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Chapter 1

Introduction

1.1 Motivation and historical background

Why are non-Archimedean local fields important? According to Volovich [47)
some non-Archimedean normed fields have to be used for a global space-time
theory in order to unify both microscopic and macroscopic physics. Some prob-
lems occurred with the practical applications of the classical fields R and C,
because in science there are absolute limitations on measurements like Plank
time, Plank length, Plank mass. The use of real time and space-time coordi-
nates in mathematical physics leads to some problems with the Archimedean
axiom on the microscopic level. According to the Archimedian axiom, any given
segment on the line can be surpassed by the successive addition of a smaller
segment along the same line. This means, that we can measure arbitrary small
distances. But a measurement of distances smaller than the Planck length is im-
possible. Volovich proposes to base physics on a coalition of non-Archimedean
normed fields and classical fields as R or C. Source claims, that the so-called
p-series fields and p-adic fields are suitable non-Archimedean normed fields. As
p — oo, many of the fundamental functions of p-adic analysis approach their
counterparts in classical analysis. Thus p-adic analysis could provide a bridge
from microscopic to macroscopic physics.

We deal with non-Archimedian normed fields, that is, the norm satisfies a
stronger inequality than the triangle inequality: |la + b|| £ max{]al|, ||b||}. The
p-adic distance leads to interesting deviations from the classical real analysis,
the geometry of these spaces is unlike the euclidian geometry based on real space
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R. In non-Archimedian geometry two different balls are either disjoint or the
one is contained in the other one (splitting property). Furthermore the field of
2-adic and 2-series numbers have a hierarchical structure: every disc consists
of two disjoint discs of smaller radius (tree property). Thus these fields are
homeomorphic to a Cantor set on R. Volovich[47] states, that the fractal-like
structure of these fields enable their application not only for the description of
geometry at small distances, but also for describing chaotic behavior of chaotic
systems.

The simplest example of a p-adic field and a p-series field are the 2-adic (or
arithmetic) field and the 2-series (or logical, dyadic) field used in this work.
The 2-series addition is applied in numerous forms, it can be found for example
in logic as XOR, or in the theory of games as the nim addition, a tool in the
construction of the strategy for the nim-game.

A complete classification of locally compact, non-discrete fields results in
two connected fields (R and C) and a set of local fields (containing the p-adic
fields among others). See Taibleson [45].

" On orthonormal systems:

After emphasizing the importance of the 2-adic and 2-series fields, let us
address our attention to the several ways of construction of orthogonal systems
and especially to the product systems of unitary dyadic martingale difference
systems (UDMD systems).

There are several methods for constructing orthonormal and biorthogonal
systems. The Schmidt-orthogonalization method in a Hilbert space for any lin-
early independent system results an orthonormed one. Eigenfunctions of several
differential operators provide also such systems, used in mathematical physics.
Using the tools of harmonic analysis, character systems of topological groups
also result in orthonormal function systems. An other way of constructing such
systems uses some concepts of the probability theory, mostly that of martingales.

Convergence problems of the orthogonal systems are connected to many
other fields of mathematics, for example to probability theory. Alexits[2] stated,
that many theorems related to orthogonal series and some corresponding state-
ments of probability theory stand on the same mathematical fact. Fifteen years
later Professor Ferenc Schipp introduced a new method for constructing orthogo-
nal systems starting from some conditionally orthogonal functions. See [34],
[35], [36]. Several classical and modern systems can be constructed by using
this method. For example the trigonometric, the Walsh system, the Vilenkin
system, UDMD and Walsh-similar systems can be obtained in this way. Be-
sides the important theoretical properties, these systems have useful numerical
applications, like the possibility to compute the Fourier-coefficients and partial
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sums with a fast algorithm similar to FFT. (Fast Fourier Transform)

" On Blaschke functions and orthogonal systems related to them:

Blaschke functions play an important role in complex analysis, in the the-
ory of Hardy spaces, and in system and control theory. See Duren[5], Duren-
Schuster[6], Chui-Chen[4], Schipp-Bokor[23], [24], and [25]. The congruence
transforms in the Poincare model of hyperbolic geometry can be described by
means of Blaschke functions. See Schipp[26]. The Blaschke functions form a
group with respect to the composition, and on the so-called Blaschke group a
Voice transform was introduced by Schipp and Pap in [28], [29], and [31], and
applied in signal and image processing in Schipp[30], Schipp-Bokor[32], and [33].
These results inspired the study of Blaschke functions on local fields.

The discrete Laguerre functions and their generalizations (Kautz-, and
Malmquist-Takenaka systems) are widely applied in system and control theory.
See [19], [20], [21], and [22].

Chebyshev polynomials play an important role in numerous fields of appli-
cations, for example in approximation theory (the resulting interpolation poly-
nomial provides an approximation that is close to the polynomial of best ap-
proximation to a continuous function under the maximum norm).

These have motivated the author in construction of these systems on local
fields.

1.2 Presentation overview

We construct some orthogonal systems related to the Blaschke functions and to
the Walsh-Paley system or to the characters of the 2-adic field. Fourier-series
with respect to these functions are examined. However, this work does not claim
to be a complete treatment of the subject. We have chosen to use the methods
of the product systems of UDMD systems.

This work is organized as follows: Chapter 2 contains an introduction to
the 2-series and 2-adic fields, especially concerning the algebraic and topological
structure. This chapter follows the concepts, notations and proofs of Schipp-
Wade[17]. We present in Paragraph 2.6 that if we consider the Fourier expansion
with respect to a system given by the composition of the character system and
a measure preserving transformation, then its partial sums and Cesaro means
can be expressed by the original ones, that is by partial sums and Cesaro means
of Fourier series with respect to the characters. This will be applied in the next
chapters to discuss summability and convergence questions.
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Chapter 3 is devoted to some useful tools applied in the following chap-
ters. Paragraph 3.1 provides a description of the characters of the dyadic and
2-adic multiplicative groups based on [17] and using the notion of the product
system. Based on the handbook of Schipp and Wade[17] we present the expo-
nential function, with slightly different base and values, which is used in the
next chapters.

Starting from Paragraph 3.3, this work contains the results of the author.
Paragraph 3.3 contains the definitions and properties of the Blaschke functions

on both fields. The logical Blaschke functions B,(z) = 2t% (z € T,a € ;)
e+taox
defined on the dyadic field and the arithmetical Blaschke functions B, (z) =

—2=¢ (g €l,a €1;) defined on the 2-adic field form a commutative group with
e—aexr
respect to the function composition. Although the classical Blaschke group is

non-commutative, analogous thoughts result in commutative variants on local
fields.

In Chapter 4 we study transformations given by composition with a
Blaschke function and in general with a dyadic martingale structure preserv-
ing transformation, or shortly a DMSP-transformation defined in this chapter,
and we investigate questions related to the effect on special function classes
of these transformations. We obtain, that composition with a DMSP-function
preserves the classes of UDMD systems, that of A,,-measurable functions, the
dyadic function spaces LP(I), HP(I), and the Lipschitz classes Lip(c,I).

The idea of Chapter 5 is given by the fact that the operation determined
by the composition of Blaschke functions leads to the functional equation of the
tangent function tan. Thus the characters of the 2-adic group are determined by
means of a tangent-like function. We use the (S, e)-valued exponential function
¢, which was described in Paragraph 3.2. In order to construct the characters of
the Blaschke group of the arithmetical field, we give a continuous isomorphism

v from the additive group (I, —7—) onto (I, <), which is the analogue of function
tan. These thoughts can be interpreted as the solution of the functional equation
of tan on the local field.

Chapter 6 is devoted to the construction of discrete Laguerre functions on
both local fields. The role of the power function of the classical system is taken
by the characters of the corresponding field, and their composition with Blaschke
functions build the dyadic discrete Laguerre systems. After the model of the
classical system, we introduce discrete Laguerre systems as the composition of
the respective additive characters of the local fields and the Blaschke functions.
We have shown in Paragraph 3.3, that the bits of the values of the Blaschke
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functions B, can be obtained with recursion using the bits of the variable and
the bits of the parameter a. As a consequence of this recursion follows, that
the systems in question are UDMD-product systems, as well. As a consequence,
results regarding UDMD-systems are valid for the discrete Laguerre systems.
Paragraph 6.4 deals with the a.e. convergence and (C,1)-summability of the
Fourier series with respect to these systems using some basic results of Schipp[15]
and Gat[7] on the a.e. convergence and (C,1)-summability of the Fourier series
with respect to the characters of the dyadic and 2-adic field.

Chapter 7 covers our investigations about the construction of the
Malmquist-Takenaka systems on both studied local fields, which are a gen-
eralization of the discrete Laguerre systems. Being UDMD-product systems,
Fourier series with respect to them fulfill a.e. convergence and summability
statements.

In Chapter 8 we construct several analogies of the Chebyshev polynomials
on the 2-adic field. First, 2-adic cosine and sine functions are constructed in
two ways: with the aim of the S-valued exponential functions or with the char-
acters v, of the 2-adic additive group. Then follows the construction of some
analogies of the Chebyshev polynomials using these cosine and sine functions.
Orthogonality of these Chebyshev polynomials is also investigated.

Chapters 4,5, 6-7 and 8(based also on 4) can be read in optional order.

1.3 Credits

Chapter 4 is based on [42]:
SIMON, 1., On transformations by dyadic martingale structure preserving
functions, Annales Univ. Sci. Budapest., Sect. Comp., 39 (2013), pp, 381-390.

Chapter 5 is based on [40]:

SIMON, 1., The characters of the Blaschke-group, Studia Univ. ”Babes-
Bolyai”, Mathematica, 54(3)(2009), pp. 149-160.

Chapter 6, is based on [39]:

SiMoN, 1., Discrete Laguerre functions on the dyadic fields, PU.M.A,
17(2006)(3-4), pp. 459-468.

Chapter 7 is based on [41]:

SIMON, 1. Malmquist-Takenaka functions on local fields, Acta Univ. Sapi-
entiae Math., 3(2)(2011), pp. 135-143.

Chapter 8 is based on [43]:



INTRODUCTION

SiMoN, 1. Construction of 2-adic Chebyshev polynomials, submitted.



Chapter 2

Algebraic and topological
structure

2.1 Non-Archimedean topology of the space of
bytes B

This chapter is an introduction to the 2-series and 2-adic fields, especially con-
cerning the algebraic and topological structure. We follow the concepts, nota-
tions and proofs of Schipp-Wade[17]. The reason why we sometimes go into
details, is to recall the techniques which we will use in the next chapters.

"X Denote by A :={0,1} the set of bits, and by

B:={a=(a;,j€Z)|a; € Aand lim a; =0} (2.1)
j——o00

the set of bytes. The numbers a; are called the additive digits of a € B. As each
aj is 0 or 1, the condition lim;_, ., a; = 0 is equivalent with the existence of
an integer N € Z such that a; = 0 for j < N.

The zero element of B is 6 := (0,5 € Z), that is, § = (---,0,0,0,---).

The fundamental sequence of B is formed by the elements ey, := (0;%,j € Z)
defined for each k£ € Z, where §;;, is the Kronecker-symbol. Thus ey, is the byte
with k-th digit 1 and with other digits 0. The byte e is denoted by e. We will
denote the set N\ {0} by P and let B* :=B \ {6}.

Y The order of a byte x € B is defined in the following way: For x # 0
let 7(z) := n if and only if x, = 1 and z; = 0 for all j < n, furthermore set
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m(0) := +00. The norm of a byte z is introduced by the following rule:
|z| :=27"® for x € B*, and [|6]| := 0. (2.2)

We will see in Section 2.2 that this function possesses the properties of a norm
with the corresponding operations even in a stronger form: instead of the tri-

angle inequality takes place a stronger inequality.
101234
For example, the order of the byte z = (---, 0,0,1,0,1,0,---) is w(z) = 1,

and its norm is ||lz|| = 27 .
"I A metric can be defined on B as follows.

0’ lf xr = y7
ooy =4 . (2.3)
27" ifx#y, n=min{k €Z: x # yi},

that is, n € Z is chosen so, that z; = y; for j < n, but z,, # y,. The mentioned
minimum exists by the definition of B. Clearly, p(,x) = ||z||.
It is clear, that p is a metric, as
p(x,y) = 0; and p(z,y) =0 <=z =y,
p(z,y) = ply,z) forall z,y € B,
p(@,y) < p(x,2) + p(z,y) forallz,y,z €B.
In fact, the metric p satisfies a stronger condition then the last one:

p(z,y) < max{p(z,z),p(z,y)} forallz,y 2 €B, (2.4)

namely p is a non-Archimedian metric on B.

" A sequence of bytes (bg)en is said to converge to a byte b € B if p(by, b) —
0 as k — oo.

(br)ken 1s said to be a Cauchy sequence if to any given € > 0 there is an
N € Nsuch that p(bg, b;) < e for all k,1 > N. It is easy to see, that every Cauchy
sequence in B is convergent, and consequently, (B, p) is a complete metric space.

A countable subset of B is the following:

BT :={a€B: lim a; =0}.
j—oo

Furthermore, for each a € B and n € Z define the n-th truncation of a by

aj, forj<mn,
)i = 2.5
(@ )s {0, for j > n. (25)
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We can see, that B is dense in B. Indeed, for each a € B we have Q) € BT and
a(py — a as n — oo. Thus (B, p) is a complete, separable metric space.

Y4 The sets I,(z) := {y € B : y,, = x, for k < n}, the so-called intervals in B
of rank n € Z and center x are of basic importance. Set I, := I,,(#) = {z € B :
lz]] £ 27"} for any n € Z. The unit ball I := Iy can be identified with the set
of sequences I = {a = (aj,j € N)| a; € A} via the map (...,0,0,a0,a1,...) —
(ag,a1,...). Furthermore S:={x € B: |z| =1} ={z €B:n(z) =0} = {z €
I: 29 =1} is the unit sphere of the field.

We can observe that I,(a) = {z € B : p(x,a) < 27"} for all a € B and
n € Z, that is, I,(a) is a disc of radius 27" with center at a. The boundary
of I,(a) is Sp(a) := {x € B : ap = ai, for k < n, but =, # a,}. Let us collect
some properties concerning intervals:

{r eB:p(x,a) <27"} =I41(a) C Iy(a);

I,(a) C Iy(a) (n>m,a € B);

Sp(a) = In(a) \ In+1(a) (n €Z,a € B);

Li(a)=|J Sk(a)  (n€ZaeB) (2.6)
k>n

m I,(a) = {a}; U I,(a) = U Sn(a) =B.

nez neZ neZ

Easy consideration leads to the following lemma:

Lemma 1 If b€ I,(a), then I,(b) = I,(a).

Denote the collection of intervals in B by Z. Z is countable, satisfies the
tree property and the splitting property. The tree property means that any two
intervals in B either disjoint or one is contained in another, namely for n < m
and a,b € B we have either I,,(a) C I,,(b) or I,,(a) N I,(b) = (. This is a simple
consequence of Lemma 1. The splitting property is the feature to break every
interval into disjoint intervals of higher rank, namely, if given x € B and m € Z,
there is an y € B such that

Ln (%) = L1 (2) U L1 (y) and Ippy1(z) N g (y) = 0.

Indeed, the splitting property holds: if z € B and m € Z, define y = (y;,j € Z)
by Yy = Zj for j 74‘ m and y,, = 1 — 2,,,. Thus, Im(l') = m+1(x) U Ierl(y)
and I,y1(2) N Int1(y) = 0. The countability of Z follows from the fact that
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each algebraic digit a; of a byte a € B takes on only 2 values: 0 and 1. Thus
Bt is countable, so Z = {I,(a) : a € B,n € Z} = {I,,(a) :a € Bt ,n € Z} =
U U {In(a)}is also countable, as both unions are countable. Lemma 1 shows
neZ acBt

that every point of I,,(a) is its center.

"I We call a set E C B open, if for each a € E the set E includes a ball
centered in a, namely there is an r > 0 such that {z € B : p(z,a) < r} C E;
and closed, if its complement is open in B.

The intervals I,(a) = {z € B : p(z,a) < 27"} are open in B as a simple
consequence of Lemma 1 and (2.6).

By Lemma 1 (or directly by (2.4) ) follows that I,,(a) contains all its limit
points, thus the interval I,(a) is closed. We have seen, that the intervals of B
are both open and closed. Thus B is totally disconnected. This is one of the
fundamental differences between the intervals of B and R.

"I The intervals form a base for the metric topology of B, namely each open
set in B is a union of intervals. Indeed, given an open set £ C B, for each
a € E there is an n € Z such that I,(a) € E. Choose the smallest one:
ng :=min{n € Z : I,(a) C E, n > 7w(a)}. (This minimum exists, because for
each a € B holds 7(a) > —occ.) Now, E = [J,cp In,(a), thus the set E can
be written as a union of intervals. Since Z is countable and satisfies the tree
property, it follows that each open set in B can be written as a countable union
of pairwise disjoint intervals.

"« B is a locally compact metric space, that is, every byte z € B has a

compact neighborhood. In fact, each interval is compact in B:

Lemma 2 A set K C B is compact if and only if it is closed and bounded.

A consequence of Lemma 2 is that every interval I,,(a) and sphere S,(a) is
compact, thus the space B is locally compact. Using the tree property, we can
see, that every compact set in B can be covered by a finite number of disjoint
intervals of a fixed rank.

" A measure can be defined on B in the following way: for n € N,a € B let

((In(a)) =27 (2.7)

Extend p to the ring R of sets formed by finite unions of intervals so that p is
finitely additive. By the splitting property and the tree property it is clear that
1 is countably additive on R. The Caratheodory extension theorem gives, that
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there is a measure (denoted also by p) defined on the o-ring of Borel sets B,
which satisfies (2.7). Clearly, p is normalized, and we will see that B is a normed
field with the concerned operations and p is a normalized Haar-measure on B
with property u(I) = 1. u will be invariant with respect the additive operations
of both studied fields, thus it will be a Haar-measure. (See the next chapters.)

Y We have found some basic differences between the set of real numbers R
and the non-Archimedian space of bytes B. The intervals in R have the splitting
property, but the tree property fails. Moreover, the intervals in the case of bytes
are both open and closed sets, which property distinguishes the examined space
essentially from R.

In spite of these, there are close connections between B and R*. We will use
the map 3 on BT defined by

B(zx) = i zp- 28 (v = (v, k €Z) € BY). (2.8)

k=—o00

Let Q represent the set of dyadic rationals in R: Q :={p-2™ :p,m € Z},
and QT represent the set of nonnegative dyadic rationals, that is QT := RTNQ.

Clearly, 8 is a 1-1 map from BT onto QF, and its restriction is 1-1 from
BT N1 onto N.

2.2 The 2-series (or logical, dyadic) field
"X Define the 2-series (or logical) sum a Jor b and product aob of elements a,b € B
by

at b= (an + by, (mod 2), n € Z)

aob:=(cph,m €Z), where ¢, := Zakbn,k (mod 2) (n € Z).
kEZ

(2.9)

For example, the logical sum and product of the bytes a and b,

-1 012345
a=(-,0,0,1,0,1,0,1,---)
-1 012345
b:("'70707()’17171717"')
o -1 012345
are the following: a + b= (---, 0,0,1,1,0,1,0,---),
10123456
a’ob:("'70707()’071717070?" )
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" The operation —T— is commutative and associative. The additive unit ele-
ment is 0, and by z —(i)— x =0 (z € B) follows that the additive inverse element
of x € B is z itself. Thus (B, —T—) is a commutative group.

The metric p : B x B — R defined in (2.3) can also be represented in form
pla,b) = ||la i b||. The map (a,db) — a { b is continuous with respect to this

metric from B x B to B. This is a simple consequence of the following:
In(a):ajr]ln ::{aix cxel,}

o . . (2.10)
I(a+b)=I,(a) + I,(b) :={x+y : z€l,(a),y €L,(b)},

where a,b € B,n € Z. By the continuity of { follows that (B, —T—) forms a
topological group.

Note, that each x € B can be written in form
x = anen (2.11)
ne”Z

using its additive digits * = (x,,n € Z) where the sum is considered with

[e]
respect to the addition +.

"4 The logical multiplication o is a convolution over the finite field A, and it
is associative and commutative on B. We can observe, that ey o e,, = €4, for
all k,m € Z. In general, multiplication by ey, shifts bytes: exoa = (an—g,n € Z).
The multiplicative identity of B is the element e = (§,,0,7 € N): indeed, eca = a
holds for each a € B.

The existence of the multiplicative inverse element of each a € B* := B\ {6}
follows from the existence of the inverse element of any b € S. Let us show, that
for each b € S there is an € S such that:

box =ce. (2.12)
Observe that (2.12) holds if and only if the additive digits of x satisfy

Z‘():l

n—1
Ty = ijbn,j ( mod 2)(n>1),
§=0
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which clearly defines x, € A recursively for all n € N. We will denote the
multiplicative inverse of an element b € S with respect to o by b° or by b= 1.
Now, each a € B* can be uniquely written in the form:

a=epobforsomeneZandbeS.

Hence, the inverse element of a € B* is found: e_,, 0 b°; let us denote it with a°
or a~t. Thus (B*,0) forms a commutative group.

The logical multiplication is continuous on B. Indeed, given a,b € B* and
n € N, n > m(a) + w(b) for each x € I),_r)(a) and y € I,_r(4)(b) we have
zoy € I,(aob). Thus the (B*, o) is a topological group.

Y4 Notice, that
m(aob) =m(a)+ m(b). (2.13)

The rule of distributivity also holds, that is:
ao(bj—c):aob—ci)—aoc (a,b,c € B).
Furthermore,

lla + bl = max{[la], [[b]l}, [lacdll = alflt] (a,beB). (2.14)

o
Thus the set B with the operations + and o is a non-Archimedian normed

[e] ]

field, i.e. Consider nx = z+z + ... Jor x for any integer n € Z and z €
—_——

n times
B, which is either x or . The first rule of (2.14) gives the non-Archimedian
property: ||nz| < ||z|| (n € Z,z € B).

2.3 The 2-adic (or arithmetical) field

i Consider the 2-adic (or arithmetical) sum a T b of elements a = (an,m €
7),b = (b,,n € Z) € B, defined by

atbi= (Sn,n € Z),
where the bits g, s, € A (n € Z) are obtained recursively as follows:

gn =8, =0 for n <m :=min{r(a),n(b)}, (2.15)
and a, +b, +qn_1=2q¢, +5, for n>m. '
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The 2-adic (or arithmetical) product of a,b € B is aeb := (p,,n € Z), where
the sequences ¢, € N and p, € A (n € Z) are defined recursively by

n =pp =0 for n<m:=mn(a)+ n(b)
- 2.1
and Z ajbn_j +gn—1 = Qqn + Pn for n > m. ( 6)
j=—0o0
The reflection = of a byte x = (x;,j € Z) is defined by its additive digits:
i for j <
(@) =4 rjsn@) (2.17)
1—x;, forj>mn(x).

For example, the arithmetical sum and product of the bytes a and b,

-1012345
a/:( a0a071507170a17"')
~1012345
b:( ,0,0,0,1,1,1,1,"')
o ~1012345
are the following: a + b= (---, 0,0,1,1,0,0,1,--+),
~10123456
aeb=(---,0,0,0,0,1,1,0,1,--)
-1012345
and the reflection of a: ¢~ =(---, 0,0,1,1,0,1,0,---).

"I The operation ~T— is commutative. Note, that € is the additive identity and
x~ is the additive inverse of z € B: x + 0 = x, and x + 2~ =6 (z € B). The

L]
arithmetic sum + is associative on B which is a corollary of the next lemma.

Lemma 3 The map B is an isomorphism from the semigroup (IB%“',—T—) onto
(QT,+), that is:

Blatb)=pa)+B0b) (abeBT). (2.18)

(The proof of this lemma can be found in [17], pp.36 and here will be omit-
ted.)
To see the associativity of :L, verify that 8((a J.r b) ; ¢) = Bla J.r (b J.r

c)) (a,b,c € BT) results that —T— is associative on BT. Now, for each a,b,c € B,
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the truncations are elements of B, thus (a(,) —T— biny) —T— Clny = Qn) —T— (beny —T—

L]
C(ny) holds for every n € Z. Letting n tend to infinity, it follows, that + is
associative on B.

L)
Hence (B, +) is a commutative group. Since

[l + yll < max{|[z]], lyll}, (2.19)

with equality if and only if ||z|| # ||y||, this norm is non-Archimedean. (||nz| <
||| for each x € B and n € Z.)

The map (a,b) — a J.r b is continuous from B x B to B; and the map a — a~
is continuous from B to B. This is a simple consequence of the following:

In(a)=a+1, —{a+x rel,}
(a3 8) =Io(a) T I(b) = {z 1y o € L(a),y € In(b)} (2.20)
I (a) =={a” 2 € Iy(a)} = Ix(a™)

N
S~—"

—~

where a,b € B,n € Z and k > w(a). Thus (B, —T—) is a topological group.

Note, that each € B can be written in form z = > z,e, using its additive
ne”z
digits * = (z,n € Z) where the sum is considered with respect to the addition

+.

"M We will see in the following, that (B*, @) forms a commutative group. The
arithmetic multiplication is commutative, and it is closely related to the usual
multiplication of real numbers:

Lemma 4 Ifa,bc BT, then aeb e BY and

Blawb) = B(a)B). (2.21)

(The proof can be found in [17], pp.38 and will be omitted here.)

An immediate consequence of (2.21) is, that multiplication e is associative
on BT, thus (ag,)y ® b)) ® ¢y = agny ® (bny ® ¢(ny) for all n € Z, a,b,c € B.
Letting n — oo, we find that e is associative on B.

We can observe, that ey ® e, = ejy,,, for all k,m € Z. In general, multipli-
cation by ey shifts bytes: ex @ a = (an,—g,n € Z). The multiplicative identity of
B is the element e = eg = (9,0, n € Z), where ,, is the Kronecker-symbol.
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The existence of the multiplicative inverse element of each a € B*
follows from the existence of the inverse element of any b € S. Let us show, that
for each b € S there is an = € S such that:

bexr=ce. (2.22)

Observe, that (2.22) holds if and only if the additive digits of = satisfy

qo = 0,9 = 1,

n—1

=4

Tn + ijbn—j + qn-1= 0+ 2Qn (Tl > 1)

=0
do = 07]"0 = 1)

n—1 (2.23)
Tp = Z Zjbn_j + qn—1 ( mod 2)

=0

1 n—1
dn = 5 Ty + jzoijn—j + Gn-1 (n > 1),

which defines z,, € A and ¢, € N recursively for all n € N. The multiplicative
inverse of an element b € S with respect to e is denoted by b® or b~!.
Now, each a € B* can be uniquely written in the form:

a=e,ebfor somen € Z and b € S.

We can easily see, that e_,, ® b® is the inverse element of a € B*; it is denoted
by a® or a=!. Thus (B*, e) forms a commutative group.

The recursive form of inverse element of a byte b € S,,, (m € Z), which will
be used in Section 5.2, can be given by the method of (2.23):

(0" n = bogm + fa(bmy -+ bugm—1) (mod 2) (2.24)
for some f: A"l — A,

"I The operations —T—, e are continuous with respect to the metric introduced
by the norm (2.2).

The arithmetical multiplication is continuous on B*, because for given a,b €
B* and n > 7w(a)+7(b), and for each x € I),_r)(a) and y € I,,_(4)(b) we have
rzey e l,(aeb).
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The rule of distributivity also holds, that is:

aO(b—l—c):aOb—T—aoc (a,b,c € B).

We conclude that (B, —T—, e) is a topological field. (S, e) is a subgroup of (B, e).
Notice, that
7(a e b) = m(a) + m(b). (2.25)

hence, ||z e y|| = ||z| - |ly]|- In addition to this,
[+ yl| < max{{[z[], 4]},

thus (B, —T—, e) is a non-Archimedian normed field with respect to the norm

(2.2). We will use the following notation: a ‘bhi=atb.

2.4 The Haar-measure

The measure p defined in (2.7) is translation invariant with respect to —T—, that
is, for a € B and a Borel set E C B follows by (2.10) that the Borel set FE Ya

satisfies u(E ¥ a) = p(E). p is also dilation preserving, that is, for each
Borel set E C B and b € B* the Borel set bo E := {boy, y € E} satisfies
w(bo E) = ||b||u(E). Consequently 4 is the normalized Haar-measure on the

logical group (B, 40—)

The measure p is translation and reflection invariant with respect to J.r, that
L]
is, if « € B and E is a Borel set in B, then by (2.20) the Borel sets E~ and E + a

satisfy u(E~) = p(FE), and pu(E ¥ a) = p(E). wis also dilation preserving, that
is, for each Borel set F C B and b € B* the Borel set be E := {bey, y € E}
satisfies p(b e E) = ||b||u(E). It follows, that u is the normalized Haar-measure

[ )
on the arithmetical group (B, +).
The Lebesgue measure is the Haar-measure on (R™, +), moreover since the
map

a:B—-RY a(z):= Z z;27971 (x € B)

Jj=—o0
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takes I,(a) to an interval [Z,ZH] with p = Z;l;ioo a;j27771 where n €
Z,a; € A (j € Z). Thus the map « is measure preserving from the measure
space (B, By, i) to the Lebesgue measure space (R™, Bz, uz,). (Here B, denotes
the o-ring of Borel sets of B and By, denotes the o-ring of Borel sets of RT.)

This represents a close connection between the considered measure spaces.

2.5 UDMD product systems

X Let (¢n,n € N) be a collection of complex valued functions defined on some
common set. For each m € N consider the following functions:

Y 1= H d)TJ (m € N)7
j=0

where m has the binary expansion m = 3272, m;29 (mj; € A,j € N). The
system ¥ = (¢, m € N) is called the product system generated by the system
(¢n,n € N).

" Denote with A the o-algebra generated by the intervals I,,(a) (a € I,n €
N). I, A, and the restriction of the measure p on I gives a probability measure
space (I, A, ). Let A, be the sub-o-algebra of A generated by the intervals
I,(a) (a €1). Let L(A,) denote the set of A,-measurable functions on I and
L(I) be the set of integrable functions f : I — C. The conditional expectation
of an f € L'(I) with respect to A, is of the form

1
(0, () /w) fdu (@el).

A sequence of functions (f,,n € N) C L*(I) is called a dyadic martingale if
each f, is A,-measurable and

(Enfrt1) = fu (n €N).
The sequence of martingale differences of (f,,n € N) is the sequence
On = fn+1_fn (’I’LEN)

We notice that every dyadic martingale difference sequence has the form ¢, =
rngn (n € N) where (g,,n € N) is a sequence of functions such that each g, is
Ap-measurable and (r,,n € N) denotes the Rademacher system on I:

(Enf)(z) :=

rn(z) = (=1)"" (n € N).



2.6. THE TRANSFORMATION METHOD 19

The dyadic martingale difference sequence (¢,,n € N) is called a unitary
dyadic martingale difference sequence or a UDMD sequence, if |, ()] =1 (n €
N). Thus (¢n,n € N) is a UDMD sequence if and only if

n = Tngn, gn € L(An), |gn|l =1 (n €N). (2.26)

Let us call a system v = (¢, m € N) a UDMD product system, if it
is a product system generated by a UDMD system, i.e., there is a UDMD
system (¢,,n € N) such that for each m € N with binary expansion m =
Z;io m;29 (m; € A, j € N), the function v, is obtained by:

Ym =[] ¢]" (meN).
j=0

The dyadic mazimal operator and for 0 < p < oo the Hy, norm is defined by

EX(f) =sup|&af| (f € LY(D)),

neN

£llzze =€ fll, (f € LN(D),

where || ||, denotes the LP(I) norm.

2.6 The transformation method

If we consider the Fourier expansion with respect to a system given by the
composition of the character system and a measure preserving transformation,
then its partial sums and Cesaro means can be expressed by the original ones,
that is by partial sums and Cesaro means of Fourier series with respect to the
characters. This will be applied in the next chapters to discuss summability and
convergence questions.

Let now {¢,,n € N} denote the character set of the studied additive group,
and consider a measure-preserving variable transformation 7' : I — I. Then,

/H FoT dy= /]I Fdy. (2.27)

Definition 1 Let us define the T-Fourier coefficients of an f € L (I) by

() = / f@on(T@)dp(z)  (neN).
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Furthermore the T-Fourier series ST f of f and the n-th partial sum ST f of the
T-Fourier series ST f is defined by

[e%s} n—1
STf=3"JT(k)-¢roT, and STf:=> fT(k)-¢poT (neP).

k=0 k=0

Let us define the T-Cesaro (or (T — C,1)) means of ST f by
1 n
odf:=0and olf:= EZS’fo (neP).
k=1

Proposition 1 For any f € L'(I), n € P hold
S;l;f = [Sn(f o T_l)] oT, and (2.28)
off=[on(foT ")]oT, (2.29)

where S, and o, stand for the corresponding notions with respect to the char-
acters {¢n,n € N} of the additive group.

-~

Proof: If f(n) denotes the Fourier coefficients with respect to the characters of
an f € L'(I) presented also in [16], we conclude by (2.27), that

—

fTn)=foT=Y(n) (neN).
Thus,

ST =3 FaT 1 (n) - duoT = [Sulf o TN 0T,
k=0
which leads to
S [Sk(foT™H] (T(x) = on(f o T~ H)(T(x)).

1
n
k=1

o f(z) =

(]

Remark: On the complex field basically this method was used in terms of
the scalar products in Bokor-Schipp [3]. On the studied fields the presented
proposition enabled the author to handle a.e. convergence and summabilty
questions of Fourier series with respect to the discrete Laguerre and (v, oy,n €
N) systems in I. Simon [39] and I. Simon[40]. Professor F. Schipp claimed that
the proposition is also true for general measure-preserving transformations. We
will use the term ”transformation method” in this work to ease the explanations.



Chapter 3

Some useful functions

This chapter is devoted to some useful tools which are used in the next chapters.
Paragraph 3.1 provides a description of the characters of the dyadic and 2-adic
multiplicative groups based on the handbook of Schipp and Wade [17] and using
the notion of the product system. Paragraph 3.2 contains the notions and results
regarding the (g,O)—valued exponential function . Starting from Paragraph
3.3, this work contains the results of the author. Paragraph 3.3 contains the
definitions and properties of the respective Blaschke functions, which is due to

he author.

3.1 The characters of the additive groups

M A character of a topological group (G, #) is a continuous function ¢ : G — C
that satisfies

|p(x)] =1 and ¢(z *y) = ¢(z)P(y) for all z,y € G. (3.1)

That is, the characters of a group are the continuous homomorphisms into
the torus (T, -). If ¢ is a character on (G, %), and 0 represents the zero element of
G, then ¢(0) = 1. It can be easily seen, that the set of characters of a topological
group (G, *) forms a group under pointwise multiplication; it is called the dual

group of (G, x) and it is denoted by (ﬁ,\*)

Consider a normed field (F,+, ). Let u be a character of the additive group
(F,+). Then for each y € F the map uy(x) := u(z-y) (z € F) is also a character
of (F, +). If these functions exhaust the characters of the group, then u is called

21
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a basic character of F. If F has a basic character u, then by the map y — wu, it

—

follows, that the group (F,+) is isomorphic to (F,+).

I Characters of (IB%,—?—) and (H,—T—)
Let us consider €(t) := exp(2mit) (¢ € R) and the maps

(3.2)

w is a basic character of the group and (IB%,4O—) = {wy : y € B}. Easy compu-

tations show that w(z) = (—=1)*-* and w(x ¥ y) = w(x)w(y) for all z,y € B.
Since w is constant on intervals with rank bigger than —1, thus w is continuous
on B, and it follows that w is a character of the group, and thus w, is also a
character for each y € B.

o
Moreover, it can be showed, that w is a basic character of (B, +): each

—

character of B is a w, for some y € B: (B, «Ok) = {w, : y € B}. Furthermore,

w o () =wy(x)w,(x) (z,y,z € B), (3.3)

yt
thus, by (w;(0) =)we(z) = 1 it follows, that the map y — w, is an isomorphism
from (B, —?—) onto (B, —T—), that is: (B, —(l)—) = (B, —?—) (See [17], pp.63.)

Now, we will describe the characters of (I, —T—) For each y € B let [y] := y o)

represent the integer part of y, where we used the 0-th truncation defined in
(2.5). If x € T, then

wy () = (,1)(1021)71 — (,1)25‘;0 TjYy—j-1 _ (,1)(10[%)4 = wyy) (z).

Thus the characters of (I, —T—) are the restrictions of the wy,-s on I. By iden-

tifying [y] with the integer n := Y y_; 127 € N, we see that wy,(z) =
§=0

(—=1)Xi=0%%=i-1 can be written in the form wy,(z) = (—=1)2=0%" (z € I)

with dyadic expansion n = Y n;27. The functions (w,,n € N) are the so-

7=0
called Walsh-Paley functions.
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The characters of (I, —T—) can be expressed also with the so-called Rademacher
functions (r,,n € N) given by:

rp(x) == (=1)*" (z €1).

The Walsh-Paley functions w,, are characters, being a finite product of charac-
ters:

wn(z) = (-1) 255 = [[ i)™ (@ €D (3.4)
§=0

where n = Z;io n;27 € N (n; € A). In particular, the Walsh-Paley functions
form a product system generated by the Rademacher system (r,,n € N).

"4 Characters of (B, —T—) and (I, —T—)
Consider €(t) := exp(2mit) (t € R) and define the maps

_ (T, T s B
v@) = (5t + 5 + ) (z € B); 55)
vy(z) =v(zey) (z,y€B)

v is a basic character of (B, —T—) and (B, —?—) = {v, : y € B}.
Since v is constant on intervals with rank bigger than —1, it follows that v
is continuous on B. Let us show that

o(e +y) = v(@)o(y) (3.6)

holds for all #,y € B. The definition of 3 gives, that v(z) = e(B(x(g))) (x € BT),
thus by (2.18) holds v(x + y) = v(z)v(y) for all z,y € BT. Since v and the

field operation + are continuous, and B* is dense in B, it follows that (3.6)
holds for each x,y € B, thus v is a character of the group. By the distributivity
of the field operations we have that (3.6) is valid also for v, for each z € B:
vy (x ¥ y) =v(ze(z + y)) = v(zez)v(zey) = v, ()v,(y), and being continuous,
v, is also a character of the group for any z € B.

Furthermore, v is a basic character of (B, —T—) each character of (B, —T—) is one

of the functions v, for some y € B: (B, —.F) = {v, : y € B}. Now,

v e (2) =vy(z)vs(2) (z,y,z € B), (3.7)

L]
y+z
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thus by (vz(8) =)ve(z) = 1 it follows, that the map y — v, is an isomorphism

—_—

from (B, +) onto (B,+), that is: (B, +) = (B, +). (See [17], pp.66.)
Now, we will describe the characters of (I, —T—) With the expansion y = [y] ¥
Yy (y €l) for x € I we have x o y = x o [y] —T—moy’7 thus

vy(x) = vy (@) (x €1).

Therefore, the characters of (I, —T—) are the restrictions of vj,)-s on I. By identi-

o0 ) o0 .

fying [y] with the integer m := Y  y_; 127 = > m;27 € N, we see that v, (z)
3=0 j=0

can be written in the form

(@) = [T oy s vey (@) = [J (v2s (&)™ where
i=0 i=0 (3.8)

Tn LTpn—1
Von (X) :=Ve_,_, =€ (? + 52

+) (x €.

Thus the character group of (I, 4.—) is formed by the product system (v,,, m €
N) generated by the functions (ven(x),n € N).

3.2 The exponential function

" On some classical elementary functions
The exponential function on C is a nonzero continuous function satisfying
the functional equation

exp(z +y) = exp(z)exp(y)  (z,y € C).
Consider the following classical functions expressed by the exp function:

exp(iz) + exp(—iz)
2 )

exp(iz) — exp(—iz)
27 '

exp(ix) — exp(—ix) _ exp(2iz) — 1
i(exp(iz) + exp(—ix))  i(exp(2iz)+ 1)

(a:eR\{(2k+1)g,keZ}).

sin(z) := cos(x) := (x € R)

tan(z) :=
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The functional equation

tan(z) + tan(y)
1 — tan(z) tan(y)

tan(z +y) = (3.9)

of the function tan inspired the solution of the problem in Chapter 5.

" The exponential function on I
A 2-adic exponential function is presented in Schipp [17], pp 59-60. We will
use now a similar one determined by a slightly different base, starting from

by = e —T— eo instead of e —T— e1. We will need in Chapter 5 the following
exponential function. (As we use an exponential function on I in Chapter 8, we
will investigate that version there.) Let us introduce the notation S:= {res:
x1 = 0}. By using the symbol [], we mean the arithmetical product.

Definition 2 Consider the following base:

bii=ectes,  byi=boiebyy  (n>2) (3.10)

Definition 3 Let us define the (S, e)-valued exponential function ¢ on 1y by the
following infinite product form:

((z) = H b7 (z=(x;,j €Z) ). (3.11)

As this function (¢ is very similar to the exponential function presented in
[17], the next proofs are the adaptations of the proofs of Theorem 2 in [17],
pp-51-53 and of Proposition 4 in [17], pp.59.

An inductive argument shows, that b, = e ¥ ¢n (n > 1) with 7(e,) =n+1,
thus the function ¢ has the following representation:

(@) =+ e =[Jle+aje;) (zem). (3.12)
j=1 j=1

Lemma 5 The function ¢ satisfies the functional equation

((x+y)=C@)elly) (v,yel). (3.13)
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Proof: The proof is almost the same to that of Proposition 4 in [17], pp.59-60.
By (2.15) and (3.10) we find that

n n n

[15 Lo o TLo = TD " o T
j=1 j=1

j=1 j=1 j=1

Now, simplifying the product in the last terms and taking the limit as n — oo
L] L]

we obtain (8.5) by using lim,, o bpt1 = lim,_,oo(€e + enpo + thi1) = € for

tn—l—l € ]In+3~

O

The next lemma shows, that {((z) : v € I} = S, and ¢ is one-one and
continuous from II; onto S.

Lemma 6 The function ¢ defined in (16) is a continuous isomorphism from I
onto S.

Proof: The proof is similar to that of Theorem 2 in [17], pp.51-53. By the
definition of b; we get b; = e ¥ ¢; (j > 1) where w(¢;) =j+1 (j > 1), and so
¢ has the following representation:

oo o0

C(z) = [J(e + e =[] (e + zje5).

j=1 j=1
We begin by noticing that since 7(¢,) =n+1 (n > 1), each ¢, is of the form

C1 = €3,

Cn = €pt1 + tn, where t,, € I,,10 (n > 2).

Since 1 > |le1|| > |lezll = ... > |len|| — 0O, the convergence of the modulus
of continuity w(¢,27™) = ||c,|| — 0 holds, thus ¢ is continuous on I. (See [17],

pp.51)
To show that ( is onto, it suffices to prove that to any given

y=e-+yses +yses+... €S
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there exists an = € I; and a sequence T, € I,,12 (n > 1) such that

pi(z) :=e e+ yzea + 11

+
H e—i—mjc] —e+y262 +y363 + A+ Ynt1€nt1 + Tn (n > 2)

(3.14)
We will establish (3.14) by induction on n. If n =1, set 1 = yo and Ty = 0. If
(3.14) holds for some n > 1, then write

T :=Opy2ens2 + 1, (n>2)

with some 6,12 € A and T}, € I,,45. Thus (3.14) is satisfied for n + 1 in place
of n if and only if

L] L] L]
Oni2ente + T + pol2) Tngr Cat1 = Yny2enta + T, (3.15)
—_——— —— ~—~— ~——
T et () entattnin Clnts

where t,41 € I,,13. Write p,(z) in the form
pn(z) =€ i Pl (z), with some p) (z) € I,
and define ¢41,ln4+1 € A so that
On+2 + Tnt1 = 2qn41 + I
holds. Clearly,

6n+26n+2 + Tn4+1€n+2 = dn+1€n+3 + ln+len+2-

Therefore, (3.15) is equivalent to

° [ ] ]
Yn+2 = ln—i—l, Tn-i—l = (Qnt1€n+3 + Tryll + mn—&-len—&-Zp;l(x) + Tn+1Pn (x)tn—i-l-

In particular, (3.14) is satisfied if we set

Tpt1 = Ynt2 + Ont2 ( mod 2)

L |:-Tn+1 + 57z+2:|
gn+1 = f

and Tpp1 0= qnyrenys + Ty + Znyi(entopl, () + topipn ().
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Thus for every y € S we get an z € I; such that ((z) =y.
In order to prove that ( is one-one, set

oo

Pu(z) = [[(e + zj¢;) (n=>1),

Jj=n

and observe that P, (z) is of the form P,(z) = e + TnCnti i P, (z) for some
pn(x) € I,42 if n > 1. Thus for all n > 1, P,(x) = P,(y) implies z,, = y,.
Since ((x) = ((y) is equivalent to Pj(x) = Pl( )= 21 =y1 = Py(z) = Pa(y)
and so on, we conclude that z,, =y, for all n > 1. See [17] pp.53.

O

3.3 The Blaschke functions

We will present the logical and arithmetical Blaschke functions, which were
introduced and studied in I. Simon[39] and I. Simon[40]. First let us sum up
some properties of the Blaschke functions on C.
"I The Blaschke functions on C: Consider the open unit disc and its
boundary
D:={z€C:|z|<1}; T:={z€C:|z| =1},

respectively, and I := D U T denotes the closure of D. Let a denote the disc
algebra: a:= {F :D — C: F is analytic on D and continuous on D}.

The Blaschke function on C associated to a complex parameter a € D is
defined by

zZ—aQ

B, (z) == e (z €D), (3.16)

where v € R and a is the complex conjugate of a € D.
It is known, that B, € a and B, is a one-one map from D onto D, and from
T onto T for every a € D. The inverse of B, is also a Blaschke function:

z+ea
—_— e D).
1+e¥az (2 )

If |z| =1 and a belongs to D, then |B,(z)| = 1, that is, B, is a bijection on
the unit circle T. According to Bokor- Schipp[3], B, can be written in the form

Ba(e't) = eP«® (t e R,a € D) (3.17)
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with the following bijection f, : [-m, 7] = [, 7],

t—
Ba(t) =+ p+ 2arctan (s tan <290)> ,

where a = re’? € C and s = 7n(r) is defined by means of the bijection
1+ [0,00) = [0, 00):

1
+Tfor0§r<1
1—r

n(r) =9 . _

for 1 <r < oo.

r+1

Furthermore, the composition of two Blaschke-functions, B,, and B,, is a
Blaschke function. (See Bokor-Schipp[3] and Soummelidis-Bokor-Schipp[32].)

" The logical Blaschke function

Definition 4 For a € I define the (logical) Blaschke function on (I, —T—, o) by:

o
o o T+ a

Buy(z):=(x +a)o(e+aox)t = —— (x €. (3.18)

o

et+aox

Since m(a) 2 1 and w(x) = 0, we have w(a o x) = 1, therefore by (2.9) we

have 7(e Yao x) = 0, hence e Yaox # 6. Thus the function B, is well-defined
on I
Note, that by (2.13) it follows that m(uov™!) = m(u) — 7(v) (u,v € B), thus

[Ba(z)[ =1 if [z =1, and [|Bo(x)]| = 1if [[zf| = 1. (3.19)

Since the additive inverse of a byte a € B is the element a itself, we get that
B, (x) = y implies B, (y) = x, therefore B, is a bijection on the unit ball I and
on the unit sphere S := Sy = {x € B | ||z|| = 1}. Moreover, for the inverse of
B, we have
B! = B,.

It is easy to see for a,b € I, that

B.(By(z)) = B.(z) (x €1I), where ¢ = _atb B,(b) € 1. (3.20)

[e]

e+aob
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This implies that the maps B, (a € I;) form a commutative group with respect
to the composition of functions and each element is of order 2.

i In the following we will establish the recursive form of the byte B, (z).
Let x € I,a € I; and set y = B,(z). Then ||y|| £ 1 and by (3.18) we have
y=uz tat yoaox
and consequently the n-th digit of y is

yn, = 0, for n <0,
Yn = Tp + ap + (yoaox), (mod2), forn = 0.

Thus the bits of y = B,(x) can be obtained by recursion for any given = € I,
since in order to compute (y o a o x),, we only need yi-s with k& < n. Indeed, let
us verify that (yoaox), really depends only on g, ..., Yn—2, Yn—1. Use definition
(2.9) of the product to get

—+oo —+oo
(yoaox), = Z Z Ap—i—j2;y; (mod 2)
1=—00 j=—00

and the z;-s and y;-s can be different from 0 only for 4,7 > 0 and the a,—_;—;-s
forn —i—j > 0. And so,

n—1 n—1—j
(yoaow), = Z Ap—i—jziy; (mod 2) = Z ?Jj( Z anﬂ;jmi) (mod 2)
0<4,5,i4j<n 3=0 i=0
and we obtain the following recursion:
Yo = 2o +ap (mod 2)
n—1 n—j-1
3.21
yn:$n+an+z< Z an,i,jxi)yj (mod 2) (n:172’) ( )
j=0 = =0

This implies that y, = (Ba(z)), can be written in the form
Yn =Tp+ay +fn($05 ,.’En,1) (mOd 2) (322)

where the functions f,, : A" — A (n=1,2,---) depend only on the bits of a.
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"I The arithmetical Blaschke function

Definition 5 For a € I define the (arithmetical) Blaschke function on
(L +,):

.
. L] r—a

By(z):=(x —a)e(e —aex) = (x €. (3.23)

.
€E—aex

For x € I and a € I; from (2.19) we have that e Zaez # 0, thus e Zaez
has a multiplicative inverse in B, and so the function is well-defined.
We state first, that

Proposition 2 B, : I — I is a bijection for any a €Iy on I, and on S C I as
well.

Proof: From (2.25) it follows that m(uev™!) = 7(u) — w(v) (u,v € B), thus

[Ba(z)[| =1 if [|#]| = 1, and |[Ba()|| = 1 if [Jz] = 1. (3.24)
B,(z) = y implies
1= B, (y) = 4 €,
et+aey

where a~ denotes the reflection of a, the additive inverse of a defined in (2.17),

and clearly, e J.r aex # 0, as required. Therefore we have seen, that the Blaschke
function B, : I — I is a bijection for any a € I; on I and on S.
Moreover, if B, ! is the inverse of B,, then the former argument results, that

B;'=B,- (3.25)

and (3.24) holds with ”exactly when” instead of ”if”.

O
The composition of two Blaschke functions is also a Blaschke function:
a —T— b
B,oBy =B, wherec=———¢€I; (a,bel). (3.26)

et+aeb
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We will use the notation a <b := -2+t ¢ I, (a,b € 1) in Chapter 5. Now,
e+aeb

B,oBy = Bag (a,b € 1;) ensures that the maps B, (a € I;) form a commutative
group with respect to the composition of functions. The identity element is the
identity map By = 1, and the inverse element of B, is B,-.

Definition 6 We will call (B, o) the Blaschke-group of the field (I, —T—, o), where
B:={Bgacl} (3.27)

and o denotes the composition of functions.
"4 Now, we will mention the recursive form of the byte B,(z) in the

arithmetic case. For B,(x) =y we have

y=x—a+aexey. (3.28)
Thus we can give the byte y = B, (z) recursively by

{yn(), forn <0

(3.29)
Yn = Tp — Gp — Q1+ 2¢n + (yeaex), +Qn 1 —2Q, forn=0.

Here ¢, is the rest given in the definition of the 2-adic difference (x : a)n

by: ¢, = 0 for n < m := min{n(z),7(a)} and x, — an — gn—1 + 2¢, = (= z
a), forn > m, and @, is the rest given in the definition of the 2-adic sum

(z * a) ¥ (yeaex): namely Q, =0 for n < my := min{r(z : a),m(yeaex)}
and (x : a)p+(yoaex),+Qn_1—20Q, = |(z : a) ¥ (yoaoa:)] for n > my.

To compute y,, we need @),,_1 computed in the previous step, and after y, we
get @, by the following integer part

Q. = l(mla)n—l—(yoaox)n—i—in—yn] -

2

Thus the recursive form of y = B,(z) is well-defined for x € I, because for
(y @ a ®z), we only need yg-s with k < n, which can be shown similarly to the
2-series case.

This implies that also in the arithmetic case, the digit y, = (Bs(x)), can
be written in the form

Yn = Tp + fru(To, -+ ,Zn—1) (mod 2)
where the functions f, : A" — A (n =1,2,---) depend only on the bits of a.



Chapter 4

Dyadic martingale structure
preserving transformations

This chapter is based on I. Simon[42], and with exception of Example 2 is
completely due to the author.

Numerous results were published in the last century about the effect of the
composition with a Blaschke function on the convergence of the power series
of regular functions in a boundary point of the complex disc D. First, Turdn
[46] showed, that to any ¢ € C (0 < || < 1) there is a complex function
fi(z) = Y02 anz", regular in D = {z € C : |z] < 1}, with convergent
power-series for z = 1, but the power series of f2(2) := f1(Bc(2)) = Yoy bnz"

z
diverges for the corresponding point z = Bgl(l), where B¢(z) denotes the
Blaschke function with parameter ¢ € C: Be(z) = 2= (z € D). After results of

1-¢=
Clunie, Schwarz, Haldsz, Alpdr and others, Indlekofer<[13] constructed a function
f, which is continuous on D, its power-series converges for z = 1, but the power
series of f*(z) := f(B¢(2)) = Yo, byz™ diverges for the corresponding point
z = Bgl(l)7 and with the condition on the modulus of continuity w(f,h) =

-1
@) <(logh/2ﬂ) ) as h \, 0+. He solved hereby the primal conjecture of Turan.

In this chapter is concerned the argument transformation given by the com-
position with a Blaschke function, and in general, a dyadic martingale struc-
ture preserving transformation or shortly a DMSP-transformation, and we deal
with questions related to the effect of a DMSP-tranformation on special func-
tion classes. We obtain, that composition with a DMSP-function preserves the

33
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classes of UDMD systems, that of A,,-measurable functions, the dyadic function
spaces LP(I), HP(I), and the Lipschitz classes Lip(c, ).

4.1 The effect of a DMSP-transformation

Definition 7 We call a function B : I — 1 a dyadic martingale structure
preserving function or shortly a DMSP-transformation if it is generated by
a system of bijections (9,,n € N), 9, : A — A, and an arbitrary system
(Nn,n € N*), np, : A™ — A in the following way:

(B(2))y := do(x0),
(B(x)),, == Un(zpn) + nn(z0,21,...,Tn—1) ( mod2) (neN").

The notion of the DMSP-transformation refers mostly to the function, but at
times to the composition with the given DMSP-transformation, which is obvious
from the context.

An immediate inductive argument implies the next propositions:

Proposition 3 For each generating systems (¥,,n € N) and (n,,n € N*), the
generated DMSP-transformation B is a bijection on I and its inverse function,
B~ is also a DMSP-transformation.

Proposition 4 Composition of DMSP-functions is also a DMSP-function.

The question, which function systems can be transformed by a DMSP-
transformation into a UDMD system, has a simple answer: exactly the UDMD
systems. The following lemma is needed to see this.

Lemma 7 [I. Simon[42]] a) Let B : 1 — I be a DMSP-transformation. Then,
for each n € N we have

rn 0 B =1y - hy with some hy, € L(Ay), |hn| = 1. (4.1)
b) L(A,) is invariant under any DMSP-transformation.

Proof: a) When 9,(2) = z (z € A), then (1)) = (=1)%(-1)" =
7o (2)(=1)?7() . In the other case, when ¥,(2) = 1 — 2z (¢ € A), then
(1)) = (=)= = (=) = (1) Oy, (2).
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By the definition of y = B(z) we have

rn(B(z)) =(=1)¥" = (=1)Pn@n) (—1)mm(@os@n1) —
=1 (@) (= 1) O (=)0 T =y (2) i (2).

Obviously, hy,(z) := (=1) ) (=1)m@o2n-1) € [(A,) and |h,| = 1.
b) The statement is a simple consequence of the definitions. [J

Theorem 1 [I. Simon[42]] Let B : T — 1 be a DMSP-transformation. The
function system (fn,n € N) is a UDMD system on 1, if and only if (fnoB,n € N)
is a UDMD system on 1.

Proof: Let B be a DMSP-transformation. If (f,,n € N) is a UDMD system,
then by (2.26) there are functions g, € L(A,,) with |g,| = 1 so that f,(z) =
T (2)gn(x) (x € I). The previous lemma ensures the decomposition r, (B(z)) =
rn(z)hy () for some h, € L(A,), |hn| = 1. As g, € L(A,), follows by the
second statement of the previous lemma, that g, o B € L(A,,). Consequently,
by, (gn o B) € L(Ay), |hn(gnoB)| =1, and

fn(B(@)) = 10(B())gn(B(2)) = rn(z) hn(z)gn(B(z))  (z €).
€EL(AR)

Thus (f, o B,n € N) fulfills the requirements of a UDMD-system formulated in
(2.26).

Because the inverse of a DMSP-transformation is also a DMSP-
transformation, follows that if for any given system (f,,n € N) the system
(gn := fn o B,n € N) is a UDMD-system, then the original one (f, =
gn o B~1,n € N) is also a UDMD-system.

O

Similarly follows for different DMSP-transformations:

Theorem 2 Let (B, : I — In € N) be a system of DMSP-transformations.
The function system (fn,n € N) is a UDMD system on 1, if and only if (f, o
B,,n €N) is a UDMD system on 1.

Remarks 1: i) As the Walsh-Paley functions w,(n € N) and the functions
vp, (n € N) are UDMD-product systems on I, their DMSP-transformed results
a UDMD-product system. For a precise statement see Remark 3.
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ii) Gat[10, 11] constructed the Vilenkin-like systems, a generalization of the
UDMD-systems on the more general space G,,. Extending the definition of
the DMSP-transformations on the general space G,,, similar statement holds,
which is a consequence of Lemma 7, b) and Remark 3.

i11) Schipp[35, 38| defined a general concept of systems, the adapted condi-
tionally orthonormal systems or AC-ONS with respect to a regular sequence
of weights. Specially, an AC-ONS on I is transformed under a DMSP-
transformation into an AC-ONS, which is a consequence of Lemma 7 b) and
(4.8), a later identity on the conditional expectations.

iv) As UDMD-systems are taken into UDMD-systems by a DMSP-
transformation, follows by the so-called transformation method presented in
Paragraph 2.6 that convergence and (C,1)-summation of UDMD-systems are
also preserved by this kind of transformation.

The question is in the following, whether function classes LP(II) (0 < p < o0)
and HP(I) (0 < p < oo) are invariant under a DMSP-transformation. For the
answer it is essential that this kind of transformations are measure-preserving.

Lemma 8 [I. Simon[{2]] Let B : 1 — 1 be a DMSP-transformation and n € N.
Then

B(I,(z)) = I,(B(z)) (z €. (4.2)
Proof: If t € I,,(x), then ty = xo, t1 = x1,...,ln—1 = Tp—1. For k < n we have
ng(tk) + nk(tmth ... ,tkfl) = Vp(zK) + nk(sco,xh ... 7='L'k:—1)7 that is,
(B(t))r = (B(z))r (k <n). Thus B(t) € I,(B(x)) (t € I,(x)), so
B(I(2)) C I(B(x)) (z €1), (4.3)
(4.3) holds specially for DMSP-function B~! and = = B(y), too. Thus by
B~ (I.(B(y)) € In(y) (y € 1) follows I,(B(y)) € B(In(y)) (y € I), which
completes the proof together with (4.3).
([l

From (4.2) follows that u(B(I,(z))) = pu(I,(B(x))) = 27" = pu(l.(z)), so
w(B(E)) = p(F) holds for each E € A,,, thus

w(B(E)) = w(E)  (EcA). (4.4)
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Proposition 5 [I. Simon[42]] DMSP-transformations B : I — I are measure-
preserving. Hence,

[roBdu=[san  (rerim), (4.5)
I I

Theorem 3 [I. Simon[42]] A DMSP-transformation preserves LP(I)(0 < p <
o0) and the dyadic Hardy space HP(I) (0 < p < 00). Moreover,

If o Bl =[]y (0 <p < o0), (4.6)
If o Bllzae = £l (0 <p < o0). (4.7)

Proof: For 0 < p < co and f € LP(I), we have by (8.12) that || fo B|l, = || fll, <
oo. Hence f o B € LP(I), too.

If f € L*>°(I), then for M = ||f||s € R, we have |f(z)| < M for a.e. z €1,
and by (4.4) follows that

p({z el: |(foB)(x)| > M }) = u({B(x) €I: |f(B(z))| > M }) =
=p{yel: |[fy)|>M})=0.
Hence foB € L*°(I) and ||f o Blloo < ||f]lco- As this holds specially for DMSP-

function B! instead of B and f o B instead of f, follows equality (4.6) for
p = 0.

For f € HP(I) (0 < p < o) we have by definition that ||£*f||, < co. By
(4.2) follows for characteristic functions, that 1;, (,(t) = 11, (B()) (B(t)) (t € 1),

hence by (8.12)
1

a0 BN = iy [ FB@0 =2 [ SBO) 11,0 0dne) =
= /Hf(B(t)) L, (@) (B(t)) du(t) =
1
= u(I.(B(z))) /I"(B(I)) f(t)du(t) = &, (f) (B(x)).
(4.8)
Thus

E(foB):=sup|E, (foB)|=sup|(Enf)o Bl =(E"f)oB.

neN neN

This gives by (4.6) and by assumption, that
1E5(f o B)llp = [ (€7f) o Bllp = IE¥Fp < oo
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Thus fo B € HP(I) and || f o B|lge = ||fllzr (0 <p < 00).

Remark 2. From (4.7) and (4.8) follows that
'l
If o Bllsro = sup| (Enlf = Enf?)? o Blloo = |l fllBaso-
ne

Thus the space of dyadic bounded mean oscillation (BMO) and the space of
dyadic vanishing mean oscillation (VMO) are also preserved under a DMSP-
transformation. For more on these spaces see Schipp [16].

Recall, that for @ > 0 the function class Lip(a,B) denotes the collection of
functions f : I — R which satisfy

[f(y) = f@)] <cplz,y)® (z,y€B)

for some constant ¢ € R which depends only on f.

Theorem 4 [I. Simon[42]] A DMSP-transformation preserves Lip(a,I) (o >
0).
Proof: For z,y € I, x # y consider m := min{n : z,, # y,}. Now, p(z,y) =27

and m is the largest number in N so that = € I,,(y). By (4.2) follows, that
B(z) € I, (B(y)) and m is the largest integer with this property. Thus

p(B(z),B(y)) =2"" =p(z,y) (z,y€l).
For f € Lip(a, 1) follows
[f(B(y)) — f(B(x))| < c p(B(x),B(y))" =cp(z,y)"

for some ¢ € R. That is, f o B € Lip(«,I).

4.2 Examples of DMSP-functions

Some examples of DMSP-functions are presented on the 2-series (or logical)
field (B, 40—, o) and the 2-adic (or arithmetical) field (B, 4.—, o), as the translations,
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dilatations, the function resulting the multiplicative inverse, a generalization of
¢ and the Blaschke functions, as well.

1) The following functions are trivial DMSP-functions on (I, —T—, o) and
(I, —.#, o). (The last one is not trivial, and it is based on (2.24).)

= =zta (r €T)(a €0),
B(z) =z oa, B(z):=zea (x €)(a €58),
B(z) =z, B(z) =z} (x €1).

2) If ¢, € I satisfies w(c,,) = n (n € N*), then the function

o0 o0
= H +c] H +1'ij
J=1 Jj=1

can be obtained by a simple recursion, thus it is a DMSP-function from I; to
S. See Schipp [17], pp 51-53. Its importance lies in the consequence, that the
multiplicative digits of a given byte y € S with respect to a sequence (b, =
e+ cp,n € N*), w(c,) = n can be obtained from its additive digits.

A further consequence of these is, that the (S , ®)-valued exponential function
is a DMSP-function, too.

3) Both the logical and arithmetical Blaschke functions with parameter a €

I
Ba(x):(x—oka)o(e—okaox)*l::ii—ka (z €,
et+aox
Ba(x) = (z ~a)e (e —aex) = 1" (z€l)
e—aex

are also DMSP-functions, as they can be obtained by a simple recursion.

Remark 3. As the additive and multiplicative characters of I on both fields
can be obtained recursively, a DMSP-transformation of them result a UDMD-
product system. Furthermore, for n € N* let j := max{k € N : n > 2F}.
Then,

wy, © B = w, - g; with some g; € L(A;),|g;] =1,
Up © B =y, - g; with some g; € L(A,), |g,;| = 1.

The statements hold obviously for n = j = 0, too.
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Proof: We have n = g:o n;2¢ and by (4.1) follows

wn(B(@)) = [Tri*(B(@)) = [[ " (@)h{ () = wa(w)g;(x)  (n €N,
=0 =0
where h; € L(A;) and |h;| =1 (i € {0,1,...,7}), thus g; := [["_, h™ € L(A;)

and |g;| = 1.
The statement for (v,,n € N) follows analogously.



Chapter 5

The characters of the
Blaschke group

In this chapter we will see that the Blaschke group (B, o) of the field (I, J.r, o) is
a topological group and we will construct its characters. After determining the
type of the recursion we will discuss summability and convergence questions.
This chapter is based on I. Simon[40].

5.1 The construction of the characters of the
Blaschke group

X To establish that the Blaschke group (B, o) of the field (I, —T—, e) is a topological
group, recall first, that

B:= {Ba,a S ]11}

and o denotes the composition of functions.
Consider the map ||| : B — R,

| Bal := sup || : B.(x)|| (Ba € B). (5.1)

zel

As inequality |le : 22|| <1 (z € 1) holds with equality for each x € Iy, and

41
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the equation ||e Zae x|l =1 is valid for any a € I,z € I, we have
e~ a2
[Ball = sup [lz — Ba(z)[| = sup fla e — = lla]|- (5.2)
z€l z€l e—aex

Hence the map defined in (5.1) is a non-Archimedian norm: for a,b € Iy
from (3.25) and (3.26) results that:

|Ball = [lall = 0,
|B.ll =0 < a =0 < B, =1,(the identity map),
1Bz = 1Ba- || = lla™ || = llall = || Ball,
a :L b .
1Ba © By|| = | Baan|| = || ———|| = lla + bl <
e+aeb

< max{||al], [|b][} = max{|| Ball, || Bb||}-
As usual, set the map d: B> — R
d(Ba, By) == |Bao By Y| (B, By € B) (5.3)

i.e. the metric induced by the norm (5.1). Consequently (B, o) is a topological
group with the topology induced by the metric (5.3). By (5.2) follows that the
map a — B, is an isometry on I;.

" The idea of the construction .

Being a subgroup of a topological group (see Paragraph 2.3), (I;,+) is also
a topological group, and the topology is induced by the metric. With notation
v
et+xoy
as before, (I, <) is a topological group.

T4y = x,y € I;) we find, that (I;, <) is a group. By the same argument

Recall, that the characters of the group (111,4.—) are given by the product
system (v, m € P) generated by the functions

Ty | Tp— x
vgn () ::5(74— 221 +-~~—|—2—71L) (x=(0,21,22...) €I;,n €N)
presented in (3.8).
The map
B: (I,<9) — (B,0), a— B,
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is a continuous isomorphism, hence in order to establish the characters of (B, o),
it is sufficient if we define the character group of (I, <).

As we already know the characters of (I, 4.—), it is sufficient to find a contin-
uous isomorphism from (I, J.r) onto (I, <), that is a function ~ satisfying the
equation

L]
V(@) + () (

. x,y € Ih). (5.4)
e+7(z)e(y)

Yo+ y) =

This equation is the analogue of the functional equation of the classical tan-
gent function, where the tangent function can be expressed by the exponential
function in the following way:

tan() — _CXPUL) —exp(—in) _ exp(2ix) 1
i(exp(iz) + exp(—iz))  i(exp(2iz) + 1)

(x eR\ {(2k+1)g,k c Z})

"« The tangent-like function
Recall, that with notation S := {z € S: x; = 0}, the (S, o)-valued exponen-
tial function ¢ on I; was presented in Paragraph 3.2.

Definition 8 Define tangent-like function on (I, —7—) by

)= P78 (@em) (5.5)
() +e
and the tangent function on (I1,+) by
tan(z) = ) —° (wel), (5.6)
(z) e

where (?(x) := ((x) o {(x).

We collect in a lemma the properties that are needed for our subsequent
study.
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Lemma 9 [I. Simon[{0]] For any a,b € B,z € I; and y € 1y, the following
holds:

iyat+a=eroa

L ata a

i) —— = —
bip b

iii) (*(x) = ((e1 ® 2)

iv)efyés
e—y

Proof: i) Using the notations of the recursive definition of the addition —T—, we
L]
find that (a + a), = 0 if and only if ¢,—; = 0. But ¢,—1 = 0 is equivalent to
an—1 = 0, which holds exactly when (e; ® a),, = 0, because multiplication by e;
shifts a.
i1) By the commutativity and distributivity of the operations we have ae (b +

b)="be(a ¥ a), thus the relation holds. The relation can be seen also by i):
ata _ ciea _a
b¥b

e1eb b*
i11) Tt is a simple consequence of i) and the functional equation of ¢. In an
other way, it follows directly by the definition of the base: b; eb; = b1 (j > 1).
Using the commutativity and associativity of the product e, we get (?(z) =

(H?';l b;?f) . (H;; bjw,j) — 12,65, = ey o) (w e ).

iv) It can be easily established, that if y = (0,y1,92...) € I3, than

€+y:(17y17y2,y37) (5 7)

and e — y= 1y, % )2 W )s,...)

Applying the notation

+ e

ery

Y

:Z’

e

we can state first, that 7(z) = =(e T y) — m(e : y) = 0, that is, z € S, thus

zo = 1. Furthermore,
L] L]

e+y==zeo(e—y).
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Now, examining (the Oth and) the 1st digit of the right and the left side, we
find with zp = 1 and by (5.7), that:

y1=z20-y1+2 -1 ( mod?2)

which means, that (zo = 1 and) z; =0, andso z € S={z €1: 2 = 1,2 = 0}.

O

Lemma 9 #3) shows, that the tangent-like function  is closely related to
tan: namely v(z) = tan(e_; e z) (z € I}).

Theorem 5 [I. Simon[40]] The function v defined in (5.5) is a continuous
isomorphism from (]Il,—T—) onto (I1,<).
Proof: The continuity of v follows from the continuity of { and of the field

operations.
Using Lemma 9 i) and the functional equation of ¢, we get:

z) ¥y z)+e
')’(39)4’)’(y) _ ’Z( ) ( ) — C.(»U)'f‘ _ C(y)+6. _
e+v(z)ev(y) e+ C(I):E o SW=e

results

Taking in consideration, that f(a) := a Ya= e1 @ a is a 1-1 function on I, we
have ((z) = {(y), which gives by Lemma 6 that z = y.
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In order to see, that for any y € Iy there is an x € I; with y(z) = y, we have
to solve for x the equation

((z) —e _y
((z) Te
that is,
()= S5
e—y

Now, by Lemma 9 iv) and Lemma 6 follows

z=(""t <e—l—y> and ¢t (e—i—y) el,
€e—-y €=y

and the proof is complete.

" Characters of the Blaschke group

Theorem 6 [I. Simon/[40]] The characters of the group (I1,<) are the functions

vpoy ! (n€eN).

L]
Proof: As~~1is a continuous isomorphism from (I, <) onto (I, +), and (v,,,n €

N) forms the character group of (I, ;), it follows that (v, oy~!,n € P) are the
characters of the group (I, <).

O

Corollary 1 [I. Simon[40]] The characters of the Blaschke group (B,o) are the
functions

vpoy toB™' (neN),

where (B,o) denotes the Blaschke group of the arithmetic field (]I,J.r,o), and
B : (I,<) — (B, o) represents the function a— B,.
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5.2 Recursion

"X The aim of this Paragraph is to show that v(z) can be obtained by a simple
recursion, and therefore (v, o y~!,n € N) is a UDMD product system.

Proposition 6 [I. Simon[{0]] The functions v, o y~(n € N), the characters
of (I1,<) form a UDMD product system.
Proof: Equation (3.12) shows, that the basic sequence of bytes (b,,n € N)

defined in (3.10) can be written in the form b, = e ¥ En+1 1 dyp (n >
1) where 7(d,,) > n + 2 and the function ¢ has the following representation:

oo

C@) =[]+ e +d)™ =]le+zjei +25d;) (dj €Tnya).
j=1

j=1

Similar to the proof of Lemma 6, (where to a given y € S the recursion yields
x € I such that {(x) = y, now conversely) an inductive argument leads to a
so-called simple recursion of (:

C(@)g =1,

and (¢(x)),, = Tn-1 + f(21,...,2n_2) ( mod 2) (n>1) (58)

with some function f : A"~2 — A. With y = ((z), 2z := ((z) le= (¢(x) +

e”) = (1,0,y2,93,...) + (1,1,1,1,...) = (0,0,y2,¥3,¥4,...) can also be ex-
pressed as:
20=21=0, and 2z, = xp_1 + f(21,...,Tpn_2) (n>2).

Similarly, ¢ := {(x) + e = (1,0,y2,93,...) + (1,0,0,0,...) = (0,1, 92, Y3, Ya, . - .)
can be expressed with a simple recursion formula:

t():O,tl :1, and tn:l‘n_1+f(l‘17...,l'n_2) (TLZQ)

with the same function f : A"72 — A.
Recursive form (2.24) allows us to give the multiplicative inverse element of
t € S; with a simple recursion:

;=0  (i<-1
(t o1 =1,
Y =tngr + f(t1, .. 1) (n>0)
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with some function f’: A™ — A.

With z = ((z) P eandt = ¢(z) 1 e we get by v(z) = zet~! and by
zo = z1 = 0 that

(Y(@))p = 22t Do+ ...+ 2p ()1 + guo1 ( mod 2).

Finally, we obtain by (t7!)_; = 1 and the previous recursions for z and 71,
that

(v(x)),, = xn + f(x1,...,2y—1) (n > 0) (5.9)
for some function ]7: A"t — A and we have our desired result.
By (5.9) the byte y~1(x) can also be written by a simple recursion for any
z € Iy, thus ven (v71(2)) = e (%) g(1,. .., xp—1) = (=1)"g(z1,...,20-1),
with some g € L(A,), and |g(z1,...,2n—1)] = 1. In consequence of (2.26)
follows, that (vgn 0y~1, n € N) satisfy the requirements of a UDMD system and
(vn, oy~ 1, n € P) is a UDMD product system.

]

As (v, oy~ 1,n € N) is a UDMD product system, the discrete Fourier co-
efficients with respect to this system can be computed with the Fast Fourier
Algorithm. See Schipp-Wade[17], pp. 106-111 about the FFT Algorithms.

5.3 (C,1) summability and a.e.convergence of
the Gamma-Fourier series

By (5.9), the function v is a bijection on I,(z), (x € I1,n € N), yv(I,(x)) =
I(v(z)), thus for any dyadic interval E we have u(t € I : v(t) € E) =
u(E), and this follows for any measurable set E as well. Therefore the variable
transformation ~y is measure preserving. This follows also by the fact, that v is
a DMSP-transformation presented in Chapter 4. Thus,

foydu= | fdu. (5.10)
]Il ]Il

Definition 9 The Gamma-Fourier coefficients of an f € L'(I;) with respect to
the system (v, oy~ 1, m € N) are defined by

Fi(m) = i f@)om(y H(@))du(z)  (m€N).
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Define the Gamma-Fourier series of an f € L*(I) and the n-th partial sums of
the Gamma-Fourier series S7 by

STf =D k) vk oy
k=0

n—1
Sy =3 Fi(k)-vkoy ! (neP)
k=0

Furthermore define the Gamma-Cesaro (or (G—C, 1)) means of ST f by oo f :=0

and
n

agf::%ZS,jf (n €P).

k=1

The counterparts of the Carleson-Hunt theorem on the a.e. convergence of
Fourier series of an f € LP(R) (p > 1) and of the Lebesgue’s theorem about the
(C,1)-summability for f € L*(R) hold for the Gamma-Fourier series of an f €
LP(I;) (p > 1) and f € L*(Iy), respectively. The first one is a direct consequence
of the general result of Schipp [37](Theorem 4) on the a.e. convergence of Fourier
series with respect to any UDMD-product system of an f € LP(R) (p > 1). The
second one is a consequence of the general result of Gat[9](Theorem 15) for
Vilenkin-like systems, a generalization of UDMD-product systems, thus also of
(vn 0oy~ n € N). However, these can be obtained directly using results on
expansion with respect to the character system (v,,n € N) and applying the
transformation method presented in Paragraph 2.6.

Theorem 7 On the field (I, —T—, e) we have

a) S)f— f ae. asn— oo for any f € LP(I)(p > 1);

b) o7 f — f a.e. asn — oo for any f € L*(Iy).
Proof: The first step is to apply the transformation method for measure pre-
serving function v: Let S, f stand for the n-th partial sum of the Fourier series

of f, and o, f denotes the n-th Cesaro mean of Sf, both with respect to the
characters. Then,

Sy f=1[S(foN]or™, (5.11)
opf(x) = an(foy) (v ! (2)). (5.12)
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a) We use the theorem of the a.e. convergence of the Fourier series on
the field (I, +, ) due to Schipp [36]: lim (S f)(z) = f(z) ae. for any f €
LP(I)(p > 1). Thus with (5.11) we get ILm SYf(x) = ILm Su(foy) (v Y(z)) =

(foyoy™1)(z) = f(x) a.e. for any f € LP(I;) (p > 1), as required.
b) We use the theorem of the (C, 1)-summability of the Walsh-Fourier series

on the field (I, —T—, o) due to Gat [7]: lim (o, f)(z) = f(z) a.e. for any f € L(I).
m— o0
Thus with (5.12) we get lim o) f(z) = lim o,(f o y)(y"}(z)) = (foyo
n— oo n—oo
vy 1) (z) = f(z) a.e. for any f € L1(I;), as required.
(]

Remark 4. As v, o~ is a UDMD-product system, the general theorems for
UDMD systems and Vilenkin-like systems imply also norm convergence of the
Fourier series with respect to this system:

Tim (1831~ fllg =0, (f € (L), (1 < ¢ < ) (5.13)
Tim (187, = flly = 0,(f € L4(I)), (1 < ¢ < ) (5.14)
Tim o7 = fllg =0, (f € L} (). (5.15)

Moreover, (5.14) and (5.15) holds for ¢ = oo when f is continuous on I.



Chapter 6

Discrete Laguerre functions
on local fields

6.1 Introduction

In this chapter we will introduce the discrete Laguerre system on the dyadic (or
2-series) and 2-adic fields using the corresponding characters and the analogue
of the Blaschke functions. The complex variants of these systems play an im-
portant role in the system identification. The discrete Laguerre functions and
their generalizations (Malmquist-Takenaka, and Kautz systems) are often used
in control theory to identify the transfer function of the system. (For more de-
tails see [3].) Some analogous properties and summability questions of Fourier
expansion with respect to these systems are presented on these local fields.

Let us recall, that the discrete Laguerre functions L (n € N) contain a
complex parameter a € D := {z € C : |z| < 1}, and can be expressed by the
Blaschke functions B,(z) := ¢7Z=% (2 € C),(a € D, v € R). On C, the

l1—-az

discrete Laguerre functions Lg{") associated to B, are defined by

Li% (2) := ma(2) B (2), where mg(z) = el U (z€C,keZ) (6.1)

1—az

for a € D. The boundary of D is denoted by T := {z € C : |z| = 1}.
If a belongs to D, then B, is a bijection on D and on T, respectively. Thus

o1



52 CHAPTER 6. DISCRETE LAGUERRE FUNCTIONS ON LOCAL FIELDS

B, can be written in the form
B, (") = ) (s e R,a € D) (6.2)

with some bijection 3, : [—m, 7| — [—m, 7] mentioned in (3.17). (See [3].)

We can observe, that Lgﬁo)(z) = zF (k € Z) coincides with the trigonometric
system on T. Thus by (6.1) the discrete Laguerre system except the factor m,
can be obtained on T from the trigonometric system by an argument transfor-
mation T(z) = Bu(z) (z € T).

The discrete Laguerre system is orthogonal with respect to the scalar product

1 [ P
(F,G) = 2—/ F(e")G(e™)dt (F,G e LY. (6.3)
™ —Tr
This is a consequence of the orthogonality of the trigonometric system. Indeed,
by (6.2)

1 [ I
(L@, L@y = — / el n=mBa(9) 8! () ds = — / AL T .

27 2 J_,
(n,m € N). Linear approximation algorithms proposed in the literature are
based on weighted partial sums of the trigonometric Fourier series of the transfer
functions. By applying an appropriate variable transform, the Laguerre and
Kautz basis can be related to the trigonometric one. (See [3].) This can be used
to transfer some summation results to Laguerre-Fourier series.

The name of the above presented discrete Laguerre functions comes from
the fact, that the Fourier coefficients of them give the discrete analogues of the
Laguerre functions.

This chapter is based on I. Simon [39], where the author constructed the
analogue of discrete Laguerre functions starting from the characters of the ad-
ditive group of the dyadic and 2-adic field, and using an argument transforma-
tion. Some convergence and summability properties of Fourier expansion with
respect to these systems are examined.

6.2 Discrete Laguerre functions on the dyadic
(or 2-series) field

The functions corresponding to the trigonometric system (e’** |k € Z) (t € R)

will be now the characters of the group (I, —T—), namely the Walsh-Paley functions
(wg, k € N) presented in (3.4).
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Definition 10 Define the logical discrete Laguerre functions associated to B,
with parameter a € 17 by

L\ (2) := wp(Ba(x)) (k€ N,z €l). (6.4)

For a € I; consider the functions r, o B, (z € I, n € N). (Here o stands

for function-composition.) The logical discrete Laguerre system (Lff), k e N) is
the product system generated by (r,, o B,,n € N):

o0

L (@) = T Ira(Ba(@))]* .

n=0

Theorem 8 [I. Simon[39]] For each a € 1; the functions (rp o B, n € N) form
a UDMD-system on L.

Proof: We use recursion form (3.22) of y = B, () to get
rn(Ba(z)) = (=1)¥ = (=1)*n (=1)tnHim@oin) =y, (1) g, (2)

with some function g, (z) = (—1)%»+/ (@0 2n-1) “that is constant on intervals
of rank bigger than n. Thus g,, € L(A,,). Clearly, |g,| = 1. Hence (r,, 0 By, n €
N) is a UDMD sequence on I.

O
Corollary 2 [I. Simon[39]] The logical discrete Laguerre-system (L,(Ca), k € N)

is a UDMD-product system generated by (rn o Ba,n € N), consequently it is
complete and orthonormal.

6.3 Discrete Laguerre functions on the 2-adic
field

As before, the functions corresponding to the orthonormed system (et k €
Z,t € R) will be the characters of the group (I, —T—), namely the functions (vg, k €
N) presented in (3.8).

Definition 11 Let us define the arithmetical discrete Laguerre functions as-
sociated to B, in the following way:

L\ (2) := vp(Ba(x))  (keN,z ). (6.5)
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For a € I; and n € N consider the functions ve» o B, on I. The arithmetical
discrete Laguerre system (L,(ca), k € N) is the product system generated by (van o
B,,n € N):

400
L (@) = [ [as (Ba(@)]™  (z € D).
=0

Theorem 9 [I. Simon[39]] For each a € Iy and n € N the functions ven 0 B,
form a UDMD-system on 1.

Proof: For B,(x) =y we have y =z — a + a ® x e y, thus

van (Bg(x)) = von (x a J.r yeaer)= vor(@)van(yeaer)
van (@)
_5(@) 5(1‘32—1 4t %)vgn(yoaox) B
h 2 Uzn(a) -
= rn(x)gn(m)a
where g, (x) depends only on zg,...,x,_1. This follows by the recursive com-
putation of (yeaex),(yeaex),...,(yeaex),, because van (y®aex) depends

only on zy-s with k& < n. Hence g, € L(A,). Furthermore, it is clear, that
|van (Bg(x))| = 1 (2 € I). Thus these functions form a UDMD-system.

O

Corollary 3 [I. Simon[39]] The discrete Laguerre-system (Lgﬁ),m €N)isa
UDMD-product system generated by (venoBy,n € N), consequently it is complete
and orthonormal.

6.4 (C,1)-summability and a.e. convergence of
Laguerre-Fourier series

Let now B, and Lg{l) denote the respective Blaschke-functions and discrete

Laguerre functions on the studied fields (H,—T—,O) and (]I,—T—,O) (a € I1). The
variable transformation T : I — I, T(x) := B,(z) is measure preserving, as it
is a bijection on intervals: T(I,(z)) = I,(T(z)) (x € I,n € N). Thus for any
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dyadic interval E we have u(t € I: T(t) € E) = u(F), and this follows for any
measurable set F, as well. Hence,

/]IfoBa dp = /Hfdu. (6.6)

Definition 12 Let us define the Laguerre-Fourier coefficients of an f € L(I)
by
o) = [f@L @dux)  (neN)
I

Furthermore the Laguerre-Fourier series S f of an f € LY(I) and the n-th
partial sum Sfla)f of the Laguerre-Fourier series S'*) is defined by

oo

$@f =" f k)L,
k=0
n—1 o

S@f=3" f@O®LY  (neP).
k=0

Let us define the Laguerre-Cesaro (or (L — C, 1)) means of S f by aéa)f =0
and

1 n
(@) p._ = (a)
oy f nkEZISk f (n eP).

The counterparts of the Carleson-Hunt theorem on the a.e. convergence of
Fourier series of an f € LP(R) (p > 1) and of the Lebesgue’s theorem about the
(C,1)-summability for f € L!'(R) hold for the Laguerre-Fourier series of an f €
LP(I) (p > 1) and f € L'(I), respectively. The first one is a direct consequence of
the general result of Schipp [37](Theorem 4) on the a.e. convergence of Fourier
series with respect to any UDMD-product system of an f € LP(R) (p > 1).
The second one is a consequence of the general result of Gat[9](Theorem 15)
for Vilenkin-like systems, a generalization of UDMD-product systems, thus also
of (Lg{l), n € N). However, these can be obtained using previous special results
on expansion with respect to character systems (w,,n € N) and (v,,n € N),
respectively, and using the transformation method presented in Paragraph 2.6.

Theorem 10 On both fields (H,—T—, o) and (H,_T_, e) we have
a) Sfla)f — f a.e. asn — oo for any f € LP(I),p > 1;
b) ol f = f a.e. asn — oo for any f € L'(I).
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Proof: The first step is to apply the transformation method for measure pre-
serving function By: let S, f stand for the n-th partial sum of the Fourier series
of f, and o, f denotes the n-th Cesaro mean of S f, both with respect to the
characters. Then,

Let us now consider the field (I, —T—, o).

a) We use the theorem of the a.e. convergence of the Walsh-Fourier series due
to Schipp [36]: liLIl (Sm.f)(z) = f(x) a.e. for any f € LP(I)(p > 1). Thus with
(6.7) we have lim S,Sa)f(x) = lim S,(f o B.)(B;(x)) = (foBso B, )(z) =

n— oo n—00
f(z) a.e. for any f € LP(I;) (p > 1), as required.

b) Now, we use the theorem of the (C,1)-summability of the Walsh-Fourier
series on the field (I, —T—, o) due to Fine and Schipp [15]: limy, o0 (0 f)(2) = f(2)
a.e. for any f € L'. Thus with (6.8) we have lim,, ol f(x) =lim, o0 opn(fo
B;Y)(Bu(x)) = (foB;toB,)(x) = f(x) a.e. for any f € L'(I), and this proves
the theorem. .

We can get the same result on the field (I,+,e) using the corresponding
theorem of Gat [7].

]

Remark 5. As discrete Laguerre systems (Lg{l)7 n € N) are UDMD-product
systems, also the norm convergence of the Fourier series with respect to them
is valid:

dim (|52 = fllg =0, (f € L(I), (1 < ¢ < 0) (6.9)
dim S5 f ~ fllg=0,(f € LI@), (1 < g < o0) (6.10)
Jim Jlot)f — fll, =0, (f € L'(D). (6.11)

Moreover, (6.10) and (6.11) holds for ¢ = co when f is continuous on I.



Chapter 7

Malmaquist-Takenaka
functions on local fields

The complex variants of the Malmquist-Takenaka systems play an important
role in system identification. In this chapter are presented the analogue of these
functions on two local fields using the generator system of the corresponding
characters and the Blaschke-functions. Properties of these systems, Fourier
expansion and summability questions are presented. This chapter is based on
I. Simon [41].

7.1 Introduction

The Malmquist-Takenaka functions \Il on C are defined by

V1 —lagl? V1—la
\Ijg(z)zl—ic’lo,(j’ TP (z) = 1—clnn HB ), (r€CkeZ)
for (a; € D, j € N) and p = (ag, a1, a2, ...).

The Malmquist-Takenaka system is orthogonal with respect to the scalar
product (6.3). Note, that using the same parameters a; = a (j € N), the
functions WP give the discrete Laguerre system (Lg{l), n € N). (For more details
on these systems see [3].)

We will construct the analogue of the Malmquist-Takenaka functions starting
from the generator systems of the characters of the dyadic and 2-adic additive

o7
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groups, and using an argument transformation. This will be a UDMD product
system, thus also a complete orthonormal system, which equals the discrete
Laguerre system for identical parameters a, = a (n € N).

7.2 Malmquist-Takenaka systems on the dyadic
and arithmetic field

" The logical Malmquist-Takenaka functions

Definition 13 To any given system of bytes (a; € 11,7 € N) define the logical
Malmquist-Takenaka functions (w,(cp),k € N) with parameters p = (ag,a1,...)

on the 2-series field (I, —T—, o) as the product system generated by

(@n,an =Tpo Ban; nec N) (71)

That is, w,ip) () = IO;O[O [rn(Ba, (m))}k" (z €l).

Remark 6. In the recursion form y, = x,+f7"(zo,...,Tn—1) of y = B,, ()
presented in (3.22) the functions f7* : A™ — A depend on the parameter a,, €
I;. As we need here different bytes a,, in our construction, we use upper indices
to indicate the applied byte. Now, from all these functions

belonging to a1 :  fi  f3 ... f}
belonging to as :  fZ f2 ... f?
belonging to a., : fi"* f&* ... f*

we will use only the elements from the diagonal, the f]'-s, like in the Cantor’s
diagonal argument.

Theorem 11 [I. Simon[/1]] For every parameter-sequence (a; € 11,1 € N) the
functions (¢nq,, n € N) defined in (7.1) form a UDMD system on L.

Proof: Using the recursion form of y = B, (z) we get

Pran (@) = (=1) = (=1)"n (=) (eIt In o) = g (1) g, (2)
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where g, (z) = (=1)(@)ntfa(@os2n1) i A _measurable: g, € L(A,). Clearly,
|gn(z)] =1 (z € T), and the proof is complete.

O

Corollary 4 [I. Simon[41]] The logical Malmquist-Takenaka system (1/),(57), ke
N) is a UDMD product system, consequently it is a complete orthonormal system

on (H7—T—7O).

" The arithmetical Malmquist-Takenaka functions

We consider the functions (van(2),n € N) known as a generator system of

the characters of the group (I, J.r) mentioned in (3.8).

Definition 14 Let us define the arithmetical Malmquist-Takenaka functions
(‘I',(Cp),k € N) with parameters p = (ag,a1,...) (an € I1,n € N) on the 2-

adic field (I, —T—, o) in the following way: the system (\Plgp), ke N) is the product
system generated by
(q)man ‘=1wvgn 0 By, ,n € N) . (7.2)

That is, O" (x) = jfjlo [09i (Ba, (2))]" (€ (I,+,9)).

Theorem 12 [I. Simon[{1]] For any (a, € I, n € N) the functions
(®pq,, n€N) defined by (7.2) form a UDMD system on L.

Proof: For B, (x) =y we have y =z * an 1 a,, e x ey, thus similarly to the
proof of Theorem 9 in Paragraph 6.3, we have

030 (Ban (2)) = 030 (2 = an Ty e an o) = 202 W tnon)
van ()
__(En (5t i) van(y e an 0 )
B (?) von (ay) N
= 7n(2)gn(x),
where g, (z) depends only on z,...,2,_1 and on the parameters. Hence g, €

L(A,,). Clearly, |9, 4(z)| =1 (z € I), and the proof is complete.
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O

Corollary 5 [I. Simon[{1]] The arithmetical Malmquist-Takenaka functions
(\I/,(cp),k: € N) form a UDMD-product system, consequently it is a complete or-

thonormal system on (I, —T—, o).

" In the following we consider the corresponding Malmquist-Takenaka-
systems on fields (I, +, ) and (I, +, o).

We will see in the next proposition, that the Malmquist-Takenaka system is
a generalization of the discrete Laguerre system on both fields.

Proposition 7 Particularly, using the same parameters a, = a € I; (n € N)
the Malmquist- Takenaka functions \115,” )(x) equal the discrete Laguerre functions
L\ (x) on fields (I, —T—,O) and (I, —T—,O).

Clearly, with the special parameters a, = 6 (n € N), this system is not
else, than the character system of the corresponding field. That is, Malmquist-

Takenaka systems are a generalization of the character system of the corre-
sponding additive group, as well.

7.3 Summability and convergence questions

Definition 15 Let a,, € I1(n € N) form a parameter sequence p = (ag, a1, .. .).
The Malmquist- Takenaka-Fourier coefficients f®) of an f € L'(I) with param-

eter sequence p, the n-th partial sum S,Sp)f of the Malmquist-Takenaka-Fourier
series S®) f, and the Malmquist-Takenaka-Cesaro (or MT — (C,1)) means of
S®) f are defined by

7O (n / fla du(z) (neN),

Sw —Zf ke (neP),

00 f—Oando ZS (neP).
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The transformation method doesn’t hold here because of the different pa-
rameters aj, of the transformation functions, but properties of UDMD product
systems are valid for the Malmquist-Takenaka systems (\I!,(f’ )7 k € N) on the cor-
responding fields, thus applying general theorems on convergence and summa-
bility of Schipp [37](Theorem 4) and of G&t[9](Theorem 15), the following holds:

Remark: We have

Jim (1S5 = fllg =0, (f € LD, 1< g < ), (7.3)
Jdim [[S®f~ fllg=0,(f € LI(I),1 < g < o0), (7.4)
dim ol f — fllg =0, (f € L'(T), (7.5)
SEff ae  (feLYD), (7.6)
SPf s f  ae  (feli(l),q>1), (7.7)
cPf s f  ae  (feLYD). (7.8)
Moreover, (7.4) and (7.5) holds for ¢ = oo when f is continuous on I. (7.6)

holds a.e. and also at every point of continuity of f.
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Chapter 8

Construction of 2-adic
Chebyshev polynomials

This chapter is based on I. Simon [43].

8.1 Introduction

This Chapter is based on [43]. Chebyshev polynomials play an important role
for example in approximation theory (the resulting interpolation polynomial
provides an approximation that is close to the polynomial of best approxima-
tion to a continuous function under the maximum norm) and other fields of
applications. In classical analysis the Chebyshev polynomials of the first and
second kind can be expressed through the identities

T,.(x) = cos(n arccos z) (x € [-1,1], n > 0);
sin [(n + 1) arccos z]

U, (x) = (x € [-1,1], n > 0),

sin(arccos )

where the cosine and sine functions can be given by means of the exponential
function: cosx = % and sinx = 6m_2§7w. Each of the Chebyshev poly-
nomials of the first and second kind form an orthogonal system with respect to
the weight function (1 — 22)~'/2 and (1 — 22)/2, respectively.

In this chapter we will construct some analogies of the Chebyshev polynomi-

als on the 2-adic field (I, —T—, o) using several kinds of 2-adic cosine and sine func-

63
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tions. We present two opportunities to construct 2-adic trigonometric functions
expressed by the additive characters (v,,n € N) or by the S-valued exponential
functions, which is in connection with the multiplicative characters. In this way
we will obtain first two dyadic martingale structure preserving transformations
of (vn,n € N), which will yield a UDMD-product system, thus complete and
orthonormal. Then follows two further types of Chebyshev polynomials, which
will also fulfil orhogonality.
Throughout this chapter for x € I let
L]

nr=zrtrt.. ta ifneN* andlet 0-z:=6. (8.1)
—_———

n times

Note, that2~x:m—7—x:elom (xel)and 2" -z =e, 0z (r €,n € N).

The notion of DMSP-functions and some properties of compositions with
them were presented in Chapter 4. Here we will refer to some restrictions of
DMSP-functions on dyadic intervals also as DMSP-functions, as they fulfill the
same properties.

The S-valued exponential function on I: A 2-adic exponential function
is presented in Schipp [17], pp 59-60. We will use now a similar one determined
by a slightly different base, starting from b; = e —T— eo instead of e —T— e1. Recall
first the base defined in 3.10: by := e + €3, b, :=bp_1 @b,_1 (n > 2).

The structure of these bytes will be essential, and we will need the first 6
digits of the first four exactly, which can be calculated simply:

by=e+e3+es=e+e3+ds, w(ds)>4,

bs=e+es+es+es+eg=e+eq+dy wdy)>5, (8.2)
by=e+es+e+er+es+...=e+es+ds, w(ds) >6

where d3 := ey, dy ::(35‘7*66 ;69 ds = eg :L
Recall, that in general,

b, =¢e 1 €nt1 i dpt1 (n > 1) with w(dp41) > n+ 2. (8.3)

Definition 16 Consider S := {z € S : z; = 1} = L(e i e1). Define the
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S-valued exponential function on T by:
(oo}
=[[t5  @=(.ieN)eD.
With the notations of (8.1), the function ¢ has the following representation:
= H e + €j+1 + d]+1 Ti- H |:€ +xj-1 6J+1 + d]-’rl)] (84)
j=1 =1

This function is similar to those defined in Schipp[17], thus with similar
arguments we have that  is a continuous function satisfying the functional-
equation

(e ty)=C@)ecly) (nyel). (8.5)
For more on ¢ see Schipp [17], pp 59-60.

8.2 2-adic sine and cosine functions

In this section we present two ways of constructions of 2-adic trigonometric
functions. The first one is expressed by the S-valued exponential functions,
which is in connection with the 2-adic multiplicative characters. See [17], pp.72-
73. An other way of the construction is expressed by the additive characters
and is a complex-valued function.

Definition 17 Define the 2-adic cosine and sine function on I as follows:

+ e

cosz := (((x)
sinz := (¢(z)

((z7))eer  (zel),
((z7))eer  (zel).

Definition 18 To any n € N define the 2-adic COS,, and SIN,, functions
on I as follows:

COS,(x) = M (z 1),

SIN,(z) := %j’"(ﬂ (z €1).
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Addition formulas for 2-adic sine and cosine functions are a result
of the functional equation (8.5) of the exponential function, and can be derived
as in the real case but with slightly different coefficients. We state first that by
- =xzee (x 6 B) and by the dlstrlbutlmty of the 2-adic operatlons we have

(x—T—y) =z~ —|—y . Furthermore, 2a —a—i-a—aoehthusa—(a—i—a)oe 1,
and e_1ee_1 =e_5. Now,

=cosx ecosy + siny esinz.

Similarly, sin(x J.r y) =sinxecosy J.r coszesiny (x,y € I). Clearly, cosine is
even and sine is odd, that is, cos(z™) = cos(z), and sin(z ™) = sin(x) (x € I).
Thus also holds cos(x * Yy) = CoST ® cosy ° sinz e sin y, and so, by addition
turns out, that

cos(x 1 ) T cos(x : Y) = cosT ecosy ee;.

This means, that the 2-adic cosine and sine functions satisfy the so-
called d’Alembert equation and sine-cosine functional equation investigated in
Sahoo[14] and in Staetker[44].

Evidently, we have

L]
cos 2z = cos® x + sin’ z, sin2x =sinx e cosx e e

2 .2
e = cos(f) = cos” x — sin” x,
oSt + cosv = cos ([u T v]e e_l) ® COS ([u : v] oe_l) ec.

Clearly, COS,, is even and SIN,, is odd, that is COS,(z~) = COS,(x), and
SIN,(x~) = =SIN,(z) (z € I,n € N). Addition formulas are in this case also
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a result of the functional equation v, (x ¥ y) = vp(x)v,(y) of the characters:

COS,(x J'r y) = COS,(2)COS,(y) — SIN,(2)SINy(y),
coS, (x —y) =COS,(x)COS,(y) + SIN, (x)SIN,(y), thus
COSn(z +y) + COSp(x — y) = COSy(z)COS(y).

Ths COS, and SIN, satisfy the so-called d’Alembert equation and
sine-cosine functional equation investigated for example in Sahoo[14] and in
Staetker[44]. We have furthermore: COS2(z) + SIN2(z) =1 (z € I, n € N).

As the inverse function of cos is needed in the chosen construction of Cheby-
shev polynomials, we determine now a set S, on which cos is bijective. It is
not injective on the original domain I, thus we consider its restriction on S and
on its multiplicative shifts S~l, and we determine the ranges also: ST and S;r ar’
respectively.

Notation 1 Consider the following sets of bytes

S:z[g(e—r—eﬁ:e—;el;—]b:{xeS Do =1},

Shlifg(e): J.r]l :{e;t ctelgt={xel : xo=1,21 =22=0},
st . = Ig(e ed+e5)—{x€]l : x():x3:x5=1,x1:x2:x4:0}CSh,
S, = Il+2(el+el+1), Sl:el—i—]IlH:IlH(el) (I eN),

Si =a —T— Ipi16 C St with some a; € S (I eN).

l,al

Theorem 13 [I. Simon[43]] a) The function cos takes S to ST. Specially, cos :
S ¢ S — St is a bijection.
b) The function cos takes I to SP.

Proof: a) If z € S, then 29 = (z7)o =1 and (z7); =1 —x; (j > 1). Thus with
the notations of (8.3) and representation (8.4) we have:

oo oo
1 x
cos(z) = b7° e H H it ee_q =

—biec_q @ H |:6 + 251 €j+1 -|— d]+1 :| H |:€ -|— ]. — T 1)(6j+1 + d]+1)]
j=2 j=2



68 CHAPTER 8. CONSTRUCTION OF 2-ADIC CHEBYSHEV POLYNOMIALS

Now, set z := (b;)~! @ e; ® cos(z), which is the expression in the huge round
brackets. Let us investigate the first digits of z: each of the products belongs

to S, thus the first terms are e + e = e, and the next possibly nonzero digit is
z3. So, we compute the digits from the 3rd to the 8th using the structure (8.2)
of the base and establishing also the rests ¢; determined by the 2-adic sum:

23+2Q3:$1+(1—x1):1 = 2z3=1,q¢3=0
24 +2qs =22+ (1 —m2) + (d3)a(r1 + (1 —21)) +q3=2 = 24=0, g4 =1
~——
1

25 +2¢5 = x3+ (1 —x3) + (d_?,)s(ih +(1—21)) + (da)s(za + (1 —22)) + qu
—~ —— N

=0 =1 =1
=3 = z5=¢q5=1
26 +2¢6 = T4+ (1 —24) + (d3)s + (da)s + (ds)s + g5 =4 = 2=0, g6 =2
—— N N~ \,1./

=0 =1 -1 =

274+ 27 = x5+ (1 — x5) + [w122 + (1 — 21)(1 — 22)] (€3 ® €4)7 +(d3)7 + (dy)7

———
always=1 depends on x1,x2 =1

+ (ds)7 + (de)7 + g6
zs =1+ (123 + (1 — 21)(1 — 23)] +p(21,22) (Mmod 2)

depends on x1,x3

zp =14 [z12p—5 + (1 —21)(1 — 2)—5)] +o(21, 22, ..., 2x—¢) (mod 2) (k> 7).

depends on z1,z;_5
(8.6)
This computation resulted, that the 1st, 3rd and 5th digits of z were equal
to 1, and the others were 0 until the 6th digit. Thus

COS(x)Zbl°€—1°<614.-63-7-65—7—%):6—7—634.—65—T—d’5

with some dg € I7, di € Is. Thus y = cosz € St and cos: S — St.
Computation (8.6) also implies, that z7 can take either 0 or 1 depending on
x1 and xo, and so do the following digits, too, but depending on further digits
of 2. Thus setting condition z; = 1, which is the case for z € S, the 7th digit of
z determines x5, the 8th one determines 3, the k-th digit of z determines xy_s5,
and by an inductive argument follows the existence of a unique = € S with the
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required property. Thus to any given y € St there exists an = € S uniquely such
that cosx = y.

b) When x € T'\ S, then only base elements b; of higher indexes (i > 2) will
occur in cos x, thus the nonzero coordinates except of the Oth are shifted to the
right, so cosz € S and (cosx); = (cosx)2 = 0 holds in each case, thus the image
of cos on T is a subset of S,

O

Remark: We have seen in Theorem 1 b) that cos : I — S%. More exactly,
the function cos takes S; to S;r. Furthermore, cos : Sl — S;r is a bijection.
Indeed, I = Ufio S;, and it turns out, that cos : §; — S}L and cos : S; — S}L is
bijective. If x € S;, than

cos(z) =e_1o0b 10 H b?‘l T H b;izj_l =

j=l+2 j=l+2
2146 214-6
L] L] L]
=e_10b 10| e+ E e; + E dj +
J=1+3 J=1+3

=qay

+e_1obre[zizipe + (1 —241) (1 — 2142)]earr + ..o,

thus cosz € S}L o = @+ Io;+6. Furthermore, if ;47 = 1 is given, than the

digits z; (j > 1+ 1) are determined uniquely by y, thus cos is bijective on
WS S~l = Il+2(€l + 6[+1).

Notation 2 Let us denote the inverse of cos : S — St by arccos, which has
domain ST.

We will use the following lemma in the next section.

Lemma 10 [I. Simon[{3]] f(t) := cos(e_4 o t) is a DMSP-function on Sy =
Is(eyq ¥ es), and also on Sy \ Sy = Ig(ey).

Proof: Computation (8.6) implies that for = € S we have recursion

2k = Tg—5 + ©(X2, T3, ..., Tp—6) ( mod 2) (k> 6)
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with an arbitrary ¢ : A¥=7 = A. As b € S, zeb; € S has the same type of
recursion, furthermore follows for y = cosx = e_; ® by @ z the recursion form

Yk = Th—a + ©(T2,23, ..., Tp—5) ( mod 2) (k>5)

with some ¢ : A¥=6 — A. We have (z e e_4)r = 2344 (k € Z). Thus f(z) =

cos(e_4 @ x) is a DMSP-function from Sy = Is(eq —T—~e5) onto Sf.
Computation (8.6) also implies that for z € S\ S we have recursion

zp=1—ap_5+ p(x2,23,...,Tk—¢) ( mod 2) (k> 6)

with an arbitrary ¢ : A*~7 — A. Thus follows that f(z) = cos(e_4 ® x) is also
a DMSP-function from Sy \ S4 = Is(e4) onto St.

]

Remark: It turns out similarly, that sin : S — Is(e + e2) is a bijection, and
a simple recursion yields the digits of bytes y = sinzee_o, thus x — sin(z)ee_o
is a DMSP-function on S.

Theorem 14 [I. Simon[4{3]] The systems (v/2COS,,,n € N), (v/2SIN,,,n € N)
are orthogonal and for n € N* also orthonormal.

Proof: We will investigate first the Rademacher functions on reflections:

_ (=1)*n, for n < w(x)
ra(z”) = (=1)® I = =
(") =(=1) { (—1)1_”’”7 for n > mw(x)
B 1, ifxel, (8.7)
=@y een,
=rp(z)[-1+42x1,(z)] (2 €]).
Let n,m € N.
__ 1 1 _
/HC'OSn(x)C’OSm(m)du(x) =1 /an(x)vm(x)du(z) + 1 /an(x)vm(a: Ydp(x)+

+1 /an(x*)vm(x)du(x) + i /an(xf)vm(x*)d,u(z) =: %(Il + I+ I3+ Iy).

Since = + =~ is measure-preserving, I is as simply as I; = 6, . For
n # mlet ¢ := min{j € N : n; # m;}. Then by definitions vy: = r;g; with
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some g; € L(A;), and by (8.7) follows that the same holds for reflections, too:
voi (x7) = 7i(x)hi(x) (x € I) with some h; € L(A;). Hence,

o0

U (T)vm (27) = H (var ()™ (U2’“ (xi))_mk = r;(7)gi(z)

k=0

where g; € L(A;). This implies as usual the statement: the properties of condi-
tional expectations (see [17],pp.89) imply

&o (Un(fﬂ)vm(ﬂf_)) =& (Ei(rigi)) = Eo (9i&i(r:i)) =0 (n # m). (8.8)

Now, for I and I3 results 0 by (8.8). In case of n = m = 0, by u(I) = 1 follows
J;COSy(2)COSy(x) = 1. For n. = m > 0 we have vy, (2)v,(27) = vp(x)vn(2) =
Uy (22) = vp—1(x) (n = 1), thus [;COS,(z)COS,(x) = 5. The statement for
(SIN,,,n € N) follows similarly.

O

8.3 The 2-adic Chebyshev polynomials

It seems at first sight to have exaggerated in the following definitions by using
k twice, but the first one ensures that the system will be a UDMD-product
system, and the second one belongs to the nature of Chebyshev polynomials.

Definition 19 Define the 2-adic Chebyshev polynomials of the first
kind as the product system of ti(x) := wvor+e (cos[(2k + 1) arccos(z)]) (z €
ST,k € N), that is,

ﬁ [var+s (cos[(2k + 1) arccos(x)])]™* (xeSh,neN). (89)

Definition 20 Define the 2-adic Chebyshev polynomials of the second
kind as the product system of uy(z) := vgr+s (sin[(2k + 1) arccos(z)]) (z €
ST,k € N), that is

H Vok+s (sin[(2k + 1) arccos(x)])]"™* (xeShneN). (8.10)
k=0
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In order to see the orthogonality, we need first to examine the functions
x + cos(narccos x) and z + sin(n arccosz) (z € ST).

Lemma 11 [I. Simon[{3]] The functions x + cos ((2n + 1) arccosz) (x € ST)
and = +— ez @ sin((2n + 1) arccos ) (z € St) are DMSP-functions on St for any
nez.

Proof: The first function in question is obtained by a composition of functions

fi(x) := eyq @ arccos(z), fi:St =8,
fg(x)::(2n+1)-z:z—T—I—T—...—T—z, f2:S~4—>S4
—_————
2n+1 times

fa(x) :=cos(x e e_y), f3:S4 — ST,

The distributivity implies that (2n 4+ 1) - (e @ x) = eg o [(2n 4+ 1) - x], thus
(fs o fa 0 f1)(z) = cos(narccosz) (z € ST).

We have already seen in Lemma 10, that f3(z) is a DMSP-function on Sy
and on Sy \ S4, too. Thus propositiond.1 of DMSP-functions results that f; is
also a DMSP-function on S'.

Let us examine f,. With the dyadic expansion n = Y ;- n;2" we have

n-x =Yy .2oni(2-z) = > 2 ni(e; o z), where the sum is taken in sense +.
Thus (n - 2); = Zf:o nixx—; (k € N, x € I), which contains zj, if and only if
ng = 1, that is, if n is odd. Thus fo(z) = (2n+1) -z is a DMSP-function on Sy.

O

Theorem 15 [I. Simon[43]] The 2-adic Chebyshev polynomials of the first and
second kind (T,,,n € N) and (Up,n € N) are complete and orthonormal systems.

Proof: As for each ¢ € I the system (vyr+s,k € N) is a UDMD-system on
Is(c), we have by Proposition 4.1 on DMSP-transformations that (¢,,n € N)
is a UDMD-system on ST, which results that (7),,n € N) is a UDMD-product
system on ST, thus complete and orthonormal. (See Schipp[17], pp. 92-94.) The
proof is similarly for the second kind Chebyshev polynomials.

(]

Remarks: 1) Like for any UDMD-product systems, Fourier series of any
f € LP(I) (p > 1) with respect to systems (T),,n € N) and (U,,n € N) converges
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a.e. to f, which is a consequence of Theorem 4 in Schipp [37]. Furthermore
(C,1)-summability of any f € L'(I) with respect to these systems also holds,
which is a consequence of Theorem 15 in Gat[9] stated for Vilenkin-like systems,
a generalization of UDMD-product systems.
2) The constructions and statements for the Chebyshev polynomials are valid
if we use any proper UDMD-systems in place of vor+s and vgr+s (k € N).
3) The 2-adic Chebyshev polynomials of the first and second kind can be

defined also on T by estabhshmg a proper shift operation: S : 1 — ST = I4(e +
63+e5) S(z) —x066+e+63+e5 Now,

[vgk+6 (cos[(2k + 1) arccos(S(z))])]"™* (x €l,neN),

)
&
i
2 ]

=
Il
o

S
B
i
a3

[Vgr+s (sin[(2k 4 1) arccos(S(z))])]"™* (x €I,n eN).

b
I
o

Notation 3 Consider shift operations:

S:1— St S(:v)::xOGG-T-G-T-Gs‘T'%,

S :S—1, S'z):=[r—e—e]oes.

Definition 21 Define the 2-adic Chebyshev polynomials of the third
and fourth kind by

T.(z) := COS,[S (arccos(S(x))] (x €e,n eN),

i / (8.11)
U, (x) := SIN,[S (arccos(S(z))] (r €,n eN).

Theorem 16 [I. Simon[43]] The 2-adic Chebyshev polynomials of the third and
fourth kind (T,,,n € N), (Up,n € N) are orthogonal systems in L?(I).

Proof: The variable transformation B : x — S’(arccos(S(z)) is a DMSP-
transformation on I, thus it is measure-preserving. Hence,

/f oBdu= /fdu (f € LY(I)). (8.12)
I I
Let n,m € N*. By (8.12) and by the orthogonality of the systems (COS,,,n €
N), (SIN,,n € N) follows the statement:

1

/Hﬁ(x)f( e /cos D)COS()d(y) = 50um. T
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Theorem 17 [I. Simon[{3]] The subsystems of 2-adic Chebyshev polynomials
of the third and fourth kind (Ton,n € N), (Uan,n € N) form UDMD systems on
IL.

Proof: Recall, that r,(z7) = r(z)[-1 + 2x1,(z)] (z € I). By require-
ment (2.26) of UDMD systems we have for (ven,n € N), that there exist A,,-
measurable functions (g,,n € N) on I, such that ven = r,,g,. Thus,

(x el

o Gn(x) 4+ gn(z™)[—1 + 2X1, ()]
COSon () = () 5 ,

and the function h,,(z) = Ze(@)Fon( )[ L2, @] ¢ 1,(A4,), thus (COSan,n €
N) fulfils the criteria (2.26) of UDMD systems. Similarly, (SINan,n € N) is a
UDMD-system.
Since = — S’(arccos[S(z)]) is a DMSP-transformation on I, Theorem 4.1
on DMSP-transformations implies that (Ten,n € N), (Uzn,n € N) are UDMD-
systems.

O



Summary

The present work consists of four main topics related to the Blaschke functions
defined on two special locally compact totally disconnected non-Archimedian
normed fields: on the 2-adic (or arithmetic) field and on the 2-series (or logical,
dyadic) field. First, we investigate the effect of dyadic martingale structure pre-
serving transformations, or shortly DMSP-transformations on function classes
like the classes of UDMD-systems, that of A,,-measurable functions, the dyadic
function spaces LP(I), HP(I), and the Lipschitz classes Lip(c,I). Secondly, we
establish the character system of the Blaschke-group on the arithmetic field.
Then, we introduce the discrete Laguerre and the Malmquist-Takenaka systems
on these fields, that are constructed by the Blaschke functions and the charac-
ters of the corresponding field. Both of the last mentioned are UDMD-product
systems, thus complete and orthonormal, while in the second topic v, o v pos-
sesses these properties. At last, 2-adic Chebyshev polynomials are constructed
with several 2-adic trigonometric functions investigated in this work. All these
are connected to DMSP-transformations, as they share essentially the type of
the recursion.

Chapter 2 contains an introduction to the 2-series and 2-adic fields, espe-
cially concerning the algebraic and topological structure. This chapter follows
the concepts, notations and propositions of Schipp and Wade[17]. The set of
bytes is defined by: B := {a = (a;j,j € Z) | a; € {0,1} and lim;_,_ a; = 0}.
We present the 2-adic/arithmetical and 2-series/logical/dyadic operations, the
order and the norm of a byte. We recall, that (B, —T—, o) and (B, —T—, e) are non-
Archimedian normed fields. We use furthermore the intervals I, := {z € B :
|lz|| £ 27"} for any n € Z and the unit ball I := Iy = {a = (a;,j € N)| a; €
{0,1}} to construct dyadic martingale structure. We consider a normalized
Haar measure p with property p(I) = 1, and the concept of UDMD-systems is
summerized.

75
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In Paragraph 2.6 we consider a measure-preserving variable transformation
T : 1 — I, and we mention that the n-th partial sum SI f of the T-Fourier
series ST f and the T-Cesaro means o’ f of ST f with respect to ¢, o T' can
be expressed by the n-th partial sum S, f of the Fourier series and the Cesaro-
means o, f with respect to the characters {¢,,n € N} of the corresponding
additive group as follows:

Spf=1[Sn(foT H]oT
ol f=lon(foT 1] oT.

Based on the handbook of Schipp and Wade[17] in Chapter 3 we first sum-
marize the notions and results regarding the characters of the additive groups
of these local fields and the exponential functions, which are used in the next
chapters.

Paragraph 3.1 provides a description of the characters of the 2-series/dyadic
and 2-adic additive groups using the notion of the product system.

In Paragraph 3.2 we use the notations S := {x € B | [|z|| = 1} and S:={ze

S:xy = 0}. The (S, e)-valued exponential function ¢ on I; is defined by the
following infinite product form:

(@) =[]t (z=(2;,j€2)e),
j=1

where b; ;= ¢ J.r ea, by :=by_10b,_1 (n > 2). Function ( is a simple adaptation
of the (S, e)-valued exponential function presented in [17], as we have defined ¢
with a slightly different base. The function ( satisfies the functional equation
¢(x J.r y) = ((x) o {(y) (x,y € 1), and it is a continuous isomorphism from I,
onto S.

Starting from Paragraph 3.3, this work contains the results of the author.
We define the Blaschke functions on the studied fields and we investigate some

properties of them. The logical Blaschke-functions B, (z) = %% (z € [,a € I;)
etaox

defined on the dyadic field and the arithmetical Blaschke-functions B,(z) =

2=¢ (g € I,a €1;) defined on the 2-adic field are isometries on the unit ball

e—aexr
I and on the unit sphere S. Furthermore, they form a commutative group with

respect to the function composition. We show, that the byte y = B,(z) can be
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computed by a recursion:
yn:xn+an+fn(x03"' 7xn—1) (mOd 2) (n>0)7

where the functions f, : A" - A (n =1,2,---) depend on the bits of a.

In Chapter 4 is concerned the argument transformation given by the com-
position with a Blaschke function, and in general, the dyadic martingale struc-
ture preserving transformation or shortly the DMSP-transformation, and we
deal with questions related to the effect of a DMSP-transformation on special
function classes.

We call a function B : I — I a DMSP-transformation if it is generated
by a system of bijections (9,,n € N), ¥, : A — A, and an arbitrary system
(Mn,n € N*), 1, : A" — A in the following way:

(B(2))o := Yo(x0),
(B(x)),, :=n(zn) + nn(zo,z1,...,Tp—1) ( mod2) (neN").

For each generating systems (U,,n € N) and (n,,n € N*), the generated
DMSP-transformation B is a bijection on I and its inverse function, B~! is also a
DMSP-transformation. B is also measure-preserving. A DMSP-transformation
preserves the classes of UDMD systems, that of A4,-measurable functions, the
dyadic function spaces LP(I), HP(I), and the Lipschitz classes Lip(c,I). Fur-
thermore, some examples of DMSP-functions are presented, mentioned the
translations, dilatations, a generalization of (, and the Blaschke functions, as
well.

Then, in Chapter 5 we show, that the group of the Blaschke functions, the

so-called Blashke-group (B, o) of the field (I, —T—, e) is a topological group, and we

determine its characters. The operation z<y := 2% (z,y € I;) determined by
et+xoy
the composition B, o B, = B, leads to the functional equation of the tangent

function tan. This gives the idea of this chapter, where the characters of the
Blaschke group of the 2-adic group are constructed by means of a tangent-like
function.

The map B : (I,<) — (B,0), a — B, is a continuous isomorphism, hence in
order to establish the characters of (B, o), it is sufficient to define the character

group of (I;,<). Furthermore, the characters of (I, —T—) are already known: the
functions (v,,n € N).
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L]
Thus we give a continuous isomorphism from the additive group (Iy,+) onto

(I, <), that is a function ~ satisfying the equation

Ly @)

(T +y) . z,y €ly).
e+ (x) ey(y)

These thoughts can be interpreted as the solution of the functional equation of
tan on the local field. .
The tangent-like function on (I, +) is introduced as:

~v(z) = (@) =e (x € Th).

We show, that 7 is a continuous isomorphism from (I, —T—) onto (I;,<). This
implies, that the characters of the group (Iy,<) are the functions

(vnoy™h, neP),

which allows us to conclude, that the characters of the Blaschke group (B, o)
are the functions
(Un o 771 o Bilv ne P)a

where B : (I,<) — (B, o) represents the function a — B,.

A simple recursion yields the proposition, that the functions v, oy~ 1(n €
P), the characters of (I;,<) form a UDMD product system. Thus the discrete
Fourier coefficients with respect to this system can be computed with the Fast
Fourier Algorithm.

As the variable transformation 7y is measure preserving, for the partial sums
SY f and the Gamma-Cesaro means o) f of the Gamma-Fourier series S” f with
respect to the system (v, o y~!,n € N) follows the convergence nlgrolo o) f(x) =

f(x) a.e. for any f € L*(I;) and ILm SYf(x) = f(x) ae. (f € LP(ly), p>1).

Chapter 6 is devoted to the construction of the discrete Laguerre functions
on both local fields. The power functions on the torus T coincide with the classi-
cal characters, and the discrete Laguerre systems are given by their composition
with the complex Blaschke functions. After the model of the classical system,
we introduce the discrete Laguerre system as the composition of the additive
characters of the studied local fields and the Blaschke functions.
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[e]
For a € I; we introduce the logical discrete Laguerre functions on (I, +,0)
associated to B, in the following way:

L) = wi(Ba(2)) (k €N,z €1,

which form the product system generated by (7, 0 B, n € N), that is, Lgl)(:c) =
krn
H;.Lo:o [rn(Ba(2))]™ .
For a € I; we introduce the arithmetical discrete Laguerre functions on

(I, ;, o) associated to B, in the following way:
L\ (z) := vp(Ba(2)) (k € N,z €1),

which build the product system generated by (ven0B,,n € N), that is, ng) (z) =

o [v2s (Ba(@)]™ (x €1).

The discrete Laguerre-system (L,(Ca), k € N) defined on the respective field is
a UDMD-product system, thus it is complete and orthonormal.

Paragraph 6.4 is devoted to the (C,1)-summability of the Fourier series with
respect to these systems using the basic results of Schipp[15] and Gat[7] on the
a.e. convergence and (C,1)-summability of the Fourier series with respect to
the characters of the dyadic and 2-adic field. We consider the Laguerre-Cesaro

means a,(f) f and n-th partial sum S,(La) f of the Laguerre-Fourier series S(®) f of
an f € L'(I) with respect to the corresponding discrete Laguerre functions. We

show on both fields that lim,,_ U’Sla)f(x) = f(z) a.e. for any f € L'(I) and
lim S f(@) = f(z) ae. (f€LP(L), p>1).

Chapter 7 covers our investigations on the Malmquist-Takenaka systems
on both studied local fields. The logical/arithmetical Malmgquist-Takenaka func-
tions (\I/ép), k € N) with parameters p = (ag,a1,...) (a; € I1,i € N) are defined
in the following way: (\I'Ef ), k € N) is the product system generated by

(¢n,a, =Tn0Bg,,meN) on (I, —T—, o), and by
(®pa, =v9n 0 Bq,,neN) on (I+,e),

respectively. Clearly, the Malmquist-Takenaka system is a generalization of the
discrete Laguerre system: using identical parameters a, = a € [} (n € N), the

Malmquist-Takenaka functions \I/gp ) (z) equal the discrete Laguerre functions
L ().
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Being a UDMD-product system, we have a complete orthonormal system
on both fields. As an other consequence of being UDMD-product systems, a.e.
convergence and summability properties of Fourier series with respect to these
systems hold.

In Chapter 8 several 2-adic cosine and sine functions are constructed on the
2-adic field expressed by the S-valued exponential functions and the characters
v, of the 2-adic additive group:

L]

cosz := (((x) T C(z7))ee_q, sinxz:=(C(x) —((z7))oe_; (xel);
Un () + vn(z7)

COS,(x) := 5 (z €el,n eN),
SIN,(z) = W (z €LneN).

Addition formulas for both constructions hold, and we determine a set, on
which cos bijective is: cos : S € S — St is a bijection. We prove, that the
systems (COS,,n € N), (SIN,,n € N) are orthogonal. The functions = —
cos ((2n + 1) arccosz) (z € ST) and z + e @ sin((2n + 1) arccos z) (z € ST) are
DMSP-functions on ST for any n € Z.

Then follows the construction of some analogies of the Chebyshev poly-

nomials on the 2-adic field (H,—T—,o) using these cosine and sine functions.
The 2-adic Chebyshev polynomials of the first and second kind are defined
as the product system of t;(x) := vgr+s (cos[(2k + 1) arccos(x)]) and ug(z) =
Vorts (sin[(2k + 1) arccos(x)]) (z € ST,k € N), that is,

T.(z):= ﬁ [var+6 (cos[(2k + 1) arccos(z)])]™* (x e STneN),
k=0

Un(z) = H [vgk+s (sin[(2k + 1) arccos(z)])]"™* (x € ST,n e N).
k=0

We prove, that (T,,,n € N) and (U,,n € N) are UDMD-product systems, thus
complete and orthonormal systems.

The 2-adic Chebyshev polynomials of the third and fourth kind are defined
by

T, (z) := COS,[S’ (arccos(S(z))] (rel,n €N),
U, (z) := SIN,[S (arccos(S(x))] (x €el,neN).

The 2-adic Chebyshev polynomials of the third and fourth kind (Tn,n €
N), (U,,n € N) are orthogonal systems in L?(I).



Osszefoglalé (Hungarian
summary)

Ez a dolgozat négy 6 témat olel fel, melyek a Blaschke fliggvények két lokalisan
kompakt nem-Archimédeszi normalt testen értelmezett valtozataval kapcso-
latosak: a 2-adikus (vagy aritmetikai) és a 2-soros (vagy logikai, diadikus) testen.
El6szor a diadikus martingal struktirat megorz6, azaz DMSP-transzfomécidk
hatasat vizsgdljuk olyan fiiggvényosztdlyokra, mint az UDMD rendszereké, az
A,-mérhetd fiiggvényeké, a diadikus LP(I), HP(I) fiiggvényosztélyok, illetve a
Lip(a, ) Lipschitz-osztély. Majd meghatdrozzuk a Blaschke csoport karakter-
rendszerét, és végil bevezetjik a diszkrét Laguerre és a Malmquist-Takenaka
fliggvényeket a Blaschke fiiggvények és a megfelel6 additiv csoportok karakterei
segitségével. Ez utébbi két rendszer UDMD szorzatrendszer és ortonormaélt,
mig a masodik téma esetén a konstrukciéban fellépé v, o y-rél mondhatjuk
el ugyanezt. Végiil pedig 2-adikus Chebyshev polinomokat konstrualunk
kiilonbo6z6 2-adikus trigonometrikus fliggvény segitségével, melyeket ugyanc-
sak értelmeziink és vizsgdlunk. Mindezek kapcsolatosak a diadikus martingdl
struktirat megorz6 transzformaciokkal, hiszen ezek rekurzids el6allitasainak
lényegében azonos a tipusa.

A 2. Fejezet bevezetést tartalmaz a 2-adikus és 2-soros testek elméletébe,
kiilonosen az algebrai és topoldgiai struktirat illetéen. Ebben a fejezetben
a Schipp-Wade[17] fogalmait, jeloléseit, és dllitdsait hasznaljuk az &ttekintés
végett. Legyen a bdjtok halmaza a kovetkezé: B := {a = (aj,j € Z) |
a; €{0,1} és lim;_,_ a; = 0}. Bemutatjuk a 2-adikus és 2-soros miiveleteket,
egy béjt rendjének, normajanak, és a metrikdnak az értelmezését. Felidézziik,
hogy (B, —T—, o) és (B, —4.—, o) nem-Archimédeszi normdlt testeket alkot. Tekintjik
tovabbd a kovetkezé intervallumokat: I, := {z € B : ||z|| £ 27"} minden n € Z-
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reésazl =1y = {a = (a;,j € N)| a; € {0,1}} egység-gombot. Tekintjitk a
1(I) = 1 azonossdggal normalizalt ; Haar mértéket, és bemutatjuk az UDMD
rendszer fogalmat is.

A 2.6. Részfejezetben tekintiink egy T : I — I mértéktarté argumentum-
transzforméciét, és attekintjiik, hogy a ¢, o T rendszer szerinti ST f-el jellt
T-Fourier sor SI f-el jelolt n-edik részletdsszege és a ol f T-Cesaro kozepe kife-
jezhetd a {¢,,n € N} karakterrendszer szerinti Fourier sor S, f-el jelolt n-edik
részletosszegével, illetve a o, f Cesaro/Fejér-kozepével a kovetkez&képpen:

Syf=1[Su(foT " )]oT
ol'f = [Jn(fonl)] oT.

A Schipp-Wade[17] kézikonyvre tdmaszkodva a 3. Fejezetben Ossze-
foglaljuk ezen lokalis testek additiv csoportjanak karaktereivel és az expo-
nencialis fiigvénnyel kapcsolatos azon fogalmakat és eredményeket, melyeket a
kovetkezd fejezetekben alkalmazunk.

A 3.1. Részfejezet a diadikus és 2-adikus additiv csoport karaktereinek
lefrasat tartalmazza a szorzatrendszer fogalmara alapozva.

A 3.2. Részfejezetben haszndljuk a kovetkezd jeloléseket: S = {z €
Bl |lz]| =1} és S := {z € S : x; = 0}. Az (S,e)-értékii ¢ exponencilis
fiiggvényt az [;-en a kovetkezd végtelenszorzatformaban adjuk meg:

)y =]I07" (@=(eje2) ),

aholb; :==e J.r €2, by :=bp_10b,_1 (n > 2). A { fiiggvény a [17]-ban bemutatott
(S, o)-értékii exponencialis fliggvénytSl némileg kiilonbozik, egy kissé mddositott

béazisra épil. A ( fiiggvény eleget tesz a ((z T y) = C(z) o ((y) (z,y € Ty)
fliggvény-egyenletnek, és egy folytonos izomorfizmus az I;-rél az S-ra.

A 3.3. Részfejezettdl kezd6dden, a dolgozat a szerzo eredményeit tar-
talmazza.  Ertelmezziik a Blaschke fliggvényeket a vizsgalt testeken, és
megallapitjuk azok néhany fontos tulajdonsdgat. A diadikus testen értelmezett
B,(x) = jf,ri'*'“ (x € I,a € 1) logikai Blaschke-fiiggvények és a 2-adikus testen

e+aox

r—a

értelmezett B,(r) = 22 (z € I,a € Ij) aritmetikai Blaschke-fliggvények
e—aexr
izometridk az I egységgdmbon és annak hatdrdn, az S-en. Tovabbé, kommu-

tativ csoportot alkotnak a fiiggvény-kompoziciéra nézve. Megmutatjuk, hogy
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az y = B,(z) béjt a kovetkez6 rekurzidval rendelkezik:
Yn = Tpn + apn, + fn(zo, ,Tn—1) (mod 2) (n>0)

ahol az f, : A" — A (n = 1,2,---) fiiggvények az a paraméter bitjeitdl is
fiiggenek.

A 4. Fejezetben olyan argumentum-transzformaciéval foglalkozunk,
melyet a Blaschke-fiiggvénnyel, s6t, altalanosabban a diadikus martingal
struktirdt meg6rz6 transzformécié, azaz a DMSP-transformaciéval vald
fliggvény-kompozicié ad meg, és a DMSP-transzformacié hatdsat is vizsgaljuk
specialis fiiggvényosztalyokra.

Egy B : I — 1 fliggvényt DMSP-transzformaciénak neveziink, ha egy
(On,n € N), 9, : A — A bijektiv fliggvényrendszer és egy tetszileges
(Mn,n € N*), 1, : A™ — A fiiggvényrendszer generdlja a kovetkez&képpen:

(B(x))o := Uo(w),
(B(x)),, == (xn) + nn(zo, 21,...,2n—1) ( mod2) (neN*).

Bérmely (9,,n € N) és (n,,n € N*) rendszer esetén a szirmaztatott B
DMSP-transzformacié egy bijekeié I-n és inverz fiiggvénye, B! is egy DMSP-
transzformacié. Tovabba B mértéktarté. Egy DMSP-transzformacié soran
meg6rzédik az UDMD-rendszerek osztilya, az A,-mérheté fiiggvényeké, a di-
adikus LP(I), HP(I) osztélyok és a Lip(a,l) Lipschitz osztdly. Tovabbd, be-
mutatunk néhany példat DMSP-fliggvényre, melyek kozott megemlitjiik a tran-
szlacidt, a dilatacidt, a bajtokhoz a multiplikativ inverziiket rendel6 % fliggvényt,
a ¢ egy altalanositasat, és a Blaschke-fiiggvényeket is.

Az 5. Fejezetben bemutatjuk az (]I,—T—,o) 2-adikus testen értelmezett
Blaschke fiiggvények csoportjat, az ugynevezett (B,o) Blashke-csoportot,
melyr6él miutdn belattuk, hogy topolégikus csoport, meghatarozzuk annak
karakter-csoportjat. A B, o B, = Baq kompozicié altal meghatarozott mivelet,

az x Ay = z,y € I1) a tan fliggvény fliggvény-egyenletéhez vezet.

et+zeoy
Ez ihlette a keresett karakterek konstrukciéjat, ahol a 2-adikus test Blaschke-

csoportjanak karaktereit egy tangens-szeri fliggvény segitségével értelmezziik.
A B : (I1,<) = (B,o), a — B, leképezés egy folytonos izomorfizmus, ezért
a (B, o) karaktereinek meghatdrozdsdhoz elegendd, ha meghatdrozzuk a (I, <)

csoport karakter-rendszerét. Tovdbbd, a (I;,+) csoport karakter-rendszere mar
ismert: (v,,n € N). A keresett karakterek megaddsidhoz tehat egy folytonos
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izomorfizmust keresiink az (I, —T—)-r(’)’l az (I, <)-re, azaz egy olyan v fliggvényt,
mely eleget tesz a

. 1) + 1)
7(x+y)=.— (z,y € )
e+ () e(y)
egyenletnek. Ez a megoldasi ut dgy foghaté fel, hogy a 2-adikus test tangens
fliggvényének fuggvény-egyenletét oldjuk meg.

L]
A tangens-szerd figguényt az (I,+)-en a klasszikus esethez hasonléan az

exponencidlis fliggvény felhasznaldsaval vezetjiik be:

y(z) = 22— (z ely).

Megmutattuk, hogy a v fliggvény egy folytonos izomorfizmus az (I, +)-r6l
az (I;,<)-re. Ebb6l kévetkezik, hogy az (I, <) karakterei az aldbbi fiiggvények:

vpoy b (neP).
Kovetkezésképpen a (B, o) Blaschke csoport karakterei a
-1 -1
v,0y "oB (nelP)

fiiggvények, ahol B : (I1,<) — (B,0) az a +— B, fiiggvényt takarja.

Egy (végeredményében) egyszerlinek nevezett rekurzié szolgiltatja az
allitast, hogy a v, o y~!(n € P) fiiggvények, az (I;,<) karakterei egy
UDMD-szorzatrendszert alkotnak. FEzért ezen rendszerekre vonatkozé Fourier
egylitthaték az dgynevezett FFT, azaz a Gyors Fourier Algoritmussal (Fast
Fourier Algorithm) szamolhatdk.

Mivel a v fiiggvény (valtozécsere) méréktartd, ezért a (v, oy~t, n € N) rend-
szerre vonatkoz6 S7 f Gamma-Fourier sor S)) f részletosszegeire és o) f Gamma-
Cesaro kozepeire fenndllnak a kévetkezdk: 711320 o) f(z) = f(z) m.m., ahol

fe L\ (ly), és ILm SYf(x) = f(x)m.m., ahol f € LP(Iy), p> 1.

A 6. Fejezet a két vizsgalt lokilis testen értelmezett diszkrét Laguerre
fliggvényeknek van szentelve. A hatvanyfiiggvények a T téruszon megegyeznek
a klasszikus karakterekel, és az Osszetételiik a komplex Blaschke fliggvényekkel



SUMMARY 85

éppen a diszkrét Laguerre rendszert szarmaztatjak. A klasszikus rendszer mo-
dellje alapjan bevezetjiik a vizsgalt lokalis testeken a diszkrét Laguerre rendsz-
ert, mint a megfelel6 additiv csoport karakterének és a Blaschke fliggvényeknek
az Osszetétele. .

Az a €T esetén az (I,+,0)-n értelmezziik a B,-hoz rendelt logikai diszkrét
Laguerre fligguvényeket a kovetkezOképpen:

L() = wi(Ba(2)) (k €N,z €1,

amelyek az (r, o B,,n € N) dltal generalt szorzat-rendszert alkotjik, azaz:
@ o0 kn
L) =TI Irn(Ba(@))]™ (€T, k€ N).

n=0
L[]
Az a € Iy esetén az (I,+,e)-n értelmezziik a B,-hoz rendelt aritmetikai
diszkrét Laguerre fligguényeket a kovetkezOképpen:

L (x) = vk (Ba(x)) (k € N,z € 1),

amelyek a (van o By,n € N) dltal generdlt szorzat-rendszert alkotjik, azaz:
L (x) = TII25 [vas (Ba(@))]  (z €1, k € N).

A megfelel testen értelmezett (Léa),k € N) diszkrét Laguerre rendszerek
UDMD- szorzatrendszerek, ezért azok teljesek és ortonormaéltak.

A 6.4. Részfejezetben az ezen rendszerek szerinti Fourier sorok (C,1)-
szummabilitdsi kérdésére térink ki. A Schipp[15] és Gat[7] 2-adikus és diadikus
klasszikus karakterek szerinti Fourier sorok (C,1)-szummabilitdsira vonatkozd
alapveté eredményeire tamaszkodunk. Tekintjiik egy f € L(I) fiiggvény
diszkrét Laguerre rendszerre vonatkozé S(® f Laguerre-Fourier sordnak Sr(f) f

részletosszegeit és a Jﬁf) f Laguerre-Cesaro/Fejér kozepeit. A karakterek szerinti
Fourier sorokra vonatkozé eredményekre tamaszkodva megmutattuk mindkét
testen, hogy lim,, o*,(la)f(x) = f(z) m.m. teljesiil minden f € L(I) esetén és
lim S f(z) = f(z) m.m. teljesiil f € LP(I;), p > 1 esetén.

THOK 7. Fejezet a Malmquist-Takenaka rendszerekkel kapcsolatos eredményeket
tartalmazza a vizsgdlt lokdlis testeken. Az (a; € I;,i € N) bdjtokhoz tar-
tozé p = (ag,as,...) paraméterii (\Ill(f)),k € N) logikai/aritmetikai Malmquist-
Takenaka figguényeket a kovetkez6 fliggvények &ltal generalt szorzatrendsz-
ereként értelmezziik:

(Pn.a, :=Tn 0B, ,neN) az (I, —T—7 o)-en, illetve

(Pp,q, =vm o B,,,neN) az (I,+,e)-en.



86 SUMMARY

Vilagos, hogy a Malmquist-Takenaka rendszerek altalanositasai a diszkrét La-
guerre rendszereknek: az a, = a € I; (n € N) azonos paramétereket
hasznalva a 0P (x) Malmquist-Takenaka fliggvények az Lﬁ{‘)(:c) diszkrét La-
guerre fiiggvényekkel egyenléek. Mivel ezek UDMD-szorzatrendszerek, tel-
jes ortonormalt rendszert alkotnak mindkét testen. Az elébbinek egy fontos
kovetkezménye, hogy a szerintiik vett Fourier sorokra m.m. konvergencia és

OsszegezhetOségi tulajdonsagok teljestilnek.

A 8. Fejezetben kiilonboz6 2-adikus koszinusz és szinusz fliggvényeket
konstrualunk a 2-adikus testen: elébb az S-értékii exponencidlis fiiggvények
segitségével, majd a 2-adikus additiv csoport v,, karakterei felhasznalasaval:

cosz := (((x) ¥ C(x7))ee_y, sinz:=({(x)—C((z7))ee_; (zel);
Un (%) + vn(z7)

COS,(x) :== 5 (x €,n eN),
SIN,(x) := M (x €,n eN).

Addiciés formulak teljesiilnek mindkét féle értelmezés esetén. Meghatarozzuk a
legb6vebb halmazt S-ben, amin a koszinusz fiiggvény bijektiv: cos : Scs—st.
Beldtjuk, hogy a (COS,,,n € N), (SIN,,,n € N) rendszerek ortogonalisak. Az
x> cos ((2n + 1) arccosz) (z € ST) és 2+ e3 @ sin((2n + 1) arccos z) (z € ST)
leképezések DMSP-fiiggvények a ST halmazon minden n € Z esetén. Ezutén
a Chebyshev polinomok néhany analogonjdnak értelmezése kovetkezik ezen
koszinusz és szinusz fiiggvények felhasznalasdval. Az elsé- és mdésodfaju 2-
adikus Chebyshev polinomokat a ti(x) := var+s (cos[(2k + 1) arccos(z)]) (x €
Stk € N) és ug(z) := vgrss (sin[(2k + 1) arccos(z)]) (z € ST,k € N) szorzat-
rendszereként értelmezziik, vagyis,

T.(z) = H [var+e (cos|(2k + 1) arccos(z)])]™* (x € ST,neN),
k=0

Up(z) = H [Vor+s (sin[(2k + 1) arccos(z)])]™* (x € ST,n eN).
k=0

Ekkor (T,,n € N) és (U,,n € N) UDMD-szorzatrendszerek, tehat teljes
ortonormalt rendszerek.

A harmadik- és negyedik faji 2-adikus Chebyshev polinomokat a
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kovetkezdképpen értelmezziik:

T (z) := COS,[S' (arccos(S(z))] (x €l,n €N),

U, (z) := SIN,[S’ (arccos(S(z))] (x €,n € N),

majd belatjuk, hogy (T,,,n € N), (U,,n € N) ortogonilis rendszerek L?(I)-ben.
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On a generalization

The space B and its algebraic structure related to the 2-adic (or arithmetical)
and 2-series (or logical) addition has some reasonable generalizations: the p-adic
field, or the Vilenkin group (presented in [1] and by Hewitt and Ross in [12]
pp.106-116 and in its most general form by Gé&t in [9], see also [16], Appendices
0.7). In this most general case the system and the algebraic structure is gen-
erated by a sequence of positive integers m := (my, k € N) such that m; > 2.
The character system of the Vilenkin group (see [1]), the Vilenkin-like system
given in [9], is a common generalization of the presented character systems of
the corresponding additive groups. Summability theorems of these systems hold
in this most general case. These thoughts would inspire a wide generalization
of the Blaschke function and the discrete Laguerre and Malmquist-Takenaka
systems, but the above mentioned space with the multiplication (presented in
[12], pp.112) yields a field only in the following special cases: the r-adic field if
r is a prime power, and the r-series field if r is a prime.

In this case, we consider the set of bits A, :={0,1,...,r — 1}, and the set
of bytes

B, :={a=(a;,j €Z)]|a; €A, and jLimooaj = 0}.

Let 6 =(---,0,0,0,---). The order of a byte x € B,. is defined in the following
way: For x # 0 let m(x) := n if and only if z,, # 0 and z; = 0 for all j < n,
furthermore set m(f) := +o00. The norm of a byte x can be introduced by the
following rule:

|z| == r~"®@ for z € B, \ {6}, and |0 :=0.

89
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Consider the r-adic sum a + b of elements a = (an,n €Z),b=(b,,n €Z) €
B,., defined by

atbi= (Sn,n € Z)

where the bits g, s, € A, (n € Z) are obtained recursively as follows:

qn = 5n, =0 for n < m :=min{n(a), 7(b)}, (8.13)
and a, +b,+qn_1=7-¢,+ 58, forn>m. '

The r-adic product of a,b € B, is a @ b := (p,,n € Z), where the sequences
gn € Nand p, € A, (n € Z) are defined recursively by
Gn =pn =0 (TL <m:= W(a) +7T(b))

> 8.14
and Y ajbp_jtqn1 =7 G0 +pn (n>m). (8.14)

j=—o00

Define the r-series sum a i b and r-series product aob of elements a,b € B,
by
at b= (an + by, (mod 1), n €Z)

aob:= (cp,n €Z), where ¢, := Zakbn_k (mod r) (n €Z).
keZ

(8.15)

Now, (B,, —T—, o) is a non-Archimedian normed field for a prime power r and

(B, —T—, o) is a non-Archimedian normed field for a prime r. For more details see
[12], pp.112-113.

The product system of the collection of the function systems
®,:={pF:0<k <7}

is the set of functions {¢, : m € N), where to a given m € N we have expansion
o0
m = Zmnr” (my, €{0,1,2,-- ,r —1})
n=0

and the function 1, is defined by

oo

U 1= H n

n=0
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The topology and the Haar measure is given in the same way, like in the case of
2-adic and 2-series field, and so is the conditional expectation F, with respect
to the o-algebra A,, generated by the intervals of rank n for any n € N.

Let I:= {a = (a;,j € N)| a; € A,}. The character system (Y,,,m € N) of

(I, —T—) is now formed by the product system generated by

T

(;Sn(x)::e(%—k L+ IO)(REN),

r2 pntl

namely to m € N

T (2) = [[(@n(@)™ (@ el
n=0

The characters of (I, —T—) are now the functions of the product system gener-
ated by the so-called generalized Rademacher functions

On(x) =€ (z—n) (n €N),

r

namely the system

1o (z) = ﬁ € (m,;xn) (m € N).

n=0

When the system (Y,,,, m € N) takes the role of character system (v,,n € N)
in Paragraphs 6.3 and 7.2, and replacing the Walsh-Paley functions (w,,n €
N) with the system (Y9,,m € N) in Paragraphs 6.2 and 7.2, we obtain the
generalized discrete Laguerre and Malmquist-Takenaka systems.

As all the techniques and results show a simple analogy with the presented
case, we do not go into details in this subject.
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