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Chapter 1

Introduction

Hadron-hadron interactions, in particular nucleon-nucleon interactions are
of central importance in nuclear physics. The study of nuclei is a many-
body problem which necessitates the solution of the Schrodinger equation
with a given interaction potential. Therefore one of the most important
tasks of theoretical nuclear physics is to find such a potential, from which
the deuteron properties, the nucleon-nucleon scattering phase shifts, the
properties of nuclear matter etc. — can be derived.

Eisenbud and Wigner [1] and later also Okubo and Marshak [2] pointed
out that the nucleon-nucleon potential must fulfill general requirements from
the fundamental conservation laws. Demanding invariance under space-time
translations, Galilei transformations, rotations, time and space inversion,
and further on an approximate charge symmetry, they set up a general non-
relativistic, hermitian nucleon-nucleon potential. This potential includes
central, spin-spin, tensor, spin-orbit and quadratic spin-orbit terms. The
determination of the coefficients of these terms leads to phenomenological
potentials, such as the Reid potential [3].

A somewhat more fundamental derivation of the nucleon-nucleon poten-
tial is possible within models assuming mesons and baryons as fundamental
degrees of freedom. Here, the interactions between baryons are mediated
by exchange of mesons. For example, the Bonn potential [4 6] is obtained
from a field-theoretical Hamiltonian, containing nucleon-nucleon-meson and
nucleon-A-meson interaction vertices. In the Paris model [7] nucleon-pion
and pion-pion interactions are considered, but all contributions to the inter-
action are directly derived from experiment and not calculated within a field
theory.



6 Chapter 1. Introduction

Nowadays it is generally accepted that hadrons are composite particles.
To systematize the numerous hadron states, in 1963 Gell-Mann proposed
that mesons should be thought of being composites of a quark and an anti-
quark, whereas baryons should consist of three quarks. In this way all known
hadrons could be built up, and the model could also predict the existence
of a new hadron, called 27, which was discovered one year later. There is
also experimental evidence for the existence of hadronic substructure. The
average hadron radius is of the order of 1 fm. Deep inelastic lepton-hadron
scattering indicated the existence of scattering centers with an extent of less
than 1073 fm. From the scattering angular distribution observed in these
experiments the spin of the constituents was determined to be 1/2h. Their
charge turned out to be a fraction (+2/3 or 1/3) of the unit charge. Never-
theless, up to now all attempts to isolate a single quark experimentally have
failed. The quarks are apparently enclosed in the hadrons. This phenomenon
is called quark confinement.

The quark potential models of hadron-hadron interactions take the com-
positeness of hadrons into account. A typical example is the non-relativistic
model of Isgur et al. [8]. Here, one tries to derive an effective nucleon-
nucleon potential via variational calculations with a six-quark wave-function
and a Hamiltonian, in analogy with the variational techniques used for the
hydrogen molecule in atomic physics. A relativistic approach to the nucleon-
nucleon interaction is the bag model [9]. Examples of bag models are the
MIT-bag [10], the little-bag [11] and the cloudy-bag model [12]. A com-
mon feature of quark potential and bag models is that quark confinement is
imposed artificially on the system by an additional constraint.

All afore mentioned models contain parameters to fit the results to ex-
periments. They usually yield a good quantitative outcome within a certain
energy range, but from their very construction, a fundamental understanding
of the nuclear interaction cannot be obtained.

The correct theory to describe the interaction between quarks is believed
to be Quantum Chromodynamics (QCD). In this theory the interactions be-
tween quarks are the result of the exchange of vector particles called gluons.
Encouraged by the great success of Quantum Electrodynamics (QED), and
as an attempt for a generalized treatment of different interactions, QCD
was formulated as a quantum field theory based on the principle of local
gauge invariance. In contrast to QED, which is an Abelian theory, QCD is
formulated as a non-Abelian gauge field theory based on the group SU(3).
This choice of the gauge group was suggested by the antisymmetrization
procedure of the three-quark system. As a consequence the fields carry an



additional quantum number, called color. Quark fields transform accord-
ing to the fundamental representation of SU(3). All hadrons transform as
color singlets, and are therefore called “color neutral”. Because of the non-
Abelian structure the colored gluons can couple to themselves. These self
couplings, one believes, are responsible for quark confinement. Nevertheless,
the connection between confinement and non-Abelian fields is not yet totally
understood.

QCD is an asymptotically free theory, i.e. the coupling constant is small
for large four-momentum transfer [13, 14]. At low energies, however, the
coupling constant becomes large. Consequently, perturbation theory does
not work in the low energy regime. Therefore the calculation of phenom-
ena at nucleonic distances requires non-perturbative tools. The interest in
non-perturbative methods for a fundamental treatment of QCD low energy
phenomena led to the formulation of QCD on the lattice [15]. Here, quarks
are defined on the sites of a fictitious four-dimensional space-time lattice,
whereas gauge fields are placed on the links between the sites. The formu-
lation of the theory as a path integral in euclidean space-time leads to an
analogy between the field theoretical vacuum expectation value and the par-
tition function in statistical mechanics. In this way, within field theories one
can apply the well-known tools of statistical mechanics, such as analytical
series expansions or numerical Monte Carlo simulations. Furthermore, the
use of a lattice represents the introduction of a regularization scheme for the
quantum field theory. The momenta are restricted to the first Brillouin zone,
therefore high momenta are cut off and consequently ultraviolet divergences
are removed. To obtain physically relevant results from a lattice calculation
one has to perform the continuum limit, that is the limit of infinitesimally
small lattice constants. The practical approach of the continuum limit still
poses a difficult problem. A short overview about the basics of lattice QCD
is given in Chapter 2. More detailed descriptions can be found in the stan-
dard textbooks of M. Creutz [16], H.J. Rothe [17] and I. Montvay and G.
Minster [18].

Within the framework of QCD, the hadron-hadron interactions are resid-
ual forces between two quark clusters, each consisting of two or three quarks
(mesons and baryons, respectively). The hadron-hadron forces are medi-
ated for short distances by gluon exchange between the constituent quarks
whereas for longer distances the production of quark-antiquark pairs is ex-
pected to be the dominating mechanism, which can be interpreted as an
effective meson exchange. This explains why the meson exchange poten-
tials give a satisfactory description of nucleon-nucleon scattering for long
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distances, whereas quark potential and bag models are mainly successful for
short distances. Remarkably, only few attempts have been made to extract
effective interactions, or potentials, between two composite hadrons in the
framework of a lattice discretized theory [19-22]. This task is very challeng-
ing since the residual interaction between two color singlets is about 10~2 to
10~? times smaller than a typical hadron mass.

This work is an attempt to obtain hadron-hadron potentials in the frame-
work of lattice QCD. As a simplification, the interaction between two hadrons
consisting of a heavy and a light quark degree of freedom (K, B, D mesons)
is investigated. Different aspects of this problem are presented in Chapter
3. Section 3.1 is devoted to the definition and simulation of quark prop-
agators on the lattice, being the key quantities of our investigation. The
Green functions describing the dynamics of the one-meson and two-meson
systems are constructed in Section 3.2. The heavy-light approximation and
the interaction potentials between two heavy-light color singlets for various
light-quark mass parameter are presented in Section 3.3. In Section 3.4, po-
tentials between a heavy-light meson and the corresponding antiparticle are
computed. A lattice improvement technique allowing for a refined analysis
as well as the simulation results obtained by this technique are presented in
Section 3.5. Finally, Chapter 4 is for the summary and outlook.



Chapter 2

Lattice Quantum
Chromodynamics

2.1 QCD Lagrangian

Nowadays it is generally accepted that the theory for strong interactions
should be Quantum Chromodynamics, since in the domain of high energy
scattering QCD is highly successful. QCD was constructed along the lines
of the very successful Quantum Electrodynamics (QED) as a quantized
gauge field theory with a local gauge symmetry. In contrast to the Abelian
U(1) gauge symmetry of QED, the QCD Lagrangian is invariant under non-
Abelian SU(3) gauge transformations. Whereas in QED electrons and pho-
tons are the fundamental particles, in QCD quarks and gluons are the basic
degrees of freedom. Quarks are fermionic matter fields. They transform
according to the fundamental triplet representations of SU(3)¢o0r- Gluons
are bosonic gauge fields and transform according to the octet representation.
The QCD Lagrangian consists of a gluonic and a fermionic part,

£QCD EgCD_i_EgCD
1 A
= ZFﬁu(z)Fé‘”(z)Jr;w(m)(ilDmf)zbf(:v), (2.1)

where 1); is the Dirac spinor, mj; the quark mass and n; the number of
flavors. The generalized field strength tensor FF(z) is

Fi(z) = 0" Af(z) — 0" Afi(2) — g fane Ay (2) AL (2) (2.2)

9
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where a,b,c = 1,...,8 are SU(3) indices. A¥ is the gauge field, g is the
coupling constant, and fgs. are the structure constants of SU(3). ) is an
abbreviation for vy, D*(z), where

)\a
DH¥(z) = 0" + ngg(r)? (2.3)
is the gauge covariant derivative with the generators A, of SU(3) (Gell-Mann
matrices).
The Lagrangian (2.1) allows for the formulation of QCD as a quantum
field theory. One possible quantization is the path integral formulation of

QCD.

2.2 Path Integral Approach to Quantization

Since its introduction by Feynman [23] the path integral method has become
a very important tool for elementary particle physicists. Many of the modern
developments in theoretical particle physics are based on this method. One of
these developments is the lattice formulation of field theories. In contrast to
classical mechanics, in quantum mechanics the exact trajectory of a particle
in configuration space is not known; instead, one has to calculate transition
amplitudes like

(q;lar) (2.4)

where | g, ) and |g;) are eigenstates of the space coordinate operator Q(#)
in the Heisenberg picture. The absolute square of the transition amplitude
(2.4) is proportional to the probability that a particle which at the time %
was located at ¢, at the time ¢ will be found at ¢'.

There exist infinitely many paths connecting the initial point with the
final one. Feynman showed [24] that the transition amplitude (2.4) can be
found by integrating over all possible paths, weighted with the phase factor
exp(iS[q]), where

t
Slal = | dt' L(q('), 4(t')) (2.5)
Lo
is the classical action. This prescription can be symbolically written in terms
of a functional or path integral:

!

(¢t ) = [ Dlglei®0. 2.6

q
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Notice that while the canonical quantization goes far away from the
original formulation of classical mechanics, the path integral representation
of Feynman reestablishes the connection with the classical action principle.
The function weighting the paths is actually exp(iS[g]/h). In the limit A — 0
this is a rapidly oscillating function. As a consequence, the contribution of
all paths to the transition amplitude (2.4) vanishes, except that of the path
for which 6S[g] = 0. This is the principle of least action which leads to the
classical equations of motion. Thus, within the path integral framework the
quantization of a classical system amounts to taking into account fluctuations
around the classical path.

As a possible way of quantization, the path integral formalism can be also
introduced in field theories. Within QCD the vacuum expectation value of
an operator is calculated according to

(0)=(0[010) = 5 [ DIA] DY) DI 5453 O(A, 99 . (27)
with the vacuum-to-vacuum transition amplitude
(010) = Z = [ DIA] Dly] D) 51407 (2.8)

Here the functional integration extends over all gauge field configurations
Al (z) (Lorentz index p = 0,...,3, group index a = 1,...,8) and over all
configurations of the fermionic fields 1% (z) and ¢%(x) (spinor index o =
1,...,4, color index ¢ = 1,2,3). Because of the anti-commutation relations
of the fermionic fields these are represented by Grassmann variables.

Since the weights in (2.7) and (2.8) are oscillating functions, this path
integral representation is not suited for numerical calculations. The problem
can be overcome by formulating QCD on a four-dimensional euclidean space.
This is achieved by an analytical continuation to imaginary time

t=1x29 — —ix4 with real z4 . (2.9)

The transition to the euclidean space from the Minkowski space can be done
by using in the formulae the replacement (2.9) whenever ¢ appears explicitly,
together with the proper replacement of the four-component quantities with
those valid in the euclidean space. In QCD, three such replacements should
be performed: 0y — 904, pg — ip4, and Ag — 1A4. Thus, for the euclidean
gluonic Lagrangian Elé one obtains:

1 a «
L =~ Fis@)F ()
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= (PP (2) — 2B () B () + Fy () Fiy ()

~ L (Fa@) RS @) + 2R () Ffy () + Fiy () Fiy ()

= ) () = k. (2.10)
Here, o, 6 =0, ..., 3 are four indices in Minkowski space, and u,v =1,...,4

are those in Euclidean space. For the fermionic Lagrangian one obtains

Lit = P(a) (i — m)yyp(z) — () (D +m)yp(z) = —L . (2.11)

The euclidean vy matrices fulfil the anti-commutation relations

{FYHJFYV} = 26uu . (212)

A possible choice for the v matrices is

(1 0 o 0 o
74_<0 1)7 72_<0i 0)7 (213)

with the Pauli matrices ¢;. They are hermitian, i.e.
= (2.14)
With i [dzy = [dz4 one obtains the complete euclidean action
isM = i/d4:v (LM 4 £ = i/d:r:g &z (LY + L)
. /d:c4 &z (—LE — £F) = —§" | (2.15)

The vacuum expectation value of an observable in the euclidean path integral
formulation is therefore

(0) =5 [PIAI DI D] e AV E 04 ), (216)

with )
7= /D[A] Dlyy] D[] e~ 5" 1A | (2.17)
If the system is periodic in euclidean time, then Z can be viewed as a par-

tition function and (2.16) has the form of a statistical ensemble average
with a Boltzmann distribution given by exp(—S®[A,,]). This allows us
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to use well-known statistical methods to calculate expectation values. The
non-perturbative studies of QCD are based on this simple observation.

Results from the euclidean space should in principle be analytically con-
tinued back to Minkowski space. For many physical problems, however, like
the calculation of the mass of a particle from the asymptotic behavior of its
propagator one can obtain results directly from the euclidean formulation.

2.3 Lattice Regularization

As we have seen in the previous section, formulating QCD in the euclidean
space-time opens up the possibility for numerical calculations. But since the
fields A, 1 and ¢ have infinite degrees of freedom, at each coordinate z =
(z1, 22, T3, 14), the integration measure D[A, 1), )] is still mathematically not
well defined. To give the path integrals a precise meaning, one discretizes
both time and space, i.e. introduces a space-time lattice, and restricts z to
a multiple of a “lattice spacing” a, i.e. x = na, with n an integer. Defining
the fields on this euclidean space-time lattice one obtains a discrete set of
variables. The functional integration over all field configurations simplifies
to an integration over these variables.

The Fourier transform of a function f(z) defined on the periodic lattice
fp) =a'y e f () (2.18)
xT

is periodic in p with the period p,, = 2 /a. Therefore momentum is restricted
to the first Brillouin zone —7/a < p, < w/a. This removes ultraviolet
divergences. So the introduction of a lattice provides a regularization scheme.

Internal symmetries survive discretization whereas spatial symmetries
are broken. This is obvious for the euclidean Poincaré group, which contains
O(4) rotations, but on the lattice only rotations by multiples of 7/2 are
allowed. The enormous advantage is that local gauge invariance can be
preserved. Furthermore, in the limit a — 0 one should recover the continuum
theory. However, there is no unique choice of a discrete action fulfilling this
requirement.
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2.4 Fermions on the Lattice

2.4.1 Species Doubling

While scalar and vector fields can be simply assigned to the sites of the
lattice, the gauge fields neccessitate a careful treatment, in order to preserve
gauge invariance. The association of spinors to the lattice is even more
difficult and not yet satisfactorily solved.

The euclidean free fermionic continuum action is

S = / &z () (B, + m)(z) . (2.19)

Following the naive discretization scheme we introduce a four dimensional
space-time lattice. With each site z of the lattice we associate an inde-
pendent four-component spinor variable 1,. To keep the action simple, we
replace the derivative by a symmetric differential quotient:

Qb — 5o — il (2:20)

Substituting [d?z by a*Y, we arrive at the following free fermionic dis-
cretized action [25]:

2a
T,

SF = a4{i Z [&z7ﬂ¢m+ﬂ - Qz)m+ﬂ'7u¢iﬂ} +m Z wzQ/):ﬂ} . (2-21)

Contrary to expectations, the above action does not reproduce the correct
continuum limit, because it has a new hidden degeneracy in the fermionic
degrees of freedom. To see this let us consider the propagator of a massless
free fermion in momentum space

1
Glp) = %Zu Yu sin(p#a) .

(2.22)
Besides the physical pole at p,a = 0 there are 15 further poles in the first
Brillouin zone at

ppa = (m,0,0,0) ,(0,7,0,0) ,...,(7,m0,0) ,..., (¢, 7w, 7). (2.23)

Thus the naively discretized action describes 16 fermions and consequently
cannot reproduce the original continuum Lagrange density in the limit a —
0. This proliferation of fermions is called fermion doubling.
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Fermion doubling is a fundamental problem for all lattice actions that
preserve the chiral symmetry in the massless continuum limit. It can be
shown that it is impossible to construct a chirally invariant lattice action
that is free of degeneracy. A chirally symmetric lattice fermion action is
at least four-fold degenerate [26,27]. One has the choice of an action that
is not degenerate in the number of fermions but breaks chiral symmetry
explicitly for a finite lattice constant. This is achieved with the Wilson
method [15]. The second possibility is to preserve chiral invariance at least
partly and to accept a partial fermion degeneracy, like in the Kogut-Susskind
method [28,29].

2.4.2 Wilson Fermions

Wilson’s idea was to modify the action (2.21) in such a way that the zeros
of the denominator in (2.22) at the edges of the Brillouin zone are lifted by
an amount proportional to the inverse lattice spacing. This is achieved by
adding an extra term

1, - -
ra’ Z Z % (¢I+ﬂ - d)iﬂ)(d)aﬂrﬂ - wz) ) (2.24)
z p
where 0 < r < 1 is a free parameter [15,25]. This term is of order a®:
1 _
ra' 303 o= adl, ap, ~ O(a®) (2.25)
z p

and vanishes in the classical continuum limit, relative to the rest of the
action, which is of order a.
The new action becomes

1 _ _ _
Sk = a4{% Z (Uﬁﬂu%m - ¢$+ﬂ7ﬂwz + T¢$+ﬂww+ﬂ+
T

7"1/7)131/)1: - 7"1/7)14_[‘1/)1; - 'm,zxz,bx—kﬂ) +m Z 1/)1;1/)1;} . (2.26)
Using
1 - 2 _

i Z Zz/;z+[ﬂ/)z+[t - %Zz/;wz,bx ; (2'27)
T u T
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and rescaling the fields

Y — [a3(4r + ma)} e P,
_ —1/2 _
P — [a3(4r + ma)} ), (2.28)

one obtains

= —K Z [ — Yu Q/)z+u + Q/)z+u(71 + Y wz} + Z Q/):cd’z ; (2.29)

with the hopping parameter

1
=—". (2.30)
8r + 2ma
Defining the fermionic matrix
My = bpzr — K Qua (231)
with
wal = Z [(T‘ — ’}/ﬂ) 6I+ﬂ,$’ —+ (’I‘ + ’)’#) 6:E,:E’+ﬂ:| s (232)
I
the corresponding fermion propagator turns out to be
— 1
G(p) = M '(p) (2.33)

. m + é >usin(ppa) + ¢35, (1 — cos(pya)) -

The originally degenerate particles acquire an additional mass on the former
poles from the Wilson term

(7,0,0,0) ..., (0,00,7) m+2r/a
= (71',7'(',0,0) 10ty (07077T77T) m + 47"/@
bua = (7T,7T,7T,0) gaees (0’71"71"7() m + 67‘/0, (234)
() m+8r/a .

These states have an infinite mass in the limit @ — 0 and disappear from
the spectrum. The degeneracy is completely removed.

The diagonal parts of the Wilson term correspond to an additional mass
term, which breaks the chiral symmetry explicitly. This means that even for
m = 0 the Lagrangian is not invariant under chiral transformations. The
additional mass term also gives rise to mass counter terms in the renormal-
ization process. Therefore, a vanishing bare mass mg does not generally lead
to a renormalized mass Mmyen = 0.
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2.4.3 Kogut-Susskind Fermions

As we have seen above, the fermion doubling problem owes its existence
to the fact that the propagator (2.22) has extra poles at the edges of the
Brillouin zone. This suggests the possibility of eliminating the unwanted
fermion modes by reducing the Brillouin zone. This can be accomplished by
distributing the components of a spinor over a unit cube instead of defining
it on a single lattice point. In this way the corresponding components of
two spinors are separated by two fundamental lattice spacings and therefore
the first Brillouin zone reduces to —m/2a < p, < 7/2a so that the pole at
7/a is outside. Since in d space-time dimensions there are 2¢ sites within a
hypercube, but e.g. only 2%/2 components of a Dirac spinor for d-even, one
needs extra Dirac fields to reduce the Brillouin zone by a factor of two. In
four space-time dimensions such a prescription may therefore be appropriate
for describing 22 = 4 different flavors of quarks, degenerate in mass. Thus
the degeneracy is not completely lifted, it is only reduced to four.

An illustrative way to arrive at the definition of staggered fermions is the
so-called spin diagonalization, which consists in performing a local change
of variables

Q[)a: = AJ:X;L‘ I

b, = X AL . (2.35)

The transformation matrix A, is a unitary matrix diagonalizing all the -y-
matrices in the action in the sense that

Ajc’Yqu+ﬂ = Axu ) (2.36)
where A, is proportional to the unity matrix, i.e.
Axu = qu L. (237)

There exist different solutions for A,, for instance,

Tl _To X3 _ T4

A, =71 Y2 V3 V4 (2.38)

where the integers x1, 9, 3, 4 are components of the lattice site four-vector
z. In this case one gets

Doy = (1) T8 (p=1,2,3,4) . (2.39)
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In terms of the new fields x,, X, the naive action (2.21) becomes

1 _ _ _
T,l T

Since this is diagonal in the Dirac indices, the different components can
be decoupled, and one can reduce the number of fermion field components
obtaining the following free Kogut-Susskind, or staggered fermionic action:

1 _ _ _
T, T

Now x, and x, are one component fermion fields. The reduction of the
number of degrees of freedom by a factor of four leads, instead of the 16 naive
fermion species, to four degenerate species in the staggered fermion action.
They might be interpreted as four ‘flavors’ of fermions. One can formally
remove this remaining degeneracy and introduce an arbitrary number of
components by multiplying with a scale factor f describing 4f flavors of
Dirac fermions.

For m = 0 the reduced action is invariant with respect to the global
transformations

;z - i—i,@X; }for (_1)z1+x2+z3+x4 - 1
z T

)SI — Xz }for (_1)x1+x2+za+x4 =1 , (2.42)
Xz — € Xz

where o and 3 are independent phases. This residual symmetry originates
from the chiral symmetry of the continuum action and ensures that no
counter terms are needed for renormalization (that means mpue = 0 im-
plies myen, = 0). This is a fundamental difference to the Wilson method. As
a consequence the non-renormalized mass parameter in the staggered action
and the bare mass in the hopping parameter of the Wilson action are not
identical. Therefore a direct comparison of the two methods is not easy to
accomplish.

In the Kogut-Susskind formulation of lattice fermions baryonic operators
with well defined quantum numbers are difficult to construct. Thus the
Wilson formalism is more adequate for hadron spectroscopy purposes. Since
chiral symmetry is partially conserved, the staggered scheme is attractive
for studying questions like spontaneous symmetry breaking in QCD. The
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price one has to pay is that the degeneracy cannot be completely avoided,
for reasons mentioned in Section 2.4.1. In practice one introduces a factor
f = 1/4 in the action to account for the remaining degeneracy. Whether
this concept gives the correct continuum limit is an unsolved problem.

2.5 Pure and Full Lattice QCD Action

The lattice regularization of gauge fields should be performed by preserving
gauge invariance. One can easily verify that a naive discretization by simply
assigning the vector potentials to the sites and substituting all derivatives
with finite differential quotients would violate local gauge invariance for finite
lattice spacing a.

The gluonic fields were introduced in the Dirac part of the continuum
QCD Lagrangian (2.1) by demanding invariance of the fermionic action with
respect to the SU(3) gauge transformations, and adding a gauge-invariant
kinetic term. The definition of the gauge fields on the lattice can be obtained
by following this procedure. Let us consider the free fermionic discretized
action (2.21), where the fields 1, and ), are now three-component fields
in color space (being also four-component spinor variables) so that the La-
grangian is invariant under the global transformations

be = abs
Ve — heg ', (2.43)

where ¢ is an element of SU(3). The next step consists in requiring the
theory to be invariant under local SU(3) transformations, with the group
element g, depending on the lattice site. For this, one has to make the
following substitutions in (2.21):

¢x¢z+ﬂ - z/ijwuz,bx-l-ﬂ
¢x+[ﬂ/)w - z/)964—;2Usc+ﬂ,f;ﬂ/)ﬂc- (2-44)

The factors U, and U4, are determined by the line integral of A, along
the link, e.g.

T+afl
Upp = P exp fi/ gA, -dy | , (2.45)

where the P-operator path-orders the A,’s along the integration path. No-
tice that U, and Uy, —, are elements of the SU(3) group, transforming
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according to

-1
Uxu — Gy Uwugx+ﬂ

Ux+ﬂ,7u - 9z+ﬂUx+ﬂ,7uQajl ; (2-46)
and satisfying the relation

U

o = U}u =U,, . (2.47)

In contrast to the matter fields, the group elements U, live on the links
connecting two neighboring lattice sites; hence, they are referred to as “link
variables”.

Making the substitutions (2.44) in eq. (2.21), we obtain the following
gauge-invariant lattice fermionic action:

1 _ _ _
Sy = Cﬁ{% Z [¢w7uU$u¢x+ﬂ - ¢x+ﬂ7uU£u¢x} + mzzpzz/)w} - (2-48)
T, T

In this formula the color, Dirac and flavor indices are omitted. Using (2.45),
St yields formally the correct continuum limit:

S “=0 / 'z (x) (D + m)(z) . (2.49)

The change of (2.48) to the Wilson and staggered fermionic actions (2.29)
and (2.41) is obvious. In the staggered scheme the fields 1) become three-
component vectors x in color space and should be coupled to the matrix-
valued link variables in the same gauge-invariant way. The gauge-invariant
staggered fermionic action reads:

1 _ _ _
SF = a4{% Z F:cu [X:cUccqu+ﬂ - Xz+ﬂU:quzj| +m Z X:ch} . (250)
T,l T

It can be rewritten in terms of dimensionless lattice variables, by making
the replacements

1
m — —-m,
a
_ r
XJ: - a3/2 Xq: ) (251)
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Then the lattice version of (2.50) applicable in computer codes is

1 N _ _
T, z

The lattice form of the gluonic Lagrange density should also be gauge
invariant. There is no unique way of constructing the lattice Lagrangian
but it has to converge to the continuum Lagrangian for a — 0. Since Uy,
transforms according to (2.46), the simplest gauge-invariant quantity one
can build from the group elements U,,, is the trace of the path ordered
product of link variables along the boundary of an elementary plaquette:

vt ul . (2.53)

T4U,u - TV

Upluv(2) = UsilUs v

The gauge invariant expression [15]

Sa=83 (1- %ReTrUpl) , (2.54)
pl

with the inverse coupling constant 8 = 6/¢2, and the sum extending over
all distinct plaquettes on the lattice, converges to the continuum action for
a—0

- 1
S =9 / 0% 3 Fyu () P (2) (2.55)

Thus the action (2.54) referred to as the Wilson plaquette action is
one possible choice of the gluonic action on the lattice. Together with the
action (2.50) we now have a gauge-invariant lattice regularized version of
QCD.

The persistence of the exact gauge invariance has several practical advan-
tages. With gauge invariance, the quark-gluon, three-gluon, and four-gluon
coupling constants in QCD are all equal, and the bare gluon mass is zero.
Without gauge invariance, each of these couplings must be tuned indepen-
dently and a gluon mass introduced to recover QCD. Tuning many param-
eters in a numerical simulation is very expensive. Continuous symmetries
like Lorentz invariance can be given up with less cost because the remaining
discrete symmetries of the lattice, though far less restrictive, are still suffi-
cient to prevent the introduction of new interactions with new couplings (at
least to lowest order in a).

In contrast to QED, the pure gauge sector of QCD describes a highly
non-trivial interacting theory. The self couplings of the gauge potentials are
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believed to be responsible for quark confinement. This is the reason why the
studies of the pure gauge sector of QCD are of great interest. Furthermore,
path integrals involving Grassmann variables are difficult to handle. There
are some phenomenological facts in low energy hadron physics like the OZI
rule [30] or the approximate linearity of Regge trajectories [31] which suggest
that closed quark loops have only a small effect. Most of the numerical QCD
calculations have been performed in the pure gauge sector or in the so-
called quenched approximation [32,33] where the effects of pair production
processes are neglected. The pure gluonic expectation value of an observable
is

(0) = % 11 /dUw O(U) e 5 (2.56)

links

with the partition function

z=1] /dUw e v6 (2.57)
links

The integration measure with the following features

/dUzl

/dU F(U) = /dU V) :/dU FUV), VeSU@3) (2.58)

is called Haar’s measure. In contrast to a path integral in the continuum,
(2.56) and (2.57) comprise only a finite number of integrals over the gauge
group. No gauge fixing is needed for gauge invariant observables. A four-
dimensional hyper-cubic lattice with linear dimension N has 4N* links. An
integration over the full gauge group SU(3), for example over the eight Euler
angles, has to be performed on each link, resulting in 32N* integrals over a
compact interval.

2.6 Continuum Limit

Regularization is a mathematical tool to make calculations possible. In
a renormalizable theory, the results are independent of the regularization
scheme. Thus the dependence of observables on the lattice regularization
with the lattice spacing a as a cutoff parameter has to vanish in the contin-
uum limit, and all symmetries like for example euclidean rotational invari-
ance have to be restored. However, this limit is difficult to achieve.
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For simplicity, let us consider a pure gluonic theory, where the only
non-dimensionless parameter is the lattice constant a. The calculation of
observables on the lattice always gives dimensionless numbers. Their physi-
cal dimension has to be determined via the lattice constant. So, a prediction
for the physical mass has the form

1
m= " flg(a)) (2.59)
The continuum limit is achieved when we take a to zero, holding physical
quantities fixed. Thus, to obtain a finite mass in the continuum limit, for
a — 0 also f(g(a)) has to properly converge to zero. The bare coupling
constant has to be changed in an appropriate way

a —0 .  _
{ g(a) = g* } ,  with f(¢g*)=0. (2.60)

In this limit the correlation length £ = 1/(ma) — oc corresponding to a
second order phase transition in the lattice theory.

At such a critical point, due to strong long range fluctuations the lattice
structure is smeared. Violated symmetries like euclidean rotational invari-
ance are restored. However, an increasing number of lattice points has to be
used to preserve the physical extent of the lattice for decreasing a, so that
the numerical effort increases enormously. Today, computers are already fast
enough to reach the scaling region, where for sufficiently small a the ratio of
two physical observables O; and O3 does not depend on the lattice constant
even though the individual observables still depend on it:

O1(g(a),a) _ Oi(g",0)
Os(g(a),a) — O2(g*,0) -

The behavior of g(a) near the critical point can be obtained from the renor-
malization group equation

(2.61)

as O(g(0).0) oo =0,
a5 + 0 5.] 0la@).) oo =0 (262

In QCD the critical coupling g* is zero and the perturbative expansion of
the g-function gives

dg

B(g) = an = —Bog® — Big” + ... . (2.63)
a
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Integrating this equation yields the physical value of the lattice constant in
the asymptotic scaling regime:

] 2
e T (fog?)* (1+0(gY) - (2.64)

a(g) ALatt
Ayt 18 the cutoff or scale parameter of the theory. One obtains continuum
results in the lattice theory if one can observe a scaling of the computed
quantities (e.g. masses ma) with the input coupling ¢ according to (2.64).
The calculations of this work were not done in the asymptotic scaling regime.
For this reason the physical values of observables can be given only approx-
imately in physical units.



Chapter 3

Meson-Meson Interactions
on the Lattice

The various models for the nucleon-nucleon interaction as outlined in the
Introduction — often render a decent description of the experimental data and
to some extent give interesting ideas for the underlying interaction mecha-
nism. Nevertheless, their theoretical foundations are inadequate for a fun-
damental understanding of hadron dynamics. Within the meson exchange
models, like Bonn and Paris potentials, the basic QCD degrees of freedom,
quarks and gluons, are not taken into account. On the other hand, the bag
and quark potential models use artificially introduced boundary conditions
or confinement potentials to ensure quark confinement. All these models
have various parameters and are ultimately based on phenomenology. For
the case of meson-meson interactions the situation is worse. The related
experimental information is very poor and therefore less phenomenological
models have been developed. One of the aims of modern theoretical nuclear
and elementary particle physics is to describe hadron-hadron interactions
from first principles. The most promising framework for such investigations
is lattice QCD, not least because of the steadily increasing computer power.

Remarkably, only few attempts have been made to extract potentials be-
tween two composite hadrons from the lattice [19 22]. Earlier calculations
of nucleon-nucleon forces with static quarks have demonstrated that the po-
tential between two three-quark clusters is attractive [21]. A hard repulsive
core of the potential, as suggested by experiments and their interpretation,
could not be observed in the region where the two nucleons have relative
distance close to zero.

25



26 Chapter 3. Meson-Meson Interactions on the Lattice

In the following a method to obtain interaction potentials in QCD is
developed. In particular, the interaction between two heavy-light mesons
is investigated. The role of the heavy quarks is to localize the mesons so
that their relative distance 7 becomes well defined. The computation of
the potential is then based on two-meson time-correlation matrices. Since
this method employs dynamics, using quark propagators, in addition to the
static heavy-quark gluon-exchange interaction, the calculation will include
the effects of interactions between gluons and light quarks, as well as light-
quark exchange. Some simulations will also include the effects of sea quarks.

3.1 Quark Propagators

The expectation value of products of quark fields can be expressed in terms
of two-point correlation functions of the type

| DY) D) g (a)dl(a) e VM

a 7.b ! _
WhE e = e

= (M7'(U))as(z,a") = Gay(a,a") . (3.1)

The quark propagators GG represent the basic quantities not only in hadron
spectroscopy, but also many investigations involving hadron systems.

Most of the computational effort of a calculation involving fermions goes
into constructing fermion propagators. That is, one wants to solve

M(z,y)G(y,z) = 6(z — 2), (3.2)

where M (z,y) is the discretized fermion matrix. Since M non-zero elements
in the order of the volume square, this is a problem of sparse matrix inversion.
It is usually not possible to construct or store G(x,y) for all  and y since this
involves finding on the order of (volume)? numbers. Instead, one typically
constructs G(z,y) for all z and some selected points y by solving

M(z,y)G(y,z) =Y (), (3.3)

that is, G(y, z) is the vector MY
In the following we employ the Kogut-Susskind formalism. The fermion
matrix of the Kogut-Susskind Lagrangian is

1
(MKS)II' = % eru[6x+ﬂ,x’ Uxu - 6x,x’+[t U;'”] +m 6:5:5’ . (3'4)
I
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The I'y,, are phases playing the role of the Dirac matrices in the Kogut-
Susskind discretization (see Section 2.4.3). The size of this matrix is (3 x
N2 x N;)?, where Ny and N; are the numbers of lattice points in space and
in time direction, and the factor 3 are the color degrees of freedom. KEven
for a very small lattice like NE x Ny = 43 x 8 Mkg becomes a rather big
matrix of dimension (1536 x 1536). Due to the large memory and CPU time
requirements instead of a direct numerical inversion of Mkg one relies on
stochastic methods.

3.1.1 Random Source Technique

This method for inversion of large matrices employs complex vectors with
random number components. Usually in studies of time evolution of quark
systems we need quark propagators of the type G(t,ty). They can be ob-
tained by using in (3.3) sources which are non-zero only on one time slice
to

Yia(@,24) = B (@ )onai, (35)

1,a
where R is a complex random vector defined in color and coordinate space

with 3L3 random number components (random sources) [34,35]. For an
average over Np random sources one has within statistical errors

L
N R (T)Rip(¥) = 07,5000 - (3.6)
R i=1
Solving
G (7 Lo I(to) — _ R(to) 716 3.7
ZZ( ) ($7$4:y7y4) ib (yay4) ia (.ZL‘) T4,lo ( . )
Jys b
for all vectors R; of the ensemble (i = 1,..., Ng) gives a solution vector I;
for each source R;
197, 24) = 3 G™(F, 245§, 10) R (37 3.8
i,a (.Z',.T4) _Z (m,.T4,y,t[]) i,b (y) : ( : )

yb

With equation (3.6) single matrix elements of the propagator can be esti-
mated

2y

N
1 R
abr— 4. = . —1vyab(~ 4. = o (to) / » *(to) /=
G (y,t,I,tU) - (M ) (y,t,:r,to) - NR ;:1: I’i,ttl) (yvt)R'bO (.ZL‘) . (39)
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Equation (3.7) must be solved for each gauge field configuration and for
each vector R. To keep the CPU times for the calculation of the quark prop-
agator reasonably small, one has to use an effective algorithm for its solution.
Since the matrix M = G~ is very large and sparse an iterative method to
find a solution is a good choice. When choosing such a method, a matrix
inversion problem has to be taken into account. The largest eigenvalue is
on the order of m. For small m this means that M is ill conditioned: the
ratio of its largest to smallest eigenvalue diverges as m — 0. In practice, the
more ill-conditioned the matrix, the harder it is to invert. This is why one
generally does not work at the physical value of the quark mass. Instead,
one is restricted to unphysically heavy values of the quark mass.

There have been a number of diagnostic studies of matrix inversion al-
gorithms [36]. At present it seems that the most robust algorithm, with the
best behavior for small quark mass, is the conjugate gradient algorithm [37].

3.1.2 Hopping Parameter Expansion

The quark propagator G can also be computed within the so-called hopping
parameter expansion. Let us write the fermionic action (2.52) in the form

Sp=mY XaKaylU]x, (3.10)
:B’y
where K,,[U] are matrices in color space:

1
Kay[U] = 821 = 5 —May (3.11)

The only non-vanishing matrices M, are those connecting neighboring lat-
tice sites:

wa«H] = *quUxu
Myo i = ToUl_, . (3.12)

The inverse of K is the fermion propagator for a given link-variable config-
uration. For large bare quark mass m we can expand K ! in powers of the
hopping parameter 1/2m in a Neumann series:

K U] = (1 - LM)l = i <%>ZMZ, (3.13)

2m P
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where M? is a product of ¢ matrices M, connecting neighbouring lattice
sites, which are given in (3.12). The corresponding expression for the matrix
elements of K ! reads:

_ 1
K, WUl = 6uyban + %(sz)ab
[e'e} 1 Y4
+ Z <%> Z(M:c:mMmm T Mtﬂzay)ab : (3-14)
=2 T

Using the fact that M, connects only nearest neighbors on the lattice, the
contributions to K;al’yb[U] of order (1/2m)* can be computed according to
the following rules:

i) Consider all possible paths of length £ on the lattice starting at the
lattice site £ and terminating at the site y.

ii) Associate with each link base at 2 and pointing in the 4+ direction
the matrices (3.12).

iii) For each path, take the ordered product of all these matrices following
the arrow pointing from z to y, and take the ab-matrix element of this
expression.

iv) Sum over all possible paths leading from z to y.

It is easy to see that the matrices M in (3.12) have the following sym-
metry property:

Myp pa = —M} (3.15)

a,yb -

We can obtain a relation between the quark propagator and the antiquark
propagator by taking the hermitian conjugate of (3.14), and making use of
(3.15):

Gly,z) = (—1) 2@ Gt 4. (3.16)

Here the “dagger” refers to color indices only. This symmetry is related to
CPT invariance, and is the staggered analog of the relation

G(y,z) = G (2, y)7s, (3.17)

for the Wilson (naive) fermions. These equations are very useful since if
we compute e.g. the propagators of the type G(t,ty) using the algorithms
presented in the previous sections, an extra evaluation of the propagators of
the type G(tg,t) is not necessary.
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3.2 Field Operators and Correlation Functions

Since the nucleon-nucleon system containing six light quarks is beyond the
current limits of computation, in this section the correlators containing the
dynamics of two mesons are derived. In principle the method can be directly
extended for the case of baryons. The propagators for the two-meson system
were initially derived within a QED9 1 model [38—42], the investigations were
extended later to QCDgy; [43-47].

The computation of hadron propagators in Kogut-Susskind formalism
bears a few technical complications related to the assignment of flavor, space
and spin indices [48 50]. In this formalism the quark operators are nonlocal
operators which live on elementary hypercubes of the lattice. Thus a meson
interpolating field can be defined as

pap(z) = q(z)(T'a @ I'p)q(z) (3.18)
where I'y and I'g are two of the 16 matrices 'y = ’y{” ...724 and b labels
the location in the hypercube (b; = 0 or 1). By convention, I'4 acts on

spin indices and I'g acts on flavor indices. If 'y = I'g then the operator

¢4 = ¢paa is local. Otherwise it involves combinations of field operators at

different locations in the fundamental hypercube. One must either gauge fix

before measurement or explicitly include link factors connecting the sites.
If the operator is local then

pa(z) = eanXn(z)xp(x) (3.19)
b

and € is 1 or —1 depending on whether I'g and I' 4 commute or anticommute.
In practice this means that a local channel tends to have two particles of
opposite parity. This is a characteristic of the Kogut-Susskind formalism
causing a special behavior of the correlators. There are four possibilities for
local operators: they are (a) I' = 75, ¢, = (—1)" (pseudoscalar) (b) I' =1
and 7973, €5 = 1 (scalar and pseudoscalar) (c) T' = v3 and 271, € = (—1)%
(vector and tensor) (d) T' = o3 and 571, € = (—1)P17P2 (vector and axial
vector). Thus a pseudoscalar meson field with momentum p' = ZT”(kl, ko, ks3)
has the form:

1 L
() = — R R P A P b 3.20
$(t) = 3 ;( ) P X (@) x pr (T) (3.20)
where f and f’ are now the flavors of the Grassmann fields and V = 3- N, -
Ny - N,. Meson-meson fields ® with total momentum P = 0 and spatial
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separation 7 then can be defined as

Ze’i’?’? () b5(t)- (3.21)

Correlations of these field operators contain information about the dynam-
ics of the two-quark and four-quark systems and, ultimately, the effective
residual meson-meson interaction.

The two-point correlator, describing the propagation of one meson on
the lattice is

CO(t,t0) = [(BL(1)d5(ta)) — (S50 (B5(t0))]p=o- (3.22)

The four-point time correlation matrix describes the propagation of two in-
teracting mesons on the lattice:

CLD (1, to) = (@L(1)B5(t0)) — (DL(1)) (D5(t0)). (3.23)

Here 7 and § are relative separations of the meson-meson system. The ex-
pressions in (3.22) and (3.23) can be worked out in terms of contractions
between the Grassmann fields

where n indicates the partners of contraction and (G) is the quark propaga-
tor. We obtain:

0(2) (ta tO) = V2 Z Tr yt Fto Gyt zt0)>
’y

= ZZ G2 1) (3.25)

Z,y ab
Cg})(t,to) — oWA) 4 oUB) _ o(40) _ (4D)

SRS SR R

where

1
(s )(t, tU) = <W Z Tr(GerFt,yto Gi"—H"t yto)

f’g

X H(Gft,gfstonty St0)> (327)
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r
H+ @ ® 1+

®c e @

Figure 3.1: The Hy molecule as a system of two static (heavy) nuclei at
relative distance r and two dynamic (light) electrons.

4B 1
CP (b, 10) = <WZTF(Gi+ﬁ,gtong+ﬁ,gto)

f’g

(G450 Gy 510) ) (3.28)

$t:17+§t0

ac 1
CTE? )(t, tO) = <W Z Tr(GTj‘+Ft,g‘t0 Gi+r_’t,g]7§tg
f’g

X

X

G;‘Et,gjfs‘tg Gzt 4t )> (3.29)
4D 1

C;'E‘ )(tu tO) - <W Z Tr(Gf-FFt,gto Gtit,g]to

Z.g

X Gag-sto G;‘E+Ft,gjf§t0)> : (3.30)

The brackets (...) denote the gauge field configuration average, and “trace”
and “dagger” operate in color space. The last row of eq. (3.26) contains the
schematic representations of different contributions to the correlator C'®.
Each of the four contributions comprises the exchange of gluons and sea
quarks. For diagrams C*4) and C(*®) those take place between the mesons,
whereas diagrams C*¢) and C(*P) correspond also to interaction mediated
by the exchange of valence quarks [51].

3.3 Heavy-Light Meson-Meson System (MM)

The fundamental problem of molecular physics is the explanation of binding
of hydrogen atoms in Hg molecule. This was solved by the help of the
adiabatic approximation in which the two light electrons move fast in the
electric field of the slowly moving (heavy) protons (Fig. 3.1). The interaction
potential of the two atoms was obtained as a function of the distance r of the
two protons, which can be considered as the distance of the two atoms. The
effective potential of the two atoms was then used to determine the wave
functions and energy levels of the Hy molecule.
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Here an analogous problem is considered a “hadronic molecule” con-
sisting of two heavy-light mesons, in which the heavy quarks are treated as
static colour sources, playing the role of the (slow) atomic nuclei. The gluons
and light quarks play the role of the fast degrees of freedom. In addition
to the static heavy-quark gluon-exchange interaction, this calculation will
include the effects of interactions between gluons and light quarks, as well
as light-quark exchange. Some simulations will also include the effects of sea
quarks.

By making one constituent quark degree of freedom of the meson very
heavy one also reduces the complexity of the formulae (3.27) (3.30) and
the heavy-light meson-meson system becomes less costly to simulate. This
system contains only two light valence quarks. As such, one is still quite far
from a direct simulation of the nucleon problem. However, as all nuclei are
hadronic molecules, the qualitative conclusions obtained for this case should
be somewhat universal. The resulting interaction potentials are of further
interest because they might be used for quantum-mechanical investigations
of the two-meson states in a search for exotic particles which are stable
against strong decay.

3.3.1 Correlation Functions

The correlators describing the resulting heavy-light mesons, as well as the
system of two such mesons (MM) can be obtained from (3.25) (3.30) by re-
placing e.g. each quark propagator with the corresponding heavy quark prop-
agator, which can be taken from the hopping-parameter expansion (3.14).
We only use the lowest order of the expansion so that the heavy quarks
represent fixed color sources. Thus e.g. the heavy-antiquark propagator is
given by

k k
w1 k
Gfto,ft - <2mha> [Ff4] H Uz:(f,ja),uzéla (331)
j=1

with a similar expression for the quark propagator. The heavy quark mass
my, only gives rise to an irrelevant multiplicative factor in the static approx-
imation and is set to mpa = .5. The phase factors T'zy = (—1)@1+22+7s)/a
in the Kogut Susskind formulation are remnants of the Dirac matrices and
k = (t —t9)/a. Since thl’)fto = 0 for Z # ¢, all off-diagonal elements of the
correlation matrix (3.26) vanish, and we obtain:

1 h
CEMNMM (1 1) = (W ZTr(GTi‘t,ftoG:(E‘t,)fto» (3.32)
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3 ° 3 °
Q q q Q Qq q Q
Figure 3.2: (a) Direct term C(*A) and (b) exchange term C*¢) for the MM-
system constructed from heavy (Q) and light (q) quark propagators.

CEPMM (1 1)

1 (h) t
<W Z H(GiJrFt,erFto G:E+Ft,f+FtO)
h
X Tr(GY )y G o)

1 (h) i
<W Z H(Gi+Ft,f+Ft0 Git,i+th
T

ch_ gt ) =CctA) oo (3.33)

Tt,Zto ~ T+7t,Ttg

X

In the following we omit the superscripts MM. Note that in this case the
number of independent contributions to the four-point correlator reduces to
two. The diagrams contributing to (3.33) are shown in Fig. 3.2. Figure 3.2(a)
corresponds to the pure gluon exchange part while Fig. 3.2(b) corresponds
to the flavor exchange part of the mesonic interactions.

The mass m of one heavy-light meson can be extracted from the behavior
of the two-point correlator in large euclidean time:

CA(t,tg) oxx e ™Eto), (3.34)

The state with minimal energy of the meson-meson system can be extracted
from the large euclidean time behavior of the four-point correlator follow-
ing quantum-mechanical reasoning [17,52]. Similar arguments for composite
particles were presented in [41,44]. In the euclidean formulation of quan-
tum mechanics the spectral decomposition of the four-point Green function
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representing the two-meson system is

CE(t.t0) = Y (@) (n|og)e Erlit0), (3.35)
n

where E,, are the energy eigenvalues and |n) are the associated eigenstates.
For a given potential we can solve the energy eigenvalue problem to obtain
E, and |n) and calculate the sum in (3.35). We invert this process and
calculate the potential from a given Green function. As the heavy quarks
lead to a localization of the mesons during the time evolution of the system,
we have |7| = [§] = r giving

C(t,tg) = Y [(®|n)|?e Fnli-to), (3.36)

n

Since the correlation matrix C¥) describes the time evolution of the meson-
meson system with a constant particle separation r for the whole process,
we can extract the energy of two heavy-light mesons from the asymptotic
time behavior at fixed r [17,41,44, 52]

CW(t,t9) ox cq(r)e”WIlE—to), (3.37)

The effective interaction potential is obtained by subtracting from W (r) the
total energy 2m of the non-interacting two-meson system:

V(r)=W(r)—2m. (3.38)

3.3.2 Autocorrelation of the Two-Point Function

Before engaging in costly lattice simulations, one has to fix the simulation
parameters to avoid systematic errors. One source of error is the autocorre-
lation of the correlation functions.

Statistically independent gauge field configurations can be generated via
a Markov chain. To get an idea after how many successive Markov steps
one can expect independent results for an operator O one may calculate the
autocorrelation function

N [ S TG+ 1)06) — i S T 06+ 1) ST O]

A(r) =
(7) [ Z 02 - (2 06)?]

(3.39)
For this purpose the operator O has to be evaluated on Ny successive gauge
field configurations. Theoretically A(7) is an exponentially decreasing curve
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in the limit 7 — oo. After 7y iterations the function A is close enough to zero
to expect independent results for O when performing 7y sweeps between two
measurements. In Figure 3.3 we plot A(7) for O = C®)(tg,1) (a), and for
O = C(t,,ty) (b) for various time extents N; = 8,16, 32 of a 4% x N, lattice.
With our choice of the random sources we fixed tg = 0. The minimum of the
correlation function on a periodic lattice is at £, = N;/2. The inverse gluon
coupling is 3 = 5.2. Sea quarks with mass mga = 0.1 and ny = 3 flavors are
included in the simulation. The mass of the valence quarks is also m a = 0.1.
From Figure 3.3 it can be seen that for 7 > 150 independent results for the
meson two-point function can be expected.

3.3.3 Number of Random Sources

In this section we try to find out how many random sources have to be
employed to obtain reliable results for the correlators. For this purpose the
two-point correlator of a heavy-light meson (3.32) is calculated in a quenched
simulation on a 8 x 16 lattice for 8 = 5.6 and mfa = 0.1. In Fig. 3.4 the
meson correlator is plotted against the number of random sources on a double
logarithmic scale. The largest ensemble consisted of Np®* = 128 random
sources. The results from a single gauge field configuration are compared
with the averages over twenty gauge fields for £ = 0,1 and 2. In both cases
the correlator converges reasonably well above Np = 16. The behavior
of the correlator becomes worse for larger final times ¢. As expected, the
convergence of the correlator with increasing Ng improves for averages over
more gauge fields.

In Fig. 3.5 we show a similar comparison for the two contributions to
the heavy-light meson-meson correlator (3.33) from a single gauge field con-
figuration and from an average over twenty gauge field configurations for
separation r = 0. Again the correlators are drawn for £ = 0,1 and 2. One
can see that C44 and C(*C) have larger fluctuations than C? especially
for one gauge field configuration. But we observe a sufficient convergence
for the average over twenty fields already for N =~ 32 random sources.

3.3.4 MM-Potentials

Quenched results

The gauge field configurations of pure QCD were generated on a periodic
N3 x N; = 8% x 16 lattice with inverse gauge coupling 3 = 5.6. According
to the renormalization group equation this corresponds to a lattice spacing
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Figure 3.3: Autocorrelation A(7) (3.39) for the single-meson two-point func-
tion C®)(tg,10) (a) and C®)(t,,t9) (b) corresponding to (3.25) on a 43 x N;

lattice for Ny = 8,16, 32.
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Figure 3.4: Two-point correlation function C?)(t, ) from (3.32) as a func-
tion of Np for £ = 0,1 and 2 and £y = 0. The convergence of the correlator is
compared for a single and an average over twenty configurations on a 83 x 16
lattice for 8 = 5.6 and ma = 0.1.

a ~ 0.19 fm. The results were obtained from an analysis of 100 configurations
separated by 200 updates of the gauge fields (see Section 3.3.2). For the
smallest quark mass 200 configurations were produced to improve statistics.
The light-quark propagators with different mass parameters m ya in the range
0.025-0.2 were determined from the inversion of the fermionic matrix (3.4)
using the conjugate gradient algorithm with 32 random sources (see Sections
3.1.1 and 3.3.3). To reduce the computational effort we did not average over
different values of ¢y in the inversion process.

The light-quark propagators obtained by the inversion contain contri-
butions both from (anti)quarks winding around the periodic lattice. To
improve our statistics we took into account also heavy-quark propagators
winding in the opposite direction for separations larger than N;/2. In this
way the correlators become symmetric about the center of the time-axis.
The contribution in the heavy-quark propagators arising from the longer of
the two lines is suppressed in powers of myj, and is ignored.

We calculated the four-point propagator for different values of the meson
separation r/a from 0 to 4 averaging over all spatial directions. Non-integer
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Figure 3.5: Four-point correlators C*4) and C4©) of the heavy-light meson-
meson system as a function of Np for ¢t = 0,1 and 2. Comparison of the
convergence of the correlators for one and an average over twenty gauge field
configurations on a 8% x 16 lattice for 8 = 5.6 and msa = 0.1.
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distances 7/a = v/2,V/3, etc. were also included in order to estimate system-
atic errors on W (r) related to violation of rotational O(3) invariance by the
lattice.

The potential was extracted from cosh-fits to the correlators. In the
following we set tg = 0. Because of the periodicity in time one expects the
following behavior for C?) and C*:

C(t) = 3 A, cosh[m,(t — Nya/2)]
+ (=1)Y*S" A, cosh [, (t — Nya/2)] (3.40)
c(t) = ZB (r) cosh [Wy, (r)(t — Nia/2)]

+ t/a Z B COSh ( )(t — Nta/2)] (341)

The terms alternating in sign are a peculiarity of the Kogut-Susskind formu-
lation of lattice fermions and correspond to contributions from intermediate
states of opposite parity (see discussion of Eq. (3.19)). A precise analysis is
needed in order to estimate the number of excited states contributing to the
sums in Egs. (3.40) and (3.41) [53]. We analyzed the correlation functions
by using fewer data points corresponding to asymptotic times and looked
at the stability of the potentials from the fit. The outcome of this analysis
is presented in Fig. 3.6. Unfortunately fewer data points for the fit yield
larger error bars in the potential, but especially for mfa = 0.2, when the
statistical errors remain reasonably small, one can see that the contribution
from excited states does not alter the shape of the potential considerably.
The same conclusion could be drawn from a refined analysis on a 103 x 20
lattice (see later). Thus, we included all points in time direction to extract
the lowest contribution from both terms in eqgs. (3.40) and (3.41) risking to
slightly overestimate the mass parameters. However, it turned out that a
four-parameter fit of Ay, mq, Ay, iy and By (r), Wi(r), Bi(r), Wi (r) gives
a satisfactory result with an acceptable x?. As an example, in Fig. 3.7 we
show the numerical results for the two-point correlator as well as for the
four-point correlator at » = 0 with mya = 0.1, and fits to the data points.
The Levenberg-Marquardt method described in [54] was employed. The
solid curves correspond to the functions in (3. 40) with the parameter set
Ay, my, Ay, iy and in (3.41) with By (0), W1 (0), B (0), W (0), respectively.
Note that one correlation function is represented by two curves distinguish-
ing between even and odd distances. The mass of the meson is identified by



3.3. Heavy-Light Meson-Meson System (MM) 41

1.78 1.72
1.74 1.68
8 8
= 1.70 + 1 s 1.64
= =
msa =0.2
1.66 1 1.60
p15 —=—
p13 ——+-—
p11 o
1.62 1 1.56
0 1 2 3 4
r/a
1.70
1.66
1.66
1.62
8 8
= 1.62 =
= = 158
1.58
1.54
1.54
0 1 2 3 4 0 1 2 3 4
r/a r/a

Figure 3.6: Meson-meson energies W (r)a for different light quark masses
mya. Different data sets represent different number of data points corre-
sponding to asymptotic times used for the fit, e.g. p15 = 15 data points.
Some error bars are omitted for clarity of the figures. Lines connecting the
symbols are to guide the eye.
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Figure 3.7: Time dependence of the computed correlation functions and fits
to C® and Cr(i)O with mga = 0.1 (see text).

m = my and the meson-meson energy by W (r) = Wi(r).

A comparison of the direct term C*4) and the quark-exchange term
CM0) indicates a leading contribution from C*4) being almost an order of
magnitude larger than C*°). The reason is that due to the strong confining
force the possibility for light valence quarks to be exchanged between the
mesons is very small.

In Fig. 3.8 we repeat and discuss now the results of W (r) for different
light-quark mass parameters from Fig. 3.6. The horizontal lines correspond
to the energies 2m of two independent mesons. The error bars were obtained
by taking into account the statistical errors of the correlators C(2) and C*)
in the fit and estimating the covariance matrix of the standard errors in the
fitted parameters (see [564]). For smaller m the error bars increase due to the
inaccuracy of the inversion of the fermionic matrix. The curves reach their
plateau at r/a = 2, continuing, with large fluctuations, to the asymptotic
values 2m. To be numerically consistent with W (r) at large distances, the
mass 2m of two non-interacting mesons was extracted from fits to the square
of the meson two-point function [C ]2, We should point out that interaction
energies in Fig. 3.8 are only about 5 x 1072 of a typical hadron mass. This
is characteristic of residual hadronic forces.

The resulting potentials are collected in Fig. 3.9. The error bars are
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Figure 3.9: Meson-meson potentials V(r) = W (r) — 2m for different light-
quark masses m . Error bars are omitted and data at r/a = 3 are averaged.

omitted and the data at distance r/a = 3 are averaged for the sake of clarity
of the figure. Attraction for short distances is evident. We find that the
interaction is stronger for smaller light-quark masses, but its range is always
approximately the same. The reason is that confinement forces suppress the
exchange of quarks at large separations. Quark exchange plays a significant
role only for distances  much less than 2a. The systematic deviations in the
off-axes directions may originate from anisotropy effects of the cubic lattice.
This issue will be studied in Section 3.5.

Simulation with dynamic quarks

The interaction between nucleons is mediated by the exchange of virtual
mesons. The quenched approximation used so far in our simulation does
not allow for the creation of virtual gg-pairs, which would ultimately lead to
the formation of the mediating mesons, as shown in the first diagram of Fig.
3.10. Remarkably, even in the quenched approximation the exchange term in
(3.33) will include pion exchange contributions—one such exchange is shown
in the second diagram of Fig. 3.10. Nevertheless, in order to elucidate how
significant the contribution of the dynamic quarks to the interaction po-
tential is, a full QCD investigation of the heavy-light meson-meson system
was performed. For the inclusion of dynamic fermions the pseudo-fermionic
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Qq qQ
Figure 3.10: Meson-exchange contributions to the meson-meson propagator.
At the time slices indicated by the dotted lines, two heavy-light mesons and

a light meson are present. Diagram (a) implies the creation of a virtual gq
pair, whereas (b) is present also in the quenched approximation.

method was used [55]. The number of flavors was set to ny = 3, with the
dynamic quark mass mga = 0.1. The choice of a coupling 8 = 5.2 leads
to a lattice constant comparable with that of the quenched simulation. The
results with and without dynamic quarks for light valence-quark mass param-
eter mya = 0.1 are presented in Fig. 3.11. The outcome is the same within
statistical errors, and suggests that the influence of the dynamic quarks is
not considerable. This turns out at least for our dynamic quark mass which
is around m, ~ 100 MeV and reflects a general fact found in lattice QCD
computations.

Simulation on a 103x 20 lattice

To see how the finite extent of the space-time lattice affects the resulting
interaction potentials, here the quenched results presented before are com-
pared with a quenched simulation on a larger, N3 x Ny = 10% x 20 lattice with
the same inverse gauge coupling 3 = 5.6 and light-quark mass mya = 0.1.
Because of limited computer resources the results for the larger lattice were
obtained from an analysis of only 50 configurations separated by 200 updates
of the gauge fields.

Recall that the meson mass and the potential were extracted from cosh-
fits to the correlators of the form (3.40) and (3.41), respectively, where only
the lowest contributions to the sums were considered. Therefore these are
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Figure 3.11: Heavy-light meson-meson potentials V(r)a for quark mass
mya = 0.1, comparing a quenched simulation with 8 = 5.6 and a full QCD
simulation with 8 = 5.2 and number of flavors ny = 3.

effective-mass fits, since the contributions of all the excited states are in-
cluded into one mass parameter. For large times ¢, however, the contribu-
tions of excited states are suppressed, and the effective mass only contains the
state with minimal energy. Figure 3.12 shows the effective mass 2m = 2m;,
of two non-interacting mesons resulting from a fit of (3.40) to the correlator
[C)]2 as a function of the first time slice ¢ of the correlator considered for
the four-parameter fit. In other words, Nq, = N; + 1 — 2ty data points of
the correlator around Nya/2 were taken into account for the fits for a given
ty. The simulations on the 83 x 16 and 103 x 20 lattices are compared. In
both cases a plateau is reached for increasing ;. This can be seen more
clearly for the larger lattice, where the lowest mass value is obtained already
for t; = 2. For the smaller lattice the last stable fit could be obtained for
ty = 4, whereas for the larger lattice the fits were stable up to ¢ty = 5. For
larger t; the errors increase reflecting the larger errors of the correlator for
asymptotic times.

Figure 3.13 displays the effective total meson-meson energy W (r) =
Wi(r) for r = 0,1 and 2, again as a function of the first time slice tf con-

sidered for the four-parameter fit (3.41) for 054)(t,t0). The results for the
smaller and larger lattice behave similarly. It is unclear whether a plateau is
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reached because of the large statistical errors for large ¢, but the behavior
of the data points for increasing ¢y hints at a plateau already at t; = 3.
Again, the plateau is approached faster for the larger lattice.

The limited volume of the lattice poses an additional problem. Because
of the periodic boundary conditions the interaction energy can also have con-
tributions from the interaction of the meson-meson system with its “mirror”
particles. We now consider a fixed hadron that interacts with another hadron
separated by some distance r on the original lattice. The interaction of the
first hadron with its own mirror particles in the periodic lattices may lead
to an additive constant in the potential. If so, changing the spatial extent
of the lattice would lead to a change in the resulting interaction potentials.
The potentials from the simulations on the two different lattices with all
data points included into the fits of the correlators, ¢y = 1-—are presented
in Fig. 3.14. The outcome is the same within statistical errors indicating
that a spatial volume of 8% is big enough to accommodate the heavy-light
meson-meson system. This figure also presents the resulting meson-meson
potentials from the simulation on the larger lattice with the first time slice
ty = 3 of the correlator considered for the four-parameter fit. Here the
contributions from excited states are at least partly eliminated. Comparing
with the £y = 1 results one can see that the shape of the potential remains
stable. This is a hint that also for lattices with larger time extents, where
the extraction of the ground state becomes feasible, the qualitative behavior
of the potential may be the same. This result also suggests that the excited
states of the four-quark system are not resonant states of the meson-meson
system but rather excitations within the individual mesons.

3.3.5 Exotic Mesons as Two-Meson “Molecules”

An exotic meson has a structure which is different from that of a normal
meson. A normal meson has the quantum numbers of a possible bound
state of a quark and an antiquark: so-called normal quantum numbers. A
meson which does not have normal quantum numbers is said to have exotic
quantum numbers, and is by definition exotic. Some physicists think that
mesons with exotic quantum numbers ought to exist because QCD does not
obviously forbid them, but there is not yet definitive experimental evidence
for the existence of any such meson.

A meson may have normal quantum numbers and still be exotic if its
internal structure differs from that of a normal meson. Although there are
candidates for such exotics, none has yet been positively identified. The
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Figure 3.13: Effective meson-meson energy W(r) = Wy(r) for r =0,1,2 as
a function of the first time slice ¢; of the correlator included into the four-
parameter fit for quark mass mya = 0.1, comparing simulations on a 83 x 16
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problem of how to distinguish between a normal and an exotic meson with
the same normal quantum numbers is a difficult one and remains unsolved,
although progress has been made.

In a model with only constituent quarks and constituent gluons, a nor-
mal meson is composed of a quark and antiquark. Among possible exotic
mesons there might be glueballs (composed of gluons only), hybrids (com-
posed of a quark, antiquark, and gluons), diquark-antidiquark states and
meson “molecules” (composed of two normal mesons). The evidence for
the existence of exotic mesons is slowly accumulating, but is not yet defini-
tive [56].

While there is a long history of glueball mass calculations in lattice QCD,
including attempts to use lattice calculations to identify experimentally ob-
served mesons with glueballs [57, 58], and there are also some recent lattice
computations of hybrid meson masses [59, 60], meson-molecule or diquark
models of exotic mesons have not been treated on the lattice. (For a phe-
nomenological diquark model see [61].) Starting from the lattice results
presented in the previous section we make a first attempt to examine the
possibility of formation of a stable exotic meson molecule composed by two
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heavy-light mesons.

First we determine the quantum numbers of our four-quark system. In
the isospin representation we have ¢y, = ¢1,1 for the heavy-light meson
2 2

fields in (3.20) and therefore the two-meson system defined by (3.21) forms
an [ =1, I3 = 41 state. For the case of two mesons of an isospin doublet,
defined by the field

Ox(t) = (V2V) ' 30N 8z [ b141 (3)0
T g

(3.42)
one hasa I =1, I3 = 0 state. Replacing the field (3.42) into the defining for-
mula of the four-point correlator (3.23) yields again (3.33) in the heavy-light
approximation, provided that the light (u and d) quark masses are degener-
ate. Thus the MM states corresponding to different I3s are approximately
identical. When computing the four-point correlators we sum over all spa-
tial directions, therefore we project into the s-wave part of the correlators,
describing a state with J7 = 07.

Lattice computations are easier for large quark masses (see Section 3.1.1).
The light-quark masses used in our simulations are in the range mj; =~
25 + 200 MeV which is much greater than the mass of a u or d quark. Since
neither the full QCD simulation nor the simulation on the larger lattice led
to substantial changes of the results, we took the data from the original run
(Fig. 3.9) for this investigation. In this way we could make an extrapolation
of the data for different quark masses towards the chiral limit, getting closer
to the masses of the light physical quarks. By a two-parameter fit to the
resulting data points using a Gaussian function we obtained an analytic form
for the meson-meson interaction potential which is shown in Figs. 3.15(a).
The interaction potential was then used as an input to the Schrodinger equa-
tion for a phase shift calculation. The resulting phase shifts are displayed in
Fig. 3.15(b) with a variation in the meson mass. The extrapolated meson
mass reads ma = 0.83.

Although the potential is attractive, the computed phase shifts signal
the absence of a bound state. For a decisive check, the meson mass and the
interaction potential were used as an input for a resonant state searching
program presented in [62]. Neither bound nor resonant meson-meson states
were found. This is in agreement with the predictions of most of the phe-
nomenological models. Whether such exotic mesons exists or not has to be
answered by future experiments.
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Figure 3.15: Heavy-light meson-meson potentials from the simulation data
in Fig. 3.9 extrapolated to the chiral limit (a), together with the resulting
phase shifts 6 (b).

3.4 Heavy-Light Meson-Antimeson System (MM)

In this section we extend our lattice investigations of meson-meson interac-
tions to a system consisting of a heavy-light meson (M) and its antiparticle
(M). Simulations of MM-systems are of great interest because of their im-
mediate application to KK phenomena. Studies of multi-quark states indi-
cate that the only likely bound four-quark systems are mesonic molecular
states [63]. Two exotic particles, the a¢(980) and fy(975), are thought to be
lightly-bound K K molecules [64]. From the production processes of fo and
ag (which both decay into KK pairs) scalar-isoscalar K K potentials have
recently been extracted by inverse scattering theory [65,66]. This opens up
the possibility of an indirect comparison of our lattice QCD results with the
experiment.

By deriving suitable correlators for the meson-antimeson system, we comn-
pute MM potentials in different isospin channels. The I = 0 potential in the
I = 0 channel is then compared with the K K potentials obtained from in-
verse scattering theory calculations. Searches for MM resonant states are
also performed.
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3.4.1 Correlation Functions

The correlators describing the MM system in the I = 1 channel can be
derived in a similar way as for the MM case. The one-antimeson fields
corresponding to the one-meson fields defined in (3.20) are:

W) = 5 )T @) (3. (349

z

The two-point correlator of an antimeson can be defined as in (3.22). Sub-
stituting the fields by ¢™M we obtain the complex conjugate of the formula
(3.32), which will ultimately yield the same results as the two-point cor-
relator of the heavy-light mesons, reflecting the fact that the mass m of a
heavy-light antimeson is identical with that of a meson.

Inserting the meson-antimeson fields

2 ()M (1) (3.44)

into the defining formula of the four-point correlator (3.23) and performing
the contractions we obtain:

1

4 h)t h
01&1) (t tU) = 12 Z Tr :(E—lzft T+7tg Gi+Ft,:E+Fto) Tr(Ggft,)fto Gjﬁt,ftg»
t—|—t
- V_ ’ Z T a:+rt T+t Gf‘FFt:ft

X G(wt)wto G:Eto JE+7tg )>
1 @
(O ()2 TG L G0

x!y

+ SO T(GL, 4) Te(Gara))ra
- V2 ZTr Gto.gto <ZTT(Git,:Et)>5F,0

- It - E] +Cp. (3.45)

Here the propagator of one quark with a given flavor within each meson was
replaced by the corresponding heavy-quark propagator defined in (3.31).

Since G;’Z?ito = 0 for & # ¢, the correlation matrix becomes again diagonal.
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There are five different contributions to C'*) in this case. The first term
corresponds to the pure gluon exchange part of the interaction. The second
term corresponds to an interaction involving light valence quark exchange.
The last three terms contribute to the four-point correlator only for distance
7 = 0. Their overall contribution is denoted by Cj in the schematic repre-
sentation in the last line of (3.45). The meson-antimeson energies W (r) can

)

be extracted from the asymptotic time behavior of C£4I¥1M at a given r, and
the interaction potential is again defined as in (3.38).

3.4.2 MM Gluon-Exchange Potentials

Unfortunately the lattice simulation of the MM system is problematic due
to the appearance of the valence-quark exchange diagram in (3.45) (see dis-
cussion in Section 3.4.4). Therefore for computational reasons as a first step
only the direct, i.e. pure gluon-exchange term

(4d) _ 1 (W)t h

CF (ta tU) - W(Z Tr(Gf+f‘t7j‘+f‘t0 Gf-l—Ft,:E—FFto) Tr(Gj‘tyftO Gj‘tyj‘to» (346)
z

is computed. The knowledge of the gluon-exchange contribution may already
give more insight into the nature of MM interactions.

One can easily verify that despite the strong similarity between the di-

rect terms of the MM and MM interactions, the two contributions are not
identical. Let us write

(h)ab _ : (h)ed .

f+Ft,f+Ft0 - Al + ZBl I Gft,fto — A2 + ZBQ 3

ab . cd .
Giirmarm, = @ +ib, Gz gy =az+iby.

Thus according to (3.46) the direct term of the MM interaction is formally
(A1 —iB1)(a1 +1ib1) (A + iBy) (a2 —iba) ,

whereas for the direct term of the MM correlator (3.33) we obtain
(A1 +iB1)(a1 —ib1) (A + iBy) (a2 —iba) ,

which is different from the MM case.

The quenched simulation was performed on an N? x N; = 8 x 16 lattice
with the inverse gauge coupling 8 = 5.6 and light-quark masses ma = 0.1
and 0.05. Again the results were obtained from an analysis of 100 configu-
rations separated by 200 updates of the gauge fields. The inversion of the
fermionic matrix was performed with 32 random sources.
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Figure 3.16: (a) Heavy-light meson-antimeson potentials V (r) corresponding
to the direct term for different light-quark masses m . Lines are to guide the
eye. (b) Same for quark mass ma = 0.1, comparing the quenched simulation
with 8 = 5.6 and a full QCD simulation with 8 = 5.2 and number of flavors
ny=3.

The meson-antimeson energies W (r) were extracted from ol using

the fit function (3.40) with n = 1 (four-parameter fit). To have the averages
over the same configurations with the same statistical errors, the mass of
two non-interacting (anti)mesons was also extracted from fits to the square
of the meson two-point function [C(?]?, where the correlator C(?) is given
in (3.32).

The resulting potentials V (r) for different light-quark mass parameters
are shown in Fig. 3.16(a). At distance r = 0 we obtain an attractive potential
V(0)a ~ —0.662 for mga = 0.1 and V(0)a ~ —0.956 for msa = 0.05 (not
shown in the figure) being much stronger than for the MM case. The cluster
values are reached already at r/a = 1. Gluon exchange seems to play an
important role only for very short distances.

In order to elucidate how significant the contribution of dynamic quarks
to the direct term is, a full QCD investigation of (3.46) was performed
by using the pseudo-fermionic method for the simulation of the dynamic
fermions. The number of flavors was set to ny = 3, with the dynamic quark
mass mga = 0.1. Recall that the choice of a coupling 8 = 5.2 leads to
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Figure 3.17: MM gluon-exchange potential from the simulation data in Fig.
3.16(a) extrapolated to the chiral limit (a), together with the resulting phase
shifts ¢ (b).

a lattice constant comparable with that of the quenched simulation. The
results with and without dynamic quarks for light valence-quark mass pa-
rameter mya = 0.1 are presented in Fig. 3.16(b). Similarly to the MM case,
the quenched and unquenched results are the same within statistical errors,
suggesting that the influence of (relatively heavy) dynamic quarks is not
considerable.

Like in the meson-meson case, a linear extrapolation of the data for the
two different light-quark masses in Fig. 3.16(a) was performed towards the
chiral limit, in order to get closer to the physical masses of the light quarks.
By making a two-parameter fit to the resulting data points using a Gaussian
function, an analytic form for the interaction potential was obtained which is
shown in Fig. 3.17(a). The interaction potential was then used as an input to
the Schrodinger equation for a phase shift calculation. The resulting phase
shifts are displayed in Fig. 3.17(b) with three arbitrary values of the meson
mass.
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3.4.3 [ =0 MM-Potentials from Lattice and Inverse Scatter-
ing

A desirable next step in our program would be to compare our lattice QCD
results with the experiment. Unfortunately the interactions between mesons
having one heavy flavor are known very poorly. Our knowledge of the meson-
meson interactions is based mainly on reactions in which 77 or KK pairs are
produced. The production processes of the scalar mesons fy and ag (which
both decay into K K pairs) have been studied in many experiments [67, 68].
From the analysis of the experimental data information about K K scalar-
isoscalar phase shifts has been extracted [69].

To make a comparison with our MM potentials, in principle one has to
obtain a simple potential operator Vi (r) from experimentally known phase
shifts 67,(k) for a given equation of motion. Such an operator may be calcu-
lated by inverse scattering theory [70,71].

Because the experimental information is limited to a certain energy in-
terval, the inverse problem is ill-posed and one has to regularize it, i.e. one
has to interpolate and extrapolate the phase shifts for all energies in the
smoothest possible way, obeying the proper behavior at low and highest en-
ergies. Thus any meaningful application of the potential obtained in this
way is limited to a domain where genuine data are used.

The experimental situation for low energy KK scattering was paramet-
rized with an effective range expansion by Kaminski and Lesniak [72]. Their
expansion is valid at low energy and, unfortunately, takes inelasticities not
into account. Nevertheless it is the only available experimental information
used in an inversion scheme, and since also in the lattice QCD case no
inelastic channels are considered, a comparison of the results is interesting.

Kaminski and Lesniak [72] give two sets of parameters for the effective
range expansion

1

kcot dk (k) = Ro ax

1
+ ERKkQ + Vik* + O(k°), (3.47)

which are documented in Table 3.1. Based on these parameters, Sander
and von Geramb [65,66] calculated the phase shifts 6o(M ) shown in Fig.
3.18(b). These phase shifts were then used as input for a standard rational
Gelfand Levitan Marchenko inversion program [70,71].

The real local and energy independent inversion potentials are describing
purely elastic KK scattering. Coulomb effects are not included. The result
is shown in Fig. 3.18(a). The reproduction of the effective range parameters
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Model  Re ag [fm] Ry [fm] Vi [fm?]

Set 1 —-1.73 0.38 —0.66
Inversion —1.73 0.38

Set 2 —1.58 0.20 —0.83
Inversion —1.58 0.20

Table 3.1: KK isoscalar scattering lengths from [72] and their reproduction
by inversion potentials.

is given in Table 3.1 and the phase shift reproduction is demonstrated in
Fig. 3.18(b).

The correlator defined in (3.45) corresponds to an MM system in the
I =1 channel. To have the agreement between the quantum numbers of the
lattice mesons and the inversion results one has to couple the MM dynamics
to the scalar I = 0 channel. This can be achieved by inserting the fields

o) = (V2V) IS e |

@D () + 10 L (TP, (§t)
p 2 2 2 2

272 2 2

— T (@) ek
2

1 () — ¢ @)D (G| (3.48)

1 1
2 2

into the defining formula of the four-point correlator (3.23) and performing
the contractions. Here the fields ¢ of the meson-antimeson partners are
defined as in (3.20) and (3.43), with different light-quark flavors for the
KoKy and KYK~ cases. The resulting four-point correlator consists of 96
different terms but simplifies radically if we take m, = mg, and replace the
propagators of the s quarks with the heavy-quark propagators defined in
(3.31). We obtain:

4(1 + 67) h
CF,I:O (t,t0) = T<ZTr(G:(E‘ﬁl"t,erthGiJrFt,erFto)

x Tr(GW. Gl )

Tt, Tty — Tt,Tto

_ e (Z(—l)zu(m“ﬂ’“) TT(G;%t,gtg Gto))

ST (3.49)
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Figure 3.18: (a) KK L = 0 real isoscalar potentials from quantum inversion
based on the two sets of parameters given by Kaminski and Lesniak [72] (Set
1: full line, Set 2: dashed). (b) KK L = 0 real isoscalar phase shifts calcu-
lated from the effective range expansion (dashed) and their reproduction by
the inversion potentials (full line).

The first term is the direct gluon-exchange term discussed in the previous
section. The second term corresponds to the propagation of a scalar light
meson, after a heavy quark-antiquark annihilation, contributing only for

distance zero.
One has to be aware of a systematic error in the second contribution to

the four-point correlator (3.49)

86 i
Cy, = — V270<Z(—1)ZN( ) T (G Gl ) (3.50)
86 i )
7 ab

if one uses only a single set of random sources for the calculation of all quark
propagators. With a finite number of random sources Ng, Eq. (3.9) provides
an approximation G that deviates from the true quark propagator matrix
element G by a random noise error E, with (E) = 0:

~ab b b
G:ab‘t,gto = Ga:ft,gjtg + E:%t,:l]t[] : (3-52)
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Thus in (3.51) we have contributions like

~ab 2 b 2
|G%t,g'tg‘ = ‘G%t,g't0|
+ (B Go + B G )+ | B 2. (3.53)
zt,yto " xt,yto zt,yto ' xt,yto zt,yto ! '

The second term gives zero contribution in the statistical average, but the
third term does not. To eliminate this systematic error from the correlator
one has to use two different sets of random vectors when evaluating the
quark propagators. This is realized by calculating Nr random vectors with
the conjugate gradient method, and then using the first half of the ensemble
to approximate the first propagator in (3.50) and the second half to generate
the second one

i o) LN ) (t0)
0 Tut t - * (¢ -
02 = — V2 <22b(—1) u R Yu m Zl Iiy(f (:Eut)RZ',bO (y) .
Ty a i=
1 Nr
t - *(t S\ F
(N /2 > Ig(,i)(fc,t)Rj,(bO)(y)) > (3.54)
RIZ j—Ngp/2+1

The correlator in (3.49) was computed in a quenched lattice QCD simu-
lation by using the same parameters as in the simulation of the direct term,
with mya = 0.1. The resulting potentials are presented and compared with
the direct gluon-exchange potentials in Fig. 3.19. As expected, for non-zero
distances the potentials are the same within statistical errors. For distance
zero, the potential in the I = 0 channel is less deep due to the heavy-quark
annihilation term.

The potential obtained by the inversion (Fig. 3.18) is strongly attractive
for very short distances. This is in agreement with the simulation results
presented in Fig. 3.19. The strength of the lattice potentials at distances
close to 0 is weaker but may increase in the chiral limit. The KK inver-
sion potential, however, is of longer range and exhibits a slightly repulsive
bump at intermediate distances, a feature that could not be resolved by the
QCD simulation. The phase shifts computed from the simulation signal the
absence of a bound state already for the deeper direct gluon-exchange po-
tentials, whereas the experimental phase shifts hint at its existence. This
difference might be due on one hand to the approximations used in the lat-
tice simulation and on the other hand to the lack of precise and complete
experimental data for the inversion.
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Figure 3.19: MM potential in the I = 0 channel for light-quark mass mya =
0.1, compared to the direct gluon-exchange potential for the same m; from
Fig. 3.16(a).

3.4.4 [ =1 MM-Potentials

The four-point correlator describing the dynamics of the I = 1 MM system
is given in (3.45). The lattice simulation of this correlator requires higher
CPU time due to new technical solutions in the computation of the valence-
quark exchange diagram. In order to evaluate this term one has to compute
quark propagators of the type G(t,t). With the random source technique
used by us only propagators of the type G(t,ty) are obtained, with fixed ¢
(see Section 3.1.1). Thus in order to get all possible propagators G(¢,t) in
principle one has to perform the fermionic matrix inversion /V; times by using
in (3.3) NV different sets of sources of the type (3.5) which are successively
non-zero on different time slices ¢y € {1,..., N;}. Regarding the cost of the
simulation this means an N;-fold increase in CPU time.

In principle all-to-all propagators can be obtained also by replacing the
sources (3.5) by sources that are non-zero on all time slices

Y; a(fa 154) =R; a(fa 134) > (355)

) 3
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where the complex random vectors R satisfy the relation

Ng

1 * - —
N 2 el @ wa) Rip(F,ya) = 82,5 00 y4bap - (3.56)
R

With this choice of random sources, however, one does not impose an exact
delta function for the time coordinate, as a result of which the exponential
fall-off in time of the correlators will be affected, causing difficulties in the
extraction of interaction potentials. Note that all propagators which do
not have the form G(t,%y) are of the type G(t,t), i.e. start and end on
the same time slice ¢. This observation may help in the evaluation of the
valence-quark exchange diagram. A plausible trick which comes to mind is
to determine the propagators G(t,to)—which ultimately determine the fall-
off of the correlators in the usual way, and to use the sources (3.55) in a
subsequent inversion of the fermionic matrix to determine the propagators
G(t,t). Such a procedure means only a two-fold increase in CPU time, and
thus a remarkable improvement compared to the other method.

The correlator in (3.45) was computed in quenched lattice QCD with the
same parameters as in the previous simulations. All five terms were taken
into account. The light-quark propagators were calculated by both methods
presented above. In the case with Ny = 16 sets of random sources only 50
configurations were generated because of the huge CPU demand. The re-
sulting interaction potentials are presented in Fig. 3.20. The two different
methods yield the same results within statistical errors. The potential is
attractive for r/a = 1, whereas for larger separations the interaction is com-
patible with zero. A comparison with the gluon-exchange potentials from the
direct diagram in Fig. 3.16 shows that the valence-quark exchange diagram
yields an attraction of longer range. This term includes pion-exchange con-
tributions even in the quenched approximation as demonstrated in Fig. 3.21.
The big error bars at distance r = 0 are a consequence of the accumulation
of the uncertainties of the five different terms contributing to Cﬁgé\f Il\il.

Comparing Figs. 3.20 and 3.9 it turns out that the I = 1 MM poten-
tials are approximately of the same range as the I = 1 MM potentials, but
they are much more attractive. In order to examine the possibility of the
formation of bound MM states, a further quantum-mechanical analysis is
desirable. Such an analysis requires an analytic form for the interaction po-
tential. Obviously, the strength of the potential at » = 0 is decisive for the
determination of such an analytic form and ultimately for the existence or
non-existence of a bound resonant state. Because of the large uncertainty
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Figure 3.20: MM potentials in the I = 1 channel for light-quark mass mya =
0.1, comparing simulations with 2 and 16 sets of random vectors to evaluate

the light-quark propagators (see text).

at distance zero, we made two different fits to the data points from the sim-
ulation with 2 sets of random sources using a Gaussian and a Saxon-Woods
function. They are shown in Figs. 3.22(a) and 3.22(b), respectively. These
analytic forms for the potentials were then used as inputs for a standard
resonant state search program [62]. A resonant meson-antimeson state was
not found for either of the potentials. Further variations of the parameters

of the potentials show that the strength parameters A can be tuned in a wide

up to a factor two in the more favorable case of the Saxon-Woods

range
The reason is that

potential—without obtaining a stable resonant state.
the width of the potential well is not large enough. Indeed, increasing e.g.

the diffuseness parameter of the Saxon-Woods potential to B = 2 already
leads to a negative ground state energy. To conclude, our lattice calculations
give evidence that exotic mesons consisting of a heavy-light meson and its
antiparticle in the I = 1 channel do not exists. However, more statistics is

needed at least for distance r = 0.
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Figure 3.21: A pion-exchange contribution from the valence-quark exchange
term of the I = 1 MM propagator. At the time slice indicated by the dotted
line, two heavy-light (anti)mesons and a pion are present.

3.5 Simulations with an Improved Action

Realistic lattice simulations necessitate large computer times. The lattice
spacing a is the most important determinant of the cost. For example, with
the best algorithms the cost of a full QCD simulation increases like 1/a° as
a is decreased. This suggests that one should keep a as large as possible. On
the other hand, finite lattice spacings introduce systematic errors of lattice
simulations. Until recently there was a general belief that lattice spacings
of order 0.05 — 0.1 fm or less were necessary for accurate simulations. With
the development of two new approaches to the design of improved actions
and operators [73,74] reliable results can be obtained for lattice spacings as
large as 0.4 fm. The computational advantage of coarse lattices is enormous
and will certainly redefine numerical QCD: the simplest calculations can be
done on a personal computer, while problems of unprecedented difficulty
and precision can be tackled with large supercomputers. Therefore these
improvement techniques can be considered as one of the most important
achievements of the last years in lattice QCD.

The idea of utilizing improved actions in our computations of hadron-
hadron interactions on the lattice comes from the following observations:

i) The residual hadronic forces are 1072 — 1073 times smaller than a typ-
ical hadron mass, whereas the most precise unimproved lattice simulations
can reproduce the low-energy properties of hadrons to within a few percent,
i.e. the effect to be studied has the same order of magnitude as the inherent
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Figure 3.22: Fits to the MM potentials in Fig. 3.20 with a Gaussian (a) and
a Saxon-Woods (b) function.

error. The utilization of improvement techniques leading to higher precision
is therefore highly desirable.

ii) To have a clearer shape of the potentials, non-integer (off-axes) sepa-
rations r/a = v/2,/3, etc. were also considered when computing the meson-
meson energies W (r). The resulting MM and MM potentials in Figs. 3.9 and
3.16 exhibit systematic deviations, which may originate from anisotropy ef-
fects of the cubic lattice. Simulations using improved lattice actions restore
rotational O(3) invariance and may help to estimate these systematic errors
on W(r).

iii) Although the lattices we used so far seem to be large enough to
accommodate a two-meson system, studies of interactions between light
hadrons [51] already indicate the necessity of simulations on larger physi-
cal volumes. Since lattices with more lattice points have numerical limits,
the only way to obtain a physically larger lattice volume is to increase the
lattice constant a.

We use the improvement technique developed by Lepage and coworkers
[74] which is based on Symanzik’s idea [75] to introduce new terms into the
lattice action in order to improve the discretization of the derivatives and to
reintroduce the contribution of the & > m/a states excluded by the lattice.
The coefficients of these terms are then computed in lattice perturbation
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theory using a prescription for removing tadpole contributions [76]. In the
following we give a brief overview of this improvement technique and present
simulation results for the MM and MM systems obtained with an improved
gluonic action.

3.5.1 Improved Actions and Operators

Replacing space-time by a discrete lattice is an approximation. A non-zero
lattice spacing results in two types of error: the error that arises when we
replace derivatives in the field equations by finite-difference approximations,
and the error due to the ultraviolet cutoff imposed by the lattice. Both
types of errors can be reduced by including terms of higher order in a into
the action.

It has been shown that at the classical level O(a?) errors due to the
finite-difference approximations can be removed by adding a term with six-
link rectangular plaquettes

Urt =

to the usual Wilson gauge field action (2.54) [77 79]. A significant improve-
ment is obtained by introducing tadpole factors in the six-link term [76].
Their role is to cancel the large renormalizations that arise from tadpole
diagrams specific to lattice QCD. Thus the form of the tree level tadpole
improved action is

SalU] =Y (1- %R,eTrUpl) + 6> (1- % ReTrUy),  (3.57)
pl rt

where Uy, is the plaquette operator from (2.53). The coupling parameter [
is related to the input coupling £y via

Bri = (3.58)

a 20u3

where the mean link ug represents nonperturbative corrections for tadpole
contributions, and is given in terms of the measured expectation value of the
plaquette:

uy = (%ReTr<Up1>)1/4. (3.59)

The coupling (3, is then determined self-consistently with ug for a given ;.
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Tadpole improvement is the first step in a systematic procedure for im-
proving the action. The next step is to add in renormalizations due to
contributions from k > w/a physics not already included in the tadpole im-
provement. For example, one-loop corrections would bring a third term into
the action in (3.57), but it turns out that their O(a%as) contribution is
comparable to those of O(a?) and is therefore relatively unimportant [74].

The complete O(a?) improvement of our lattice operators necessitates
also the improvement of the fermionic sector. Due to the absence of O(a)
errors for the staggered fermion action [80] and the complexity of the stag-
gered formalism, its O(a?) improvement has received little attention. Almost
ten years ago, Naik proposed adding a third-nearest-neighbor term to the
standard staggered fermion action to remove some O(a?) effects [81]. Re-
cently it has been shown, that two counterterms are needed to construct the
O(a?) on-shell improved staggered fermionic action [82], which at tree level
reduces to the Naik action

(9
Sp = Z quXz{E [UiﬂltX:ﬂ-l-ﬂ - Ul*ﬂ’ﬂxxfﬂ]
T,

1 T t
& [UMUI+[¢,#U$+2[¢,#X:¢+3[L — UI*["#U-’E*2ﬂ,#U-’E*3ﬂ,MX-T*3ﬂj| }
S XaXe - (3.60)
xr

The improvement of the fermionic sector leads to a modified fermionic matrix
including more off-diagonal terms. The inversion of such a matrix needs
approximately a factor of 10 more CPU time. Preliminary runs using the
improved fermionic action (3.60) showed little difference from the outcome of
the simulation results with the original Kogut-Susskind action (2.52). Thus
for computational reasons the new simulations were performed using the
improved gauge action (3.57) and leaving the fermionic sector unchanged.

The simulation with the improved gluonic sector is computationally more
demanding than a normal run, if one wants to use the same lattice spacing.
The reason is that there are more 2 x 1 rectangles than 1 x 1 plaquettes
involved in a Monte Carlo upgrade for a given link. According to Fig. 3.23,
there are 6 rectangles containing the link into consideration in a given plane,
so altogether there are 6 x 3 = 18 such rectangles in the 3 perpendicular
planes containing the link, compared to only 6 plaquettes for the normal
run. Since the computation of the rectangles is also more costly than that
of the plaquettes, there is an overall 4-fold increase in the CPU time needed
for one MC upgrade.
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Figure 3.23: Six-link planar rectan- Figure 3.24: All possible six-link
gles involved in the Monte Carlo up- rectangles starting from a site and
grade of a given link. going in positive directions.

The mean link ug is computed numerically by guessing a value of 3,
for use in the action, measuring the mean link in a simulation, and then
readjusting the value of §,; used in the action accordingly. This tuning cy-
cle converges rapidly to selfconsistent values, and can be done very quickly
on small lattice volumes, because uy depends practically only on the lattice
spacing. As an example, in Fig. 3.25 we show the values of the mean plaque-
tte, the mean rectangle and the coupling §,+ from successive simulations on
a 6% lattice with input coupling Bp1 = 6.2. Note that the computation of the
mean rectangle $Re Tr(U,;) implies the evaluation of 12 different rectangles
for a given site, as shown in Fig. 3.24, whereas only 6 plaquettes are needed
for the computation of the mean plaquette. The expectation values were ob-
tained from a measurement on 100 successive configurations. To equilibrate
the system 100 iterations with the new 3,; were allowed. One can see, that
the curves reach their plateaus already after the third or fourth run.

3.5.2 Numerical Results for the MM and MM Systems

Our earlier results suggest that the lattices we used are reasonably big to ac-
commodate the two-meson system. Instead of increasing the physical volume
of the lattice by employing a larger lattice spacing a we performed improved
simulations on lattices with the same lattice constant a ~ 0.2 fm and space-
time extension 83 x 16. We were mainly interested to estimate systematic
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Figure 3.25: Values of the mean plaquette %Re Tr(Up), the mean rectangle
%Re Tr(Uyt) and the coupling 4 after successive runs with input coupling
Bo1 = 6.2 on a 6% lattice. Errors are of the size of the symbols.

errors on our earlier results possibly related to violation of rotational O(3)
invariance by the lattice.

There are several ways to match the lattice spacings of the improved and
unimproved simulations, like comparing string tensions, hadron masses etc.
In our case the coupling (3, of the improved gauge action corresponding to
the coupling 8 = 5.6 of the original Wilson action was obtained by carrying
out a finite-temperature pure QCD simulation on an 8% x 4 lattice in a
search for the confinement-deconfinement phase transition point. Earlier
computations show that for systems with the Wilson gauge action the phase
transition occurs at § = 5.7 [51]. In order to locate the phase transition
point, several runs were performed using the improved action (3.57) with
input values of B in the range 6.0 — 8.5, including tuning cycles to get
the ug for each value of the input coupling. We used the Polyakov-loop
expectation value

N¢
(W) = <% > Tr Hl Us—( jay =1 ) - (3.61)
=

T

as order parameter of the phase transition.
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Bor Bt ReTr(Up)/3 ReTr(Us)/3  Re(W)?  Phase

6.0 —0.460 0.424 0.160 —1.79-107° confined
6.5 —0.465 0.486 0.224 —2.39:107°  confined
6.8 —0.466 0.533 0.278 5.27-107°  confined
7.0 —0.467 0.560 0.314 1.57-10*  confined
7.1 —0.469 0.572 0.328 3.31.100*  ph. tranz.
7.2 —0.470 0.587 0.351 6.44-107%  deconfined
7.3 —0.472 0.597 0.364 0.148 deconfined
7.6 —0.482 0.621 0.397 0.306 deconfined
7.9 —0.493 0.641 0.425 0.452 deconfined
8.2 —0.505 0.658 0.449 0.666 deconfined
8.5 —0.518 0.673 0.470 0.909 deconfined

Table 3.2: Tuned values of 8¢ for several () around the temperature phase
transition and expectation values of the plaquette, rectangle and Polyakov
loop, computed from an average over 100 successive configurations.

In Fig. 3.26 we show the values of W in the complex plane for 100
successive iterations at several couplings (3;. Omne can see, that the phase
transition occurs between 3, = 7.0 and 8, = 7.3. The last three plots nicely
signal the spontaneous breaking of Z3 symmetry in the deconfined phase.

Further simulations in the region (8, = 7.0 — 7.3 were performed with a
finer variation of 0.1 in the coupling. The resulting values of G,y as well as
the values of the mean plaquette, mean rectangle and the “magnitude” of the
Polyakov-loop expectation values Re(W)? are presented in Table 3.2. Since
neither of the operators is a very fluctuating quantity, the expectation values
were computed from measurements on just 100 successive configurations,
thus they contain autocorrelation effects. The values Re(W)? for different
Bp1 are also shown in Fig. 3.27. The first significantly non-zero Polyakov
loop is obtained at B, = 7.2. The linear fit in the range 8, = 7.2 — 8.6
crosses the zero axis at 3, = 7.1, so we expect that the phase transition
occurs near this value of the coupling.

It has to be remarked that the pure SU(3) transition is of first order. The
order parameter should undergo a jump or rise steeply. This is not the case
for our improved SU(3) simulation and deserves further investigation. The
choice of a coupling 3, = 7.0 with 3,y = —0.467 should roughly corresponds
to the same lattice spacing a >~ 0.2 fm as 8 = 5.6 of the original simulations
with the Wilson gauge action. Thus the couplings of the improved action



70

W)

Imag(

Imag(W)

W)

Imag(

0.4

0.2

0.2

0.5

Chapter 3. Meson-Meson Interactions on the Lattice

B,=6.0
B,=-0.460 |

-0.2 0 0.2 0.4
Real(W)

Bpi=7.0
4=-0.467 |

@
50 %0
80

-0.2 0 0.2 0.4
Real(W)

By=7-6
By=-0.482 |

-0.5 0 0.5 1
Real(W)

W)

Imag(

Imag(W)

0.4

0.2

0.5

Poi=6.5
| By=-0.465 |
-0.4 -0.2 0 0.2 0.4
Real(W)
Bpi=7-3
| =-0.472 |
-1 -0.5 0 0.5 1
Real(W)
Bo=7.9
] % Br=-0.493 |

-0.5 0 0.5 1
Real(W)

Figure 3.26: Values of Polyakov loops W in the complex plane for 100 suc-
cessive iterations at different Sy in the range 6.0 — 7.9.
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Figure 3.27: Polyakov-loop expectation values Re(W)3

with a linear fit in the range 3, = 7.2 — 8.6.

as a funtion of 3,

(3.57) were set to these values in the new simulations of the MM and MM
systems at zero temperature.

The resulting correlators from the improved simulations are very similar
to those from the unimproved simulations. For illustration, the numerical
values for C'?)(t) obtained for either case are compared in Table 3.3. To
indicate the accuracy of the data, the statistical errors AC()(t) are also
shown.

The potentials V (r)a for the initial (Wilson) and the improved simulation
using the corresponding couplings are compared in Fig. 3.28. In the MM case
only the direct gluon-exchange term has been computed. Good agreement is
obtained both for integer and non-integer (off-axes) distances. For a better
comparison the numerical values for W(r)a are presented in Table 3.4. The
systematic shifts of the order ~ 0.5% are due to the slight difference between
the lattice constants, also seen in the C(@ correlator values in Table 3.3.
What we learn from these calculations with gluonic improved action is that
the anisotropy effects are small. The hump in the MM-potential might be
physical.
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Table 3.3: Correlation functions C(?)(t) and statistical errors AC®) for dif-
ferent time separations ¢/a from simulations using the Wilson gauge action
(8 = 5.6) and the improved action (3, = 7.0, B,y = —0.467), respectively.
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Figure 3.28: MM (a) and MM gluon-exchange (b) potentials V (r)a for quark
mass myga = 0.1, comparing a simulation using the Wilson gauge action
with 8 = 5.6 and an improved simulation with 8, = 7.0, B = —0.467
corresponding to the same lattice constant.

W(r)a
r/a MM system MM system
Wilson Improved Wilson Improved

0 1.64524 1.64433 1.04336  1.04615
1 1.68674 1.68382  1.69906  1.69202
1.41 1.70205 1.69860  1.69738  1.69403
1.73  1.69771  1.69689  1.69889  1.69300
2 1.71139 1.70952  1.69955  1.69368
2.24 1.69803 1.69353  1.697563  1.69254
245 1.69900 1.69601  1.69825  1.69264
2.83 1.70148 1.69876  1.69961  1.69400
Ja 1.69902  1.69478  1.69797  1.69151
3b  1.69921  1.69536  1.69946  1.69374
4 170298  1.69908 1.69850  1.69345

Table 3.4: Values of W(r)a for the Wilson (3

= 5.6) and improved

(Bpt = 7.0) simulation. 3a and 3b are on and off-axis separations r/a = 3,

respectively.
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Chapter 4

Summary and Conclusion

In theoretical nuclear physics there is great interest in a fundamental un-
derstanding of hadron-hadron interactions. Today, QCD is believed to be
the basic theory of the strong interactions. Since the strong coupling con-
stant becomes large in the low energy regime of this theory, phenomena at
nuclear distances are problematic to be treated within perturbation theory.
Up to now the most successful non-perturbative tool for a calculation of
QCD problems is lattice QCD.

This thesis presents pioneering calculations of hadron-hadron potentials
from the basic principles of lattice QCD. A practical method to extract
an effective hadron-hadron potential from hadron Green functions has been
developed. This method is a transcription of scattering theory from text
books to the lattice, and allowed us to take the effect of dynamic valence
quarks into account. Because of the huge numerical effort involved in the
task of calculating hadron four-point correlation functions on the lattice,
as a first step systems of two pseudoscalar mesons were considered. The
calculation of baryonic systems has to be postponed to future studies.

In one study we investigated the interaction between two heavy-light
mesons. In this approximation the heavy quarks represent static color
sources, which localize the mesons and allow in this way the extraction of
effective total energies of the two-meson system from the euclidean time be-
havior of the meson four-point correlation function for various inter-meson
distances r. Most of the simulations were performed in quenched lattice QCD
with Kogut-Susskind fermions. The resulting potentials turn out to be short
ranged and attractive with a range of about 2 lattice spacings or 0.4 fm, and
a depth of approximately 0.04 — 0.1 inverse lattice spacing, or 40 — 100 MeV
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in physical units. Simulations with different light valence-quark masses show
that the interaction is stronger for smaller light-quark masses, but its range
is always approximately the same. The inclusion of sea quarks did not cause
dramatic changes in the potentials. The interaction is obviously driven by
gluon exchange. Meson exchange out of the dynamic quark sea seems to
play a minor role. A comparison with a simulation on a larger lattice shows
that the effect of “mirror” particles is negligible, and that the contributions
from excited states do not alter the shape of the potential considerably. An
extrapolation to the chiral limit of the potentials for different light-quark
masses was performed in order to get closer to physical quark masses. A
Gaussian form of the potential was obtained from a two-parameter fit to
the resulting data points. This potential was used in a quantum-mechanical
study of the behavior of the two-meson system. Despite the attraction for
short distances, neither bound nor resonant meson-meson states were found.

In a second study we investigated the interaction between a heavy-light
meson and its antiparticle. Pure gluon-exchange potentials for the direct
diagram as well as potentials in the / = 0 and I = 1 channel were computed.
In all cases, the meson-antimeson potentials turn out to be attractive and
much stronger than the meson-meson potential. The potential in the I =0
channel is of short range—of about 1 lattice spacing or 0.2 fm—and a depth
of approximately 0.4 inverse lattice spacing, or 400 MeV. We notice a good
qualitative agreement between the simulation results and recent extractions
of KK potentials from experimental scattering data via inverse scattering
theory. The potential in the I = 1 channel has a range of about 1.35 lattice
spacings or 0.27fm. Its depth could not be determined because of the large
uncertainty of the data point for zero separation. Preliminary quantum-
mechanical investigations signal the absence of resonant states also for the
meson-antimeson case.

We started implementing improved actions into our computer codes in
order to reduce discretization errors, achieve higher precision and make the
utilization of larger lattice volumes possible. Results for both the meson-
meson and meson-antimeson systems using an O(a?) tree-level and tadpole
improved gauge action are very close to the unimproved data.

There exists a related study of systems of pion-like light-light mesons in
four-dimensional lattice QCD following the same method for the calculation
of interaction potentials as used in this thesis. It shows a long ranged inter-
action between one and five lattice spacings, or 0.2 — 1 fm, an intermediate
attractive regime with a depth of about 0.05 to 0.2 inverse lattice spacings, or
50 to 200 MeV, and a slightly repulsive character below one lattice spacing,
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or 0.2 fm [51,66].

The results obtained in the underlying thesis seem to confirm phenomenol-
ogy. We expect that a refined analysis, which besides an improved action
would include link variable fuzzing and operator smearing in order to enhance
the overlap of the interpolating fields with the state with minimal energy,
will increase the quality of the data and will ultimately lead to quantita-
tive results. An independent lattice investigation using Wilson fermions is
desirable, because the assignment of quantum numbers to the interpolating
operators is straightforward, and consequently physical particles are easily
identified [83, 84].

Studies similar in spirit to the one initiated here may be extended to var-
ious other hadron-hadron systems, like kaon-nucleon for example, for which
inversion results exist [65]. Another interesting application would be the
question of the stability of the doubly strange spin zero H particle as a AA
system. Lattice and model studies of this important problem provide con-
flicting results [85,86]. The setup of our method makes nuclear physics on
the lattice accessible for realistic investigations.
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ésszefoglalés

Az atommagok nukleonokbdl épiilnek fel. A magfizika tobbnukleon-rendsze-
rek kotott allapotainak és reakcidinak a vizsgalataval foglalkozik. A tobb-
nukleon-rendszert leiré Schrodinger-egyenlet megoldasahoz sziikség van egy
nukleon-nukleon potencidl ismeretére. igy az elméleti magfizika egyik leg-
fontosabb feladata a nukleon-nukleon kolcsonhatasi potencial meghatarozéasa.
Ebbdl a célbdl az utdbbi 6tven évben szidmos fenomenoldgikus modellt dol-
goztak ki. Koziilik a legfontosabbakat az elsd, bevezetd fejezetben soroltam
fel. Mindegyik modell tartalmaz olyan paramétereket, amelyeket a modellek
eredményeinek a kisérleti adatokkal vald osszevetésével kell bedllitani. igy
ezek a modellek a nuklearis kolcsonhatds mechanizmusainak csupan kvali-
tativ megértésére alkalmasak.

A masik fajta hadronok, azaz a mezonok esetén rosszabb a helyzet. A
mezon-mezon kolcsonhatasokra vonatkozd kisérleti adatok igen hidnyosak,
ezért hasonlé fenomenolégikus modellek megalkotasidra eddig nem is nagyon
keriilt sor. igy felmeril az a gondolat, hogy mind a nukleonok, mind a
mezonok kozotti kolcsonhatasokat kozvetlentil elsd alapelvekbdl kiindulva,
hatarozzuk meg.

A kisérleti eredmények, valamint az elméleti megfontolasok arra mu-
tatnak, hogy a hadronok még elemibb részecskékbdl, kvarkokbdl felépulo
kompozit részecskék. A kvarkok kozotti erds kolcsonhatast a kvantumszin-
dinamika (QCD) irja le. Az elmélet csatolasi dllanddja alacsony energidkon
naggya valik, ezért ez az ,,er6s kolcsonhatds” perturbativ eszkozokkel nem
kezelhet6. A legeredményesebb nemperturbativ leirdst a QCD racson vald
megfogalmazasival nyerjik. Ebben a kozelitésben mér igen sok értékes
eredmény latott napvildgot, mint amilyen példaul a kvarkbezaras bizonyitasa
és a hadrontomegek kiszamitisa. A racs-QCD egy részletesebb leirasat a
méasodik fejezet tartalmazza.

Ertekezésemben a mezon-mezon kolesonhatdsokat tanulmanyoztam egy
QCD modell keretében. Pontosabban az olyan nehéz mezonok kolcsonhata-
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sat vizsgaltam, amelyek kvark-antikvark alkatrészei koziil az egyik nehéz, a
masik pedig konnyii. A K, D, és B mezonok ilyen tipusu részecskék, ame-
lyekben az s, ¢ vagy b tipusi kvark (antikvark) nehezebb, mint az u vagy d
tipusu antikvark (kvark). Ennek a modellnek az ése a Hy molekula, amely-
ben a két nehéz proton terében mozog két konnyti elektron. Az ilyen nehéz
mezonok egymdstol mért tavolsidga kozelitOleg azonos a nehéz alkatrészek
kozotti tavolsaggal. Ezért a meghatirozandd V (r) mezon-mezon potenciil-
ban szereplo r tavolsdgot azonosnak vehetjik a nehéz alkatrészek kozti tavol-
sdggal. Ez nagyban leegyszeriisiti a szamitisokat. Az alkalmazott mddszer
ujdonsiga abban all, hogy mig az eddigi, hasonld jellegii nemperturbativ
tobbkvark-rendszer tanulmanyokban az 6sszes kvark sztatikus volt, esetink-
ben a konnyt alkatrészek dinamikus szabadsagi fokokkal is rendelkeznek. fgy
lehet6vé valik egy realisztikus mezon-mezon kolcsonhatasi potencial kisza-
moldsa, amely tartalmaz olyan jarulékokat is, amelyek a konnyti kvarkcseré-
bol, valamint a gluonok és konnyt kvarkok kolcsonhatasabol szarmaznak.
A fenti médon a barion-barion kolcsonhatdsok mikroszkdpikus targyalasa is
lehetséges, de ebben az esetben a 12-pont Green-fiiggvények kiszamitasara
lenne sziukség, ami egyelére meghaladja a rendelkezésiinkre all6 szdmito-
gépkapacitast.

Az eredményeket a harmadik fejezet tartalmazza. Elso 1épésként két
azonos pszeudoskalar mezon kozotti kolecsonhatast tanulmanyoztam, megha-
tarozva a kolcsonhatasi potencidlt. Ennek érdekében kiszdmoltam a négy-
kvark-rendszer id6beni fejlodését leird 8 pont Green-figgvényt. Ez a hadro-
nok szintjén egy 4-pont mezon-mezon idékorrelatornak felel meg. Valtoztat-
va a nehéz alkatrészek tavolsdgit meghataroztam ezen korrelator tavolsag-
fiiggését. A mezon-mezon rendszer W (r) energidjat az id6korrelator aszimp-
totikus viselkedésébdl hataroztam meg, felhasznalva a kétrészecske-rendszer
kvantummechanikai Green-fuggvényének energia sajatallapotok szerinti ki-
fejtését. Ez az eljaras tulajdonképpen a kvantummechanikai Green-fuggvény
meghatdrozasanak a forditott miivelete: itt a a Green-fiiggvény ismert, ame-
lyet a mikroszképikus (QCD) modellben hatarozunk meg, és a potencialt
szarmaztatjuk le ezen Green-fiiggvény kvantummechanikai kifejezésébol. A
mezon-mezon potencialt végiil a V(r) = W (r) — 2m képlet adja meg, ahol
2m a két nemkolcsonhaté mezon tomege. Ezt a megszokott mddon, a
nehéz mezon idéfejlodését leird korrelator aszimptotikus idéfuggésébol lehet
meghatarozni.

A mezon- és mezon-mezon korrelatorok idéfiiggését nemperturbativ racs-
QCD szamitasok segitségével hatdroztam meg. A szimuldcidkat quenched-
kozelitésben, Kogut-Susskind fermionformalizmusban végeztem, a konnyt
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kvarktomegek egy sorozatara. Egy rovid tavi, kb. 2 racsdllandonyi (fizikai
egységekben kb. 0.4 fm) sugard, vonzo jellegli (0.04 — 0.1 inverz récsédllan-
dényi, ill. 40 — 100 MeV kozotti) kolesonhatast taldltam, amely a konnyti
kvarktomeg csokkenésével erésodik. fgy felmerul a rezondns mezon-mezon
allapotok kialakuldsianak lehetOsége, de vizsgdlataim ilyen kvazi kotott dlla-
potokat nem mutattak ki.

Mivel hasonlé jellegti szamitasok idaig még nem torténtek, fontos szem-
pont volt a szimuldciék soran felmeriil6 szisztematikus hibak felmérése és
kikiiszobolése. Ilyen hibdk jelentkezhetnek a virtudlis kvark-antikvark par-
keltéssel jard jarulékok elhagyasa, a véges racsallando, ill. rdcsméret, vala-
mint a gerjesztett allapotok jarulékai miatt. Vizsgdlataim azt mutatjak,
hogy ezek a hibdk esetiinkben nem jelentdsek.

A kilonbo6z6 nehéz mezon-mezon kolesonhatdsok koziil a kaon-antikaon
(K K) kolesonhatdsok ismerete tiinik a legfontosabbnak. Tobbkvark-allapo-
tok elméleti vizsgdlatai arra utalnak, hogy kotott kétkvark-kétantikvark alla-
pot valdszintiileg csak mezon-antimezon kotott allapotként valdésul meg. El-
képzelhetd, hogy a kvark-antikvark dllapotként nem értelmezhetd ag(980) és
fo(975) részecskék ilyen gyengén kotott KK ,molekuldk”. Ezen kérdések
vizsgalata céljabdl tanulmanyoztam egy nehéz mezon és az antirészecskéje
kozotti kolecsonhatasokat, meghatarozva az I = (0 és I = 1 izospint allapo-
tokban a potencial gluoncsere-jarulékat, illetve a vegyértékkvarkcsere-jarulé-
kokat is kiszamolva a teljes potencidlt. Minden esetben vonzé jellegii kolcson-
hatast talaltam, amely joval er6sebb a két azonos mezon esetén kapottnal.
A pusztan gluoncserével megvaldsulé kolesonhatasi potencidl nagyon révid
hatétavi (kevesebb, mint 1 ricséllandd, vagyis 0.2 fm) és mélysége 0.6 —
0.9 inverz ricsillandé, vagyis 600 — 900 MeV. A mezon-mezon esethez ha-
sonléan a vonzis a konnyi kvarktomeg csokkenésével erésodik. Az I =
0 allapontban a potencidl nagyobb tivolsigoknal a gluoncsere-potenciallal
azonos, mig nagyon kis tdvolsagokndl valamivel kisebb erdsségii, mintegy
0.4 inverz racsdllandd, vagyis 400 MeV. Ezt a potenciadlt kisérleti szorasi
eredményekbdl meghatirozott K K potencidlokkal tudtam osszehasonlitani.
J6 kvalitativ egyezést taldltam. Az I = 1 Allapotban a potenciil nagyobb
hatétavu (mintegy 1.5 racsallandé, vagyis 0.3 fm), ami azzal magyardzhatd,
hogy ebben az esetben a gluoncserén kiviil korrelalt konny#i kvark-antikvark
par (mezon) cserék is adnak jarulékot. A rezonans allapotok kialakuldsanak
lehetGségét a mezon-antimezon kolcsonhatisok esetében is megvizsgaltam.
Vizsgalataim arra utalnak, hogy sem kotott, sem rezondns allapotok nem
alakulnak ki.

A ricsszamitasok teriiletén az utébbi évek egyik legnagyobb vivmanyat
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a ,javitott hatis” moddszerének kifejlesztése jelentette. KEzek megjelenése
1j, eddig reménytelen messzeségben levo tavlatokat nyit meg. Ilyen lehet
példaul egy, a nukleonok kolcsonhatasat leird, minden eddiginél pontosabb
racsszimulédcié is. Ez motivédlta azt, hogy a szamitégépes kddba beépitsem
az egyik ,,legnépszeriibb”, a gluonhatas diszkretizacidjat tokéletesitd algorit-
must. A fejezet utolsé el6tti alfejezete tartalmazza a médszer rovid leirasat,
valamint a javitott gluonhatassal szdmolt mezon-mezon kolesonhatasi po-
tencidlokat, melyek jé egyezést mutatnak a nem javitott hatdssal szamoltak-
kal. Ez azt mutatja, hogy esetiinkben a diszkretizacié kovetkeztében megje-
len6 anizotropiahibdk nem jelentOsek. Az utolsd fejezet tartalmazza az elért
eredmények osszefoglaldjat, valamint néhany, a témahoz kapcsolédé tovabbi
kutatdsi tervet.
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