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értekezést magam késźıtettem, és abban csak a megadott forrásokat használtam
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. Schipp Ferenc, témavezető
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Készült a Debreceni Egyetem Matematika- és számı́tástudományok doktori
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Chapter 1

Introduction

1.1 Motivation and historical background

Why are non-Archimedean local fields important? According to Volovich [47]
some non-Archimedean normed fields have to be used for a global space-time
theory in order to unify both microscopic and macroscopic physics. Some prob-
lems occurred with the practical applications of the classical fields R and C,
because in science there are absolute limitations on measurements like Plank
time, Plank length, Plank mass. The use of real time and space-time coordi-
nates in mathematical physics leads to some problems with the Archimedean
axiom on the microscopic level. According to the Archimedian axiom, any given
segment on the line can be surpassed by the successive addition of a smaller
segment along the same line. This means, that we can measure arbitrary small
distances. But a measurement of distances smaller than the Planck length is im-
possible. Volovich proposes to base physics on a coalition of non-Archimedean
normed fields and classical fields as R or C. Source claims, that the so-called
p-series fields and p-adic fields are suitable non-Archimedean normed fields. As
p → ∞, many of the fundamental functions of p-adic analysis approach their
counterparts in classical analysis. Thus p-adic analysis could provide a bridge
from microscopic to macroscopic physics.

We deal with non-Archimedian normed fields, that is, the norm satisfies a
stronger inequality than the triangle inequality: ‖a+ b‖ 5 max{‖a‖, ‖b‖}. The
p-adic distance leads to interesting deviations from the classical real analysis,
the geometry of these spaces is unlike the euclidian geometry based on real space

1



2 INTRODUCTION

R. In non-Archimedian geometry two different balls are either disjoint or the
one is contained in the other one (splitting property). Furthermore the field of
2-adic and 2-series numbers have a hierarchical structure: every disc consists
of two disjoint discs of smaller radius (tree property). Thus these fields are
homeomorphic to a Cantor set on R. Volovich[47] states, that the fractal-like
structure of these fields enable their application not only for the description of
geometry at small distances, but also for describing chaotic behavior of chaotic
systems.

The simplest example of a p-adic field and a p-series field are the 2-adic (or
arithmetic) field and the 2-series (or logical, dyadic) field used in this work.
The 2-series addition is applied in numerous forms, it can be found for example
in logic as XOR, or in the theory of games as the nim addition, a tool in the
construction of the strategy for the nim-game.

A complete classification of locally compact, non-discrete fields results in
two connected fields (R and C) and a set of local fields (containing the p-adic
fields among others). See Taibleson [45].
z On orthonormal systems:
After emphasizing the importance of the 2-adic and 2-series fields, let us

address our attention to the several ways of construction of orthogonal systems
and especially to the product systems of unitary dyadic martingale difference
systems (UDMD systems).

There are several methods for constructing orthonormal and biorthogonal
systems. The Schmidt-orthogonalization method in a Hilbert space for any lin-
early independent system results an orthonormed one. Eigenfunctions of several
differential operators provide also such systems, used in mathematical physics.
Using the tools of harmonic analysis, character systems of topological groups
also result in orthonormal function systems. An other way of constructing such
systems uses some concepts of the probability theory, mostly that of martingales.

Convergence problems of the orthogonal systems are connected to many
other fields of mathematics, for example to probability theory. Alexits[2] stated,
that many theorems related to orthogonal series and some corresponding state-
ments of probability theory stand on the same mathematical fact. Fifteen years
later Professor Ferenc Schipp introduced a new method for constructing orthogo-
nal systems starting from some conditionally orthogonal functions. See [34],
[35], [36]. Several classical and modern systems can be constructed by using
this method. For example the trigonometric, the Walsh system, the Vilenkin
system, UDMD and Walsh-similar systems can be obtained in this way. Be-
sides the important theoretical properties, these systems have useful numerical
applications, like the possibility to compute the Fourier-coefficients and partial
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sums with a fast algorithm similar to FFT. (Fast Fourier Transform)

z On Blaschke functions and orthogonal systems related to them:

Blaschke functions play an important role in complex analysis, in the the-
ory of Hardy spaces, and in system and control theory. See Duren[5], Duren-
Schuster[6], Chui-Chen[4], Schipp-Bokor[23], [24], and [25]. The congruence
transforms in the Poincarè model of hyperbolic geometry can be described by
means of Blaschke functions. See Schipp[26]. The Blaschke functions form a
group with respect to the composition, and on the so-called Blaschke group a
Voice transform was introduced by Schipp and Pap in [28], [29], and [31], and
applied in signal and image processing in Schipp[30], Schipp-Bokor[32], and [33].
These results inspired the study of Blaschke functions on local fields.

The discrete Laguerre functions and their generalizations (Kautz-, and
Malmquist-Takenaka systems) are widely applied in system and control theory.
See [19], [20], [21], and [22].

Chebyshev polynomials play an important role in numerous fields of appli-
cations, for example in approximation theory (the resulting interpolation poly-
nomial provides an approximation that is close to the polynomial of best ap-
proximation to a continuous function under the maximum norm).

These have motivated the author in construction of these systems on local
fields.

1.2 Presentation overview

We construct some orthogonal systems related to the Blaschke functions and to
the Walsh-Paley system or to the characters of the 2-adic field. Fourier-series
with respect to these functions are examined. However, this work does not claim
to be a complete treatment of the subject. We have chosen to use the methods
of the product systems of UDMD systems.

This work is organized as follows: Chapter 2 contains an introduction to
the 2-series and 2-adic fields, especially concerning the algebraic and topological
structure. This chapter follows the concepts, notations and proofs of Schipp-
Wade[17]. We present in Paragraph 2.6 that if we consider the Fourier expansion
with respect to a system given by the composition of the character system and
a measure preserving transformation, then its partial sums and Cesaro means
can be expressed by the original ones, that is by partial sums and Cesaro means
of Fourier series with respect to the characters. This will be applied in the next
chapters to discuss summability and convergence questions.
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Chapter 3 is devoted to some useful tools applied in the following chap-
ters. Paragraph 3.1 provides a description of the characters of the dyadic and
2-adic multiplicative groups based on [17] and using the notion of the product
system. Based on the handbook of Schipp and Wade[17] we present the expo-
nential function, with slightly different base and values, which is used in the
next chapters.

Starting from Paragraph 3.3, this work contains the results of the author.
Paragraph 3.3 contains the definitions and properties of the Blaschke functions

on both fields. The logical Blaschke functions Ba(x) = x
◦
+a

e
◦
+a◦x

(x ∈ I, a ∈ I1)

defined on the dyadic field and the arithmetical Blaschke functions Ba(x) =

x
•
−a

e
•
−a•x

(x ∈ I, a ∈ I1) defined on the 2-adic field form a commutative group with

respect to the function composition. Although the classical Blaschke group is
non-commutative, analogous thoughts result in commutative variants on local
fields.

In Chapter 4 we study transformations given by composition with a
Blaschke function and in general with a dyadic martingale structure preserv-
ing transformation, or shortly a DMSP-transformation defined in this chapter,
and we investigate questions related to the effect on special function classes
of these transformations. We obtain, that composition with a DMSP-function
preserves the classes of UDMD systems, that of An-measurable functions, the
dyadic function spaces Lp(I), Hp(I), and the Lipschitz classes Lip(α, I).

The idea of Chapter 5 is given by the fact that the operation determined
by the composition of Blaschke functions leads to the functional equation of the
tangent function tan. Thus the characters of the 2-adic group are determined by
means of a tangent-like function. We use the (S̃, •)-valued exponential function
ζ, which was described in Paragraph 3.2. In order to construct the characters of
the Blaschke group of the arithmetical field, we give a continuous isomorphism

γ from the additive group (I1,
•
+) onto (I1, /), which is the analogue of function

tan. These thoughts can be interpreted as the solution of the functional equation
of tan on the local field.

Chapter 6 is devoted to the construction of discrete Laguerre functions on
both local fields. The role of the power function of the classical system is taken
by the characters of the corresponding field, and their composition with Blaschke
functions build the dyadic discrete Laguerre systems. After the model of the
classical system, we introduce discrete Laguerre systems as the composition of
the respective additive characters of the local fields and the Blaschke functions.
We have shown in Paragraph 3.3, that the bits of the values of the Blaschke
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functions Ba can be obtained with recursion using the bits of the variable and
the bits of the parameter a. As a consequence of this recursion follows, that
the systems in question are UDMD-product systems, as well. As a consequence,
results regarding UDMD-systems are valid for the discrete Laguerre systems.
Paragraph 6.4 deals with the a.e. convergence and (C,1)-summability of the
Fourier series with respect to these systems using some basic results of Schipp[15]
and Gat[7] on the a.e. convergence and (C,1)-summability of the Fourier series
with respect to the characters of the dyadic and 2-adic field.

Chapter 7 covers our investigations about the construction of the
Malmquist-Takenaka systems on both studied local fields, which are a gen-
eralization of the discrete Laguerre systems. Being UDMD-product systems,
Fourier series with respect to them fulfill a.e. convergence and summability
statements.

In Chapter 8 we construct several analogies of the Chebyshev polynomials
on the 2-adic field. First, 2-adic cosine and sine functions are constructed in
two ways: with the aim of the S̃-valued exponential functions or with the char-
acters vn of the 2-adic additive group. Then follows the construction of some
analogies of the Chebyshev polynomials using these cosine and sine functions.
Orthogonality of these Chebyshev polynomials is also investigated.

Chapters 4,5, 6-7 and 8(based also on 4) can be read in optional order.

1.3 Credits

Chapter 4 is based on [42]:
Simon, I., On transformations by dyadic martingale structure preserving

functions, Annales Univ. Sci. Budapest., Sect. Comp., 39 (2013), pp, 381-390.

Chapter 5 is based on [40]:
Simon, I., The characters of the Blaschke-group, Studia Univ. ”Babes-

Bolyai”, Mathematica, 54(3)(2009), pp. 149-160.

Chapter 6, is based on [39]:
Simon, I., Discrete Laguerre functions on the dyadic fields, PU.M.A,

17(2006)(3-4), pp. 459-468.

Chapter 7 is based on [41]:
Simon, I. Malmquist-Takenaka functions on local fields, Acta Univ. Sapi-

entiae Math., 3(2)(2011), pp. 135-143.

Chapter 8 is based on [43]:
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Chapter 2

Algebraic and topological
structure

2.1 Non-Archimedean topology of the space of
bytes B

This chapter is an introduction to the 2-series and 2-adic fields, especially con-
cerning the algebraic and topological structure. We follow the concepts, nota-
tions and proofs of Schipp-Wade[17]. The reason why we sometimes go into
details, is to recall the techniques which we will use in the next chapters.
z Denote by A := {0, 1} the set of bits, and by

B := {a = (aj , j ∈ Z) | aj ∈ A and lim
j→−∞

aj = 0} (2.1)

the set of bytes. The numbers aj are called the additive digits of a ∈ B. As each
aj is 0 or 1, the condition limj→−∞ aj = 0 is equivalent with the existence of
an integer N ∈ Z such that aj = 0 for j < N .

The zero element of B is θ := (0, j ∈ Z), that is, θ = (· · · , 0, 0, 0, · · · ).
The fundamental sequence of B is formed by the elements ek := (δjk, j ∈ Z)

defined for each k ∈ Z, where δjk is the Kronecker-symbol. Thus ek is the byte
with k-th digit 1 and with other digits 0. The byte e0 is denoted by e. We will
denote the set N \ {0} by P and let B∗ := B \ {θ}.
z The order of a byte x ∈ B is defined in the following way: For x 6= θ

let π(x) := n if and only if xn = 1 and xj = 0 for all j < n, furthermore set

7



8 CHAPTER 2. ALGEBRAIC AND TOPOLOGICAL STRUCTURE

π(θ) := +∞. The norm of a byte x is introduced by the following rule:

‖x‖ := 2−π(x) for x ∈ B∗, and ‖θ‖ := 0. (2.2)

We will see in Section 2.2 that this function possesses the properties of a norm
with the corresponding operations even in a stronger form: instead of the tri-
angle inequality takes place a stronger inequality.

For example, the order of the byte x = (· · · ,
−1
0 ,

0
0,

1
1,

2
0,

3
1,

4
0, · · · ) is π(x) = 1,

and its norm is ‖x‖ = 2−1.
z A metric can be defined on B as follows.

ρ(x, y) :=

{
0, if x = y,

2−n, if x 6= y, n := min{k ∈ Z : xk 6= yk},
(2.3)

that is, n ∈ Z is chosen so, that xj = yj for j < n, but xn 6= yn. The mentioned
minimum exists by the definition of B. Clearly, ρ(θ, x) = ‖x‖.

It is clear, that ρ is a metric, as

ρ(x, y) ≥ 0; and ρ(x, y) = 0⇐⇒ x = y,

ρ(x, y) = ρ(y, x) for all x, y ∈ B,
ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ B.

In fact, the metric ρ satisfies a stronger condition then the last one:

ρ(x, y) ≤ max{ρ(x, z), ρ(z, y)} for all x, y, z ∈ B, (2.4)

namely ρ is a non-Archimedian metric on B.

z A sequence of bytes (bk)k∈N is said to converge to a byte b ∈ B if ρ(bk, b)→
0 as k →∞.

(bk)k∈N is said to be a Cauchy sequence if to any given ε > 0 there is an
N ∈ N such that ρ(bk, bl) < ε for all k, l > N . It is easy to see, that every Cauchy
sequence in B is convergent, and consequently, (B, ρ) is a complete metric space.

A countable subset of B is the following:

B+ := {a ∈ B : lim
j→∞

aj = 0}.

Furthermore, for each a ∈ B and n ∈ Z define the n-th truncation of a by

(a〈n〉)j :=

{
aj , for j < n,

0, for j ≥ n.
(2.5)
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We can see, that B+ is dense in B. Indeed, for each a ∈ B we have a〈n〉 ∈ B+ and
a〈n〉 → a as n→∞. Thus (B, ρ) is a complete, separable metric space.

z The sets In(x) := {y ∈ B : yk = xk for k < n}, the so-called intervals in B
of rank n ∈ Z and center x are of basic importance. Set In := In(θ) = {x ∈ B :
‖x‖ 5 2−n} for any n ∈ Z. The unit ball I := I0 can be identified with the set
of sequences I = {a = (aj , j ∈ N)| aj ∈ A} via the map (. . . , 0, 0, a0, a1, . . . ) 7→
(a0, a1, . . . ). Furthermore S := {x ∈ B : ‖x‖ = 1} = {x ∈ B : π(x) = 0} = {x ∈
I : x0 = 1} is the unit sphere of the field.

We can observe that In(a) = {x ∈ B : ρ(x, a) ≤ 2−n} for all a ∈ B and
n ∈ Z, that is, In(a) is a disc of radius 2−n with center at a. The boundary
of In(a) is Sn(a) := {x ∈ B : xk = ak for k < n, but xn 6= an}. Let us collect
some properties concerning intervals:

{x ∈ B : ρ(x, a) < 2−n} = In+1(a) ⊂ In(a);

In(a) ⊂ Im(a) (n > m, a ∈ B);

Sn(a) = In(a) \ In+1(a) (n ∈ Z, a ∈ B);

In(a) =
⋃
k≥n

Sk(a) (n ∈ Z, a ∈ B);

⋂
n∈Z

In(a) = {a};
⋃
n∈Z

In(a) =
⋃
n∈Z

Sn(a) = B.

(2.6)

Easy consideration leads to the following lemma:

Lemma 1 If b ∈ In(a), then In(b) = In(a).

Denote the collection of intervals in B by I. I is countable, satisfies the
tree property and the splitting property. The tree property means that any two
intervals in B either disjoint or one is contained in another, namely for n ≤ m
and a, b ∈ B we have either Im(a) ⊆ In(b) or Im(a)∩ In(b) = ∅. This is a simple
consequence of Lemma 1. The splitting property is the feature to break every
interval into disjoint intervals of higher rank, namely, if given x ∈ B and m ∈ Z,
there is an y ∈ B such that

Im(x) = Im+1(x) ∪ Im+1(y) and Im+1(x) ∩ Im+1(y) = ∅.

Indeed, the splitting property holds: if x ∈ B and m ∈ Z, define y = (yj , j ∈ Z)
by yj = xj for j 6= m and ym = 1 − xm. Thus, Im(x) = Im+1(x) ∪ Im+1(y)
and Im+1(x) ∩ Im+1(y) = ∅. The countability of I follows from the fact that
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each algebraic digit aj of a byte a ∈ B takes on only 2 values: 0 and 1. Thus
B+ is countable, so I = {In(a) : a ∈ B, n ∈ Z} = {In(a) : a ∈ B+, n ∈ Z} =⋃
n∈Z

⋃
a∈B+

{In(a)} is also countable, as both unions are countable. Lemma 1 shows

that every point of In(a) is its center.

z We call a set E ⊆ B open, if for each a ∈ E the set E includes a ball
centered in a, namely there is an r > 0 such that {x ∈ B : ρ(x, a) < r} ⊆ E;
and closed, if its complement is open in B.

The intervals In(a) = {x ∈ B : ρ(x, a) ≤ 2−n} are open in B as a simple
consequence of Lemma 1 and (2.6).

By Lemma 1 (or directly by (2.4) ) follows that In(a) contains all its limit
points, thus the interval In(a) is closed. We have seen, that the intervals of B
are both open and closed. Thus B is totally disconnected. This is one of the
fundamental differences between the intervals of B and R.
z The intervals form a base for the metric topology of B, namely each open

set in B is a union of intervals. Indeed, given an open set E ⊆ B, for each
a ∈ E there is an n ∈ Z such that In(a) ⊆ E. Choose the smallest one:
na := min{n ∈ Z : In(a) ⊂ E, n > π(a)}. (This minimum exists, because for
each a ∈ B holds π(a) > −∞.) Now, E =

⋃
a∈E Ina(a), thus the set E can

be written as a union of intervals. Since I is countable and satisfies the tree
property, it follows that each open set in B can be written as a countable union
of pairwise disjoint intervals.

z B is a locally compact metric space, that is, every byte x ∈ B has a
compact neighborhood. In fact, each interval is compact in B:

Lemma 2 A set K ⊂ B is compact if and only if it is closed and bounded.

A consequence of Lemma 2 is that every interval In(a) and sphere Sn(a) is
compact, thus the space B is locally compact. Using the tree property, we can
see, that every compact set in B can be covered by a finite number of disjoint
intervals of a fixed rank.

z A measure can be defined on B in the following way: for n ∈ N, a ∈ B let

µ(In(a)) := 2−n. (2.7)

Extend µ to the ring R of sets formed by finite unions of intervals so that µ is
finitely additive. By the splitting property and the tree property it is clear that
µ is countably additive on R. The Caratheodory extension theorem gives, that
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there is a measure (denoted also by µ) defined on the σ-ring of Borel sets Bµ
which satisfies (2.7). Clearly, µ is normalized, and we will see that B is a normed
field with the concerned operations and µ is a normalized Haar-measure on B
with property µ(I) = 1. µ will be invariant with respect the additive operations
of both studied fields, thus it will be a Haar-measure. (See the next chapters.)

z We have found some basic differences between the set of real numbers R
and the non-Archimedian space of bytes B. The intervals in R have the splitting
property, but the tree property fails. Moreover, the intervals in the case of bytes
are both open and closed sets, which property distinguishes the examined space
essentially from R.

In spite of these, there are close connections between B and R+. We will use
the map β on B+ defined by

β(x) :=

∞∑
k=−∞

xk · 2k (x = (xk, k ∈ Z) ∈ B+). (2.8)

Let Q represent the set of dyadic rationals in R: Q := {p · 2m : p,m ∈ Z},
and Q+ represent the set of nonnegative dyadic rationals, that is Q+ := R+∩Q.

Clearly, β is a 1-1 map from B+ onto Q+, and its restriction is 1-1 from
B+ ∩ I onto N.

2.2 The 2-series (or logical, dyadic) field

z Define the 2-series (or logical) sum a
◦
+ b and product a◦b of elements a, b ∈ B

by

a
◦
+ b := (an + bn (mod 2), n ∈ Z)

a ◦ b := (cn, n ∈ Z), where cn :=
∑
k∈Z

akbn−k (mod 2) (n ∈ Z).
(2.9)

For example, the logical sum and product of the bytes a and b,

a = (· · · ,
−1
0 ,

0
0,

1
1,

2
0,

3
1,

4
0,

5
1, · · · )

b = (· · · ,
−1
0 ,

0
0,

1
0,

2
1,

3
1,

4
1,

5
1, · · · )

are the following: a
◦
+ b = (· · · ,

−1
0 ,

0
0,

1
1,

2
1,

3
0,

4
1,

5
0, · · · ),

a ◦ b = (· · · ,
−1
0 ,

0
0,

1
0,

2
0,

3
1,

4
1,

5
0,

6
0, · · · ).
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z The operation
◦
+ is commutative and associative. The additive unit ele-

ment is θ, and by x
◦
+ x = θ (x ∈ B) follows that the additive inverse element

of x ∈ B is x itself. Thus (B,
◦
+) is a commutative group.

The metric ρ : B × B → R defined in (2.3) can also be represented in form

ρ(a, b) = ‖a
◦
+ b‖. The map (a, b) 7→ a

◦
+ b is continuous with respect to this

metric from B× B to B. This is a simple consequence of the following:

In(a) = a
◦
+ In := {a

◦
+ x : x ∈ In}

In(a
◦
+ b) = In(a)

◦
+ In(b) := {x

◦
+ y : x ∈ In(a), y ∈ In(b)},

(2.10)

where a, b ∈ B, n ∈ Z. By the continuity of
◦
+ follows that (B,

◦
+) forms a

topological group.

Note, that each x ∈ B can be written in form

x =
∑
n∈Z

xnen (2.11)

using its additive digits x = (xn, n ∈ Z) where the sum is considered with

respect to the addition
◦
+.

z The logical multiplication ◦ is a convolution over the finite field A, and it
is associative and commutative on B. We can observe, that ek ◦ em = ek+m for
all k,m ∈ Z. In general, multiplication by ek shifts bytes: ek◦a = (an−k, n ∈ Z).
The multiplicative identity of B is the element e = (δn0, n ∈ N): indeed, e◦a = a
holds for each a ∈ B.

The existence of the multiplicative inverse element of each a ∈ B∗ := B\{θ}
follows from the existence of the inverse element of any b ∈ S. Let us show, that
for each b ∈ S there is an x ∈ S such that:

b ◦ x = e. (2.12)

Observe that (2.12) holds if and only if the additive digits of x satisfy

x0 = 1

xn ≡
n−1∑
j=0

xjbn−j ( mod 2)(n ≥ 1),
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which clearly defines xn ∈ A recursively for all n ∈ N. We will denote the
multiplicative inverse of an element b ∈ S with respect to ◦ by b◦ or by b−1.

Now, each a ∈ B∗ can be uniquely written in the form:

a = en ◦ b for some n ∈ Z and b ∈ S.

Hence, the inverse element of a ∈ B∗ is found: e−n ◦ b◦; let us denote it with a◦

or a−1. Thus (B∗, ◦) forms a commutative group.
The logical multiplication is continuous on B. Indeed, given a, b ∈ B∗ and

n ∈ N, n > π(a) + π(b) for each x ∈ In−π(b)(a) and y ∈ In−π(a)(b) we have
x ◦ y ∈ In(a ◦ b). Thus the (B∗, ◦) is a topological group.

z Notice, that
π(a ◦ b) = π(a) + π(b). (2.13)

The rule of distributivity also holds, that is:

a ◦ (b
◦
+ c) = a ◦ b

◦
+ a ◦ c (a, b, c ∈ B).

Furthermore,

‖a
◦
+ b‖ 5 max{‖a‖, ‖b‖}, ‖a ◦ b‖ = ‖a‖ ‖b‖ (a, b ∈ B). (2.14)

Thus the set B with the operations
◦
+ and ◦ is a non-Archimedian normed

field, i.e. Consider nx := x
◦
+ x

◦
+ . . .

◦
+ x︸ ︷︷ ︸

n times

for any integer n ∈ Z and x ∈

B, which is either x or θ. The first rule of (2.14) gives the non-Archimedian
property: ‖nx‖ ≤ ‖x‖ (n ∈ Z, x ∈ B).

2.3 The 2-adic (or arithmetical) field

z Consider the 2-adic (or arithmetical) sum a
•
+ b of elements a = (an, n ∈

Z), b = (bn, n ∈ Z) ∈ B, defined by

a
•
+ b := (sn, n ∈ Z),

where the bits qn, sn ∈ A (n ∈ Z) are obtained recursively as follows:

qn = sn = 0 for n < m := min{π(a), π(b)},
and an + bn + qn−1 = 2qn + sn for n ≥ m.

(2.15)
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The 2-adic (or arithmetical) product of a, b ∈ B is a• b := (pn, n ∈ Z), where
the sequences qn ∈ N and pn ∈ A (n ∈ Z) are defined recursively by

qn = pn = 0 for n < m := π(a) + π(b)

and

∞∑
j=−∞

ajbn−j + qn−1 = 2qn + pn for n ≥ m. (2.16)

The reflection x− of a byte x = (xj , j ∈ Z) is defined by its additive digits:

(x−)j :=

{
xj , for j 5 π(x)

1− xj , for j > π(x).
(2.17)

For example, the arithmetical sum and product of the bytes a and b,

a = (· · · ,
−1
0 ,

0
0,

1
1,

2
0,

3
1,

4
0,

5
1, · · · )

b = (· · · ,
−1
0 ,

0
0,

1
0,

2
1,

3
1,

4
1,

5
1, · · · )

are the following: a
•
+ b = (· · · ,

−1
0 ,

0
0,

1
1,

2
1,

3
0,

4
0,

5
1, · · · ),

a • b = (· · · ,
−1
0 ,

0
0,

1
0,

2
0,

3
1,

4
1,

5
0,

6
1, · · · )

and the reflection of a : a− = (· · · ,
−1
0 ,

0
0,

1
1,

2
1,

3
0,

4
1,

5
0, · · · ).

z The operation
•
+ is commutative. Note, that θ is the additive identity and

x− is the additive inverse of x ∈ B: x
•
+ θ = x, and x

•
+ x− = θ (x ∈ B). The

arithmetic sum
•
+ is associative on B which is a corollary of the next lemma.

Lemma 3 The map β is an isomorphism from the semigroup (B+,
•
+) onto

(Q+,+), that is:

β(a
•
+ b) = β(a) + β(b) (a, b ∈ B+). (2.18)

(The proof of this lemma can be found in [17], pp.36 and here will be omit-
ted.)

To see the associativity of
•
+, verify that β((a

•
+ b)

•
+ c) = β(a

•
+ (b

•
+

c)) (a, b, c ∈ B+) results that
•
+ is associative on B+. Now, for each a, b, c ∈ B,
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the truncations are elements of B+, thus (a〈n〉
•
+ b〈n〉)

•
+ c〈n〉 = a〈n〉

•
+ (b〈n〉

•
+

c〈n〉) holds for every n ∈ Z. Letting n tend to infinity, it follows, that
•
+ is

associative on B.

Hence (B,
•
+) is a commutative group. Since

‖x
•
+ y‖ ≤ max{‖x‖, ‖y‖}, (2.19)

with equality if and only if ‖x‖ 6= ‖y‖, this norm is non-Archimedean. (‖nx‖ ≤
‖x‖ for each x ∈ B and n ∈ Z.)

The map (a, b) 7→ a
•
+ b is continuous from B×B to B; and the map a 7→ a−

is continuous from B to B. This is a simple consequence of the following:

In(a) = a
•
+ In := {a

•
+ x x ∈ In}

In(a
•
+ b) = In(a)

•
+ In(b) := {x

•
+ y x ∈ In(a), y ∈ In(b)}

I−k (a) := {x− : x ∈ Ik(a)} = Ik(a−)

(2.20)

where a, b ∈ B, n ∈ Z and k > π(a). Thus (B,
•
+) is a topological group.

Note, that each x ∈ B can be written in form x =
∑
n∈Z

xnen using its additive

digits x = (xn, n ∈ Z) where the sum is considered with respect to the addition
•
+.

zWe will see in the following, that (B∗, •) forms a commutative group. The
arithmetic multiplication is commutative, and it is closely related to the usual
multiplication of real numbers:

Lemma 4 If a, b ∈ B+, then a • b ∈ B+ and

β(a • b) = β(a)β(b). (2.21)

(The proof can be found in [17], pp.38 and will be omitted here.)
An immediate consequence of (2.21) is, that multiplication • is associative

on B+, thus (a〈n〉 • b〈n〉) • c〈n〉 = a〈n〉 • (b〈n〉 • c〈n〉) for all n ∈ Z, a, b, c ∈ B.
Letting n→∞, we find that • is associative on B.

We can observe, that ek • em = ek+m for all k,m ∈ Z. In general, multipli-
cation by ek shifts bytes: ek • a = (an−k, n ∈ Z). The multiplicative identity of
B is the element e = e0 = (δn0, n ∈ Z), where δnk is the Kronecker-symbol.
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The existence of the multiplicative inverse element of each a ∈ B∗
follows from the existence of the inverse element of any b ∈ S. Let us show, that
for each b ∈ S there is an x ∈ S such that:

b • x = e. (2.22)

Observe, that (2.22) holds if and only if the additive digits of x satisfy
q0 = 0, x0 = 1,

xn +

n−1∑
j=0

xjbn−j + qn−1 = 0 + 2qn (n ≥ 1)
⇔



q0 = 0, x0 = 1,

xn ≡
n−1∑
j=0

xjbn−j + qn−1 ( mod 2)

qn =
1

2

xn +

n−1∑
j=0

xjbn−j + qn−1

 (n ≥ 1),

(2.23)

which defines xn ∈ A and qn ∈ N recursively for all n ∈ N. The multiplicative
inverse of an element b ∈ S with respect to • is denoted by b• or b−1.

Now, each a ∈ B∗ can be uniquely written in the form:

a = en • b for some n ∈ Z and b ∈ S.

We can easily see, that e−n • b• is the inverse element of a ∈ B∗; it is denoted
by a• or a−1. Thus (B∗, •) forms a commutative group.

The recursive form of inverse element of a byte b ∈ Sm (m ∈ Z), which will
be used in Section 5.2, can be given by the method of (2.23):

(b−1)n = bn+m + fn(bm, · · · , bn+m−1) (mod 2) (2.24)

for some f : An−1 → A.

z The operations
•
+, • are continuous with respect to the metric introduced

by the norm (2.2).
The arithmetical multiplication is continuous on B∗, because for given a, b ∈

B∗ and n > π(a) +π(b), and for each x ∈ In−π(b)(a) and y ∈ In−π(a)(b) we have
x • y ∈ In(a • b).
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The rule of distributivity also holds, that is:

a • (b
•
+ c) = a • b

•
+ a • c (a, b, c ∈ B).

We conclude that (B,
•
+, •) is a topological field. (S, •) is a subgroup of (B, •).

Notice, that

π(a • b) = π(a) + π(b). (2.25)

hence, ‖x • y‖ = ‖x‖ · ‖y‖. In addition to this,

‖x
•
+ y‖ ≤ max{‖x‖, ‖y‖},

thus (B,
•
+, •) is a non-Archimedian normed field with respect to the norm

(2.2). We will use the following notation: a
•
− b := a

•
+ b−.

2.4 The Haar-measure

The measure µ defined in (2.7) is translation invariant with respect to
◦
+, that

is, for a ∈ B and a Borel set E ⊆ B follows by (2.10) that the Borel set E
◦
+ a

satisfies µ(E
◦
+ a) = µ(E). µ is also dilation preserving, that is, for each

Borel set E ⊆ B and b ∈ B∗ the Borel set b ◦ E := {b ◦ y, y ∈ E} satisfies
µ(b ◦ E) = ‖b‖µ(E). Consequently µ is the normalized Haar-measure on the

logical group (B,
◦
+).

The measure µ is translation and reflection invariant with respect to
•
+, that

is, if a ∈ B and E is a Borel set in B, then by (2.20) the Borel sets E− and E
•
+ a

satisfy µ(E−) = µ(E), and µ(E
•
+ a) = µ(E). µ is also dilation preserving, that

is, for each Borel set E ⊆ B and b ∈ B∗ the Borel set b • E := {b • y, y ∈ E}
satisfies µ(b •E) = ‖b‖µ(E). It follows, that µ is the normalized Haar-measure

on the arithmetical group (B,
•
+).

The Lebesgue measure is the Haar-measure on (R+,+), moreover since the
map

α : B→ R+, α(x) :=

∞∑
j=−∞

xj2
−j−1 (x ∈ B)
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takes In(a) to an interval
[
p

2n ,
p+1
2n

]
with p =

∑n−1
j=−∞ aj2

−j−1, where n ∈
Z, aj ∈ A (j ∈ Z). Thus the map α is measure preserving from the measure
space (B,Bµ, µ) to the Lebesgue measure space (R+,BL, µL). (Here Bµ denotes
the σ-ring of Borel sets of B and BL denotes the σ-ring of Borel sets of R+.)
This represents a close connection between the considered measure spaces.

2.5 UDMD product systems

z Let (φn, n ∈ N) be a collection of complex valued functions defined on some
common set. For each m ∈ N consider the following functions:

ψm :=

∞∏
j=0

φ
mj

j (m ∈ N),

where m has the binary expansion m =
∑∞
j=0mj2

j (mj ∈ A, j ∈ N). The
system ψ = (ψm,m ∈ N) is called the product system generated by the system
(φn, n ∈ N).
z Denote with A the σ-algebra generated by the intervals In(a) (a ∈ I, n ∈

N). I,A, and the restriction of the measure µ on I gives a probability measure
space (I,A, µ). Let An be the sub-σ-algebra of A generated by the intervals
In(a) (a ∈ I). Let L(An) denote the set of An-measurable functions on I and
L1(I) be the set of integrable functions f : I → C. The conditional expectation
of an f ∈ L1(I) with respect to An is of the form

(Enf)(x) :=
1

µ(In(x))

∫
In(x)

fdµ (x ∈ I).

A sequence of functions (fn, n ∈ N) ⊂ L1(I) is called a dyadic martingale if
each fn is An-measurable and

(Enfn+1) = fn (n ∈ N).

The sequence of martingale differences of (fn, n ∈ N) is the sequence

φn := fn+1 − fn (n ∈ N).

We notice that every dyadic martingale difference sequence has the form φn =
rngn (n ∈ N) where (gn, n ∈ N) is a sequence of functions such that each gn is
An-measurable and (rn, n ∈ N) denotes the Rademacher system on I:

rn(x) := (−1)xn (n ∈ N).
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The dyadic martingale difference sequence (φn, n ∈ N) is called a unitary
dyadic martingale difference sequence or a UDMD sequence, if |φn(x)| = 1 (n ∈
N). Thus (φn, n ∈ N) is a UDMD sequence if and only if

φn = rngn, gn ∈ L(An), |gn| = 1 (n ∈ N). (2.26)

Let us call a system ψ = (ψm,m ∈ N) a UDMD product system, if it
is a product system generated by a UDMD system, i.e., there is a UDMD
system (φn, n ∈ N) such that for each m ∈ N with binary expansion m =∑∞
j=0mj2

j (mj ∈ A, j ∈ N), the function ψm is obtained by:

ψm =

∞∏
j=0

φ
mj

j (m ∈ N).

The dyadic maximal operator and for 0 < p <∞ the Hp norm is defined by

E∗(f) := sup
n∈N
|Enf | (f ∈ L1(I)),

‖f‖Hp := ‖E∗f‖p (f ∈ L1(I)),

where ‖.‖p denotes the Lp(I) norm.

2.6 The transformation method

If we consider the Fourier expansion with respect to a system given by the
composition of the character system and a measure preserving transformation,
then its partial sums and Cesaro means can be expressed by the original ones,
that is by partial sums and Cesaro means of Fourier series with respect to the
characters. This will be applied in the next chapters to discuss summability and
convergence questions.

Let now {φn, n ∈ N} denote the character set of the studied additive group,
and consider a measure-preserving variable transformation T : I→ I. Then,∫

I
f ◦ T dµ =

∫
I
fdµ. (2.27)

Definition 1 Let us define the T-Fourier coefficients of an f ∈ L1(I) by

f̂T (n) :=

∫
I
f(x)φn(T (x))dµ(x) (n ∈ N).
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Furthermore the T-Fourier series ST f of f and the n-th partial sum STn f of the
T-Fourier series ST f is defined by

ST f :=

∞∑
k=0

f̂T (k) · φk ◦ T, and STn f :=

n−1∑
k=0

f̂T (k) · φk ◦ T (n ∈ P).

Let us define the T-Cesaro (or (T − C, 1)) means of ST f by

σT0 f := 0 and σTn f :=
1

n

n∑
k=1

STk f (n ∈ P).

Proposition 1 For any f ∈ L1(I), n ∈ P hold

STn f =
[
Sn(f ◦ T−1)

]
◦ T, and (2.28)

σTn f =
[
σn(f ◦ T−1)

]
◦ T, (2.29)

where Sn and σn stand for the corresponding notions with respect to the char-
acters {φn, n ∈ N} of the additive group.

Proof: If f̂(n) denotes the Fourier coefficients with respect to the characters of
an f ∈ L1(I) presented also in [16], we conclude by (2.27), that

f̂T (n) = ̂f ◦ T−1(n) (n ∈ N).

Thus,

STn f =

n−1∑
k=0

̂f ◦ T−1(n) · φk ◦ T =
[
Sn(f ◦ T−1)

]
◦ T,

which leads to

σTn f(x) =
1

n

n∑
k=1

[
Sk(f ◦ T−1)

]
(T (x)) = σn(f ◦ T−1)(T (x)).

�

Remark: On the complex field basically this method was used in terms of
the scalar products in Bokor-Schipp [3]. On the studied fields the presented
proposition enabled the author to handle a.e. convergence and summabilty
questions of Fourier series with respect to the discrete Laguerre and (vn ◦γ, n ∈
N) systems in I. Simon [39] and I. Simon[40]. Professor F. Schipp claimed that
the proposition is also true for general measure-preserving transformations. We
will use the term ”transformation method” in this work to ease the explanations.



Chapter 3

Some useful functions

This chapter is devoted to some useful tools which are used in the next chapters.
Paragraph 3.1 provides a description of the characters of the dyadic and 2-adic
multiplicative groups based on the handbook of Schipp and Wade [17] and using
the notion of the product system. Paragraph 3.2 contains the notions and results
regarding the (S̃, •)-valued exponential function ζ. Starting from Paragraph
3.3, this work contains the results of the author. Paragraph 3.3 contains the
definitions and properties of the respective Blaschke functions, which is due to
he author.

3.1 The characters of the additive groups

z A character of a topological group (G, ∗) is a continuous function φ : G→ C
that satisfies

|φ(x)| = 1 and φ(x ∗ y) = φ(x)φ(y) for all x, y ∈ G. (3.1)

That is, the characters of a group are the continuous homomorphisms into
the torus (T, ·). If φ is a character on (G, ∗), and θ represents the zero element of
G, then φ(θ) = 1. It can be easily seen, that the set of characters of a topological
group (G, ∗) forms a group under pointwise multiplication; it is called the dual

group of (G, ∗) and it is denoted by (̂G, ∗).
Consider a normed field (F,+, ·). Let u be a character of the additive group

(F,+). Then for each y ∈ F the map uy(x) := u(x ·y) (x ∈ F) is also a character
of (F,+). If these functions exhaust the characters of the group, then u is called

21
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a basic character of F. If F has a basic character u, then by the map y 7→ uy it

follows, that the group (F,+) is isomorphic to (̂F,+).

z Characters of (B,
◦
+) and (I,

◦
+)

Let us consider ε(t) := exp(2πit) (t ∈ R) and the maps

w(x) := ε
(x−1

2

)
(x ∈ B);

wy(x) := w(x ◦ y) (x, y ∈ B).
(3.2)

w is a basic character of the group and
̂
(B,

◦
+) = {wy : y ∈ B}. Easy compu-

tations show that w(x) = (−1)x−1 and w(x
◦
+ y) = w(x)w(y) for all x, y ∈ B.

Since w is constant on intervals with rank bigger than −1, thus w is continuous
on B, and it follows that w is a character of the group, and thus wy is also a
character for each y ∈ B.

Moreover, it can be showed, that w is a basic character of (B,
◦
+): each

character of B is a wy for some y ∈ B:
̂
(B,

◦
+) = {wy : y ∈ B}. Furthermore,

w
y
◦
+z

(x) = wy(x)wz(x) (x, y, z ∈ B), (3.3)

thus, by (wx(θ) =)wθ(x) = 1 it follows, that the map y 7→ wy is an isomorphism

from (B,
◦
+) onto

̂
(B,

◦
+), that is:

̂
(B,

◦
+) ∼= (B,

◦
+). (See [17], pp.63.)

Now, we will describe the characters of (I,
◦
+). For each y ∈ B let [y] := y〈0〉

represent the integer part of y, where we used the 0-th truncation defined in
(2.5). If x ∈ I, then

wy(x) = (−1)(x◦y)−1 = (−1)
∑∞

j=0 xjy−j−1 = (−1)(x◦[y])−1 = w[y](x).

Thus the characters of (I,
◦
+) are the restrictions of the w[y]-s on I. By iden-

tifying [y] with the integer n :=
∞∑
j=0

y−j−12j ∈ N, we see that w[y](x) =

(−1)
∑∞

j=0 xjy−j−1 can be written in the form wn(x) = (−1)
∑∞

j=0 xjnj (x ∈ I)

with dyadic expansion n =
∞∑
j=0

nj2
j . The functions (wn, n ∈ N) are the so-

called Walsh-Paley functions.



3.1. THE CHARACTERS OF THE ADDITIVE GROUPS 23

The characters of (I,
◦
+) can be expressed also with the so-called Rademacher

functions (rn, n ∈ N) given by:

rn(x) := (−1)xn (x ∈ I).

The Walsh-Paley functions wn are characters, being a finite product of charac-
ters:

wn(x) = (−1)
∑+∞

j=0 njxj =

∞∏
j=0

rj(x)nj (x ∈ I) (3.4)

where n =
∑∞
j=0 nj2

j ∈ N (nj ∈ A). In particular, the Walsh-Paley functions
form a product system generated by the Rademacher system (rn, n ∈ N).

z Characters of (B,
•
+) and (I,

•
+)

Consider ε(t) := exp(2πit) (t ∈ R) and define the maps

v(x) := ε
(x−1

2
+
x−2

22
+ . . .

)
(x ∈ B);

vy(x) := v(x • y) (x, y ∈ B).
(3.5)

v is a basic character of (B,
•
+) and

̂
(B,

•
+) = {vy : y ∈ B}.

Since v is constant on intervals with rank bigger than −1, it follows that v
is continuous on B. Let us show that

v(x
•
+ y) = v(x)v(y) (3.6)

holds for all x, y ∈ B. The definition of β gives, that v(x) = ε(β(x〈0〉)) (x ∈ B+),

thus by (2.18) holds v(x
•
+ y) = v(x)v(y) for all x, y ∈ B+. Since v and the

field operation
•
+ are continuous, and B+ is dense in B, it follows that (3.6)

holds for each x, y ∈ B, thus v is a character of the group. By the distributivity
of the field operations we have that (3.6) is valid also for vz for each z ∈ B:

vz(x
•
+ y) = v(z•(x

•
+ y)) = v(z•x)v(z•y) = vz(x)vz(y), and being continuous,

vz is also a character of the group for any z ∈ B.

Furthermore, v is a basic character of (B,
•
+): each character of (B,

•
+) is one

of the functions vy for some y ∈ B:
̂
(B,

•
+) = {vy : y ∈ B}. Now,

v
y
•
+z

(x) = vy(x)vz(x) (x, y, z ∈ B), (3.7)
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thus by (vx(θ) =)vθ(x) = 1 it follows, that the map y 7→ vy is an isomorphism

from (B,
•
+) onto

̂
(B,

•
+), that is:

̂
(B,

•
+) ∼= (B,

•
+). (See [17], pp.66.)

Now, we will describe the characters of (I,
•
+). With the expansion y = [y]

•
+

y′ (y′ ∈ I) for x ∈ I we have x • y = x • [y]
•
+ x • y′, thus

vy(x) = v[y](x) (x ∈ I).

Therefore, the characters of (I,
•
+) are the restrictions of v[y]-s on I. By identi-

fying [y] with the integer m :=
∞∑
j=0

y−j−12j =
∞∑
j=0

mj2
j ∈ N, we see that v[y](x)

can be written in the form

vm(x) =

∞∏
j=0

vy−j−1e−j−1
(x) =

∞∏
j=0

(v2j (x))mj where

v2n(x) := ve−n−1
= ε

(xn
2

+
xn−1

22
+ . . .

)
(x ∈ I).

(3.8)

Thus the character group of (I,
•
+) is formed by the product system (vm,m ∈

N) generated by the functions (v2n(x), n ∈ N).

3.2 The exponential function

z On some classical elementary functions
The exponential function on C is a nonzero continuous function satisfying

the functional equation

exp(x+ y) = exp(x) exp(y) (x, y ∈ C).

Consider the following classical functions expressed by the exp function:

sin(x) :=
exp(ix)− exp(−ix)

2i
; cos(x) :=

exp(ix) + exp(−ix)

2
; (x ∈ R)

tan(x) :=
exp(ix)− exp(−ix)

i(exp(ix) + exp(−ix))
=

exp(2ix)− 1

i(exp(2ix) + 1)(
x ∈ R \

{
(2k + 1)

π

2
, k ∈ Z

})
.
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The functional equation

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
(3.9)

of the function tan inspired the solution of the problem in Chapter 5.

z The exponential function on I1
A 2-adic exponential function is presented in Schipp [17], pp 59-60. We will

use now a similar one determined by a slightly different base, starting from

b1 = e
•
+ e2 instead of e

•
+ e1. We will need in Chapter 5 the following

exponential function. (As we use an exponential function on I in Chapter 8, we
will investigate that version there.) Let us introduce the notation S̃ := {x ∈ S :
x1 = 0}. By using the symbol

∏
, we mean the arithmetical product.

Definition 2 Consider the following base:

b1 := e
•
+ e2, bn := bn−1 • bn−1 (n ≥ 2). (3.10)

Definition 3 Let us define the (S̃, •)-valued exponential function ζ on I1 by the
following infinite product form:

ζ(x) :=

∞∏
j=1

b
xj

j (x = (xj , j ∈ Z) ∈ I1). (3.11)

As this function ζ is very similar to the exponential function presented in
[17], the next proofs are the adaptations of the proofs of Theorem 2 in [17],
pp.51-53 and of Proposition 4 in [17], pp.59.

An inductive argument shows, that bn = e
•
+ cn (n ≥ 1) with π(cn) = n+ 1,

thus the function ζ has the following representation:

ζ(x) =

∞∏
j=1

(e
•
+ cj)

xj =

∞∏
j=1

(e
•
+ xjcj) (x ∈ I1). (3.12)

Lemma 5 The function ζ satisfies the functional equation

ζ(x
•
+ y) = ζ(x) • ζ(y) (x, y ∈ I1). (3.13)
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Proof: The proof is almost the same to that of Proposition 4 in [17], pp.59-60.
By (2.15) and (3.10) we find that

n∏
j=1

b
xj

j •
n∏
j=1

b
yj
j •

n∏
j=1

b
qj−1

j =

n∏
j=1

b
(x
•
+y)j

j •
n∏
j=1

b
qj
j+1.

Now, simplifying the product in the last terms and taking the limit as n → ∞
we obtain (8.5) by using limn→∞ bn+1 = limn→∞(e

•
+ en+2

•
+ tn+1) = e for

tn+1 ∈ In+3.

�

The next lemma shows, that {ζ(x) : x ∈ I1} = S̃, and ζ is one-one and
continuous from I1 onto S̃.

Lemma 6 The function ζ defined in (16) is a continuous isomorphism from I1
onto S̃.

Proof: The proof is similar to that of Theorem 2 in [17], pp.51-53. By the

definition of bj we get bj = e
•
+ cj (j ≥ 1) where π(cj) = j + 1 (j ≥ 1), and so

ζ has the following representation:

ζ(x) =

∞∏
j=1

(e
•
+ cj)

xj =

∞∏
j=1

(e
•
+ xjcj).

We begin by noticing that since π(cn) = n+ 1 (n ≥ 1), each cn is of the form

c1 = e2,

cn = en+1

•
+ tn, where tn ∈ In+2 (n ≥ 2).

Since 1 > ‖c1‖ ≥ ‖c2‖ ≥ . . . ≥ ‖cn‖ → 0, the convergence of the modulus
of continuity ω(ζ, 2−n) = ‖cn‖ → 0 holds, thus ζ is continuous on I. (See [17],
pp.51)

To show that ζ is onto, it suffices to prove that to any given

y = e
•
+ y2e2

•
+ y3e3

•
+ . . . ∈ S̃
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there exists an x ∈ I1 and a sequence Tn ∈ In+2 (n ≥ 1) such that

p1(x) := e
•
+ x1c1 = e

•
+ y2e2

•
+ T1

pn(x) :=

n∏
j=1

(e
•
+ xjcj) = e

•
+ y2e2

•
+ y3e3

•
+ . . .

•
+ yn+1en+1

•
+ Tn (n ≥ 2)

(3.14)
We will establish (3.14) by induction on n. If n = 1, set x1 = y2 and T1 = 0. If
(3.14) holds for some n ≥ 1, then write

Tn := δn+2en+2

•
+ T ′n (n ≥ 2)

with some δn+2 ∈ A and T ′n ∈ In+3. Thus (3.14) is satisfied for n + 1 in place
of n if and only if

δn+2en+2

•
+ T ′n︸ ︷︷ ︸

Tn

•
+ pn(x)︸ ︷︷ ︸
e
•
+p′n(x)

xn+1 cn+1︸︷︷︸
en+2

•
+tn+1

= yn+2en+2

•
+ Tn+1︸ ︷︷ ︸
∈In+3

, (3.15)

where tn+1 ∈ In+3. Write pn(x) in the form

pn(x) = e
•
+ p′n(x), with some p′n(x) ∈ I1,

and define qn+1, ln+1 ∈ A so that

δn+2 + xn+1 = 2qn+1 + ln+1

holds. Clearly,

δn+2en+2 + xn+1en+2 = qn+1en+3 + ln+1en+2.

Therefore, (3.15) is equivalent to

yn+2 = ln+1, Tn+1 = qn+1en+3

•
+ T ′n

•
+ xn+1en+2p

′
n(x)

•
+ xn+1pn(x)tn+1.

In particular, (3.14) is satisfied if we set

xn+1 := yn+2 + δn+2 ( mod 2)

qn+1 :=

[
xn+1 + δn+2

2

]
and Tn+1 := qn+1en+3

•
+ T ′n

•
+ xn+1(en+2p

′
n(x)

•
+ tn+1pn(x)).
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Thus for every y ∈ S̃ we get an x ∈ I1 such that ζ(x) = y.
In order to prove that ζ is one-one, set

Pn(x) :=

∞∏
j=n

(e
•
+ xjcj) (n ≥ 1),

and observe that Pn(x) is of the form Pn(x) = e
•
+ xnen+1

•
+ P̃n(x) for some

P̃n(x) ∈ In+2 if n ≥ 1. Thus for all n ≥ 1, Pn(x) = Pn(y) implies xn = yn.
Since ζ(x) = ζ(y) is equivalent to P1(x) = P1(y) ⇒ x1 = y1 ⇒ P2(x) = P2(y)
and so on, we conclude that xn = yn for all n ≥ 1. See [17] pp.53.

�

3.3 The Blaschke functions

We will present the logical and arithmetical Blaschke functions, which were
introduced and studied in I. Simon[39] and I. Simon[40]. First let us sum up
some properties of the Blaschke functions on C.
z The Blaschke functions on C: Consider the open unit disc and its

boundary
D := {z ∈ C : |z| < 1}; T := {z ∈ C : |z| = 1},

respectively, and D̄ := D ∪ T denotes the closure of D. Let a denote the disc
algebra: a := {F : D̄→ C : F is analytic on D and continuous on D̄}.

The Blaschke function on C associated to a complex parameter a ∈ D is
defined by

Ba(z) := eiγ
z − a
1− āz

(z ∈ D), (3.16)

where γ ∈ R and ā is the complex conjugate of a ∈ D.
It is known, that Ba ∈ a and Ba is a one-one map from D onto D, and from

T onto T for every a ∈ D. The inverse of Ba is also a Blaschke function:

B−1
a (z) = e−iγ

z + eiγa

1 + e−iγ āz
(z ∈ D).

If |z| = 1 and a belongs to D, then |Ba(z)| = 1, that is, Ba is a bijection on
the unit circle T. According to Bokor- Schipp[3], Ba can be written in the form

Ba(eit) = eiβa(t) (t ∈ R, a ∈ D) (3.17)
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with the following bijection βa : [−π, π]→ [−π, π],

βa(t) := γ + ϕ+ 2 arctan

(
s tan

(
t− ϕ

2

))
,

where a = reiϕ ∈ C and s = η(r) is defined by means of the bijection
η : [0,∞)→ [0,∞):

η(r) :=


1 + r

1− r
for 0 ≤ r < 1

r − 1

r + 1
for 1 ≤ r <∞.

Furthermore, the composition of two Blaschke-functions, Ba1 and Ba2 is a
Blaschke function. (See Bokor-Schipp[3] and Soummelidis-Bokor-Schipp[32].)

z The logical Blaschke function

Definition 4 For a ∈ I1 define the (logical) Blaschke function on (I,
◦
+, ◦) by:

Ba(x) := (x
◦
+ a) ◦ (e

◦
+ a ◦ x)−1 =

x
◦
+ a

e
◦
+ a ◦ x

(x ∈ I). (3.18)

Since π(a) = 1 and π(x) = 0, we have π(a ◦ x) = 1, therefore by (2.9) we

have π(e
◦
+ a ◦x) = 0, hence e

◦
+ a ◦x 6= θ. Thus the function Ba is well-defined

on I.
Note, that by (2.13) it follows that π(u ◦ v−1) = π(u)−π(v) (u, v ∈ B), thus

‖Ba(x)‖ 5 1 if ‖x‖ 5 1, and ‖Ba(x)‖ = 1 if ‖x‖ = 1. (3.19)

Since the additive inverse of a byte a ∈ B is the element a itself, we get that
Ba(x) = y implies Ba(y) = x, therefore Ba is a bijection on the unit ball I and
on the unit sphere S := S0 = {x ∈ B | ‖x‖ = 1}. Moreover, for the inverse of
Ba we have

B−1
a = Ba.

It is easy to see for a, b ∈ I1, that

Ba(Bb(x)) = Bc(x) (x ∈ I), where c =
a
◦
+ b

e
◦
+ a ◦ b

= Ba(b) ∈ I1. (3.20)
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This implies that the maps Ba (a ∈ I1) form a commutative group with respect
to the composition of functions and each element is of order 2.

z In the following we will establish the recursive form of the byte Ba(x).
Let x ∈ I, a ∈ I1 and set y = Ba(x). Then ‖y‖ 5 1 and by (3.18) we have

y = x
◦
+ a

◦
+ y ◦ a ◦ x

and consequently the n-th digit of y is{
yn = 0, for n < 0,

yn = xn + an + (y ◦ a ◦ x)n (mod 2), for n = 0.

Thus the bits of y = Ba(x) can be obtained by recursion for any given x ∈ I,
since in order to compute (y ◦ a ◦ x)n we only need yk-s with k < n. Indeed, let
us verify that (y◦a◦x)n really depends only on y0, ..., yn−2, yn−1. Use definition
(2.9) of the product to get

(y ◦ a ◦ x)n =

+∞∑
i=−∞

+∞∑
j=−∞

an−i−jxiyj (mod 2)

and the xi-s and yj-s can be different from 0 only for i, j ≥ 0 and the an−i−j-s
for n− i− j > 0. And so,

(y◦a◦x)n =
∑

05i,j,i+j<n

an−i−jxiyj (mod 2) =

n−1∑
j=0

yj

( n−1−j∑
i=0

an−i−jxi

)
(mod 2)

and we obtain the following recursion:

y0 = x0 + a0 (mod 2)

yn = xn + an +

n−1∑
j=0

( n−j−1∑
i=0

an−i−jxi

)
yj (mod 2) (n = 1, 2, · · · ).

(3.21)

This implies that yn = (Ba(x))n can be written in the form

yn = xn + an + fn(x0, · · · , xn−1) (mod 2) (3.22)

where the functions fn : An → A (n = 1, 2, · · · ) depend only on the bits of a.
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z The arithmetical Blaschke function

Definition 5 For a ∈ I1 define the (arithmetical) Blaschke function on

(I,
•
+, •):

Ba(x) := (x
•
− a) • (e

•
− a • x)−1 =

x
•
− a

e
•
− a • x

(x ∈ I). (3.23)

For x ∈ I and a ∈ I1 from (2.19) we have that e
•
− a • x 6= θ, thus e

•
− a • x

has a multiplicative inverse in B, and so the function is well-defined.
We state first, that

Proposition 2 Ba : I → I is a bijection for any a ∈ I1 on I, and on S ⊂ I as
well.

Proof: From (2.25) it follows that π(u • v−1) = π(u)− π(v) (u, v ∈ B), thus

‖Ba(x)‖ 5 1 if ‖x‖ 5 1, and ‖Ba(x)‖ = 1 if ‖x‖ = 1. (3.24)

Ba(x) = y implies

x = Ba−(y) =
y
•
+ a

e
•
+ a • y

∈ I,

where a− denotes the reflection of a, the additive inverse of a defined in (2.17),

and clearly, e
•
+ a•x 6= θ, as required. Therefore we have seen, that the Blaschke

function Ba : I→ I is a bijection for any a ∈ I1 on I and on S.
Moreover, if B−1

a is the inverse of Ba, then the former argument results, that

B−1
a = Ba− (3.25)

and (3.24) holds with ”exactly when” instead of ”if”.

�

The composition of two Blaschke functions is also a Blaschke function:

Ba ◦Bb = Bc, where c =
a
•
+ b

e
•
+ a • b

∈ I1 (a, b ∈ I1). (3.26)



32 CHAPTER 3. SOME USEFUL FUNCTIONS

We will use the notation a / b := a
•
+b

e
•
+a•b

∈ I1 (a, b ∈ I1) in Chapter 5. Now,

Ba◦Bb = Ba/b (a, b ∈ I1) ensures that the maps Ba (a ∈ I1) form a commutative
group with respect to the composition of functions. The identity element is the
identity map Bθ = ı, and the inverse element of Ba is Ba− .

Definition 6 We will call (B, ◦) the Blaschke-group of the field (I,
•
+, •), where

B := {Ba, a ∈ I1} (3.27)

and ◦ denotes the composition of functions.

z Now, we will mention the recursive form of the byte Ba(x) in the
arithmetic case. For Ba(x) = y we have

y = x
•
− a

•
+ a • x • y. (3.28)

Thus we can give the byte y = Ba(x) recursively by{
yn = 0, for n < 0

yn = xn − an − qn−1 + 2qn + (y • a • x)n +Qn−1 − 2Qn for n = 0.
(3.29)

Here qn is the rest given in the definition of the 2-adic difference (x
•
− a)n

by: qn = 0 for n < m := min{π(x), π(a)} and xn − an − qn−1 + 2qn = (x
•
−

a)n for n ≥ m, and Qn is the rest given in the definition of the 2-adic sum

(x
•
− a)

•
+ (y • a • x): namely Qn = 0 for n < m1 := min{π(x

•
− a), π(y • a • x)}

and (x
•
− a)n+(y •a•x)n+Qn−1−2Qn =

[
(x
•
− a)

•
+ (y • a • x)

]
n

for n ≥ m1.

To compute yn we need Qn−1 computed in the previous step, and after yn we
get Qn by the following integer part

Qn :=

[
(x
•
− a)n + (y • a • x)n +Qn−1 − yn

2

]
.

Thus the recursive form of y = Ba(x) is well-defined for x ∈ I, because for
(y • a • x)n we only need yk-s with k < n, which can be shown similarly to the
2-series case.

This implies that also in the arithmetic case, the digit yn = (Ba(x))n can
be written in the form

yn = xn + fn(x0, · · · , xn−1) (mod 2)

where the functions fn : An → A (n = 1, 2, · · · ) depend only on the bits of a.



Chapter 4

Dyadic martingale structure
preserving transformations

This chapter is based on I. Simon[42], and with exception of Example 2 is
completely due to the author.

Numerous results were published in the last century about the effect of the
composition with a Blaschke function on the convergence of the power series
of regular functions in a boundary point of the complex disc D. First, Turán
[46] showed, that to any ζ ∈ C (0 < |ζ| < 1) there is a complex function
f1(z) =

∑∞
n=1 anz

n, regular in D = {z ∈ C : |z| < 1}, with convergent
power-series for z = 1, but the power series of f2(z) := f1(Bζ(z)) =

∑∞
n=1 bnz

n

diverges for the corresponding point z = B−1
ζ (1), where Bζ(z) denotes the

Blaschke function with parameter ζ ∈ C: Bζ(z) = z−ζ
1−ζz (z ∈ D). After results of

Clunie, Schwarz, Halász, Alpár and others, Indlekofer [13] constructed a function
f , which is continuous on D, its power-series converges for z = 1, but the power
series of f∗(z) := f(Bζ(z)) =

∑∞
n=1 bnz

n diverges for the corresponding point
z = B−1

ζ (1), and with the condition on the modulus of continuity ω(f, h) =

O

((
log h/2π

)−1
)

as h↘ 0+. He solved hereby the primal conjecture of Turán.

In this chapter is concerned the argument transformation given by the com-
position with a Blaschke function, and in general, a dyadic martingale struc-
ture preserving transformation or shortly a DMSP-transformation, and we deal
with questions related to the effect of a DMSP-tranformation on special func-
tion classes. We obtain, that composition with a DMSP-function preserves the
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classes of UDMD systems, that of An-measurable functions, the dyadic function
spaces Lp(I), Hp(I), and the Lipschitz classes Lip(α, I).

4.1 The effect of a DMSP-transformation

Definition 7 We call a function B : I → I a dyadic martingale structure
preserving function or shortly a DMSP-transformation if it is generated by
a system of bijections (ϑn, n ∈ N), ϑn : A → A, and an arbitrary system
(ηn, n ∈ N∗), ηn : An → A in the following way:

(B(x))0 := ϑ0(x0),

(B(x))n := ϑn(xn) + ηn(x0, x1, . . . , xn−1) ( mod 2) (n ∈ N∗).

The notion of the DMSP-transformation refers mostly to the function, but at
times to the composition with the given DMSP-transformation, which is obvious
from the context.

An immediate inductive argument implies the next propositions:

Proposition 3 For each generating systems (ϑn, n ∈ N) and (ηn, n ∈ N∗), the
generated DMSP-transformation B is a bijection on I and its inverse function,
B−1 is also a DMSP-transformation.

Proposition 4 Composition of DMSP-functions is also a DMSP-function.

The question, which function systems can be transformed by a DMSP-
transformation into a UDMD system, has a simple answer: exactly the UDMD
systems. The following lemma is needed to see this.

Lemma 7 [I. Simon[42]] a) Let B : I → I be a DMSP-transformation. Then,
for each n ∈ N we have

rn ◦B = rn · hn with some hn ∈ L(An), |hn| = 1. (4.1)

b) L(An) is invariant under any DMSP-transformation.

Proof: a) When ϑn(z) = z (z ∈ A), then (−1)ϑn(xn) = (−1)xn(−1)0 =
rn(x)(−1)ϑn(0). In the other case, when ϑn(z) = 1 − z (z ∈ A), then
(−1)ϑn(xn) = (−1)1−xn = (−1)1+xn = (−1)ϑn(0)rn(x).
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By the definition of y = B(x) we have

rn(B(x)) =(−1)yn = (−1)ϑn(xn)(−1)ηn(x0,··· ,xn−1) =

=rn(x)(−1)ϑn(0)(−1)ηn(x0,··· ,xn−1) = rn(x)hn(x).

Obviously, hn(x) := (−1)ϑn(0)(−1)ηn(x0,··· ,xn−1) ∈ L(An) and |hn| = 1.
b) The statement is a simple consequence of the definitions.

Theorem 1 [I. Simon[42]] Let B : I → I be a DMSP-transformation. The
function system (fn, n ∈ N) is a UDMD system on I, if and only if (fn◦B,n ∈ N)
is a UDMD system on I.

Proof: Let B be a DMSP-transformation. If (fn, n ∈ N) is a UDMD system,
then by (2.26) there are functions gn ∈ L(An) with |gn| = 1 so that fn(x) =
rn(x)gn(x) (x ∈ I). The previous lemma ensures the decomposition rn(B(x)) =
rn(x)hn(x) for some hn ∈ L(An), |hn| = 1. As gn ∈ L(An), follows by the
second statement of the previous lemma, that gn ◦ B ∈ L(An). Consequently,
hn (gn ◦B) ∈ L(An), |hn (gn ◦B) | = 1, and

fn(B(x)) = rn(B(x))gn(B(x)) = rn(x)hn(x)gn(B(x))︸ ︷︷ ︸
∈L(An)

(x ∈ I).

Thus (fn ◦B,n ∈ N) fulfills the requirements of a UDMD-system formulated in
(2.26).

Because the inverse of a DMSP-transformation is also a DMSP-
transformation, follows that if for any given system (fn, n ∈ N) the system
(gn := fn ◦ B,n ∈ N) is a UDMD-system, then the original one (fn =
gn ◦B−1, n ∈ N) is also a UDMD-system.

�

Similarly follows for different DMSP-transformations:

Theorem 2 Let (Bn : I → I, n ∈ N) be a system of DMSP-transformations.
The function system (fn, n ∈ N) is a UDMD system on I, if and only if (fn ◦
Bn, n ∈ N) is a UDMD system on I.

Remarks 1: i) As the Walsh-Paley functions wn(n ∈ N) and the functions
vn (n ∈ N) are UDMD-product systems on I, their DMSP-transformed results
a UDMD-product system. For a precise statement see Remark 3.
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ii) Gát[10, 11] constructed the Vilenkin-like systems, a generalization of the
UDMD-systems on the more general space Gm. Extending the definition of
the DMSP-transformations on the general space Gm, similar statement holds,
which is a consequence of Lemma 7, b) and Remark 3.

iii) Schipp[35, 38] defined a general concept of systems, the adapted condi-
tionally orthonormal systems or AC-ONS with respect to a regular sequence
of weights. Specially, an AC-ONS on I is transformed under a DMSP-
transformation into an AC-ONS, which is a consequence of Lemma 7 b) and
(4.8), a later identity on the conditional expectations.

iv) As UDMD-systems are taken into UDMD-systems by a DMSP-
transformation, follows by the so-called transformation method presented in
Paragraph 2.6 that convergence and (C, 1)-summation of UDMD-systems are
also preserved by this kind of transformation.

The question is in the following, whether function classes Lp(I) (0 < p ≤ ∞)
and Hp(I) (0 < p < ∞) are invariant under a DMSP-transformation. For the
answer it is essential that this kind of transformations are measure-preserving.

Lemma 8 [I. Simon[42]] Let B : I→ I be a DMSP-transformation and n ∈ N.
Then

B(In(x)) = In(B(x)) (x ∈ I). (4.2)

Proof: If t ∈ In(x), then t0 = x0, t1 = x1, . . . , tn−1 = xn−1. For k < n we have
ϑk(tk) + ηk(t0, t1, . . . , tk−1) = ϑk(xk) + ηk(x0, x1, . . . , xk−1), that is,
(B(t))k = (B(x))k (k < n). Thus B(t) ∈ In(B(x)) (t ∈ In(x)), so

B(In(x)) ⊆ In(B(x)) (x ∈ I). (4.3)

(4.3) holds specially for DMSP-function B−1 and x = B(y), too. Thus by
B−1(In(B(y))) ⊆ In(y) (y ∈ I) follows In(B(y)) ⊆ B(In(y)) (y ∈ I), which
completes the proof together with (4.3).

�

From (4.2) follows that µ(B(In(x))) = µ(In(B(x))) = 2−n = µ(In(x)), so
µ(B(E)) = µ(E) holds for each E ∈ An, thus

µ(B(E)) = µ(E) (E ∈ A). (4.4)
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Proposition 5 [I. Simon[42]] DMSP-transformations B : I → I are measure-
preserving. Hence, ∫

I
f ◦B dµ =

∫
I
fdµ (f ∈ L1(I)). (4.5)

Theorem 3 [I. Simon[42]] A DMSP-transformation preserves Lp(I)(0 < p ≤
∞) and the dyadic Hardy space Hp(I) (0 < p <∞). Moreover,

‖f ◦B‖p = ‖f‖p (0 < p ≤ ∞), (4.6)

‖f ◦B‖Hp = ‖f‖Hp (0 < p <∞). (4.7)

Proof: For 0 < p <∞ and f ∈ Lp(I), we have by (8.12) that ‖f ◦B‖p = ‖f‖p <
∞. Hence f ◦B ∈ Lp(I), too.

If f ∈ L∞(I), then for M := ‖f‖∞ ∈ R, we have |f(x)| ≤ M for a.e. x ∈ I,
and by (4.4) follows that

µ({x ∈ I : |(f ◦B)(x)| > M }) = µ({B(x) ∈ I : |f(B(x))| > M }) =

= µ({y ∈ I : |f(y)| > M }) = 0.

Hence f ◦B ∈ L∞(I) and ‖f ◦B‖∞ ≤ ‖f‖∞. As this holds specially for DMSP-
function B−1 instead of B and f ◦ B instead of f , follows equality (4.6) for
p =∞.

For f ∈ Hp(I) (0 < p < ∞) we have by definition that ‖E∗f‖p < ∞. By
(4.2) follows for characteristic functions, that 1In(x)(t) = 1In(B(x))(B(t)) (t ∈ I),
hence by (8.12)

En (f ◦B) (x) =
1

µ(In(x))

∫
In(x)

f(B(t))dµ(t) = 2n
∫
I
f(B(t)) · 1In(x)(t)dµ(t) =

= 2n
∫
I
f(B(t)) · 1In(B(x)) (B(t)) dµ(t) =

=
1

µ(In(B(x)))

∫
In(B(x))

f(t)dµ(t) = En (f) (B(x)).

(4.8)
Thus

E∗(f ◦B) := sup
n∈N
|En (f ◦B) | = sup

n∈N
| (Enf) ◦B| = (E∗f) ◦B.

This gives by (4.6) and by assumption, that

‖E∗(f ◦B)‖p = ‖ (E∗f) ◦B‖p = ‖E∗f‖p <∞.
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Thus f ◦B ∈ Hp(I) and ‖f ◦B‖Hp = ‖f‖Hp (0 < p <∞).

�

Remark 2. From (4.7) and (4.8) follows that

‖f ◦B‖BMO = sup
n∈N
‖
(
En|f − Enf |2

) 1
2 ◦B‖∞ = ‖f‖BMO.

Thus the space of dyadic bounded mean oscillation (BMO) and the space of
dyadic vanishing mean oscillation (VMO) are also preserved under a DMSP-
transformation. For more on these spaces see Schipp [16].

Recall, that for α > 0 the function class Lip(α,B) denotes the collection of
functions f : I→ R which satisfy

|f(y)− f(x)| ≤ c ρ(x, y)α (x, y ∈ B)

for some constant c ∈ R which depends only on f .

Theorem 4 [I. Simon[42]] A DMSP-transformation preserves Lip(α, I) (α >
0).

Proof: For x, y ∈ I, x 6= y consider m := min{n : xn 6= yn}. Now, ρ(x, y) = 2−m

and m is the largest number in N so that x ∈ Im(y). By (4.2) follows, that
B(x) ∈ Im (B(y)) and m is the largest integer with this property. Thus

ρ (B(x), B(y)) = 2−m = ρ (x, y) (x, y ∈ I).

For f ∈ Lip(α, I) follows

|f(B(y))− f(B(x))| ≤ c ρ (B(x), B(y))
α

= c ρ (x, y)
α

for some c ∈ R. That is, f ◦B ∈ Lip(α, I).

�

4.2 Examples of DMSP-functions

Some examples of DMSP-functions are presented on the 2-series (or logical)

field (B,
◦
+, ◦) and the 2-adic (or arithmetical) field (B,

•
+, •), as the translations,
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dilatations, the function resulting the multiplicative inverse, a generalization of
ζ and the Blaschke functions, as well.

1) The following functions are trivial DMSP-functions on (I,
◦
+, ◦) and

(I,
•
+, •). (The last one is not trivial, and it is based on (2.24).)

B(x) := x
◦
+ a, B(x) := x

•
+ a (x ∈ I)(a ∈ I),

B(x) := x ◦ a, B(x) := x • a (x ∈ I)(a ∈ S),

B(x) := x, B(x) := x−1 (x ∈ I).

2) If cn ∈ I satisfies π(cn) = n (n ∈ N∗), then the function

B(x) :=

∞∏
j=1

(e+ cj)
xj =

∞∏
j=1

(e+ xjcj)

can be obtained by a simple recursion, thus it is a DMSP-function from I1 to
S. See Schipp [17], pp 51-53. Its importance lies in the consequence, that the
multiplicative digits of a given byte y ∈ S with respect to a sequence (bn =
e+ cn, n ∈ N∗), π(cn) = n can be obtained from its additive digits.

A further consequence of these is, that the (S̃, •)-valued exponential function
is a DMSP-function, too.

3) Both the logical and arithmetical Blaschke functions with parameter a ∈
I1

Ba(x) = (x
◦
+ a) ◦ (e

◦
+ a ◦ x)−1 =

x
◦
+ a

e
◦
+ a ◦ x

(x ∈ I),

Ba(x) = (x
•
− a) • (e

•
− a • x)−1 =

x
•
− a

e
•
− a • x

(x ∈ I)

are also DMSP-functions, as they can be obtained by a simple recursion.

Remark 3. As the additive and multiplicative characters of I on both fields
can be obtained recursively, a DMSP-transformation of them result a UDMD-
product system. Furthermore, for n ∈ N∗ let j := max{k ∈ N : n ≥ 2k}.
Then,

wn ◦B = wn · gj with some gj ∈ L(Aj), |gj | = 1,

vn ◦B = vn · gj with some gj ∈ L(Aj), |gj | = 1.

The statements hold obviously for n = j = 0, too.
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Proof: We have n =
∑j
i=0 ni2

i and by (4.1) follows

wn(B(x)) =

j∏
i=0

rni
i (B(x)) =

j∏
i=0

rni
i (x)hni

i (x) = wn(x)gj(x) (n ∈ N∗),

where hi ∈ L(Ai) and |hi| = 1 (i ∈ {0, 1, . . . , j}), thus gj :=
∏j
i=0 h

ni
i ∈ L(Aj)

and |gj | = 1.
The statement for (vn, n ∈ N) follows analogously.



Chapter 5

The characters of the
Blaschke group

In this chapter we will see that the Blaschke group (B, ◦) of the field (I,
•
+, •) is

a topological group and we will construct its characters. After determining the
type of the recursion we will discuss summability and convergence questions.
This chapter is based on I. Simon[40].

5.1 The construction of the characters of the
Blaschke group

z To establish that the Blaschke group (B, ◦) of the field (I,
•
+, •) is a topological

group, recall first, that

B := {Ba, a ∈ I1}

and ◦ denotes the composition of functions.

Consider the map ‖.‖ : B → R,

‖Ba‖ := sup
x∈I
‖x
•
− Ba(x)‖ (Ba ∈ B). (5.1)

As inequality ‖e
•
− x2‖ ≤ 1 (x ∈ I) holds with equality for each x ∈ I1, and

41
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the equation ‖e
•
− a • x‖ = 1 is valid for any a ∈ I1, x ∈ I , we have

‖Ba‖ = sup
x∈I
‖x−Ba(x)‖ = sup

x∈I

∥∥∥∥∥a • e
•
− x2

e
•
− a • x

∥∥∥∥∥ = ‖a‖. (5.2)

Hence the map defined in (5.1) is a non-Archimedian norm: for a, b ∈ I1
from (3.25) and (3.26) results that:

‖Ba‖ = ‖a‖ ≥ 0,

‖Ba‖ = 0⇔ a = θ ⇔ Ba = ı, (the identity map),

‖B−1
a ‖ = ‖Ba−‖ = ‖a−‖ = ‖a‖ = ‖Ba‖,

‖Ba ◦Bb‖ = ‖Ba/b‖ =

∥∥∥∥∥ a
•
+ b

e
•
+ a • b

∥∥∥∥∥ = ‖a
•
+ b‖ ≤

≤ max{‖a‖, ‖b‖} = max{‖Ba‖, ‖Bb‖}.

As usual, set the map d : B2 → R

d(Ba, Bb) := ‖Ba ◦B−1
b ‖ (Ba, Bb ∈ B) (5.3)

i.e. the metric induced by the norm (5.1). Consequently (B, ◦) is a topological
group with the topology induced by the metric (5.3). By (5.2) follows that the
map a 7→ Ba is an isometry on I1.

z The idea of the construction

Being a subgroup of a topological group (see Paragraph 2.3), (I1,
•
+) is also

a topological group, and the topology is induced by the metric. With notation

x/y := x
•
+y

e
•
+x•y

(x, y ∈ I1) we find, that (I1, /) is a group. By the same argument

as before, (I1, /) is a topological group.

Recall, that the characters of the group (I1,
•
+) are given by the product

system (vm,m ∈ P) generated by the functions

v2n(x) := ε
(xn

2
+
xn−1

22
+ · · ·+ x1

2n

)
(x = (0, x1, x2 . . .) ∈ I1, n ∈ N)

presented in (3.8).
The map

B : (I1, /)→ (B, ◦), a 7→ Ba
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is a continuous isomorphism, hence in order to establish the characters of (B, ◦),
it is sufficient if we define the character group of (I1, /).

As we already know the characters of (I1,
•
+), it is sufficient to find a contin-

uous isomorphism from (I1,
•
+) onto (I1, /), that is a function γ satisfying the

equation

γ(x
•
+ y) =

γ(x)
•
+ γ(y)

e
•
+ γ(x) • γ(y)

(x, y ∈ I1). (5.4)

This equation is the analogue of the functional equation of the classical tan-
gent function, where the tangent function can be expressed by the exponential
function in the following way:

tan(x) =
exp(ix)− exp(−ix)

i(exp(ix) + exp(−ix))
=

exp(2ix)− 1

i(exp(2ix) + 1)
.(

x ∈ R \
{

(2k + 1)
π

2
, k ∈ Z

})
z The tangent-like function

Recall, that with notation S̃ := {x ∈ S : x1 = 0}, the (S̃, •)-valued exponen-
tial function ζ on I1 was presented in Paragraph 3.2.

Definition 8 Define tangent-like function on (I1,
•
+) by

γ(x) :=
ζ(x)

•
− e

ζ(x)
•
+ e

(x ∈ I1) (5.5)

and the tangent function on (I1,
•
+) by

tan(x) :=
ζ2(x)

•
− e

ζ2(x)
•
+ e

(x ∈ I1), (5.6)

where ζ2(x) := ζ(x) • ζ(x).

We collect in a lemma the properties that are needed for our subsequent
study.
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Lemma 9 [I. Simon[40]] For any a, b ∈ B, x ∈ I1 and y ∈ I1, the following
holds:

i) a
•
+ a = e1 • a

ii)
a
•
+ a

b
•
+ b

=
a

b

iii) ζ2(x) = ζ(e1 • x)

iv)
e
•
+ y

e
•
− y
∈ S̃.

Proof: i) Using the notations of the recursive definition of the addition
•
+, we

find that (a
•
+ a)n = 0 if and only if qn−1 = 0. But qn−1 = 0 is equivalent to

an−1 = 0, which holds exactly when (e1 • a)n = 0, because multiplication by e1

shifts a.

ii) By the commutativity and distributivity of the operations we have a•(b
•
+

b) = b • (a
•
+ a), thus the relation holds. The relation can be seen also by i):

a
•
+a

b
•
+b

= e1•a
e1•b = a

b .

iii) It is a simple consequence of i) and the functional equation of ζ. In an
other way, it follows directly by the definition of the base: bj •bj = bj+1 (j ≥ 1).
Using the commutativity and associativity of the product •, we get ζ2(x) =(∏∞

j=1 b
xj

j

)
•
(∏∞

j=1 b
xj

j

)
=
∏∞
j=1 b

xj

j+1 = ζ(e1 • x) (x ∈ I1).

iv) It can be easily established, that if y = (0, y1, y2 . . .) ∈ I1, than

e
•
+ y = (1, y1, y2, y3, . . .)

and e
•
− y = (1, y1, (y

−)2, (y
−)3, . . .).

(5.7)

Applying the notation

e
•
+ y

e
•
− y

= z,

we can state first, that π(z) = π(e
•
+ y) − π(e

•
− y) = 0, that is, z ∈ S, thus

z0 = 1. Furthermore,

e
•
+ y = z • (e

•
− y).
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Now, examining (the 0th and) the 1st digit of the right and the left side, we
find with z0 = 1 and by (5.7), that:{

(1 = z0 · 1)

y1 = z0 · y1 + z1 · 1 ( mod 2)

which means, that (z0 = 1 and) z1 = 0, and so z ∈ S̃ = {z ∈ I : z0 = 1, z1 = 0}.

�

Lemma 9 iii) shows, that the tangent-like function γ is closely related to
tan: namely γ(x) = tan(e−1 • x) (x ∈ I1).

Theorem 5 [I. Simon[40]] The function γ defined in (5.5) is a continuous

isomorphism from (I1,
•
+) onto (I1, /).

Proof: The continuity of γ follows from the continuity of ζ and of the field
operations.

Using Lemma 9 i) and the functional equation of ζ, we get:

γ(x) / γ(y) =
γ(x)

•
+ γ(y)

e
•
+ γ(x) • γ(y)

=

ζ(x)
•
−e

ζ(x)
•
+e

•
+ ζ(y)

•
−e

ζ(y)
•
+e

e
•
+ ζ(x)

•
−e

ζ(x)
•
+e
• ζ(y)

•
−e

ζ(y)
•
+e

=

=
ζ(x) • ζ(y)

•
+ ζ(x) • ζ(y)

•
− e

•
− e

ζ(x) • ζ(y)
•
+ ζ(x) • ζ(y)

•
+ e

•
+ e

=
ζ(x) • ζ(y)

•
− e

ζ(x) • ζ(y)
•
+ e

= γ(x
•
+ y).

We will show, that γ is a one-one map from (I1,
•
+) onto (I1, /). Equation

ζ(x)
•
− e

ζ(x)
•
+ e

=
ζ(y)

•
− e

ζ(y)
•
+ e

results

ζ(x)
•
+ ζ(x) = ζ(y)

•
+ ζ(y).

Taking in consideration, that f(a) := a
•
+ a = e1 • a is a 1-1 function on I, we

have ζ(x) = ζ(y), which gives by Lemma 6 that x = y.
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In order to see, that for any y ∈ I1 there is an x ∈ I1 with γ(x) = y, we have
to solve for x the equation

ζ(x)
•
− e

ζ(x)
•
+ e

= y,

that is,

ζ(x) =
e
•
+ y

e
•
− y

.

Now, by Lemma 9 iv) and Lemma 6 follows

x = ζ−1

(
e
•
+ y

e
•
− y

)
and ζ−1

(
e
•
+ y

e
•
− y

)
∈ I1,

and the proof is complete.

�

z Characters of the Blaschke group

Theorem 6 [I. Simon[40]] The characters of the group (I1, /) are the functions

vn ◦ γ−1 (n ∈ N).

Proof: As γ−1 is a continuous isomorphism from (I1, /) onto (I1,
•
+), and (vn, n ∈

N) forms the character group of (I1,
•
+), it follows that (vn ◦ γ−1, n ∈ P) are the

characters of the group (I1, /).

�

Corollary 1 [I. Simon[40]] The characters of the Blaschke group (B, ◦) are the
functions

vn ◦ γ−1 ◦B−1 (n ∈ N),

where (B, ◦) denotes the Blaschke group of the arithmetic field (I,
•
+, •), and

B : (I1, /)→ (B, ◦) represents the function a 7→ Ba.
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5.2 Recursion

z The aim of this Paragraph is to show that γ(x) can be obtained by a simple
recursion, and therefore (vn ◦ γ−1, n ∈ N) is a UDMD product system.

Proposition 6 [I. Simon[40]] The functions vn ◦ γ−1(n ∈ N), the characters
of (I1, /) form a UDMD product system.

Proof: Equation (3.12) shows, that the basic sequence of bytes (bn, n ∈ N)

defined in (3.10) can be written in the form bn = e
•
+ en+1

•
+ dn (n ≥

1) where π(dn) ≥ n+ 2 and the function ζ has the following representation:

ζ(x) =

∞∏
j=1

(e
•
+ ej+1

•
+ dj)

xj =

∞∏
j=1

(e
•
+ xjej+1

•
+ xjdj) (dj ∈ In+2).

Similar to the proof of Lemma 6, (where to a given y ∈ S̃ the recursion yields
x ∈ I1 such that ζ(x) = y, now conversely) an inductive argument leads to a
so-called simple recursion of ζ:

(ζ(x))0 = 1,

and (ζ(x))n = xn−1 + f(x1, . . . , xn−2) ( mod 2) (n ≥ 1)
(5.8)

with some function f : An−2 → A. With y = ζ(x), z := ζ(x)
•
− e = (ζ(x)

•
+

e−) = (1, 0, y2, y3, . . .)
•
+ (1, 1, 1, 1, . . .) = (0, 0, y2, y3, y4, . . .) can also be ex-

pressed as:

z0 = z1 = 0, and zn = xn−1 + f(x1, . . . , xn−2) (n ≥ 2).

Similarly, t := ζ(x)
•
+ e = (1, 0, y2, y3, . . .)

•
+ (1, 0, 0, 0, . . .) = (0, 1, y2, y3, y4, . . .)

can be expressed with a simple recursion formula:

t0 = 0, t1 = 1, and tn = xn−1 + f(x1, . . . , xn−2) (n ≥ 2)

with the same function f : An−2 → A.
Recursive form (2.24) allows us to give the multiplicative inverse element of

t ∈ S1 with a simple recursion:

(t−1)j = 0 (j < −1)

(t−1)−1 = 1,

(t−1)n = tn+1 + f ′(t1, . . . , tn) (n ≥ 0)
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with some function f ′ : An → A.

With z = ζ(x)
•
− e and t := ζ(x)

•
+ e we get by γ(x) = z • t−1 and by

z0 = z1 = 0 that

(γ(x))n = z2(t−1)n−2 + . . .+ zn+1(t−1)−1 + qn−1 ( mod 2).

Finally, we obtain by (t−1)−1 = 1 and the previous recursions for z and t−1,
that

(γ(x))n = xn + f̃(x1, . . . , xn−1) (n ≥ 0) (5.9)

for some function f̃ : An−1 → A, and we have our desired result.
By (5.9) the byte γ−1(x) can also be written by a simple recursion for any

x ∈ I1, thus v2n

(
γ−1(x)

)
= ε

(
xn

2

)
g(x1, . . . , xn−1) = (−1)xng(x1, . . . , xn−1),

with some g ∈ L(An), and |g(x1, . . . , xn−1)| = 1. In consequence of (2.26)
follows, that (v2n ◦γ−1, n ∈ N) satisfy the requirements of a UDMD system and
(vn ◦ γ−1, n ∈ P) is a UDMD product system.

�

As (vn ◦ γ−1, n ∈ N) is a UDMD product system, the discrete Fourier co-
efficients with respect to this system can be computed with the Fast Fourier
Algorithm. See Schipp-Wade[17], pp. 106-111 about the FFT Algorithms.

5.3 (C,1) summability and a.e.convergence of
the Gamma-Fourier series

By (5.9), the function γ is a bijection on In(x), (x ∈ I1, n ∈ N), γ(In(x)) =
In(γ(x)), thus for any dyadic interval E we have µ(t ∈ I1 : γ(t) ∈ E) =
µ(E), and this follows for any measurable set E as well. Therefore the variable
transformation γ is measure preserving. This follows also by the fact, that γ is
a DMSP-transformation presented in Chapter 4. Thus,∫

I1
f ◦ γ dµ =

∫
I1
f dµ. (5.10)

Definition 9 The Gamma-Fourier coefficients of an f ∈ L1(I1) with respect to
the system (vm ◦ γ−1,m ∈ N) are defined by

f̂γ(m) :=

∫
I1
f(x)vm(γ−1(x))dµ(x) (m ∈ N).
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Define the Gamma-Fourier series of an f ∈ L1(I1) and the n-th partial sums of
the Gamma-Fourier series Sγ by

Sγf :=

∞∑
k=0

f̂γ(k) · vk ◦ γ−1,

Sγnf :=

n−1∑
k=0

f̂γ(k) · vk ◦ γ−1 (n ∈ P)

Furthermore define the Gamma-Cesaro (or (G−C, 1)) means of Sγf by σ0f := 0
and

σγnf :=
1

n

n∑
k=1

Sγkf (n ∈ P).

The counterparts of the Carleson-Hunt theorem on the a.e. convergence of
Fourier series of an f ∈ Lp(R) (p > 1) and of the Lebesgue’s theorem about the
(C,1)-summability for f ∈ L1(R) hold for the Gamma-Fourier series of an f ∈
Lp(I1) (p > 1) and f ∈ L1(I1), respectively. The first one is a direct consequence
of the general result of Schipp [37](Theorem 4) on the a.e. convergence of Fourier
series with respect to any UDMD-product system of an f ∈ Lp(R) (p > 1). The
second one is a consequence of the general result of Gát[9](Theorem 15) for
Vilenkin-like systems, a generalization of UDMD-product systems, thus also of
(vn ◦ γ−1, n ∈ N). However, these can be obtained directly using results on
expansion with respect to the character system (vn, n ∈ N) and applying the
transformation method presented in Paragraph 2.6.

Theorem 7 On the field (I1,
•
+, •) we have

a) Sγnf → f a.e. as n→∞ for any f ∈ Lp(I1)(p > 1);

b) σγnf → f a.e. as n→∞ for any f ∈ L1(I1).

Proof: The first step is to apply the transformation method for measure pre-
serving function γ: Let Snf stand for the n-th partial sum of the Fourier series
of f , and σnf denotes the n-th Cesaro mean of Sf , both with respect to the
characters. Then,

Sγnf = [Sn(f ◦ γ)] ◦ γ−1, (5.11)

σγnf(x) = σn(f ◦ γ)(γ−1(x)). (5.12)
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a) We use the theorem of the a.e. convergence of the Fourier series on

the field (I,
•
+, •) due to Schipp [36]: lim

m→∞
(Smf)(x) = f(x) a.e. for any f ∈

Lp(I)(p > 1). Thus with (5.11) we get lim
n→∞

Sγnf(x) = lim
n→∞

Sn(f ◦γ)(γ−1(x)) =

(f ◦ γ ◦ γ−1)(x) = f(x) a.e. for any f ∈ Lp(I1) (p > 1), as required.
b) We use the theorem of the (C, 1)-summability of the Walsh-Fourier series

on the field (I,
•
+, •) due to Gát [7]: lim

m→∞
(σmf)(x) = f(x) a.e. for any f ∈ L1(I).

Thus with (5.12) we get lim
n→∞

σγnf(x) = lim
n→∞

σn(f ◦ γ)(γ−1(x)) = (f ◦ γ ◦
γ−1)(x) = f(x) a.e. for any f ∈ L1(I1), as required.

�

Remark 4. As vn ◦ γ is a UDMD-product system, the general theorems for
UDMD systems and Vilenkin-like systems imply also norm convergence of the
Fourier series with respect to this system:

lim
n→∞

‖Sγ2nf − f‖q = 0, (f ∈ Lq(I1), (1 ≤ q <∞) (5.13)

lim
m→∞

‖Sγmf − f‖q = 0, (f ∈ Lq(I1)), (1 < q <∞) (5.14)

lim
n→∞

‖σγnf − f‖q = 0, (f ∈ L1(I1). (5.15)

Moreover, (5.14) and (5.15) holds for q =∞ when f is continuous on I.



Chapter 6

Discrete Laguerre functions
on local fields

6.1 Introduction

In this chapter we will introduce the discrete Laguerre system on the dyadic (or
2-series) and 2-adic fields using the corresponding characters and the analogue
of the Blaschke functions. The complex variants of these systems play an im-
portant role in the system identification. The discrete Laguerre functions and
their generalizations (Malmquist-Takenaka, and Kautz systems) are often used
in control theory to identify the transfer function of the system. (For more de-
tails see [3].) Some analogous properties and summability questions of Fourier
expansion with respect to these systems are presented on these local fields.

Let us recall, that the discrete Laguerre functions L
(a)
n (n ∈ N) contain a

complex parameter a ∈ D := {z ∈ C : |z| < 1}, and can be expressed by the
Blaschke functions Ba(z) := eiγ z−a

1−āz (z ∈ C), (a ∈ D, γ ∈ R). On C, the

discrete Laguerre functions L
(a)
n associated to Ba are defined by

L
(a)
k (z) := ma(z)Bka(z), where ma(z) :=

√
1− |a|2
1− āz

(z ∈ C, k ∈ Z) (6.1)

for a ∈ D. The boundary of D is denoted by T := {z ∈ C : |z| = 1}.
If a belongs to D, then Ba is a bijection on D and on T, respectively. Thus
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Ba can be written in the form

Ba(eis) = eiβa(s)(s ∈ R, a ∈ D) (6.2)

with some bijection βa : [−π, π]→ [−π, π] mentioned in (3.17). (See [3].)

We can observe, that L
(0)
k (z) = zk (k ∈ Z) coincides with the trigonometric

system on T. Thus by (6.1) the discrete Laguerre system except the factor ma

can be obtained on T from the trigonometric system by an argument transfor-
mation T (z) = Ba(z) (z ∈ T).

The discrete Laguerre system is orthogonal with respect to the scalar product

〈F,G〉 =
1

2π

∫ π

−π
F (eit)G(eit) dt (F,G ∈ L1). (6.3)

This is a consequence of the orthogonality of the trigonometric system. Indeed,
by (6.2)

〈L(a)
n , L(a)

m 〉 =
1

2π

∫ π

−π
ei(n−m)βa(s)β′a(s) ds =

1

2π

∫ π

−π
ei(n−m)t dt = δnm,

(n,m ∈ N). Linear approximation algorithms proposed in the literature are
based on weighted partial sums of the trigonometric Fourier series of the transfer
functions. By applying an appropriate variable transform, the Laguerre and
Kautz basis can be related to the trigonometric one. (See [3].) This can be used
to transfer some summation results to Laguerre-Fourier series.

The name of the above presented discrete Laguerre functions comes from
the fact, that the Fourier coefficients of them give the discrete analogues of the
Laguerre functions.

This chapter is based on I. Simon [39], where the author constructed the
analogue of discrete Laguerre functions starting from the characters of the ad-
ditive group of the dyadic and 2-adic field, and using an argument transforma-
tion. Some convergence and summability properties of Fourier expansion with
respect to these systems are examined.

6.2 Discrete Laguerre functions on the dyadic
(or 2-series) field

The functions corresponding to the trigonometric system (eikt , k ∈ Z) (t ∈ R)

will be now the characters of the group (I,
◦
+), namely the Walsh-Paley functions

(wk, k ∈ N) presented in (3.4).
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Definition 10 Define the logical discrete Laguerre functions associated to Ba
with parameter a ∈ I1 by

L
(a)
k (x) := wk(Ba(x)) (k ∈ N, x ∈ I). (6.4)

For a ∈ I1 consider the functions rn ◦ Ba (x ∈ I, n ∈ N). (Here ◦ stands

for function-composition.) The logical discrete Laguerre system (L
(a)
k , k ∈ N) is

the product system generated by (rn ◦Ba, n ∈ N):

L
(a)
k (x) =

∞∏
n=0

[rn(Ba(x))]
kn .

Theorem 8 [I. Simon[39]] For each a ∈ I1 the functions (rn ◦Ba, n ∈ N) form
a UDMD-system on I.

Proof: We use recursion form (3.22) of y = Ba(x) to get

rn(Ba(x)) = (−1)yn = (−1)xn(−1)an+fn(x0,··· ,xn−1) = rn(x)gn(x)

with some function gn(x) = (−1)an+fn(x0,··· ,xn−1), that is constant on intervals
of rank bigger than n. Thus gn ∈ L(An). Clearly, |gn| = 1. Hence (rn ◦Ba, n ∈
N) is a UDMD sequence on I.

�

Corollary 2 [I. Simon[39]] The logical discrete Laguerre-system (L
(a)
k , k ∈ N)

is a UDMD-product system generated by (rn ◦ Ba, n ∈ N), consequently it is
complete and orthonormal.

6.3 Discrete Laguerre functions on the 2-adic
field

As before, the functions corresponding to the orthonormed system (eikt, k ∈
Z, t ∈ R) will be the characters of the group (I,

•
+), namely the functions (vk, k ∈

N) presented in (3.8).

Definition 11 Let us define the arithmetical discrete Laguerre functions as-
sociated to Ba in the following way:

L
(a)
k (x) := vk(Ba(x)) (k ∈ N, x ∈ I). (6.5)
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For a ∈ I1 and n ∈ N consider the functions v2n ◦Ba on I. The arithmetical
discrete Laguerre system (L

(a)
k , k ∈ N) is the product system generated by (v2n ◦

Ba, n ∈ N):

L
(a)
k (x) =

+∞∏
j=0

[v2j (Ba(x))]
kj (x ∈ I).

Theorem 9 [I. Simon[39]] For each a ∈ I1 and n ∈ N the functions v2n ◦ Ba
form a UDMD-system on I.

Proof: For Ba(x) = y we have y = x
•
− a

•
+ a • x • y, thus

v2n(Ba(x)) = v2n(x
•
− a

•
+ y • a • x) =

v2n(x)v2n(y • a • x)

v2n(a)
=

= ε
(xn

2

) ε (xn−1

22 + · · ·+ x0

2n+1

)
v2n(y • a • x)

v2n(a)
=

= rn(x)gn(x),

where gn(x) depends only on x0, . . . , xn−1. This follows by the recursive com-
putation of (y •a•x)1, (y •a•x)1, . . . , (y •a•x)n, because v2n(y •a•x) depends
only on xk-s with k < n. Hence gn ∈ L(An). Furthermore, it is clear, that
|v2n(Ba(x))| = 1 (x ∈ I). Thus these functions form a UDMD-system.

�

Corollary 3 [I. Simon[39]] The discrete Laguerre-system (L
(a)
m ,m ∈ N) is a

UDMD-product system generated by (v2n◦Ba, n ∈ N), consequently it is complete
and orthonormal.

6.4 (C,1)-summability and a.e. convergence of
Laguerre-Fourier series

Let now Ba and L
(a)
n denote the respective Blaschke-functions and discrete

Laguerre functions on the studied fields (I,
•
+, •) and (I,

◦
+, ◦) (a ∈ I1). The

variable transformation T : I → I, T (x) := Ba(x) is measure preserving, as it
is a bijection on intervals: T (In(x)) = In(T (x)) (x ∈ I, n ∈ N). Thus for any
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dyadic interval E we have µ(t ∈ I : T (t) ∈ E) = µ(E), and this follows for any
measurable set E, as well. Hence,∫

I
f ◦Ba dµ =

∫
I
fdµ. (6.6)

Definition 12 Let us define the Laguerre-Fourier coefficients of an f ∈ L1(I)
by

f̂ (a)(n) :=

∫
I
f(x)L(a)

n (x)dµ(x) (n ∈ N).

Furthermore the Laguerre-Fourier series S(a)f of an f ∈ L1(I) and the n-th

partial sum S
(a)
n f of the Laguerre-Fourier series S(a) is defined by

S(a)f :=

∞∑
k=0

f̂ (a)(k)L
(a)
k ,

S(a)
n f :=

n−1∑
k=0

f̂ (a)(k)L
(a)
k (n ∈ P).

Let us define the Laguerre-Cesaro (or (L−C, 1)) means of S(a)f by σ
(a)
0 f := 0

and

σ(a)
n f :=

1

n

n∑
k=1

S
(a)
k f (n ∈ P).

The counterparts of the Carleson-Hunt theorem on the a.e. convergence of
Fourier series of an f ∈ Lp(R) (p > 1) and of the Lebesgue’s theorem about the
(C,1)-summability for f ∈ L1(R) hold for the Laguerre-Fourier series of an f ∈
Lp(I) (p > 1) and f ∈ L1(I), respectively. The first one is a direct consequence of
the general result of Schipp [37](Theorem 4) on the a.e. convergence of Fourier
series with respect to any UDMD-product system of an f ∈ Lp(R) (p > 1).
The second one is a consequence of the general result of Gát[9](Theorem 15)
for Vilenkin-like systems, a generalization of UDMD-product systems, thus also

of (L
(a)
n , n ∈ N). However, these can be obtained using previous special results

on expansion with respect to character systems (wn, n ∈ N) and (vn, n ∈ N),
respectively, and using the transformation method presented in Paragraph 2.6.

Theorem 10 On both fields (I,
◦
+, ◦) and (I,

•
+, •) we have

a) S(a)
n f → f a.e. as n→∞ for any f ∈ Lp(I), p > 1;

b) σ(a)
n f → f a.e. as n→∞ for any f ∈ L1(I).
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Proof: The first step is to apply the transformation method for measure pre-
serving function Ba: let Snf stand for the n-th partial sum of the Fourier series
of f , and σnf denotes the n-th Cesaro mean of Sf , both with respect to the
characters. Then,

S(a)
n f =

[
Sn(f ◦B−1

a )
]
◦Ba, (6.7)

σ(a)
n f =

[
σn(f ◦B−1

a )
]
◦Ba. (6.8)

Let us now consider the field (I,
◦
+, ◦).

a) We use the theorem of the a.e. convergence of the Walsh-Fourier series due
to Schipp [36]: lim

m→∞
(Smf)(x) = f(x) a.e. for any f ∈ Lp(I)(p > 1). Thus with

(6.7) we have lim
n→∞

S
(a)
n f(x) = lim

n→∞
Sn(f ◦Ba)(B−1

a (x)) = (f ◦Ba ◦B−1
a )(x) =

f(x) a.e. for any f ∈ Lp(I1) (p > 1), as required.
b) Now, we use the theorem of the (C, 1)-summability of the Walsh-Fourier

series on the field (I,
◦
+, ◦) due to Fine and Schipp [15]: limm→∞(σmf)(x) = f(x)

a.e. for any f ∈ L1. Thus with (6.8) we have limn→∞ σ
(a)
n f(x) = limn→∞ σn(f ◦

B−1
a )(Ba(x)) = (f ◦B−1

a ◦Ba)(x) = f(x) a.e. for any f ∈ L1(I), and this proves
the theorem.

We can get the same result on the field (I,
•
+, •) using the corresponding

theorem of Gát [7].

�

Remark 5. As discrete Laguerre systems (L
(a)
n , n ∈ N) are UDMD-product

systems, also the norm convergence of the Fourier series with respect to them
is valid:

lim
n→∞

‖S(a)
2n f − f‖q = 0, (f ∈ Lq(I), (1 ≤ q <∞) (6.9)

lim
m→∞

‖S(a)
m f − f‖q = 0, (f ∈  Lq(I)), (1 < q <∞) (6.10)

lim
n→∞

‖σ(a)
n f − f‖q = 0, (f ∈ L1(I)). (6.11)

Moreover, (6.10) and (6.11) holds for q =∞ when f is continuous on I.



Chapter 7

Malmquist-Takenaka
functions on local fields

The complex variants of the Malmquist-Takenaka systems play an important
role in system identification. In this chapter are presented the analogue of these
functions on two local fields using the generator system of the corresponding
characters and the Blaschke-functions. Properties of these systems, Fourier
expansion and summability questions are presented. This chapter is based on
I. Simon [41].

7.1 Introduction

The Malmquist-Takenaka functions Ψ
(p)
n on C are defined by

Ψp
0(z) =

√
1− |a0|2
1− ā0z

, Ψ(p)
n (z) :=

√
1− |an|2
1− ānz

n−1∏
j=0

Baj (z), (z ∈ C, k ∈ Z)

for (aj ∈ D, j ∈ N) and p = (a0, a1, a2, . . . ).
The Malmquist-Takenaka system is orthogonal with respect to the scalar

product (6.3). Note, that using the same parameters aj = a (j ∈ N), the

functions Ψ
(p)
n give the discrete Laguerre system (L

(a)
n , n ∈ N). (For more details

on these systems see [3].)
We will construct the analogue of the Malmquist-Takenaka functions starting

from the generator systems of the characters of the dyadic and 2-adic additive
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groups, and using an argument transformation. This will be a UDMD product
system, thus also a complete orthonormal system, which equals the discrete
Laguerre system for identical parameters an = a (n ∈ N).

7.2 Malmquist-Takenaka systems on the dyadic
and arithmetic field

z The logical Malmquist-Takenaka functions

Definition 13 To any given system of bytes (ai ∈ I1, i ∈ N) define the logical

Malmquist-Takenaka functions (ψ
(p)
k , k ∈ N) with parameters p = (a0, a1, . . .)

on the 2-series field (I,
◦
+, ◦) as the product system generated by

(ϕn,an := rn ◦Ban , n ∈ N). (7.1)

That is, ψ
(p)
k (x) =

∞∏
n=0

[rn(Ban(x))]
kn (x ∈ I).

Remark 6. In the recursion form yn = xn+fmn (x0, . . . , xn−1) of y = Bam(x)
presented in (3.22) the functions fmn : An → A depend on the parameter am ∈
I1. As we need here different bytes am in our construction, we use upper indices
to indicate the applied byte. Now, from all these functions

belonging to a1 : f1
1 f1

2 . . . f1
n . . .

belonging to a2 : f2
1 f2

2 . . . f2
n . . .

...
...

. . .
...

belonging to am : fm1 fm2 . . . fmn . . .
...

...
...

. . .

we will use only the elements from the diagonal, the fnn -s, like in the Cantor’s
diagonal argument.

Theorem 11 [I. Simon[41]] For every parameter-sequence (ai ∈ I1, i ∈ N) the
functions (ϕn,an , n ∈ N) defined in (7.1) form a UDMD system on I.

Proof: Using the recursion form of y = Ban(x) we get

ϕn,an(x) = (−1)yn = (−1)xn(−1)(an)n+fn
n (x0,··· ,xn−1) = rn(x)gn(x)
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where gn(x) = (−1)(an)n+fn
n (x0,··· ,xn−1) is An-measurable: gn ∈ L(An). Clearly,

|gn(x)| = 1 (x ∈ I), and the proof is complete.

�

Corollary 4 [I. Simon[41]] The logical Malmquist-Takenaka system (ψ
(p)
k , k ∈

N) is a UDMD product system, consequently it is a complete orthonormal system

on (I,
◦
+, ◦).

z The arithmetical Malmquist-Takenaka functions

We consider the functions (v2n(x), n ∈ N) known as a generator system of

the characters of the group (I,
•
+) mentioned in (3.8).

Definition 14 Let us define the arithmetical Malmquist-Takenaka functions(
Ψ

(p)
k , k ∈ N

)
with parameters p = (a0, a1, . . .) (an ∈ I1, n ∈ N) on the 2-

adic field (I,
•
+, •) in the following way: the system

(
Ψ

(p)
k , k ∈ N

)
is the product

system generated by
(Φn,an := v2n ◦Ban , n ∈ N) . (7.2)

That is, Ψ
(p)
n (x) =

∞∏
j=0

[
v2j (Baj (x))

]nj
(x ∈ (I,

•
+, •)).

Theorem 12 [I. Simon[41]] For any (an ∈ I1, n ∈ N) the functions
(Φn,an , n ∈ N) defined by (7.2) form a UDMD system on I.

Proof: For Ban(x) = y we have y = x
•
− an

•
+ an • x • y, thus similarly to the

proof of Theorem 9 in Paragraph 6.3, we have

v2n(Ban(x)) = v2n(x
•
− an

•
+ y • an • x) =

v2n(x)v2n(y • an • x)

v2n(an)
=

= ε
(xn

2

) ε (xn−1

22 + · · ·+ x0

2n+1

)
v2n(y • an • x)

v2n(an)
=

= rn(x)gn(x),

where gn(x) depends only on x0, . . . , xn−1 and on the parameters. Hence gn ∈
L(An). Clearly, |Φn,a(x)| = 1 (x ∈ I), and the proof is complete.
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�

Corollary 5 [I. Simon[41]] The arithmetical Malmquist-Takenaka functions

(Ψ
(p)
k , k ∈ N) form a UDMD-product system, consequently it is a complete or-

thonormal system on (I,
•
+, •).

z In the following we consider the corresponding Malmquist-Takenaka-

systems on fields (I,
•
+, •) and (I,

◦
+, ◦).

We will see in the next proposition, that the Malmquist-Takenaka system is
a generalization of the discrete Laguerre system on both fields.

Proposition 7 Particularly, using the same parameters an = a ∈ I1 (n ∈ N)

the Malmquist-Takenaka functions Ψ
(p)
n (x) equal the discrete Laguerre functions

L
(a)
n (x) on fields (I,

•
+, •) and (I,

◦
+, ◦).

Clearly, with the special parameters an = θ (n ∈ N), this system is not
else, than the character system of the corresponding field. That is, Malmquist-
Takenaka systems are a generalization of the character system of the corre-
sponding additive group, as well.

7.3 Summability and convergence questions

Definition 15 Let an ∈ I1(n ∈ N) form a parameter sequence p = (a0, a1, . . .).

The Malmquist-Takenaka-Fourier coefficients f̂ (p) of an f ∈ L1(I) with param-

eter sequence p, the n-th partial sum S
(p)
n f of the Malmquist-Takenaka-Fourier

series S(p)f , and the Malmquist-Takenaka-Cesaro (or MT − (C, 1)) means of
S(p)f are defined by

f̂ (p)(n) :=

∫
I
f(x)Ψ(p)

n (x)dµ(x) (n ∈ N),

S(p)
n f :=

n−1∑
k=0

f̂ (p)(k)Ψ
(p)
k (n ∈ P),

σ
(p)
0 f := 0 and σ(p)

n f :=
1

n

n∑
k=1

S
(p)
k f (n ∈ P).
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The transformation method doesn’t hold here because of the different pa-
rameters ak of the transformation functions, but properties of UDMD product

systems are valid for the Malmquist-Takenaka systems (Ψ
(p)
k , k ∈ N) on the cor-

responding fields, thus applying general theorems on convergence and summa-
bility of Schipp [37](Theorem 4) and of Gát[9](Theorem 15), the following holds:
Remark: We have

lim
n→∞

‖S(p)
2n f − f‖q = 0, (f ∈ Lq(I), 1 ≤ q <∞), (7.3)

lim
m→∞

‖S(p)
m f − f‖q = 0, (f ∈ Lq(I), 1 < q <∞), (7.4)

lim
n→∞

‖σ(p)
n f − f‖q = 0, (f ∈ L1(I)), (7.5)

S
(p)
2n f → f a.e. (f ∈ L1(I)), (7.6)

S(p)
m f → f a.e. (f ∈ Lq(I), q > 1), (7.7)

σ(p)
n f → f a.e. (f ∈ L1(I)). (7.8)

Moreover, (7.4) and (7.5) holds for q = ∞ when f is continuous on I. (7.6)
holds a.e. and also at every point of continuity of f .



62 CHAPTER 7. MALMQUIST-TAKENAKA FUNCTIONS ON LOCAL FIELDS



Chapter 8

Construction of 2-adic
Chebyshev polynomials

This chapter is based on I. Simon [43].

8.1 Introduction

This Chapter is based on [43]. Chebyshev polynomials play an important role
for example in approximation theory (the resulting interpolation polynomial
provides an approximation that is close to the polynomial of best approxima-
tion to a continuous function under the maximum norm) and other fields of
applications. In classical analysis the Chebyshev polynomials of the first and
second kind can be expressed through the identities

Tn(x) = cos(n arccosx) (x ∈ [−1, 1], n ≥ 0);

Un(x) =
sin [(n+ 1) arccosx]

sin(arccosx)
(x ∈ [−1, 1], n ≥ 0),

where the cosine and sine functions can be given by means of the exponential

function: cosx = eix+e−ix

2 and sinx = eix−e−ix

2i . Each of the Chebyshev poly-
nomials of the first and second kind form an orthogonal system with respect to
the weight function (1− x2)−1/2 and (1− x2)1/2, respectively.

In this chapter we will construct some analogies of the Chebyshev polynomi-

als on the 2-adic field (I,
•
+, •) using several kinds of 2-adic cosine and sine func-

63
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tions. We present two opportunities to construct 2-adic trigonometric functions
expressed by the additive characters (vn, n ∈ N) or by the S̃-valued exponential
functions, which is in connection with the multiplicative characters. In this way
we will obtain first two dyadic martingale structure preserving transformations
of (vn, n ∈ N), which will yield a UDMD-product system, thus complete and
orthonormal. Then follows two further types of Chebyshev polynomials, which
will also fulfil orhogonality.

Throughout this chapter for x ∈ I let

n · x := x
•
+ x

•
+ . . .

•
+ x︸ ︷︷ ︸

n times

if n ∈ N∗, and let 0 · x := θ. (8.1)

Note, that 2 · x = x
•
+ x = e1 • x (x ∈ I) and 2n · x = en • x (x ∈ I, n ∈ N).

The notion of DMSP-functions and some properties of compositions with
them were presented in Chapter 4. Here we will refer to some restrictions of
DMSP-functions on dyadic intervals also as DMSP-functions, as they fulfill the
same properties.

The S̃-valued exponential function on I: A 2-adic exponential function
is presented in Schipp [17], pp 59-60. We will use now a similar one determined

by a slightly different base, starting from b1 = e
•
+ e2 instead of e

•
+ e1. Recall

first the base defined in 3.10: b1 := e
•
+ e2, bn := bn−1 • bn−1 (n ≥ 2).

The structure of these bytes will be essential, and we will need the first 6
digits of the first four exactly, which can be calculated simply:

b2 = e
•
+ e3

•
+ e4 = e

•
+ e3

•
+ d3, π(d3) ≥ 4,

b3 = e
•
+ e4

•
+ e5

•
+ e6

•
+ e9 = e

•
+ e4

•
+ d4, π(d4) ≥ 5,

b4 = e
•
+ e5

•
+ e6

•
+ e7

•
+ e8

•
+ . . . = e

•
+ e5

•
+ d5, π(d5) ≥ 6,

(8.2)

where d3 := e4, d4 := e5

•
+ e6

•
+ e9 d5 := e6

•
+ . . .

Recall, that in general,

bn = e
•
+ en+1

•
+ dn+1 (n ≥ 1) with π(dn+1) ≥ n+ 2. (8.3)

Definition 16 Consider S̃ := {x ∈ S : x1 = 1} = I2(e
•
+ e1). Define the
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S̃-valued exponential function on I by:

ζ(x) :=

∞∏
j=1

b
xj−1

j (x = (xj , j ∈ N) ∈ I).

With the notations of (8.1), the function ζ has the following representation:

ζ(x) =

∞∏
j=1

(e
•
+ ej+1

•
+ dj+1)xj−1 =

∞∏
j=1

[
e
•
+ xj−1(ej+1

•
+ dj+1)

]
. (8.4)

This function is similar to those defined in Schipp[17], thus with similar
arguments we have that ζ is a continuous function satisfying the functional-
equation

ζ(x
•
+ y) = ζ(x) • ζ(y) (x, y ∈ I). (8.5)

For more on ζ see Schipp [17], pp 59-60.

8.2 2-adic sine and cosine functions

In this section we present two ways of constructions of 2-adic trigonometric
functions. The first one is expressed by the S̃-valued exponential functions,
which is in connection with the 2-adic multiplicative characters. See [17], pp.72-
73. An other way of the construction is expressed by the additive characters
and is a complex-valued function.

Definition 17 Define the 2-adic cosine and sine function on I as follows:

cosx := (ζ(x)
•
+ ζ(x−)) • e−1 (x ∈ I),

sinx := (ζ(x)
•
− ζ(x−)) • e−1 (x ∈ I).

Definition 18 To any n ∈ N define the 2-adic COSn and SINn functions
on I as follows:

COSn(x) :=
vn(x) + vn(x−)

2
(x ∈ I),

SINn(x) :=
vn(x)− vn(x−)

2i
(x ∈ I).
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Addition formulas for 2-adic sine and cosine functions are a result
of the functional equation (8.5) of the exponential function, and can be derived
as in the real case but with slightly different coefficients. We state first that by
x− = x • e− (x ∈ B) and by the distributivity of the 2-adic operations we have

(x
•
+ y)− = x−

•
+ y−. Furthermore, 2a := a

•
+ a = a•e1, thus a = (a

•
+ a)•e−1,

and e−1 • e−1 = e−2. Now,

cos(x
•
+ y) =

(
ζ(x

•
+ y)

•
+ ζ(x−

•
+ y−)

)
• e−1 =

=
(
ζ(x) • ζ(y)

•
+ ζ(x−) • ζ(y−)

)
• e−1 =

=
(

[ζ(x) • ζ(y)
•
+ ζ(x−) • ζ(y)]

•
+ [ζ(x−) • ζ(y−)

•
+ ζ(x) • ζ(y−)]

•
+

[ζ(x) • ζ(y)
•
− ζ(x) • ζ(y−)]

•
+ [ζ(x−) • ζ(y−)

•
− ζ(x−) • ζ(y)]

)
• e−2 =

= cosx • cos y
•
+ sin y • sinx.

Similarly, sin(x
•
+ y) = sinx•cos y

•
+ cosx• sin y (x, y ∈ I). Clearly, cosine is

even and sine is odd, that is, cos(x−) = cos(x), and sin(x−) =
•
− sin(x) (x ∈ I).

Thus also holds cos(x
•
− y) = cosx • cos y

•
− sinx • sin y, and so, by addition

turns out, that

cos(x
•
+ y)

•
+ cos(x

•
− y) = cosx • cos y • e1.

This means, that the 2-adic cosine and sine functions satisfy the so-
called d’Alembert equation and sine-cosine functional equation investigated in
Sahoo[14] and in Staetker[44].

Evidently, we have

cos 2x = cos2 x
•
+ sin2 x, sin 2x = sinx • cosx • e1

e = cos(θ) = cos2 x
•
− sin2 x,

cosu
•
+ cos v = cos

(
[u
•
+ v] • e−1

)
• cos

(
[u
•
− v] • e−1

)
• e1.

Clearly, COSn is even and SINn is odd, that is COSn(x−) = COSn(x), and
SINn(x−) = −SINn(x) (x ∈ I, n ∈ N). Addition formulas are in this case also
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a result of the functional equation vn(x
•
+ y) = vn(x)vn(y) of the characters:

COSn(x
•
+ y) = COSn(x)COSn(y)− SINn(x)SINn(y),

COSn(x
•
− y) = COSn(x)COSn(y) + SINn(x)SINn(y), thus

COSn(x
•
+ y) + COSn(x

•
− y) = COSn(x)COSn(y).

Ths COSn and SINn satisfy the so-called d’Alembert equation and
sine-cosine functional equation investigated for example in Sahoo[14] and in
Staetker[44]. We have furthermore: COS2

n(x) + SIN2
n(x) = 1 (x ∈ I, n ∈ N).

As the inverse function of cos is needed in the chosen construction of Cheby-
shev polynomials, we determine now a set S̃, on which cos is bijective. It is
not injective on the original domain I, thus we consider its restriction on S̃ and
on its multiplicative shifts S̃l, and we determine the ranges also: S† and S†l,al ,
respectively.

Notation 1 Consider the following sets of bytes

S̃ := I2(e
•
+ e1) = e

•
+ e1

•
+ I2 = {x ∈ S : x1 = 1},

S\ := I3(e) = e
•
+ I3 = {e

•
+ t : t ∈ I3} = {x ∈ I : x0 = 1, x1 = x2 = 0 },

S† := I6(e
•
+ e3

•
+ e5) = {x ∈ I : x0 = x3 = x5 = 1, x1 = x2 = x4 = 0 } ⊂ S\,

S̃l := Il+2(el
•
+ el+1), Sl = el

•
+ Il+1 = Il+1(e1) (l ∈ N),

S†l,al := al
•
+ I2l+6 ⊂ S\ with some al ∈ S (l ∈ N).

Theorem 13 [I. Simon[43]] a) The function cos takes S to S†. Specially, cos :
S̃ ⊂ S→ S† is a bijection.
b) The function cos takes I to S\.

Proof: a) If x ∈ S, then x0 = (x−)0 = 1 and (x−)j = 1− xj (j ≥ 1). Thus with
the notations of (8.3) and representation (8.4) we have:

cos(x) = bx0
1 •

 ∞∏
j=2

b
xj−1

j

•
+

∞∏
j=2

b
1−xj−1

j

 • e−1 =

= b1 • e−1 •

 ∞∏
j=2

[
e
•
+ xj−1(ej+1

•
+ dj+1)

] •
+

∞∏
j=2

[
e
•
+ (1− xj−1)(ej+1

•
+ dj+1)

] .
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Now, set z := (b1)−1 • e1 • cos(x), which is the expression in the huge round
brackets. Let us investigate the first digits of z: each of the products belongs

to S, thus the first terms are e
•
+ e = e1, and the next possibly nonzero digit is

z3. So, we compute the digits from the 3rd to the 8th using the structure (8.2)
of the base and establishing also the rests qi determined by the 2-adic sum:

z3 + 2q3 = x1 + (1− x1) = 1 ⇒ z3 = 1, q3 = 0

z4 + 2q4 = x2 + (1− x2) + (d3)4︸ ︷︷ ︸
=1

(x1 + (1− x1)) + q3 = 2 ⇒ z4 = 0, q4 = 1

z5 + 2q5 = x3 + (1− x3) + (d3)5︸ ︷︷ ︸
=0

(x1 + (1− x1)) + (d4)5︸ ︷︷ ︸
=1

(x2 + (1− x2)) + q4︸︷︷︸
=1

= 3 ⇒ z5 = q5 = 1

z6 + 2q6 = x4 + (1− x4) + (d3)6︸ ︷︷ ︸
=0

+ (d4)6︸ ︷︷ ︸
=1

+ (d5)6︸ ︷︷ ︸
=1

+ q5︸︷︷︸
=1

= 4 ⇒ z6 = 0, q6 = 2

z7 + 2q7 = x5 + (1− x5)︸ ︷︷ ︸
always=1

+ [x1x2 + (1− x1)(1− x2)]︸ ︷︷ ︸
depends on x1,x2

(e3 • e4)7︸ ︷︷ ︸
=1

+(d3)7 + (d4)7

+ (d5)7 + (d6)7 + q6

z8 = 1 + [x1x3 + (1− x1)(1− x3)]︸ ︷︷ ︸
depends on x1,x3

+ϕ(x1, x2) (mod 2)

...

zk = 1 + [x1xk−5 + (1− x1)(1− xk−5)]︸ ︷︷ ︸
depends on x1,xk−5

+ϕ(x1, x2, . . . , xk−6) (mod 2) (k ≥ 7).

(8.6)
This computation resulted, that the 1st, 3rd and 5th digits of z were equal

to 1, and the others were 0 until the 6th digit. Thus

cos(x) = b1 • e−1 •
(
e1

•
+ e3

•
+ e5

•
+ d̃6

)
= e

•
+ e3

•
+ e5

•
+ d′5

with some d̃6 ∈ I7, d′5 ∈ I6. Thus y = cosx ∈ S† and cos : S→ S†.
Computation (8.6) also implies, that z7 can take either 0 or 1 depending on

x1 and x2, and so do the following digits, too, but depending on further digits
of x. Thus setting condition x1 = 1, which is the case for x ∈ S̃, the 7th digit of
z determines x2, the 8th one determines x3, the k-th digit of z determines xk−5,
and by an inductive argument follows the existence of a unique x ∈ S̃ with the
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required property. Thus to any given y ∈ S† there exists an x ∈ S̃ uniquely such
that cosx = y.

b) When x ∈ I \ S, then only base elements bi of higher indexes (i ≥ 2) will
occur in cosx, thus the nonzero coordinates except of the 0th are shifted to the
right, so cosx ∈ S and (cosx)1 = (cosx)2 = 0 holds in each case, thus the image
of cos on I is a subset of S\.

�

Remark: We have seen in Theorem 1 b) that cos : I → S\. More exactly,

the function cos takes Sl to S†l . Furthermore, cos : S̃l → S†l is a bijection.

Indeed, I =
⋃∞
l=0 Sl, and it turns out, that cos : Sl → S†l and cos : S̃l → S†l is

bijective. If x ∈ Sl, than

cos(x) = e−1 • bl+1 •

 ∞∏
j=l+2

b
xj−1

j

•
+

∞∏
j=l+2

b
1−xj−1

j

 =

= e−1 • bl+1 •

e1

•
+

2l+6∑
j=l+3

ej
•
+

2l+6∑
j=l+3

dj


︸ ︷︷ ︸

:=al

•
+

•
+ e−1 • bl+1 • [xl+1xl+2 + (1− xl+1)(1− xl+2)]e2l+7

•
+ . . . ,

thus cosx ∈ S†l,al = al
•
+ I2l+6. Furthermore, if xl+1 = 1 is given, than the

digits xj (j > l + 1) are determined uniquely by y, thus cos is bijective on

x ∈ S̃l = Il+2(el
•
+ el+1).

Notation 2 Let us denote the inverse of cos : S̃ → S† by arccos, which has
domain S†.

We will use the following lemma in the next section.

Lemma 10 [I. Simon[43]] f(t) := cos(e−4 • t) is a DMSP-function on S̃4 =

I6(e4

•
+ e5), and also on S4 \ S̃4 = I6(e4).

Proof: Computation (8.6) implies that for x ∈ S̃ we have recursion

zk = xk−5 + ϕ(x2, x3, . . . , xk−6) ( mod 2) (k ≥ 6)
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with an arbitrary ϕ : Ak−7 → A. As b1 ∈ S, z • b1 ∈ S has the same type of
recursion, furthermore follows for y = cosx = e−1 • b1 • z the recursion form

yk = xk−4 + ϕ(x2, x3, . . . , xk−5) ( mod 2) (k ≥ 5)

with some ϕ : Ak−6 → A. We have (x • e−4)k = xk+4 (k ∈ Z). Thus f(x) =

cos(e−4 • x) is a DMSP-function from S̃4 = I6(e4

•
+ e5) onto S†.

Computation (8.6) also implies that for x ∈ S \ S̃ we have recursion

zk = 1− xk−5 + ϕ(x2, x3, . . . , xk−6) ( mod 2) (k ≥ 6)

with an arbitrary ϕ : Ak−7 → A. Thus follows that f(x) = cos(e−4 • x) is also
a DMSP-function from S4 \ S̃4 = I6(e4) onto S†.

�

Remark: It turns out similarly, that sin : S→ I3(e+ e2) is a bijection, and
a simple recursion yields the digits of bytes y = sinx•e−2, thus x 7→ sin(x)•e−2

is a DMSP-function on S.

Theorem 14 [I. Simon[43]] The systems (
√

2COSn, n ∈ N), (
√

2SINn, n ∈ N)
are orthogonal and for n ∈ N∗ also orthonormal.

Proof: We will investigate first the Rademacher functions on reflections:

rn(x−) = (−1)(x−)n =

{
(−1)xn , for n 5 π(x)

(−1)1−xn , for n > π(x)
=

= rn(x)

{
1, if x ∈ In
− 1, if x ∈ I \ In

= rn(x)[−1 + 2χIn(x)] (x ∈ I).

(8.7)

Let n,m ∈ N.∫
I
COSn(x)COSm(x)dµ(x) =

1

4

∫
I
vn(x)vm(x)dµ(x) +

1

4

∫
I
vn(x)vm(x−)dµ(x)+

+
1

4

∫
I
vn(x−)vm(x)dµ(x) +

1

4

∫
I
vn(x−)vm(x−)dµ(x) =:

1

4
(I1 + I2 + I3 + I4).

Since x 7→ x− is measure-preserving, I4 is as simply as I1 = δn,m. For
n 6= m let i := min{j ∈ N : nj 6= mj}. Then by definitions v2i = rigi with



8.3. THE 2-ADIC CHEBYSHEV POLYNOMIALS 71

some gi ∈ L(Ai), and by (8.7) follows that the same holds for reflections, too:
v2i(x−) = ri(x)hi(x) (x ∈ I) with some hi ∈ L(Ai). Hence,

vn(x)vm(x−) =

∞∏
k=0

(v2k(x))
nk
(
v2k(x−)

)−mk = ri(x)gi(x)

where gi ∈ L(Ai). This implies as usual the statement: the properties of condi-
tional expectations (see [17],pp.89) imply

E0
(
vn(x)vm(x−)

)
= E0 (Ei(rigi)) = E0 (giEi(ri)) = 0 (n 6= m). (8.8)

Now, for I2 and I3 results 0 by (8.8). In case of n = m = 0, by µ(I) = 1 follows∫
I COS0(x)COS0(x) = 1. For n = m > 0 we have vn(x)vn(x−) = vn(x)vn(x) =

vn(2x) = vn−1(x) (n ≥ 1), thus
∫
I COSn(x)COSn(x) = 1

2 . The statement for
(SINn, n ∈ N) follows similarly.

�

8.3 The 2-adic Chebyshev polynomials

It seems at first sight to have exaggerated in the following definitions by using
k twice, but the first one ensures that the system will be a UDMD-product
system, and the second one belongs to the nature of Chebyshev polynomials.

Definition 19 Define the 2-adic Chebyshev polynomials of the first
kind as the product system of tk(x) := v2k+6 (cos[(2k + 1) arccos(x)]) (x ∈
S†, k ∈ N), that is,

Tn(x) :=

∞∏
k=0

[v2k+6 (cos[(2k + 1) arccos(x)])]
nk (x ∈ S†, n ∈ N). (8.9)

Definition 20 Define the 2-adic Chebyshev polynomials of the second
kind as the product system of uk(x) := v2k+3 (sin[(2k + 1) arccos(x)]) (x ∈
S†, k ∈ N), that is

Un(x) :=

∞∏
k=0

[v2k+3 (sin[(2k + 1) arccos(x)])]
nk (x ∈ S†, n ∈ N). (8.10)
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In order to see the orthogonality, we need first to examine the functions
x 7→ cos(n arccosx) and x 7→ sin(n arccosx) (x ∈ S†).

Lemma 11 [I. Simon[43]] The functions x 7→ cos ((2n+ 1) arccosx) (x ∈ S†)
and x 7→ e3 • sin((2n+ 1) arccosx) (x ∈ S†) are DMSP-functions on S† for any
n ∈ Z.

Proof: The first function in question is obtained by a composition of functions

f1(x) := e4 • arccos(x), f1 : S† → S̃4

f2(x) := (2n+ 1) · x = x
•
+ x

•
+ . . .

•
+ x︸ ︷︷ ︸

2n+1 times

, f2 : S̃4 → S4

f3(x) := cos(x • e−4), f3 : S4 → S†.

The distributivity implies that (2n + 1) · (e4 • x) = e4 • [(2n + 1) · x], thus
(f3 ◦ f2 ◦ f1)(x) = cos(n arccosx) (x ∈ S†).

We have already seen in Lemma 10, that f3(x) is a DMSP-function on S̃4

and on S4 \ S̃4, too. Thus proposition4.1 of DMSP-functions results that f1 is
also a DMSP-function on S†.

Let us examine f2. With the dyadic expansion n =
∑∞
i=0 ni2

i we have

n · x =
∑∞
i=0 ni(2

i · x) =
∑∞
i=0 ni(ei • x), where the sum is taken in sense

•
+.

Thus (n · x)k =
∑k
i=0 nixk−i (k ∈ N, x ∈ I), which contains xk if and only if

n0 = 1, that is, if n is odd. Thus f2(x) = (2n+ 1) ·x is a DMSP-function on S̃4.

�

Theorem 15 [I. Simon[43]] The 2-adic Chebyshev polynomials of the first and
second kind (Tn, n ∈ N) and (Un, n ∈ N) are complete and orthonormal systems.

Proof: As for each c ∈ I the system (v2k+6 , k ∈ N) is a UDMD-system on
I6(c), we have by Proposition 4.1 on DMSP-transformations that (tn, n ∈ N)
is a UDMD-system on S†, which results that (Tn, n ∈ N) is a UDMD-product
system on S†, thus complete and orthonormal. (See Schipp[17], pp. 92-94.) The
proof is similarly for the second kind Chebyshev polynomials.

�

Remarks: 1) Like for any UDMD-product systems, Fourier series of any
f ∈ Lp(I) (p > 1) with respect to systems (Tn, n ∈ N) and (Un, n ∈ N) converges
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a.e. to f , which is a consequence of Theorem 4 in Schipp [37]. Furthermore
(C,1)-summability of any f ∈ L1(I) with respect to these systems also holds,
which is a consequence of Theorem 15 in Gát[9] stated for Vilenkin-like systems,
a generalization of UDMD-product systems.

2) The constructions and statements for the Chebyshev polynomials are valid
if we use any proper UDMD-systems in place of v2k+6 and v2k+3 (k ∈ N).

3) The 2-adic Chebyshev polynomials of the first and second kind can be

defined also on I by establishing a proper shift operation: S : I → S† = I6(e
•
+

e3

•
+ e5), S(x) := x • e6

•
+ e

•
+ e3

•
+ e5. Now,

T̃n(x) :=

∞∏
k=0

[v2k+6 (cos[(2k + 1) arccos(S(x))])]
nk (x ∈ I, n ∈ N),

Ũn(x) :=

∞∏
k=0

[v2k+3 (sin[(2k + 1) arccos(S(x))])]
nk (x ∈ I, n ∈ N).

Notation 3 Consider shift operations:

S : I→ S†, S(x) := x • e6

•
+ e

•
+ e3

•
+ e5,

S′ : S̃→ I, S′(x) := [x
•
− e

•
− e1] • e−2.

Definition 21 Define the 2-adic Chebyshev polynomials of the third
and fourth kind by

Tn(x) := COSn[S′(arccos(S(x))] (x ∈ I, n ∈ N),

Un(x) := SINn[S′(arccos(S(x))] (x ∈ I, n ∈ N).
(8.11)

Theorem 16 [I. Simon[43]] The 2-adic Chebyshev polynomials of the third and
fourth kind (Tn, n ∈ N), (Un, n ∈ N) are orthogonal systems in L2(I).

Proof: The variable transformation B : x 7→ S′(arccos(S(x)) is a DMSP-
transformation on I, thus it is measure-preserving. Hence,∫

I
f ◦B dµ =

∫
I
fdµ (f ∈ L1(I)). (8.12)

Let n,m ∈ N∗. By (8.12) and by the orthogonality of the systems (COSn, n ∈
N), (SINn, n ∈ N) follows the statement:∫

I
Tn(x)Tm(x)dµ(x) =

∫
I
COSn(y)COSm(y)dµ(y) =

1

2
δn,m. �
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Theorem 17 [I. Simon[43]] The subsystems of 2-adic Chebyshev polynomials
of the third and fourth kind (T2n , n ∈ N), (U2n , n ∈ N) form UDMD systems on
I.

Proof: Recall, that rn(x−) = rn(x)[−1 + 2χIn(x)] (x ∈ I). By require-
ment (2.26) of UDMD systems we have for (v2n , n ∈ N), that there exist An-
measurable functions (gn, n ∈ N) on I, such that v2n = rngn. Thus,

COS2n(x) = rn(x)
gn(x) + gn(x−)[−1 + 2χIn(x)]

2
, (x ∈ I)

and the function hn(x) :=
gn(x)+gn(x−)[−1+2χIn (x)]

2 ∈ L(An), thus (COS2n , n ∈
N) fulfils the criteria (2.26) of UDMD systems. Similarly, (SIN2n , n ∈ N) is a
UDMD-system.

Since x 7→ S′(arccos[S(x)]) is a DMSP-transformation on I, Theorem 4.1
on DMSP-transformations implies that (T2n , n ∈ N), (U2n , n ∈ N) are UDMD-
systems.

�



Summary

The present work consists of four main topics related to the Blaschke functions
defined on two special locally compact totally disconnected non-Archimedian
normed fields: on the 2-adic (or arithmetic) field and on the 2-series (or logical,
dyadic) field. First, we investigate the effect of dyadic martingale structure pre-
serving transformations, or shortly DMSP-transformations on function classes
like the classes of UDMD-systems, that of An-measurable functions, the dyadic
function spaces Lp(I), Hp(I), and the Lipschitz classes Lip(α, I). Secondly, we
establish the character system of the Blaschke-group on the arithmetic field.
Then, we introduce the discrete Laguerre and the Malmquist-Takenaka systems
on these fields, that are constructed by the Blaschke functions and the charac-
ters of the corresponding field. Both of the last mentioned are UDMD-product
systems, thus complete and orthonormal, while in the second topic vn ◦ γ pos-
sesses these properties. At last, 2-adic Chebyshev polynomials are constructed
with several 2-adic trigonometric functions investigated in this work. All these
are connected to DMSP-transformations, as they share essentially the type of
the recursion.

Chapter 2 contains an introduction to the 2-series and 2-adic fields, espe-
cially concerning the algebraic and topological structure. This chapter follows
the concepts, notations and propositions of Schipp and Wade[17]. The set of
bytes is defined by: B := {a = (aj , j ∈ Z) | aj ∈ {0, 1} and limj→−∞ aj = 0}.
We present the 2-adic/arithmetical and 2-series/logical/dyadic operations, the

order and the norm of a byte. We recall, that (B,
◦
+, ◦) and (B,

•
+, •) are non-

Archimedian normed fields. We use furthermore the intervals In := {x ∈ B :
‖x‖ 5 2−n} for any n ∈ Z and the unit ball I := I0 = {a = (aj , j ∈ N)| aj ∈
{0, 1}} to construct dyadic martingale structure. We consider a normalized
Haar measure µ with property µ(I) = 1, and the concept of UDMD-systems is
summerized.
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In Paragraph 2.6 we consider a measure-preserving variable transformation
T : I → I, and we mention that the n-th partial sum STn f of the T-Fourier
series ST f and the T-Cesaro means σTn f of ST f with respect to φn ◦ T can
be expressed by the n-th partial sum Snf of the Fourier series and the Cesaro-
means σnf with respect to the characters {φn, n ∈ N} of the corresponding
additive group as follows:

STn f =
[
Sn(f ◦ T−1)

]
◦ T

σTn f =
[
σn(f ◦ T−1)

]
◦ T.

Based on the handbook of Schipp and Wade[17] in Chapter 3 we first sum-
marize the notions and results regarding the characters of the additive groups
of these local fields and the exponential functions, which are used in the next
chapters.

Paragraph 3.1 provides a description of the characters of the 2-series/dyadic
and 2-adic additive groups using the notion of the product system.

In Paragraph 3.2 we use the notations S := {x ∈ B | ‖x‖ = 1} and S̃ := {x ∈
S : x1 = 0}. The (S̃, •)-valued exponential function ζ on I1 is defined by the
following infinite product form:

ζ(x) :=

∞∏
j=1

b
xj

j (x = (xj , j ∈ Z) ∈ I1),

where b1 := e
•
+ e2, bn := bn−1 •bn−1 (n ≥ 2). Function ζ is a simple adaptation

of the (S, •)-valued exponential function presented in [17], as we have defined ζ
with a slightly different base. The function ζ satisfies the functional equation

ζ(x
•
+ y) = ζ(x) • ζ(y) (x, y ∈ I1), and it is a continuous isomorphism from I1

onto S̃.
Starting from Paragraph 3.3, this work contains the results of the author.

We define the Blaschke functions on the studied fields and we investigate some

properties of them. The logical Blaschke-functionsBa(x) = x
◦
+a

e
◦
+a◦x

(x ∈ I, a ∈ I1)

defined on the dyadic field and the arithmetical Blaschke-functions Ba(x) =

x
•
−a

e
•
−a•x

(x ∈ I, a ∈ I1) defined on the 2-adic field are isometries on the unit ball

I and on the unit sphere S. Furthermore, they form a commutative group with
respect to the function composition. We show, that the byte y = Ba(x) can be
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computed by a recursion:

yn = xn + an + fn(x0, · · · , xn−1) (mod 2) (n > 0),

where the functions fn : An → A (n = 1, 2, · · · ) depend on the bits of a.

In Chapter 4 is concerned the argument transformation given by the com-
position with a Blaschke function, and in general, the dyadic martingale struc-
ture preserving transformation or shortly the DMSP-transformation, and we
deal with questions related to the effect of a DMSP-transformation on special
function classes.

We call a function B : I → I a DMSP-transformation if it is generated
by a system of bijections (ϑn, n ∈ N), ϑn : A → A, and an arbitrary system
(ηn, n ∈ N∗), ηn : An → A in the following way:

(B(x))0 := ϑ0(x0),

(B(x))n := ϑn(xn) + ηn(x0, x1, . . . , xn−1) ( mod 2) (n ∈ N∗).

For each generating systems (ϑn, n ∈ N) and (ηn, n ∈ N∗), the generated
DMSP-transformation B is a bijection on I and its inverse function, B−1 is also a
DMSP-transformation. B is also measure-preserving. A DMSP-transformation
preserves the classes of UDMD systems, that of An-measurable functions, the
dyadic function spaces Lp(I), Hp(I), and the Lipschitz classes Lip(α, I). Fur-
thermore, some examples of DMSP-functions are presented, mentioned the
translations, dilatations, a generalization of ζ, and the Blaschke functions, as
well.

Then, in Chapter 5 we show, that the group of the Blaschke functions, the

so-called Blashke-group (B, ◦) of the field (I,
•
+, •) is a topological group, and we

determine its characters. The operation x/y := x
•
+y

e
•
+x•y

(x, y ∈ I1) determined by

the composition Ba ◦Bb = Ba/b leads to the functional equation of the tangent
function tan. This gives the idea of this chapter, where the characters of the
Blaschke group of the 2-adic group are constructed by means of a tangent-like
function.

The map B : (I1, /)→ (B, ◦), a 7→ Ba is a continuous isomorphism, hence in
order to establish the characters of (B, ◦), it is sufficient to define the character

group of (I1, /). Furthermore, the characters of (I1,
•
+) are already known: the

functions (vn, n ∈ N).
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Thus we give a continuous isomorphism from the additive group (I1,
•
+) onto

(I1, /), that is a function γ satisfying the equation

γ(x
•
+ y) =

γ(x)
•
+ γ(y)

e
•
+ γ(x) • γ(y)

(x, y ∈ I1).

These thoughts can be interpreted as the solution of the functional equation of
tan on the local field.

The tangent-like function on (I1,
•
+) is introduced as:

γ(x) :=
ζ(x)

•
− e

ζ(x)
•
+ e

(x ∈ I1).

We show, that γ is a continuous isomorphism from (I1,
•
+) onto (I1, /). This

implies, that the characters of the group (I1, /) are the functions

(vn ◦ γ−1, n ∈ P),

which allows us to conclude, that the characters of the Blaschke group (B, ◦)
are the functions

(vn ◦ γ−1 ◦B−1, n ∈ P),

where B : (I1, /)→ (B, ◦) represents the function a 7→ Ba.
A simple recursion yields the proposition, that the functions vn ◦ γ−1(n ∈

P), the characters of (I1, /) form a UDMD product system. Thus the discrete
Fourier coefficients with respect to this system can be computed with the Fast
Fourier Algorithm.

As the variable transformation γ is measure preserving, for the partial sums
Sγnf and the Gamma-Cesaro means σγnf of the Gamma-Fourier series Sγf with
respect to the system (vn ◦ γ−1, n ∈ N) follows the convergence lim

n→∞
σγnf(x) =

f(x) a.e. for any f ∈ L1(I1) and lim
n→∞

Sγnf(x) = f(x) a.e. (f ∈ Lp(I1), p > 1).

Chapter 6 is devoted to the construction of the discrete Laguerre functions
on both local fields. The power functions on the torus T coincide with the classi-
cal characters, and the discrete Laguerre systems are given by their composition
with the complex Blaschke functions. After the model of the classical system,
we introduce the discrete Laguerre system as the composition of the additive
characters of the studied local fields and the Blaschke functions.
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For a ∈ I1 we introduce the logical discrete Laguerre functions on (I,
◦
+, ◦)

associated to Ba in the following way:

L
(a)
k (x) := wk(Ba(x)) (k ∈ N, x ∈ I),

which form the product system generated by (rn ◦Ba, n ∈ N), that is, L
(a)
k (x) =∏∞

n=0 [rn(Ba(x))]
kn .

For a ∈ I1 we introduce the arithmetical discrete Laguerre functions on

(I,
•
+, •) associated to Ba in the following way:

L
(a)
k (x) := vk(Ba(x)) (k ∈ N, x ∈ I),

which build the product system generated by (v2n◦Ba, n ∈ N), that is, L
(a)
k (x) =∏+∞

j=0 [v2j (Ba(x))]
kj (x ∈ I).

The discrete Laguerre-system (L
(a)
k , k ∈ N) defined on the respective field is

a UDMD-product system, thus it is complete and orthonormal.
Paragraph 6.4 is devoted to the (C,1)-summability of the Fourier series with

respect to these systems using the basic results of Schipp[15] and Gat[7] on the
a.e. convergence and (C,1)-summability of the Fourier series with respect to
the characters of the dyadic and 2-adic field. We consider the Laguerre-Cesaro

means σ
(a)
n f and n-th partial sum S

(a)
n f of the Laguerre-Fourier series S(a)f of

an f ∈ L1(I) with respect to the corresponding discrete Laguerre functions. We

show on both fields that limn→∞ σ
(a)
n f(x) = f(x) a.e. for any f ∈ L1(I) and

lim
n→∞

S
(a)
n f(x) = f(x) a.e. (f ∈ Lp(I1), p > 1).

Chapter 7 covers our investigations on the Malmquist-Takenaka systems
on both studied local fields. The logical/arithmetical Malmquist-Takenaka func-

tions (Ψ
(p)
k , k ∈ N) with parameters p = (a0, a1, . . .) (ai ∈ I1, i ∈ N) are defined

in the following way: (Ψ
(p)
k , k ∈ N) is the product system generated by

(ϕn,an := rn ◦Ban , n ∈ N) on (I,
◦
+, ◦), and by

(Φn,an := v2n ◦Ban , n ∈ N) on (I,
•
+, •),

respectively. Clearly, the Malmquist-Takenaka system is a generalization of the
discrete Laguerre system: using identical parameters an = a ∈ I1 (n ∈ N), the

Malmquist-Takenaka functions Ψ
(p)
n (x) equal the discrete Laguerre functions

L
(a)
n (x).
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Being a UDMD-product system, we have a complete orthonormal system
on both fields. As an other consequence of being UDMD-product systems, a.e.
convergence and summability properties of Fourier series with respect to these
systems hold.

In Chapter 8 several 2-adic cosine and sine functions are constructed on the
2-adic field expressed by the S̃-valued exponential functions and the characters
vn of the 2-adic additive group:

cosx := (ζ(x)
•
+ ζ(x−)) • e−1, sinx := (ζ(x)

•
− ζ(x−)) • e−1 (x ∈ I);

COSn(x) :=
vn(x) + vn(x−)

2
(x ∈ I, n ∈ N),

SINn(x) :=
vn(x)− vn(x−)

2i
(x ∈ I, n ∈ N).

Addition formulas for both constructions hold, and we determine a set, on
which cos bijective is: cos : S̃ ⊂ S → S† is a bijection. We prove, that the
systems (COSn, n ∈ N), (SINn, n ∈ N) are orthogonal. The functions x 7→
cos ((2n+ 1) arccosx) (x ∈ S†) and x 7→ e3 • sin((2n+ 1) arccosx) (x ∈ S†) are
DMSP-functions on S† for any n ∈ Z.

Then follows the construction of some analogies of the Chebyshev poly-

nomials on the 2-adic field (I,
•
+, •) using these cosine and sine functions.

The 2-adic Chebyshev polynomials of the first and second kind are defined
as the product system of tk(x) := v2k+6 (cos[(2k + 1) arccos(x)]) and uk(x) :=
v2k+3 (sin[(2k + 1) arccos(x)]) (x ∈ S†, k ∈ N), that is,

Tn(x) :=

∞∏
k=0

[v2k+6 (cos[(2k + 1) arccos(x)])]
nk (x ∈ S†, n ∈ N),

Un(x) :=

∞∏
k=0

[v2k+3 (sin[(2k + 1) arccos(x)])]
nk (x ∈ S†, n ∈ N).

We prove, that (Tn, n ∈ N) and (Un, n ∈ N) are UDMD-product systems, thus
complete and orthonormal systems.

The 2-adic Chebyshev polynomials of the third and fourth kind are defined
by

Tn(x) := COSn[S′(arccos(S(x))] (x ∈ I, n ∈ N),

Un(x) := SINn[S′(arccos(S(x))] (x ∈ I, n ∈ N).

The 2-adic Chebyshev polynomials of the third and fourth kind (Tn, n ∈
N), (Un, n ∈ N) are orthogonal systems in L2(I).



Összefoglaló (Hungarian
summary)

Ez a dolgozat négy fő témát ölel fel, melyek a Blaschke függvények két lokálisan
kompakt nem-Archimédeszi normált testen értelmezett változatával kapcso-
latosak: a 2-adikus (vagy aritmetikai) és a 2-soros (vagy logikai, diadikus) testen.
Először a diadikus martingál struktúrát megőrző, azaz DMSP-transzfomációk
hatását vizsgáljuk olyan függvényosztályokra, mint az UDMD rendszereké, az
An-mérhető függvényeké, a diadikus Lp(I), Hp(I) függvényosztályok, illetve a
Lip(α, I) Lipschitz-osztály. Majd meghatározzuk a Blaschke csoport karakter-
rendszerét, és végül bevezetjük a diszkrét Laguerre és a Malmquist-Takenaka
függvényeket a Blaschke függvények és a megfelelő addit́ıv csoportok karakterei
seǵıtségével. Ez utóbbi két rendszer UDMD szorzatrendszer és ortonormált,
mı́g a második téma esetén a konstrukcióban fellépő vn ◦ γ-ról mondhatjuk
el ugyanezt. Végül pedig 2-adikus Chebyshev polinomokat konstruálunk
különböző 2-adikus trigonometrikus függvény seǵıtségével, melyeket ugyanc-
sak értelmezünk és vizsgálunk. Mindezek kapcsolatosak a diadikus martingál
struktúrát megőrző transzformációkkal, hiszen ezek rekurziós előálĺıtásainak
lényegében azonos a t́ıpusa.

A 2. Fejezet bevezetést tartalmaz a 2-adikus és 2-soros testek elméletébe,
különösen az algebrai és topológiai struktúrát illetően. Ebben a fejezetben
a Schipp-Wade[17] fogalmait, jelöléseit, és álĺıtásait használjuk az áttekintés
végett. Legyen a bájtok halmaza a következő: B := {a = (aj , j ∈ Z) |
aj ∈ {0, 1} és limj→−∞ aj = 0}. Bemutatjuk a 2-adikus és 2-soros műveleteket,
egy bájt rendjének, normájának, és a metrikának az értelmezését. Felidézzük,

hogy (B,
◦
+, ◦) és (B,

•
+, •) nem-Archimédeszi normált testeket alkot. Tekintjük

továbbá a következő intervallumokat: In := {x ∈ B : ‖x‖ 5 2−n} minden n ∈ Z-
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re és az I := I0 = {a = (aj , j ∈ N)| aj ∈ {0, 1}} egység-gömböt. Tekintjük a
µ(I) = 1 azonossággal normalizált µ Haar mértéket, és bemutatjuk az UDMD
rendszer fogalmát is.

A 2.6. Részfejezetben tekintünk egy T : I → I mértéktartó argumentum-
transzformációt, és áttekintjük, hogy a φn ◦ T rendszer szerinti ST f -el jelölt
T-Fourier sor STn f -el jelölt n-edik részletösszege és a σTn f T-Cesaro közepe kife-
jezhető a {φn, n ∈ N} karakterrendszer szerinti Fourier sor Snf -el jelölt n-edik
részletösszegével, illetve a σnf Cesaro/Fejér-közepével a következőképpen:

STn f =
[
Sn(f ◦ T−1)

]
◦ T

σTn f =
[
σn(f ◦ T−1)

]
◦ T.

A Schipp-Wade[17] kézikönyvre támaszkodva a 3. Fejezetben össze-
foglaljuk ezen lokális testek addit́ıv csoportjának karaktereivel és az expo-
nenciális fügvénnyel kapcsolatos azon fogalmakat és eredményeket, melyeket a
következő fejezetekben alkalmazunk.

A 3.1. Részfejezet a diadikus és 2-adikus addit́ıv csoport karaktereinek
léırását tartalmazza a szorzatrendszer fogalmára alapozva.

A 3.2. Részfejezetben használjuk a következő jelöléseket: S := {x ∈
B‖ ‖x‖ = 1} és S̃ := {x ∈ S : x1 = 0}. Az (S̃, •)-értékű ζ exponenciális
függvényt az I1-en a következő végtelenszorzatformában adjuk meg:

ζ(x) :=

∞∏
j=1

b
xj

j (x = (xj , j ∈ Z) ∈ I1),

ahol b1 := e
•
+ e2, bn := bn−1•bn−1 (n ≥ 2). A ζ függvény a [17]-ban bemutatott

(S, •)-értékű exponenciális függvénytől némileg különbözik, egy kissé módośıtott

bázisra épül. A ζ függvény eleget tesz a ζ(x
•
+ y) = ζ(x) • ζ(y) (x, y ∈ I1)

függvény-egyenletnek, és egy folytonos izomorfizmus az I1-ről az S̃-ra.
A 3.3. Részfejezettől kezdődően, a dolgozat a szerző eredményeit tar-

talmazza. Értelmezzük a Blaschke függvényeket a vizsgált testeken, és
megállaṕıtjuk azok néhány fontos tulajdonságát. A diadikus testen értelmezett

Ba(x) = x
◦
+a

e
◦
+a◦x

(x ∈ I, a ∈ I1) logikai Blaschke-függvények és a 2-adikus testen

értelmezett Ba(x) = x
•
−a

e
•
−a•x

(x ∈ I, a ∈ I1) aritmetikai Blaschke-függvények

izometriák az I egységgömbön és annak határán, az S-en. Továbbá, kommu-
tat́ıv csoportot alkotnak a függvény-kompoźıcióra nézve. Megmutatjuk, hogy
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az y = Ba(x) bájt a következő rekurzióval rendelkezik:

yn = xn + an + fn(x0, · · · , xn−1) (mod 2) (n > 0)

ahol az fn : An → A (n = 1, 2, · · · ) függvények az a paraméter bitjeitől is
függenek.

A 4. Fejezetben olyan argumentum-transzformációval foglalkozunk,
melyet a Blaschke-függvénnyel, sőt, általánosabban a diadikus martingál
struktúrát megőrző transzformáció, azaz a DMSP-transformációval való
függvény-kompoźıció ad meg, és a DMSP-transzformáció hatását is vizsgáljuk
speciális függvényosztályokra.

Egy B : I → I függvényt DMSP-transzformációnak nevezünk, ha egy
(ϑn, n ∈ N), ϑn : A → A bijekt́ıv függvényrendszer és egy tetszőleges
(ηn, n ∈ N∗), ηn : An → A függvényrendszer generálja a következőképpen:

(B(x))0 := ϑ0(x0),

(B(x))n := ϑn(xn) + ηn(x0, x1, . . . , xn−1) ( mod 2) (n ∈ N∗).

Bármely (ϑn, n ∈ N) és (ηn, n ∈ N∗) rendszer esetén a származtatott B
DMSP-transzformáció egy bijekció I-n és inverz függvénye, B−1 is egy DMSP-
transzformáció. Továbbá B mértéktartó. Egy DMSP-transzformáció során
megőrződik az UDMD-rendszerek osztálya, az An-mérhető függvényeké, a di-
adikus Lp(I), Hp(I) osztályok és a Lip(α, I) Lipschitz osztály. Továbbá, be-
mutatunk néhány példát DMSP-függvényre, melyek között megemĺıtjük a tran-
szlációt, a dilatációt, a bájtokhoz a multiplikat́ıv inverzüket rendelő 1

x függvényt,
a ζ egy általánośıtását, és a Blaschke-függvényeket is.

Az 5. Fejezetben bemutatjuk az (I,
•
+, •) 2-adikus testen értelmezett

Blaschke függvények csoportját, az úgynevezett (B, ◦) Blashke-csoportot,
melyről miután beláttuk, hogy topológikus csoport, meghatározzuk annak
karakter-csoportját. A Ba ◦Bb = Ba/b kompoźıció által meghatározott művelet,

az x / y := x
•
+y

e
•
+x•y

(x, y ∈ I1) a tan függvény függvény-egyenletéhez vezet.

Ez ihlette a keresett karakterek konstrukcióját, ahol a 2-adikus test Blaschke-
csoportjának karaktereit egy tangens-szerű függvény seǵıtségével értelmezzük.
A B : (I1, /) → (B, ◦), a 7→ Ba leképezés egy folytonos izomorfizmus, ezért
a (B, ◦) karaktereinek meghatározásához elegendő, ha meghatározzuk a (I1, /)
csoport karakter-rendszerét. Továbbá, a (I1,

•
+) csoport karakter-rendszere már

ismert: (vn, n ∈ N). A keresett karakterek megadásához tehát egy folytonos
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izomorfizmust keresünk az (I1,
•
+)-ről az (I1, /)-re, azaz egy olyan γ függvényt,

mely eleget tesz a

γ(x
•
+ y) =

γ(x)
•
+ γ(y)

e
•
+ γ(x) • γ(y)

(x, y ∈ I1)

egyenletnek. Ez a megoldási út úgy fogható fel, hogy a 2-adikus test tangens
függvényének függvény-egyenletét oldjuk meg.

A tangens-szerű függvényt az (I1,
•
+)-en a klasszikus esethez hasonlóan az

exponenciális függvény felhasználásával vezetjük be:

γ(x) :=
ζ(x)

•
− e

ζ(x)
•
+ e

(x ∈ I1).

Megmutattuk, hogy a γ függvény egy folytonos izomorfizmus az (I1,
•
+)-ről

az (I1, /)-re. Ebből következik, hogy az (I1, /) karakterei az alábbi függvények:

vn ◦ γ−1 (n ∈ P).

Következésképpen a (B, ◦) Blaschke csoport karakterei a

vn ◦ γ−1 ◦B−1 (n ∈ P)

függvények, ahol B : (I1, /)→ (B, ◦) az a 7→ Ba függvényt takarja.

Egy (végeredményében) egyszerűnek nevezett rekurzió szolgáltatja az
álĺıtást, hogy a vn ◦ γ−1(n ∈ P) függvények, az (I1, /) karakterei egy
UDMD-szorzatrendszert alkotnak. Ezért ezen rendszerekre vonatkozó Fourier
együtthatók az úgynevezett FFT, azaz a Gyors Fourier Algoritmussal (Fast
Fourier Algorithm) szamolhatók.

Mivel a γ függvény (változócsere) méréktartó, ezért a (vn◦γ−1, n ∈ N) rend-
szerre vonatkozó Sγf Gamma-Fourier sor Sγnf részletösszegeire és σγnf Gamma-
Cesaro közepeire fennállnak a következők: lim

n→∞
σγnf(x) = f(x) m.m., ahol

f ∈ L1(I1), és lim
n→∞

Sγnf(x) = f(x)m.m., ahol f ∈ Lp(I1), p > 1.

A 6. Fejezet a két vizsgált lokális testen értelmezett diszkrét Laguerre
függvényeknek van szentelve. A hatványfüggvények a T tóruszon megegyeznek
a klasszikus karakterekel, és az összetételük a komplex Blaschke függvényekkel
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éppen a diszkrét Laguerre rendszert származtatják. A klasszikus rendszer mo-
dellje alapján bevezetjük a vizsgált lokális testeken a diszkrét Laguerre rendsz-
ert, mint a megfelelő addit́ıv csoport karakterének és a Blaschke függvényeknek
az összetétele.

Az a ∈ I1 esetén az (I,
◦
+, ◦)-n értelmezzük a Ba-hoz rendelt logikai diszkrét

Laguerre függvényeket a következőképpen:

L
(a)
k (x) := wk(Ba(x)) (k ∈ N, x ∈ I),

amelyek az (rn ◦ Ba, n ∈ N) által generált szorzat-rendszert alkotják, azaz:

L
(a)
k (x) =

∏∞
n=0 [rn(Ba(x))]

kn (x ∈ I, k ∈ N).

Az a ∈ I1 esetén az (I,
•
+, •)-n értelmezzük a Ba-hoz rendelt aritmetikai

diszkrét Laguerre függvényeket a következőképpen:

L
(a)
k (x) := vk(Ba(x)) (k ∈ N, x ∈ I),

amelyek a (v2n ◦ Ba, n ∈ N) által generált szorzat-rendszert alkotják, azaz:

L
(a)
k (x) =

∏+∞
j=0 [v2j (Ba(x))]

kj (x ∈ I, k ∈ N).

A megfelelő testen értelmezett (L
(a)
k , k ∈ N) diszkrét Laguerre rendszerek

UDMD- szorzatrendszerek, ezért azok teljesek és ortonormáltak.
A 6.4. Részfejezetben az ezen rendszerek szerinti Fourier sorok (C, 1)-

szummabilitási kérdésére térünk ki. A Schipp[15] és Gát[7] 2-adikus és diadikus
klasszikus karakterek szerinti Fourier sorok (C,1)-szummabilitására vonatkozó
alapvető eredményeire támaszkodunk. Tekintjük egy f ∈ L1(I) függvény

diszkrét Laguerre rendszerre vonatkozó S(a)f Laguerre-Fourier sorának S
(a)
n f

részletösszegeit és a σ
(a)
n f Laguerre-Cesaro/Fejér közepeit. A karakterek szerinti

Fourier sorokra vonatkozó eredményekre támaszkodva megmutattuk mindkét

testen, hogy limn→∞ σ
(a)
n f(x) = f(x) m.m. teljesül minden f ∈ L1(I) esetén és

lim
n→∞

S
(a)
n f(x) = f(x) m.m. teljesül f ∈ Lp(I1), p > 1 esetén.

A 7. Fejezet a Malmquist-Takenaka rendszerekkel kapcsolatos eredményeket
tartalmazza a vizsgált lokális testeken. Az (ai ∈ I1, i ∈ N) bájtokhoz tar-

tozó p = (a0, a1, . . .) paraméterű (Ψ
(p)
k , k ∈ N) logikai/aritmetikai Malmquist-

Takenaka függvényeket a következő függvények által generált szorzatrendsz-
ereként értelmezzük:

(ϕn,an := rn ◦Ban , n ∈ N) az (I,
◦
+, ◦)-en, illetve

(Φn,an := v2n ◦Ban , n ∈ N) az (I,
•
+, •)-en.
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Világos, hogy a Malmquist-Takenaka rendszerek általánośıtásai a diszkrét La-
guerre rendszereknek: az an = a ∈ I1 (n ∈ N) azonos paramétereket

használva a Ψ
(p)
n (x) Malmquist-Takenaka függvények az L

(a)
n (x) diszkrét La-

guerre függvényekkel egyenlőek. Mivel ezek UDMD-szorzatrendszerek, tel-
jes ortonormált rendszert alkotnak mindkét testen. Az előbbinek egy fontos
következménye, hogy a szerintük vett Fourier sorokra m.m. konvergencia és
összegezhetőségi tulajdonságok teljesülnek.

A 8. Fejezetben különböző 2-adikus koszinusz és szinusz függvényeket
konstruálunk a 2-adikus testen: előbb az S̃-értékű exponenciális függvények
seǵıtségével, majd a 2-adikus addit́ıv csoport vn karakterei felhasználásával:

cosx := (ζ(x)
•
+ ζ(x−)) • e−1, sinx := (ζ(x)

•
− ζ(x−)) • e−1 (x ∈ I);

COSn(x) :=
vn(x) + vn(x−)

2
(x ∈ I, n ∈ N),

SINn(x) :=
vn(x)− vn(x−)

2i
(x ∈ I, n ∈ N).

Add́ıciós formulák teljesülnek mindkét féle értelmezés esetén. Meghatározzuk a
legbővebb halmazt S-ben, amin a koszinusz függvény bijekt́ıv: cos : S̃ ⊂ S→ S†.
Belátjuk, hogy a (COSn, n ∈ N), (SINn, n ∈ N) rendszerek ortogonálisak. Az
x 7→ cos ((2n+ 1) arccosx) (x ∈ S†) és x 7→ e3 • sin((2n + 1) arccosx) (x ∈ S†)
leképezések DMSP-függvények a S† halmazon minden n ∈ Z esetén. Ezután
a Chebyshev polinomok néhány analogonjának értelmezése következik ezen
koszinusz és szinusz függvények felhasználásával. Az első- és másodfajú 2-
adikus Chebyshev polinomokat a tk(x) := v2k+6 (cos[(2k + 1) arccos(x)]) (x ∈
S†, k ∈ N) és uk(x) := v2k+3 (sin[(2k + 1) arccos(x)]) (x ∈ S†, k ∈ N) szorzat-
rendszereként értelmezzük, vagyis,

Tn(x) :=

∞∏
k=0

[v2k+6 (cos[(2k + 1) arccos(x)])]
nk (x ∈ S†, n ∈ N),

Un(x) :=

∞∏
k=0

[v2k+3 (sin[(2k + 1) arccos(x)])]
nk (x ∈ S†, n ∈ N).

Ekkor (Tn, n ∈ N) és (Un, n ∈ N) UDMD-szorzatrendszerek, tehát teljes
ortonormált rendszerek.

A harmadik- és negyedik fajú 2-adikus Chebyshev polinomokat a
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következőképpen értelmezzük:

Tn(x) := COSn[S′(arccos(S(x))] (x ∈ I, n ∈ N),

Un(x) := SINn[S′(arccos(S(x))] (x ∈ I, n ∈ N),

majd belátjuk, hogy (Tn, n ∈ N), (Un, n ∈ N) ortogonális rendszerek L2(I)-ben.
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Appendix

On a generalization

The space B and its algebraic structure related to the 2-adic (or arithmetical)
and 2-series (or logical) addition has some reasonable generalizations: the p-adic
field, or the Vilenkin group (presented in [1] and by Hewitt and Ross in [12]
pp.106-116 and in its most general form by Gát in [9], see also [16], Appendices
0.7). In this most general case the system and the algebraic structure is gen-
erated by a sequence of positive integers m := (mk, k ∈ N) such that mk ≥ 2.
The character system of the Vilenkin group (see [1]), the Vilenkin-like system
given in [9], is a common generalization of the presented character systems of
the corresponding additive groups. Summability theorems of these systems hold
in this most general case. These thoughts would inspire a wide generalization
of the Blaschke function and the discrete Laguerre and Malmquist-Takenaka
systems, but the above mentioned space with the multiplication (presented in
[12], pp.112) yields a field only in the following special cases: the r-adic field if
r is a prime power, and the r-series field if r is a prime.

In this case, we consider the set of bits Ar := {0, 1, . . . , r − 1}, and the set
of bytes

Br := {a = (aj , j ∈ Z) | aj ∈ Ar and lim
j→−∞

aj = 0}.

Let θ = (· · · , 0, 0, 0, · · · ). The order of a byte x ∈ Br is defined in the following
way: For x 6= θ let π(x) := n if and only if xn 6= 0 and xj = 0 for all j < n,
furthermore set π(θ) := +∞. The norm of a byte x can be introduced by the
following rule:

‖x‖ := r−π(x) for x ∈ Br \ {θ}, and ‖θ‖ := 0.

89
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Consider the r-adic sum a
•
+ b of elements a = (an, n ∈ Z), b = (bn, n ∈ Z) ∈

Br, defined by

a
•
+ b := (sn, n ∈ Z)

where the bits qn, sn ∈ Ar (n ∈ Z) are obtained recursively as follows:

qn = sn = 0 for n < m := min{π(a), π(b)},
and an + bn + qn−1 = r · qn + sn for n ≥ m.

(8.13)

The r-adic product of a, b ∈ Br is a • b := (pn, n ∈ Z), where the sequences
qn ∈ N and pn ∈ Ar (n ∈ Z) are defined recursively by

qn = pn = 0 (n < m := π(a) + π(b))

and

∞∑
j=−∞

ajbn−j + qn−1 = r · qn + pn (n ≥ m).
(8.14)

Define the r-series sum a
◦
+ b and r-series product a◦ b of elements a, b ∈ Br

by

a
◦
+ b := (an + bn (mod r), n ∈ Z)

a ◦ b := (cn, n ∈ Z), where cn :=
∑
k∈Z

akbn−k (mod r) (n ∈ Z).
(8.15)

Now, (Br,
•
+, •) is a non-Archimedian normed field for a prime power r and

(Br,
◦
+, ◦) is a non-Archimedian normed field for a prime r. For more details see

[12], pp.112-113.

The product system of the collection of the function systems

Φn := {φkn : 0 ≤ k < r}

is the set of functions {ψm : m ∈ N), where to a given m ∈ N we have expansion

m =

∞∑
n=0

mnr
n (mn ∈ {0, 1, 2, · · · , r − 1})

and the function ψm is defined by

ψm :=

∞∏
n=0

φmn
n .
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The topology and the Haar measure is given in the same way, like in the case of
2-adic and 2-series field, and so is the conditional expectation En with respect
to the σ-algebra An generated by the intervals of rank n for any n ∈ N.

Let I := {a = (aj , j ∈ N)| aj ∈ Ar}. The character system (Υm,m ∈ N) of

(I,
•
+) is now formed by the product system generated by

φn(x) := ε
(xn
r

+
xn−1

r2
+ · · ·+ x0

rn+1

)
(n ∈ N),

namely to m ∈ N

Υm(x) :=

∞∏
n=0

(φn(x))mn (x ∈ I).

The characters of (I,
◦
+) are now the functions of the product system gener-

ated by the so-called generalized Rademacher functions

φn(x) := ε
(xn
r

)
(n ∈ N),

namely the system

Υ◦m(x) =

∞∏
n=0

ε
(mnxn

r

)
(m ∈ N).

When the system (Υm,m ∈ N) takes the role of character system (vn, n ∈ N)
in Paragraphs 6.3 and 7.2, and replacing the Walsh-Paley functions (wn, n ∈
N) with the system (Υ◦m,m ∈ N) in Paragraphs 6.2 and 7.2, we obtain the
generalized discrete Laguerre and Malmquist-Takenaka systems.

As all the techniques and results show a simple analogy with the presented
case, we do not go into details in this subject.
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