.17%±0.01) and 20:4n6 (14.69%±0.34) were found in 

highest amounts in PLs of the sunflower oil supplemented animals which were significantly 

different to other diet groups for 18:2n6 and 20:4n6 (p<0.01, Table 10, Figure 11D). Highest 

20:5n3 (6.83%±1.71), 22:5n3 (0.60%±0.16) and 22:6n3 (5.63%±1.44) were measured in PLs 

of fish oil supplemented diet group (20:5n3 significantly different to coconut, margarine and 

olive oil supplemented diet group (p<0.05, Table 10, Figure 11D). 20:3n6 (2.88%±0.10) was 
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highest in olive oil supplemented diet group significantly different to sunflower and fish oil 

supplemented diet group (p<0.01), while 18:3n3 (0.23%±0.05) was significant to other diet 

groups highest in PLs of the margarine feeding group (p<0.05, Table 10, Figure 11D). 

Lowest amounts of 18:2n6 (4.06%±0.58), 20:3n6 (0.46%±0.08) and 20:4n6 (3.22%±0.65) in 

PLs of fish oil diet group significantly different to other diet groups (p<0.01, Table 10, Figure 

11D). 18:3n6 (0.05%±0.02) lowest in PLs of fish oil diet group was significant different to 

margarine a sunflower oil diet group (p<0.05). 20:5n3 (0.02%±<0.01) and 22:6n3 

(2.76%±0.11) were lowest in PLs after sunflower oil supplemented diet which was 

significantly different to other diet groups (p<0.05). 22:5n3 (0.09%±0.10) was lowest in 

sunflower oil diet group significantly different to coconut fat and olive oil diet group 

(p<0.05) and further to margarine (p<0.01). 18:3n3 (0.05%±<0.01) was measured lowest in 

PLs in the olive oil supplemented diet group significant to coconut and margarine 

supplemented diet group (p<0.05). A reduced FADS1 specific ratio of 20:4n6/20:3n6 was 

observed in PLs of animals fed a coconut supplemented diet significant to sunflower and fish 

oil diet (p<0.01). FADS2 specific ratio 18:3n6/18:2n6 was non-significantly lowest in olive 

oil supplemented diet group and highest in fish oil diet group. 22:6n3/22:5n3 was lowest in 

PLs after fish oil supplemented diet significant to all other diet groups (p<0.01) (Figure 11E). 

Highest 22:6n3/22:5n3 was observed in coconut fat diet group which was significant to fish 

oil diet group (p<0.01) (Figure 11E). 20:4n6/18:2n6 was non-significantly lowest in 

margarine supplemented diet group and highest in coconut diet group (Figure 11E). 

20:5n3/18:3n3 was lowest in PLs in sunflower oil supplemented diet group significantly 

different to margarine (p<0.01) and the other diet groups (p<0.05) and highest in fish oil diet 

group significantly different to sunflower oil diet group (p<0.05) and the other investigated 

diet groups (p<0.01) (Figure 11E).  

In summary, 18:2n6 was measured highest in sunflower oil supplemented diet as well as in 

PLs of this diet group. 20:5n3, 22:5n3 and 22:6n3 were highest in diet and in PLs of the fish 

diet supplemented group. In similar fashion, 18:3n3 was highest in diet and in PLs of 

margarine supplemented diet group. FADS1 specific FA ratio calculated in diet did not 

reflect a similar pattern in PLs. Ratio of 20:4n6/20:3n6 is comparable in diet and PLs in fish 

oil diet group. FADS2 specific FA ratios showed that 18:2n6/18:3n6 were highest in fish oil 

supplemented diet also calculated highest in PLs in the fish oil supplemented diet group. 

Further 20:5n3/18:3n3 highest in fish oil diet group was also highest in PLs. Comparing the 

hepatic gene expression with specific enzyme ratios in PLs there was an agreement to FADS2 
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specific FA ratio of 22:6n3/22:5n3. This was lowest in PLs of fish diet group in agreement 

with lowest gene expression of FADS2 in this diet group. 
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Figure 11. FADS1 and FADS2. A) Relevant FAs in diets, in weight/weight %, B) Specific FADS1 and FADS2 FA ratios in diet groups, C) Hepatic gene expression of FADS1 and FADS2, D) 

Relevant FAs in PLs, in weight/weight %, E) Specific FADS1 and FADS2nFA ratios in PLs. FA composition of diet and PLs in plasma was analyzed by GC. Hepatic gene expression of 

FADS1 and FADS2 was analyzed by QRT-PCR. All values were normalized to 1 which is the coconut diet. Statistic differences were accepted for p<0.05 (regular font) and for p<0.01 

(italic/bold). Each diet group was compared to all the other diet groups. Statistical differences are marked with the letter of the diet group to which it was compared. COC, C – coconut fat; 

MAR, M – margarine; OLI, O – olive oil; SUN, S – sunflower oil; FIS, F – fish oil 
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Role of ELOVL5 on PUFA content 

Amounts of FAs and FA ratios in diet - 18:3n6, 20:4n6, 20:5n3 and 22:5n3 were previously 

described. 22:4n6 (0.11%) were highest in fish oil supplemented diet (Table 9, Figure 12A). 

Combined calculated ratio of ELOVL5-specific products vs substrate ratios was lowest in 

fish oil supplementation diet and highest in coconut fat supplementation diet (Figure 12B). 

Specific ratio of 20:3n6/18:3n6, 22:4n6/20:4n6 and 22:5n3/20:5n3 were lowest in fish oil 

supplemented diet (Figure 12C). 20:3n6/18:3n6 was highest in sunflower oil supplemented 

diet while 22:4n6/20:4n6 and 22:5n3/20:5n3 were highest in coconut fat supplemented diet 

(Figure 12C).   

Gene expression in liver of supplemented mice - The hepatic gene expression of ELOVL5 

was significantly decreased after fish oil supplemented diet compared to other diets (p<0.05) 

(Table 10, Figure 12D). A significant decrease of hepatic gene expression was also found 

after coconut fat supplemented diet compared to olive oil diet (p<0.05) (Table 10, Figure 

12D).   

Amounts of FAs and FA ratios in phospholipids (PLs) of supplemented animals - 18:2n6, 

18:3n6, 20:4n6, 20:5n3 and 22:5n3 were previously described. 22:4n6 (0.28%±0.02) was 

highest in PLs in sunflower oil supplemented diet group (significant to other diet groups, 

p<0.01) (Table 10, Figure 12E). The lowest value of 22:4n6 (0.11%±0.02) in PLs was 

measured in margarine supplemented diet group significantly different to coconut, olive oil 

and sunflower oil supplemented diet group (p<0.01) (Table 10, Figure 12E). Ratio of 

substrates and products was lowest in PLs of the sunflower oil supplemented diet group 

which was significantly different to margarine, coconut and olive oil supplemented diet group 

(p<0.05) and highest in the coconut fat supplemented diet group significantly different to 

sunflower (p<0.01) and olive and fish oil supplemented diet group (p<0.01) (Figure 12F). 

Specific ratios of 20:3n6/18:3n6, 22:4n6/20:4n6 and 22:5n3/20:5n3 were calculated in PLs 

(Figure 12G). 20:3n6/18:3n6 was lowest after sunflower oil supplemented diet (significantly 

different to coconut and olive oil supplemented diet group, p<0.01) and highest after coconut 

fat supplemented diet (significant different to sunflower oil supplemented diet, p<0.01 and 

fish oil diet group, p<0.01). 22:4n6/20:4n6 was lowest after margarine (significant different 

to olive oil supplemented diet, p<0.01) and highest after fish oil supplemented diet. 

22:5n3/20:5n3 was lowest after fish oil supplemented diet which was significantly different 



42 
 

to coconut fat, margarine and olive oil supplemented diet group (p<0.01) and highest after 

sunflower oil supplemented diet (Figure 12G). 

Substrate and product ratio of ELOVL5 was highest in diet and in PLs of coconut fat 

supplemented diet group. Only the enzyme specific ratio of ELOVL5 22:5n3/20:5n3 was 

lowest in fish oil supplemented diet and in PLs of animals fed a fish oil supplemented diet. 

Comparing the hepatic gene expression to enzyme specific ratios in PLs only the lowest 

amount of 22:5n3/20:5n3 in fish supplemented diet group agreed with the lowest gene 

expression of ELOVL5 in this feeding group. 
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Figure 12. ELOVL5. A) ELOVL5 relevant FAs in diets, in weight/weight %, B) FA ratios  (substrates and products of ELOVL5) in diets of several feeding groups, C) Specific ELOVL5 ratios 

of FAs in diet groups, D) Hepatic gene expression of ELOVL5, E) ELOVL5 relevant FAs in PLs, in weight/weight %, F) FA ratios (substrates and products of ELOVL5) in PLs of several 

feeding groups, G) Specific ELOVL5 ratios of FAs in Pls. FA composition of diet and PLs in plasma was analyzed by GC. Hepatic gene expression of ELOVL5 was analyzed by QRT-PCR. All 

values were normalized to 1 which is the coconut diet. Statistic differences were accepted for p<0.05 (regular font) and for p<0.01 (italic/bold). Each diet group was compared to all the other 

diet groups. Statistical differences are marked with the letter of the diet group to which it was compared. COC, C – coconut fat; MAR, M – margarine; OLI, O – olive oil; SUN, S -  sunflower 

oil; FIS, F– fish oil  
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 COC MAR OLI SUN FIS 

 mean  s.e.m. mean  s.e.m. mean  s.e.m. mean  s.e.m. mean  s.e.m. 

SAFAs                

16:0  23.56 ± 0.71(F) 22.47 ± 2.37(F) 24.98 ± 1.85(F) 24.24 ± 1.72(F) 37.67 ± 3.89(C,M,S,O) 

18:0  20.21 ± 1.43 16.14 ± 4.92 20.72 ± 1.64 21.38 ± 1.57 25.45 ± 7.99 

MUFAs                

16:1n7  1.08 ± 0.24(S,O) 2.27 ± 1.73(O,S) 0.56 ± 0.08(C,M,F) 0.48 ± 0.07(C,M,F) 0.98 ± 0.20(S,O) 

18:1n7  4.95 ± 0.33(M,F,S,O) 4.02 ± 0.64(C,F,S) 3.16 ± 0.42(C,F,S) 2.02 ± 0.57(C,M,O) 1.61 ± 0.22(C,M,O) 

18:1n9 16.71 ± 2.16(F,S,O) 21.62 ± 6.21(F,S,O) 13.34 ± 0.83(C,M,F,S) 7.72 ± 1.14(C,M,O) 8.48 ± 1.25(C,M,O) 

n3-PUFAs                

18:3n3   0.08 ± 0.01(M,O) 0.23 ± 0.05(C,F,S,O) 0.05 ± <0.01(C,M) 0.06 ± <0.01(M) 0.05 ± 0.01(M) 

20:5n3   0.08 ± 0.01(M,F,S) 0.53 ± 0.07(C,F,S,O) 0.06 ± <0.01(M,F,S) 0.02 ± <0.01(C,M,O,F) 6.83 ± 1.71(C,M,O) 

22:6n3   3.67 ± 0.21(M,S) 5.18 ± 0.39(C,S) 3.95 ± 0.25(S) 2.76 ± 0.11(C,M,O,F) 5.63 ± 1.44(S) 

22:5n3   0.10 ± 0.02(M,S) 0.17 ± 0.03(C,S) 0.11 ± 0.01(S) 0.09 ± 0.10(C,M,O) 0.60 ± 0.16 

n6-PUFAs                

18:2n6   9.08 ± 0.69(M,F,S,O) 11.15 ± 0.28(C,F,S,O) 13.81 ± 0.76(C,M,F,S) 19.07 ± 0.61(C,M,F,O) 4.06 ± 0.58(C,M,S,O) 

18:3n6   0.09 ± 0.01(S) 0.13 ± 0.01(F,S) 0.11 ± 0.01(S) 0.17 ± 0.01(C,F,O) 0.05 ± 0.02(M,S) 

20:3n6   2.67 ± 0.18(F,S) 2.40 ± 0.29(F) 2.88 ± 0.10(F,S) 1.67 ± 0.20(C,F,O) 0.46 ± 0.08(C,M,S,O) 

20:4n6   7.38 ± 0.83(F,S,O) 7.66 ± 0.21(F,S,O) 10.57 ± 0.57(C,M,F,S) 14.69 ± 0.34(C,M,F,O) 3.22 ± 0.65(C,M,S,O) 

22:4n6   0.14 ± 0.02(M,S,O) 0.11 ± 0.02(C,S,O) 0.18 ± 0.02(C,M,S) 0.28 ± 0.02(C,M,F,O) 0.17 ± 0.14(S) 

Gene Expression                

SCD1 4.52 ± 1.06(O,F) 5.49 ± 0.54(F) 3.52 ± 0.21(C,F) 3.35 ± 1.38(F) 1.19 ± 0.15(CMOS) 

ELOVL6 0.005 ± 0.002(F) 0.007 ± 0.001(F) 0.004 ± 0.001(F) 0.007 ± 0.002(F) 0.001 ± 0.000(CMOS) 

FADS1 0.07 ± 0.01(F) 0.08 ± 0.01(F) 0.09 ± 0.01(F) 0.08 ± 0.01(F) 0.03 ± 0.00(CMOS) 

FADS2 0.18 ± 0.01(O,F) 0.16 ± 0.02(F) 0.14 ± 0.01(C,F) 0.15 ± 0.02(F) 0.04 ± 0.00(CMOS) 

ELOVL5 0.25 ± 0.02(O,F) 0.26 ± 0.02(F) 0.30 ± 0.02(C,F) 0.22 ± 0.04(F) 0.08 ± 0.01(CMOS) 
Table 10. Summarizing data of FAs in PLs. FAs were analyzed by GC in plasma and displayed by weight/weight %. SAFA – saturated fatty acid, MUFA – monounsaturated fatty acid, PUFA – 

polyunsaturated fatty acid, COC, C – coconut fat, MAR, M – margarine, OLI, O – olive oil, SUN, S – sunflower oil, FIS, F – fish oil. Statistic differences were accepted for p<0.05 (regular 

font) and for p<0.01 (italic/bold). Each diet group was compared to all the other diet groups. Statistical differences are marked with the letter of the diet group to which it was compared. 
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5.1.3. CYP26A1 is induced by Fish Oil Diet 

Hepatic gene expression of CYP26A1 was significantly increased in fish oil supplemented 

diet group compared to margarine supplemented diet (Figure 13A). A higher gene expression 

level was also measured in coconut fat supplemented diet group which was significant 

compared to margarine diet group (p<0.05). Further in the highest hepatic gene expression of 

CYP26A1 was measured after activation of RAR which was significant compared to control 

(p<0.05, Figure 13B).  

A 

 

B 

 

Figure 13. Hepatic gene expression of CYP26A1. A) Hepatic gene expression of CYP26A1 was analyzed by QRT-PCR. All 

values were normalized to 1 which is the coconut diet. Statistic differences were accepted for p<0.05. Each diet group was 

compared to all the other diet groups. Statistical differences are marked with the letter of the diet group to which it was 

compared. COC, C – coconut fat; MAR, M – margarine; OLI – olive oil; SUN – sunflower oil; FIS, F – fish oil. B) Hepatic 

gene expression of CYP26A1 after administration of synthetic and specific ligands of the nuclear hormone receptor family 

like PPARα, β/δ or γ, RXR and LXR. Statistic difference was accepted for p<0.05. 
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5.2. Study 2 - Synergism of dietary fat and vitamin A - Inductive effect of vitamin A 

abolished in combination with sunflower oil  

In this study diets were combined with different amounts of sunflower oil and different 

amounts of vitamin A to investigate their influence on FA metabolism of SCD1 and 

ELOVL6. 
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Figure 14. Hepatic expression of SCD1 and ELOVL6 determined by QRT-PCR after diets low and high in dietary fat or 

higher in vitamin A. LF-low fat diet, NF-normal fat diet, HF-high fat diet, vitamin A – VA, def. - deficient, norm.– normal. 

Statistical analysis was displayed as *p<0.05  
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Influence of dietary fat on hepatic gene expression of SCD1 and ELOVL6 – The highest 

hepatic gene expression of SCD1 and ELOVL6 was observed in mice fed a low fat (LF) 

compared to mice fed a high fat (HF) diet (Figure 14). The hepatic gene expression of 

ELOVL6 was significantly higher in mice fed LF diet compared to the other diets. The 

alteration of gene expression of these two enzymes in liver displayed a tendency of decrease 

with increasing amount of dietary fat. 

Influence of different amounts of dietary vitamin A on hepatic gene expression of SCD1 

and ELOVL6 - NF diets were supplemented with different amounts of vitamin A to 

determine the effect of vitamin A on gene expression and FA composition. Different amounts 

of dietary vitamin A had no effect on the hepatic expression of SCD1 and ELOVL6 (Figure 

14). 
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Influence of dietary fat on PL composition analyzed by GC - Dietary fat did not affect the 

total contribution of SAFAs (Table 11) in PLs. However, the content of 16:0 (palmitic acid) 

bound in PLs decreased after a HF diet compared to a LF diet. In contrast, mice fed a HF diet 

showed higher plasma values of 18:0 (stearic acid) bound in PLs compared to NF and LF 

diet.  

The contribution of total MUFAs bound to PLs was higher in the LF diet vs. the HF diet. The 

contributions of 18:1n9 and 18:1n7 were the highest in the LF diet. Significant lower values 

of the sum of all MUFAs as well as of 18:1n9, 18:1n7 and 20:1n9 incorporated into PLs were 

observed in plasma of mice fed NF diet compared to the HF diet. Mice fed a LF diet showed 

significantly lower amounts of 16:1n7, 18:1n9 and 18:1n7 than those of mice fed a HF diet. 

Ratios of selected SAFAs and MUFAs are shown in table 6. The ratio of total SAFAs divided 

by total MUFAs as well as the ratios of 18:0/16:0, 18:1n7/16:1n7 and 20:1n9/18:1n9 

significantly increased after the HF diet compared to the LF diet. The ratios of 16:1n7/16:0 

and 18:1n9/18:0 significantly decreased in the HF diet compared to the LF diet. Comparisons 

between ratios of NF diet to HF diet showed a decrease in 18:0/16:0, 18:1n7/16:1n7 and 

20:1n9/18:1n9 ratios, while 18:1n9/18:0 ratio was increased. The ratio of 18:1n7/16:1n7 was 

significantly decreased comparing LF diet to HF diet. 

Influence of different amounts of dietary vitamin A on PL composition analyzed by GC 

- The analysis via GC revealed that the total amount of MUFA was not influenced by dietary 

vitamin A (Table 11). However, the ratio of 18:1n9/18:0 decreased significantly in mice fed 

VA deficient diet compared to those fed the high vitamin A diet. Other ratios were not 

influenced by dietary vitamin A. 
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Table 11. Analysis of FA composition by GC of plasma PLs in mice fed a diet containing different amounts of fat (sunflower oil) and vitamin A (VA). Amounts are displayed in mean in weight 

%, s.e.m. – standard error of mean, SAFA – saturated fatty acid, MUFA – monounsaturated fatty acid, LF – low fat, NF – normal fat, HF – high fat. Statistical analysis compared to control 

*p<0.05 different to NF VA normal, #-p<0.05 different HF VA normal vs LF VA normal, § p<0.05 different of NF VA deficient to NF VA high. 

 Effect of Vitamin A Effect of Dietary Fat 

 NF VA deficient (n=6) NF VA high (n=6) LF VA normal (n=6) NF VA normal (n=6) HF VA normal (n=6) 

mean s.e.m. mean s.e.m. mean s.e.m. mean s.e.m. mean s.e.m. 

sum SAFA 48.760   ± 1.282 47.770 ± 0.600 51.422 ± 0.907 47.377 ± 1.335 49.843   ± 2.013 

16:0 30.202   ± 0.485* 20.602 ± 0.368*§ 28.413 ± 0.704 26.355 ± 0.694 21.571   ± 0.831#* 

18:0 17.343   ± 1.015 25.776 ± 0.591*§ 21.381 ± 0.852 20.017 ± 1.095 26.819   ± 1.500#* 

sum MUFA 12.387   ± 0.489 10.401 ± 0.261 14.267 ± 1.155* 10.619 ± 0.523 5.719   ± 0.322#* 

16:1n7 0.520   ± 0.031 0.345 ± 0.029 0.875 ± 0.202 0.530 ± 0.052 0.182   ± 0.032# 

18:1n9 8.887   ± 0.433* 7.034 ± 0.165 10.342 ± 0.456* 7.294 ± 0.441 4.007   ± 0.172#* 

18:1n7 1.853   ± 0.112 1.408 ± 0.067 1.842 ± 0.293 1.753 ± 0.094 0.801   ± 0.106#* 

20:1n9 0.215   ± 0.023 0.252 ± 0.014 0.274 ± 0.076 0.234 ± 0.026 0.216   ± 0.009* 

sum SAFA / sum MUFA 3.265   ± 0.107 4.128 ± 0.606 3.366 ± 0.291 5.185 ± 0.332 10.107   ± 1.275#* 

18:0/16:0 0.575   ± 0.034 1.255 ± 0.045*§ 0.753 ± 0.029 0.763 ± 0.047 1.248   ± 0.066#* 

16:1n7/16:0 0.017   ± 0.001 0.017 ± 0.001 0.032 ± 0.008 0.020 ± 0.002 0.008   ± 0.001# 

18:1n9/18:0 0.526   ± 0.052 0.274 ± 0.011§ 0.491 ± 0.040 0.374 ± 0.037 0.152   ± 0.011#* 

18:1n7/16:1n7 3.576   ± 0.130 4.196 ± 0.277 2.233 ± 0.214* 3.378 ± 0.163 4.642   ± 0.325#* 

20:1n9/18:1n9 0.025   ± 0.003 0.036 ± 0.002 0.025 ± 0.006 0.032 ± 0.003 0.054   ± 0.002#* 
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Influence of dietary fat on PE, PC and LPC composition analyzed by ESI-MS/MS- In 

liver PLs, mice fed LF diets showed increased incorporation of PE 34:1, PC 32:1, 34:1, 36:1 

and LPC 16:1, 18:1, 18:0 compared to NF diet (Figure 15). Lower percentages of 

incorporated FAs were observed in PC 32:0, 36:0 and LPC 16:0. Furthermore, ratios of PE 

34:1/34:0, PC 32:1/32:0, 34:1/34:0, 36:1/36:0 and LPC 16:1/16:0, 18:1/18:0 also decreased. 

HF diet compared to NF diet displayed a decrease in PE 34:1, PC 32:1, 34:1, 36:1 and LPC 

16:1, 18:1, 16:0. An increase was measured in PE 34:0 and PC 36:0.  

In plasma PLs, mice fed LF diet had higher incorporation of PE 34:1, PC 32:1, 34:1, 36:0, 

36:1 and LPC 16:1, 18:1 compared to NF diet and the ratios of PC 32:1/32:0, 34:1/34:0, 

36:1/36:0 and LPC 16:1/16:0, 18:1/18:0 were decreased. An increase was measured for PC 

32:0, 34:0, 36:0 and LPC 18:0. Comparing HF diet to NF diet amounts of PE 34:1, PC 32:1, 

34:1, 36:1 and LPC 16:0, 16:1, 18:1 decreased. Ratios of PC 32:1/32:0, 34:1/34:0, 36:1/36:0 

and LPC 16:1/16:0, 18:1/18:0 increased as well.  

In summary, LF diets resulted in more MUFAs than SAFAs being incorporated in PLs in 

both liver and plasma. In contrast, mice fed HF diets showed more SAFAs and less MUFAs 

being incorporated into PLs. 

Influence of different amounts of dietary vitamin A on PE, PC and LPC composition 

analyzed by ESI-MS/MS - The total amount of plasma SAFAs was not influenced by 

different amounts of vitamin A. However, when looking at individual SAFAs and specific PL 

(Figure 15), there was a significant increase in plasma amounts of LPC 18:0 in mice fed with 

the high VA diet compared to the VA deficient diet. In contrast, plasma amount of LPC 16:0 

were higher in animals receiving a deficient vitamin A diet compared to animals receiving a 

high vitamin A diet. This result was also observed in plasma PLs analyzed by GC 

incorporating lower amounts of 16:0 and higher amounts of 18:0 after a high vitamin A diet.  

The analysis of PE, PC and LPC species in liver and plasma showed an increase of LPC 18:1 

and LPC 16:1 amounts in liver and plasma of mice fed VA deficient diets compared to high 

vitamin A diet (Figure 15). This increase has also been observed in liver and plasma for PC 

32:1 and 34:1 as well as for PE 34:1. 
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Figure 15. Analysis of composition of PC, LPC and PE determined by ESI-MS/MS in liver and plasma after diets low and 

high in dietary fat or higher in vitamin A. LF-low fat diet, NF-normal fat diet, HF-high fat diet, vitamin A- VA, def.- 

deficient, norm.-normal. The amount of each incorporated fatty acid was calculated in percent compared to the normal fat, 

normal vitamin A (NF VA norm) diet, feeding group, which represents 100% (black). Red colors display an increased 

amount of this particular FA, while green means a decrease compared to the normal fat, normal vitamin A (NF VA norm) 

feeding group. 
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5.3. Study 3 - Regulation by Nuclear Hormone Receptors - RXR and LXR but not 

PPARs induce Gene Expression of SCD1 and ELOVL6 and alter the PL composition 

accordingly 

In this experiment synthetic ligands activating PPAR, RAR, RXR and LXR were 

gavaged into mice and the effect of the activated NHRs on hepatic gene expression of SCD1 

and ELOVL6 was investigated. 

 

Figure 16. Gene expression of SCD1 and ELOVL6 in liver of mice (n = 6) Gene expression of SCD1 and ELOVL6 were 

normalized to cyclophilin A, mean ± standard error mean of gene expression were displayed and statistically analyzed 

compared to the vehicle, p<0.05 (*).  
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NHRs regulation of SCD1 and ELOVL6 hepatic gene expression - Hepatic SCD1 and 

ELOVL6 gene expression significantly increased in animals gavaged with LXR and RXR 

ligands, while treatment with PPAR, PPAR and PPAR ligand resulted in no significant 

alteration. Application of an RAR ligand led to a slight, non-significant suppression of 

hepatic SCD1 expression (Figure 16). The ELOVL6 expression was not influenced by the 

application of the RAR synthetic ligand.  

PL Analysis in Plasma by GC – FA composition plasma PL for substrates, products and 

product/substrate ratios of SCD1 and ELOVL6 enzymes in the treatment groups are 

compared to the vehicle group (Table 12). PA (16:0) percentages decreased significantly in 

the LXR, RAR and RXR groups, whereas significantly increased in the PPARα group. SA 

(18:0) percentages decreased significantly in the RXR, whereas increased significantly in the 

RAR group. Percentages of POA (16:1n7) did not differ, whereas VC (18:1n7), OA (18:1n9) 

and EA (20:1n9) percentages increased significantly in the LXR and RXR groups. The 

product/substrate ratios exhibited significant increases following treatment (with the 

exception of the 20:1n9/18:1n9 ratio). Specifically, significant increases of the 16:1n7/16:0 

ratio were observed in the LXR group, of the 18:1n9/18:0 ratio in the PPARα, LXR and RXR 

groups and of the 18:1n7/16:1n7 ratio in PPARγ and RXR treatment groups.  
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Table 12. Analysis of FA composition of PLs in plasma of mice. Substrates, products and product/substrate ratios for SCD1 and ELOVL6 enzymes in plasma PLs in mice (n = 6). Data are given 

as mean ± s.e.m. (standard error of mean) of percentage of total FA and statistically compared to vehicle, p < 0.05 = * 

 Vehicle PPAR PPAR PPAR LXR RAR RXR 

 mean s.e.m. mean s.e.m. mean s.e.m. mean s.e.m. mean s.e.m. mean s.e.m. mean s.e.m. 

16:0 27.129 ± 0.722 31.030 ± 0.503* 28.233 ± 0.238 26.637 ± 0.463 20.793 ± 0.424* 23.278 ± 0.247* 24.394 ± 0.126* 

18:0 22.376 ± 0.591 16.728 ± 0.395 20.603 ± 0.836 21.856 ± 0.458 20.638 ± 0.590 24.762 ± 0.330* 18.644 ± 0.972* 

16:1n7   0.430 ± 0.051   0.505 ± 0.026   0.419 ± 0.048   0.381 ± 0.032   0.647 ± 0.120   0.206 ± 0.018   0.627 ± 0.049 

18:1n7   1.509 ± 0.136   1.751 ± 0.131   1.829 ± 0.168   1.697 ± 0.141   4.576 ± 0.374*   1.231 ± 0.059   5.112 ± 0.239* 

18:1n9   5.209 ± 0.207   6.221 ± 0.120   6.173 ± 0.301   4.847 ± 0.072   8.356 ± 0.281*   4.812 ± 0.208   9.515 ± 0.295* 

20:1n9   0.209 ± 0.023   0.158 ± 0.010   0.206 ± 0.010   0.158 ± 0.028   0.351 ± 0.021*   0.205 ± 0.016   0.371 ± 0.020* 

18:0/16:0   0.830   ± 0.043   0.539 ± 0.012*   0.730 ± 0.029   0.821 ± 0.013   1.065 ± 0.022*   0.993 ± 0.021*   0.765 ± 0.041 

18:1n9/18:0   0.234 ± 0.014   0.373 ± 0.013*   0.305 ± 0.025   0.222 ± 0.005   0.409 ± 0.027*   0.195 ± 0.011   0.518 ± 0.034* 

16:1n7/16:0   0.016 ± 0.002   0.016 ± 0.001   0.015 ± 0.002   0.014 ± 0.001   0.032 ± 0.007*   0.009 ± 0.001   0.026 ± 0.002 

18:1n7/16:1n7   3.607 ± 0.285   3.460 ± 0.148   4.471 ± 0.213   4.500 ± 0.261   7.894 ± 1.098*   6.168 ± 0.519   8.377 ± 0.685* 

20:1n9/18:1n9   0.041 ± 0.005   0.025 ± 0.002   0.034 ± 0.002   0.032 ± 0.005   0.042 ± 0.002   0.043 ± 0.004   0.039 ± 0.001 
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PE, PC and LPC composition analyzed by ESI-MS/MS - SAFAs and MUFAs of selected 

PL classes PC, PE and LPC were determined in plasma and liver by ESI-MS/MS. Amounts 

of FAs were displayed in mean of % of the specific lipid class related to total lipid classes 

(Figure 17). The composition of PE species containing one MUFA (36:1 and 34:1) was 

mainly influenced by the application of RXR and LXR ligand leading to an increase of bound 

MUFAs in liver tissue and plasma (Figure 17). The oral gavage of RAR ligand, by contrast, 

decreased MUFAs (displayed by: 32:1, 34:1) in liver and plasma. As in case of PE, an 

increase of MUFAs (displayed by: 32:1, 34:1 and 36:1) in PC was determined in the liver and 

plasma after application of agonists for RXR and LXR, while the activation of RAR, PPAR 

and PPAR lead to a decrease of PC 36:1 in the liver and plasma. Furthermore, RAR 

activation reduced the content of PC 32:1, 34:1 and 36:1 in liver and plasma. The activation 

of RXR and LXR by their synthetic ligands altered the composition of LPC in liver and 

plasma in which MUFAs (16:1 and 18:1) were increased. 16:1 in plasma and 18:1 in liver 

were additionally increased by RXR and PPAR. A reduction of 18:1 in liver and 16:1 in 

plasma and liver was determined after the gavage of RAR agonist. Additionally, the 

composition of ceramides and sphingomyelins were investigated and remained unchanged in 

16:0, 18:0, 16:1 and 18:1 species. In summary, activation of RXR and LXR by their specific 

ligands was found to lead to an increase of bound MUFAs. 
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Figure 17. Analysis of the FAs in phosphatidylethanolamine (PE), phosphatidylcholine (PC) and lysophosphatidylcholine 

(LPC) in liver and plasma of mice, n = 6. Species composition was determined by ESI-MS/MS and calculated as a 

percentage of total lipid class and fold change from the vehicle (= 100%). udl - under detection limit. 
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6. DISCUSSION 

Cellular membranes fulfil the most crucial functions of maintenance of cellular homeostasis, 

reactivity to metabolic challenges and injuries affecting the integrity of cells and organs [70]. 

The assembling of PLs and incorporated FAs are determining factors for the biophysical and 

physiologic character of a cellular membrane [43, 70]. In this thesis different influences on 

FA composition of PLs and the possibility to refer specific FA ratios to their metabolizing 

enzymes were investigated.   

6.1. MUFA and SAFAs content in PLs 

In this studies the MUFA (18:1n9, 16:1n7) and SAFA (18:0, 16:0) content in PLs was mainly 

influenced by alterations of gene expression of rate limiting enzymes SCD1 and ELOVL6. 

MUFAs and SAFAs derived from diet revealed less impact on PL fatty acid composition. 

Comparing diet interventions MUFAs, in particular OA, were not found to alter gene 

expression of SCD1 [102, 160]. However a significantly lower hepatic gene expression of 

ELOVL6 and SCD1 after fish oil diet compared to olive oil was seen in this studies (Figure 

9,10) which has been observed for SCD1 in adipocytes comparing OA to n3-PUFA treatment 

[102]. N3-PUFAs like found in fish oil or n6-PUFAs contained in sunflower oil were 

reported in several studies to be responsible for this suppression [34, 161]. For sunflower oil 

diet the suppression could be confirmed only in dose dependent manner (study2) and only 

partially in comparison to other diets (study1) [162]. Further n3-PUFAs have a higher 

potential to suppress gene expression of SCD1 compared to n6-PUFAs which increases with 

length of the carbon chain [102]. As it has been found that n6-PUFA AA supplementation 

suppresses SCD1 gene expression stronger than supplementation with n6-PUFA LA [102]. 

On the contrary, hepatic gene expression of SCD1 and ELOVL6 were increased by SAFA 

enriched coconut fat diet (Table 13, Figure 9,10) as found in this but also reported in previous 

studies [85, 162]. Surprisingly the highest induction of SCD1 gene expression in liver could 

be detected after margarine diet (Figure 10). The FA profile of margarine revealed a mixture 

of SAFA, PUFA and MUFA which would expect to suppress hepatic gene expression of 

SCD1 compared to coconut fat diet due to the high content of PUFAs. However hepatic gene 

expression of SCD1 as well as metabolic products of this enzyme incorporated into PLs were 

highest in margarine diet group. Margarine is a highly processed dietary fat which has not 

been investigated before for its potential to regulate the gene expression of SCD1. Margarine 

could be interesting new target for further studies.  
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Regulatory Influence Regulation SCD1 Regulation ELOVL6 

N6-PUFA rich dietary oils/ specific n6-PUFAs 

Sunflower oil  ▲ (compared to fish oil) Study 1; ▼ high 

fat - dose dependent Study 2, [163]  

▲ (compared to fish oil) Study 1; [162] 

▼ high fat - dose dependent Study 2 

Safflower oil  ▼ [164]  

Corn oil ▼ [97, 165]   

PUFA enriched (AA) ▼ [31, 166] [85] [63] [102]  

LA ▼ [102]  ▼ [34] 

N3-PUFA rich dietary oils/ specific n3-PUFAs 

Fish oil ▼ (compared to other diets) Study 1, [31, 

36, 63, 85] 

▼ (compared to other diets) Study 1, 

[34, 162] 

LN ▼ [102]  

DHA ▼ [167]  

EPA ▼ [85] ▼ [34]  

Pikasol (n3-PUFAs)  ▼ [55] 

SAFA rich dietary oils/ specific SAFAs 

Coconut fat  ▲ (compared to fish oil and olive oil) 

Study 1; [97, 165] 

▲ (compared to fish oil) Study 1; [162] 

PA  ▲ [168] (in skeletal muscle);  

▼ [169] (in skeletal muscle)  
 

SA  ▲ [34] 

MUFA rich dietary oils/ specific MUFAs 

Olive oil  ▲ (compared to fish oil) Study 1;  

▼ (compared to coconut fat) Study 1, ▲ 

(compared to fish oil) [160]  

▲ (compared to fish oil) Study 1 

OA ▬ [102] [160]   

POA ▼ [13]  

Lard  ▲ [162] 

Other dietary oils 

Margarine ▲ (compared to fish oil) Study 1 ▲ (compared to fish oil) Study 1 

cholesterol and 

cholesterol ester 

▲ [32, 114]  

Table 13. Regulation of SCD1 and ELOLV6 hepatic gene expression by dietary fat. ▲ up regulated, ▼ down regulated 

Other regulators of SCD1 and ELOVL6 gene expressions are dietary and non-dietary 

activators of NHRs (Table 14). Vitamin A, a natural ligand for NHRs, was reported to induce 

the hepatic gene expression of SCD1 (Table 14) [170, 171]. However, no induction by 

dietary vitamin A for hepatic gene expression of SCD1 and additionally for ELOVL6 could 

be proven within studies of this thesis if diet was synergistically applied with sunflower oil 

(Figure 14). Possibly the dose dependent suppressive effect of sunflower oil which has been 

shown also in previous studies abolished the inductive effect of vitamin A [163]. Therefore 

the role of vitamin A in the regulation of SCD1 expression remains controversial and reveals 

further the question of how several different nutrients interact with each other on gene 

expression regulation. Dietary supplement studies investigated so far mainly single isolated 

nutrients while interaction of nutrients have been studied rarely so far [172].  

Further in this thesis in study3 an induction of gene expression of SCD1 and ELOVL6 was 

found by application of synthetic ligands to activate LXR and RXR. The induction of SCD1 
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by RXR and LXR has been previously reported [114, 173]. For ELOVL6 only the induction 

by LXR was reported so far [34, 103]. Other NHRs like PPAR  did not show any 

regulatory tendencies towards the hepatic gene expression of SCD1 or ELOVL6 although the 

induction of hepatic gene expression of SCD1 and ELOVL6 by PPARand for SCD1 also 

by PPARin obese Zucker fa/fa rats and in HepG2-cells was proposed (Table 14) [171, 173-

176].  

Regulatory Influence Regulation SCD1 Regulation ELOVL6 

Nutritional 

vitamin A ▲ [171, 173]; ▬ Study 2 ▬ Study 2 

carbohydrates  ▲ [3, 48, 177] ▲ [34, 48, 50] 

fasting/refeeding ▲ [36] ▲ [36, 100] 

NHRs 

PPAR ▬ Study 3; ▲ in liver [36, 48] ▬ Study 3;[103] ▲ [48] 

PPAR ▬ Study 3 ▬ Study 3 

PPAR (co-activation of PGC1 via 

SREBP-1c) 

▬ Study 3; ▼in liver [116, 175]; 

▲ [174], HepG2-cells [176]; WAT[175] 

▬ Study 3 

LXR ▲ Study 3;[60, 114, 178] ▲ [34]; Study 3; [103] 

RAR ▲ [173]; ▼ Study 3 ▬ Study 3 

RXR ▲ [173], Study 3 ▲ Study 3; ▬ [103] 
Table 14. Nutritional and NHRs derived effect on SCD1 and ELOVL6 gene expression. ▲ up regulated, ▼ down regulated 

SCD1 specific FAs ratios 18:1/18:0 and 16:1/16:0 are proposed as “SCD1” or “desaturation” 

index reflecting SCD1 enzymatic activity (Table 2) [45, 53, 61, 62]. However, comparing 

dietary FAs to FAs incorporated into PLs the ratio of 18:1n9/18:0 reflected well SCD1 gene 

expression in all studies conducted within this thesis. Suppression of SCD1 by fish oil diet for 

example lead to a reduction of this FA ratio in PLs. This could be observed in PL subgroups 

of PE, PC and LPC (study1). The suppressive effect of n3-PUFA supplementation was shown 

by others in reducing the ratio of 16:1n7/16:0 in ceramides and 18:1n9/18:0 in PLs which 

was also seen after a cod diet rich in n3-PUFAs in healthy subjects corresponding to lower 

triglycerides [55, 64]. Dose dependent suppression of SCD1 by sunflower oil was also 

followed by reduction of these specific fatty acid ratios in PLs, in PE, PC and in LPC 

accordingly similar to suppressed hepatic gene expression (study1). On the other hand SAFA 

rich diet induced the SCD1 gene expression which confirmed the higher ratio of substrate and 

products in PLs (study1) [32]. Similar, the induction of SCD1 by LXR and RXR activation 

increased SCD1 specific FA ratios in PLs (study3). Dietary influences on SCD1 specific FA 

ratios in PLs remained marginal. Dietary 18:1n9 like derived from olive oil diet was not 

associated with an increased 18:1n9/18:0 in PLs although reported by others in skeletal 

muscle in humans [55]. 16:1n7, however, high in fish oil diet led to an increase of 
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16:1n7/16:0 ratio in our study. Therefore the ratio of 16:1n7/16:0 could be considered to be 

less reliable to represent SCD1 gene expression. 

The rate limiting enzyme of elongation of MUFA and SAFA ELOVL6 showed a repressed 

hepatic gene expression by n3-PUFAs containing fish oil diet which confirmed other 

previous studies [48, 50]. Further this repression led to reduced incorporation of metabolic 

products into PLs in liver (Figure 10). An increased hepatic gene expression of ELOVL6 was 

revealed in this thesis after consumption of coconut fat supplemented diet as well as by 

activation of RXR and LXR by synthetic ligands elevating ELOVL6 specific FA ratios in 

PLs in liver and in plasma (Figure 10, 16). According to results in this thesis the FA ratio of 

18:1n7/16:1n7 is more reliable to represent ELOVL6 hepatic gene expression than the 

suggested ratio of 18:0/16:0 [51].  

6.2. PUFA content in PLs  

PUFAs in PLs are derived more likely from diet. For example, n6-PUFA 18:2n6 was 

measured highest for sunflower oil feeding group in diet and in PLs and n3-PUFAs of 20:5n3 

(EPA), 22:5n3 (DPA) and 22:6n3 (DHA) highest in fish oil diet were measured also highest 

in PLs (Table 9, 10). However, also hepatic gene expression of PUFA metabolizing enzymes 

FADS1, FADS2 and ELOVL5 displayed partially influence on FA composition in PLs 

(study1). An increase of FADS1, FADS2 and ELOVL5 gene expression could be observed in 

margarine diet group compared to fish oil, which would explain the elevated level of 

downstream metabolic products of these enzymes incorporated into PLs (Figure 11, 12). 

These PUFA downstream products might not derive necessarily from diet but could derive 

from metabolism by desaturation and elongation by PUFA metabolizing enzymes. This result 

suggests that only 18:3n3 and 18:2n6 are absolutely essential to be provided by diet and can 

be converted to gain the desired higher n3-PUFAs like 20:5n3, 22:5n3 and 20:4n6, 

respectively. Supplementation with 18:3n3 enriched diets instate of consumption of fish is 

therefore recommended to avoid n3-PUFA shortage [179]. However, investigation of health 

benefits associated to non-fish oil n3-PUFA enriched substitutes revealed controversial 

results and are not fully proven [179, 180]. Further hepatic gene expression of PUFA 

metabolizing enzymes FADS1, FADS2 and ELOVL5 was suppressed in liver and other 

tissues by fish oil supplemented diets or diets high n3-PUFAs (Table 15) [55, 181]. Therefore 

PUFAs like 20:5n3, 22:5n3 and 22:6n3 incorporated in PLs of fish oil diet group derived 

more likely from diet than from enzymatic metabolism (Table 10). This suppression 

diminishes the generation further downstream products derived from 18:2n6 and is suggested 
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to reduce the pro-inflammatory metabolites derived from n6-PUFAs like 20:4n6 [182]. The 

results of studies in this thesis and previous studies in healthy humans suggest that the 

endogenous AA (20:4n6) content is limited by the metabolizing enzymes FADS1 and 2, the 

rate limiting enzyme in GLA (20:3n6) conversion to AA (20:4n6) [83]. Differently than 

previously reported studies results of study1 of this thesis revealed that availability of 

metabolic n6-PUFA substrates 18:2n6 like from margarine and from sunflower oil increased 

AA levels in plasma PLs (Figure 11). A high hepatic gene expression of FADS1 might 

contribute to an increased conversion of the main substrate 18:2n6 in sunflower oil to the 

metabolic product 20:4n6.  

Regulator Regulation FADS1 Regulation FADS2 Regulation ELOVL5 

N6-PUFA rich dietary oils/ specific n6-PUFAs 

Sunflower oil ▲ versus fish oil Study 

1 

▲ versus fish oil Study 1 ▲ versus fish oil Study 

1 

LA  ▲ versus AA, EPA, 

ALA[181]  
 

AA  ▼ compared to LA[181]  

N3-PUFA rich dietary oils/ specific n3-PUFAs 

Fish oil ▼ versus other diets 

Study 1 

▼ versus other diets Study 1 ▼ versus other diets 

Study 1 

EPA  ▼ versus LA[181], 

versus high carbohydrate 

diet[85] 

▼ [181], versus high 

carbohydrate diet [85] 

 

ALA  ▼ versus LA[181]  

Piksol (n3-PUFAs) ▼ [55] ▼ [55]  

SAFA rich dietary oils/ specific SAFAs 

Coconut oil ▲ versus fish oil Study 

1 

▲ versus fish oil and olive oil 

Study 1 

▲ versus fish oil Study 

1 

MUFA rich dietary oils/ specific MUFAs 

Olive oil ▲ versus fish oil Study 

1 

▲ versus fish oil Study 1, ▼ 

versus coconut fat  Study 1 

▲ versus fish oil Study 

1 

Other dietary oils 

Margarine ▲ versus fish oil Study 

1 

▲ versus fish oil Study 1 ▲ versus fish oil Study 

1 

Other regulatory influences 

PPARa ▲ [48] ▲ [48] ▲ [48] 

LXR ▲ [48] ▲ [48]  

Insulin ▲ [48] ▲ [48]  
Table 15: Regulation of FADS1, FADS2, ELOVL5 hepatic gene expression by dietary fat. Study 1 – Influence of dietary fat; 

Study 2- Synergism of dietary fat and vitamin A; Study 3 – Regulation by NHRs. ▲ up regulated, ▼ down regulated 

 

Discussing specific fatty acid ratios for PUFA metabolizing enzyme FADS1, FADS2 and 

ELOVL5 remains controversial because their reliability is not fully proven (Table 3). 

Enzymatic activity of FADS1 was investigated by specific FA ratio of 20:4n6/20:3n6 

(study1). This FA ratio was found lowest in PLs and diet of fish oil supplemented diet group 

assuming a minor influence by hepatic gene expression of FADS1 (Figure 11). On the 

contrary however, in human this particular ratio was reported to increase with consumption of 
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n3-PUFA enriched diet [55]. FADS2 ratio of 22:6n3/22:5n3 in PLs reflects the hepatic gene 

expression of FADS2 (Figure 11). ELOVL5 ratio of 22:5n3/20:5n3 lowest in fish oil diet 

group in PLs reflected the reduced hepatic gene expression (Figure 12). Other proposed 

enzyme specific FA ratios followed the dietary pattern in PLs rather than the hepatic gene 

expression of the metabolic enzyme. The specific ratio of 18:3n6/18:2n6 is mainly proposed 

to indicate the enzymatic activity of FADS2 and was reported to be increased in PLs with n3-

PUFA enriched diet in healthy subjects [55]. This result could be confirmed by study1 

although the hepatic gene expression of FASD2 was significantly reduced in fish oil 

supplemented diet group (Figure 11).  

6.3. Regulatory link between fat and vitamin A metabolism 

Although research progresses on the regulatory potentials of several dietary fats, it remains 

unclear for almost 40 years why PUFAs and especially n3-PUFAs suppress so efficiently 

SREBP-1c target genes like SCD1and ELOVL6. One explanation suggested the ability of n3-

PUFAs especially DHA to reduce trans-activation of LXR, a SREBP1c regulator [183]. 

This question was followed studying if the suppressive effect could be connected to the RXR 

activation and vitamin A metabolism. The administration of fish oil supplemented diet 

induced the hepatic gene expression of CYP26A1, a target gene of RAR and therefore of 

natural dietary vitamin A. CYP26A1 is the rate limiting enzyme for the availability of RXR 

natural ligands derived from dietary vitamin A [135]. RXR is activated by vitamin A derived 

metabolites 9-cis RA which is found to be catabolized by Cyp26a1. Less available natural 

ligands capable to activate RXR could be an explanation for a reduced expression level of 

RXR target genes. RXR target genes involve the TF SREBP1c which controls targets like fat 

metabolizing enzymes such as SCD1 and ELOVL6 as well as FADS1, FADS2 and ELOVL5 

[85]. Gene expressions of all of these enzymes were suppressed in liver after fish oil diet 

leading to reduced metabolic products of these enzymes incorporated into PLs. However, this 

hypothesis requires further investigation. 



63 
 

7. SUMMARY 

Dietary fat provides FAs incorporated into PLs forming cellular membranes. These 

membranes are constantly renewed and the composition of FAs aligns according to the 

provided dietary fat. Influences on membrane PL FA composition were investigated in this 

thesis. In vivo studies in mice have been performed investigating the effect of different types 

of dietary fat, different amounts of sunflower oil combined with vitamin A and regulation by 

activated NHRs on PLs and cellular membrane FA profile.  

Most important findings of this thesis were that MUFA and SAFA content in PLs is strictly 

controlled by their metabolizing enzymes SCD1 and ELOVL6. Especially alteration of SCD1 

hepatic gene expression by dietary fat altered the PLs profile of its metabolic products 

accordingly. The SCD1 FA ratio 18:1n9/18:0 was found to be more reliable as “desaturase 

index” within all conducted studies. Most surprisingly margarine diet was the strongest 

inducer of SCD1, it was even more effective than coconut fat diet high in SAFA. 

Furthermore the inductive effect of dietary vitamin A on hepatic gene expression of SCD1 

and ELOVL6 was abolished if diet was combined with n6-PUFA rich sunflower oil. 

Sunflower oil supplemented diet suppressed SCD1 and ELOVL6 gene expression dose 

dependently. This assumes that nutrients might interfere with each other with unexpected 

outcome. ELOVL6 activity was most reliable represented by the FA ratio 18:0/16:0. On the 

contrary to MUFA and SAFA profile in PLs PUFAs in PLs were more but not totally 

dependent on available dietary PUFAs. Fish oil enriched diet suppresses the hepatic gene 

expression of main PUFA metabolizing enzymes FADS1, FADS2 and ELOVL5 which was 

reflected in reduced metabolic activity. This resulted partially in less metabolic products 

measured in FA profile of PLs. Repressed gene expression could be associated with reliable 

FA ratios representing enzymatic activity for 22:6n3/22:5n3 FADS2. PUFAs in PLs profiles 

are more likely to derive directly from diet, but might be adjustable by PUFA enzyme 

metabolism. The results of this thesis suggest further that inhibition of hepatic gene 

expression of fat metabolizing enzymes by n3-PUFA enriched diet is caused by reduces 

activity of RXR. RXR is a heterodimer forming NHR which can be activated by isoforms of 

vitamin A. CYP26A1 catabolizes active vitamin A derived RXR ligands into inactive 

metabolites. Induction of CYP26a1 by fish oil supplemented diet decreases the availability of 

vitamin A and less RXR is activated.  
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