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Introduction

In 1900, Hilbert published 23 problems in mathematics. These were all unsolved
at that time, and many of them were later very influential for 20th-century math-
ematics. The tenth of these problems was to provide a general algorithm which
for any given Diophantine equation, can decide whether the equation has a solu-
tion with all unknowns taking integer values. It was later proved by Matiyasevich,
that such algorithm does not exist. This posed the need for methods which can be
used to solve large families of Diophantine equations. A major breakthrough was
the application Baker’s method to give effective finiteness results for several types
of equations. However, the bounds obtained with Baker-type arguments were of-
ten too high for practical applications. For particular equations reduction methods
(such as the result of Baker and Davenport [15]) can be used to determine all

solutions.

In our PhD dissertation, we will combine the latest effective methods with our own
observations to give effective results for families of diophantine equations and
inequalities with interesting number theoretic backgrounds. In all our chapters,
we will combine several methods to compute the solutions to these equations. In
the introduction, we will focus on one particular method, however the details can

be found in the appropriate chapter.

In our first chapter, we will show, how elementary considerations and modular
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arithmetic can be applied to show, that a certain family of polynomial-exponential
diophantine equations have only the trivial solution. Suppose that a, b and c are
known positive integer numbers, and consider the exponential diophantine equa-
tion

a® + b = c*, (1)
in positive integer unknowns x, y and z. The application of Baker’s theorem on
effective lower bounds on linear forms of logarithms led to many exciting results
concerning such equations (see for example [103]). The triple of positive integers

(a, b, c) is called a Pythagorean triple, if

a® +b* =2
Also, (a, b, ¢) is called a primitive Pythagorean triple, if a, b and ¢ are co-prime.
The study of equation (1) with Pythagorean triples as bases has a long history.
In 1955, Sierpinski proved that for the smallest and most famous Pythagorean
triple (a,b,c) = (3,4,5), the corresponding equation (1) has the unique solution

(x,y,2) = (2,2,2) (see [105]). Similar results were given by JeSmanowicz in

1956. He showed that if
(a,b,c) € {(5,12,13),(7,24,25),(9,40,41), (11,60,61)},

then the only solution of (1) is again (x,y, z) = (2,2, 2). Based on his results he

proposed the following conjecture (also known as Jesmanowicz’s conjecture).

Conjecture 1. Let (a, b, ¢) be a primitive Pythagorean triple such that a* + b* =
c?. Then the only solution of (1) is (z,y,z) = (2,2,2).

Conjecture 1 and its generalizations have received a great deal of attention over
the years, however the problem in its general form is still open. It is well known

that for any primitive Pythagorean triple (a, b, ¢), we can write

a=m?>—n? b=2mn, c=m?>+n? (2)
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where m and n are positive co-prime integers of different parities with m > n. In

1959, Lu [67], and in 1965 Dem’janenko [40] proved Conjecture 1 for
n=1; (a,b,c)=(m*—1,2m, m*+1)
and
n=m-—1; (a,bc)=(2m—1, 2m(m — 1), 2m* —2m + 1),

respectively. Since 1990 a lot of progress has been made towards the proof of
Conjecture 1. In 1993, Takakuwa and Asaeda, and Takakuwa (See [112], [114],
[113],) proved Conjecture 1 for various infinite families of triples (a, b, ¢). In sev-
eral papers between 1995 and 2009 Le ([60], [61], [63]) applied the theory of
linear forms in logarithms to give quantitative results, and prove Conjecture 1 for
many triples. In 1994, Terai [118] introduced a generalization of Conjecture 1
(known as Terai’s conjecture). In the following years he proved it for several spe-
cial cases (see for example [119], [116], [117]). In the last few years, Miyazaki
made many important contributions to this field. He proved both Conjecture 1 and
Terai’s conjecture for various infinite families of triples (see for example [79],
[81]). A comprehensive collection of classical and recent results on JeSmanovicz’
conjecture, and its generalizations can be found in [82].

In our work [98], we will extend a result of Miyazaki [80], and prove a modified

version of the JeSmanowicz conjecture for an infinite number of triplets.

In the second chapter, we will show, how recurrent sequences can be applied to
give sharp bounds for the size of the solutions of some hyperelliptic diophantine
equations of special shape. We will consider the generalized Ramanujan-Nagell
equation

>+ D =y", 3)
where D > (0 1s a given integer and x, y, n are positive integer unknowns with n >

3. Results obtained for general superelliptic equations clearly provide effective
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finiteness results for this equation, too (see for example [2], [101], [103], and the

references given there).

The first result concerning the above equation was due to V. A. Lebesque [64]
who proved that there are no solutions for D = 1. Ljunggren [65] solved (3) for
D = 2, and Nagell [89], [91] solved it for D = 3,4 and 5. In his elegant paper
[34], Cohn gave a fine summary of the earlier results on equation (3). Further, he
developed a method by which he found all solutions of the above equation for 77
positive values of D < 100. For D = 74 and D = 86, equation (3) was solved
by Mignotte and de Weger [78]. By using the theory of Galois representations and
modular forms Bennett and Skinner [25] solved (3) for D = 55 and D = 95. On
combining the theory of linear forms in logarithms with Bennett and Skinner’s
method and with several additional ideas, Bugeaud, Mignotte and Siksek [126]

gave all the solutions of (3) for the remaining 19 values of D < 100.

Let S = {p1,...,ps} denote a set of distinct primes and S the set of non-zero
integers composed only of primes from S. Put P := max{py, ..., ps} and denote
by () the product of the primes of S. In recent years, equation (3) has been con-
sidered also in the more general case when D is no longer fixed but D € S with
D > 0. It follows from Theorem 2 of [111] that in (3) n can be bounded from
above by an effectively computable constant depending only on P and s. In [54]
an effective upper bound was derived for n which depends only on (). Cohn [33]
showed that if D = 2%**! then equation (3) has solutions only when n = 3 and in
this case there are three families of solutions. The case D = 2% were considered
by Arif and Abu Muriefah [4]. They conjectured that the only solutions are given
by (z,y) = (2¥,22**1) and (z,y) = (11-2F71,5.22(k=1)/3) with the latter solution
existing only when (k,n) = (3M + 1, 3) for some integer A/ > 0. Partial results
towards this conjecture were obtained in [4] and [35] and it was finally proved by

Arif and Abu Muriefah [7]. Arif and Abu Muriefah [5] proved that if D = 3%+!
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then (3) has exactly one infinite family of solutions. The case D = 32* has been
solved by Luca [68] under the additional hypothesis that  and y are coprime. In
fact in [69] Luca solved completely equation (3) if D = 223" and ged(z,y) = 1.
Abu Muriefah [86] established that equation (3) with D = 52 may have a so-
lution only if 5 divides = and p does not divide k£ for any odd prime p dividing
n. The case D = 223°5¢7¢ with ged(z,y) = 1, where a, b, ¢, d are non-negative
integers was studied by Pink [93]. The cases when D = 7%* and D = 25 were
also considered by Luca and Togbe [70], [71]. For the case D = 2°5°13¢, see
Goins, Luca and Togbe [45], while if D = 5%13°, see [48]. The cases D = 2411°
and D = 5%11° have been recently considered in [88] and [52], respectively. Let
p > 5 be an odd prime with p # 7 (mod 8). Arif and Abu Muriefah [8] deter-

mined all solutions of the equation 22 + p?*+!

= y", where ged(n, 3hy) = 1 and
n > 3. Here hq denotes the class number of the field Q(1/—p). They also obtained
partial results [6] if D = p**, where p is an odd prime. In the particular case when
ged(z,y) = 1, D = p?, p prime with 3 < p < 100, Le [62] gave all the solutions
of equation (3). The case D = p** with 2 < p < 100 prime and gcd(z,y) = 1
was considered by Bérczes and Pink [30]. If in (3) D = a® with 3 < a < 501 and
a is odd then Tengely [115] solved completely equation (3) under the assumption
(z,y) € N? gcd(x,y) = 1. The equation A* + B? = C" for AB # 0 and n > 4
was completely solved by Bennett, Ellenberg and Nathan [73] (see also Ellenberg
[46]). For more related results concerning equation (3) see [99], [100] and the
references given there. For a survey concerning equation (3) see [125].

In our work [94], we gave all solutions for (3) with D = 5*17! with k and [ being

non-negative integers.

In the third chapter we will show how to apply the combination of Baker’s method
with approximation techniques to give bounds for the number of solutions of a

family of parametric Thue inequalities, and to completely solve a sub-family of
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such equations. A classical problem in number theory is the approximation of

algebraic numbers by rationals, underlying which one has a theorem of Liouville:

Theorem 1. (Liouville, 1844) If o is a given algebraic number of degree n > 2,

then there exists a constant c(«) such that, for every § € Q withy > 0, we have

For applications to Diophantine equations, it is of utmost importance to reduce the
exponent 7 here, i.e. to deduce like inequalities with some exponent A < n. In full
generality, the first such result was due to Thue [120] who proved the following

theorem.

Theorem 2. (Thue, 1909) If « is an algebraic number of degree n > 3, then,

given € > (, there exists a constant c¢(«, €) such that for all integers x and y > 0

we have
x| c(a,e)
¥TY| T e

From this result, Thue deduced that if F'(z,y) € Z[z,y] is an irreducible binary
form of degree n > 3, and m is a fixed nonzero integer then the corresponding
Thue equation

F(z,y) =m “4)

has at most finitely many solutions in integers = and y. This result is, however, in-
effective in the sense that it does not provide any way to actually compute ¢(«, ),
and hence cannot be applied to determine the solutions of the corresponding equa-
tions.

Whilst there is now a well-developed literature on effective solution of Thue equa-
tions, based upon a variety of techniques (including, for instance, lower bounds
for linear forms in logarithms of algebraic numbers; see e.g. [13]), in our work,

we concentrated on bounding the number of solutions to such equations, rather
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than their heights. In this regard, it is known that the number of solutions to equa-
tion (4) in integers is bounded above in terms of only the degree of F' and the
number of distinct prime divisors of m (see e.g. Bombieri and Schmidt [27]). We
will restrict our attention to what is, in some sense, the simplest possible case, that
of binomial Thue equations and inequalities. For these equations, the number of
such solutions is bounded in terms of m alone (see Mueller and Schmidt [85]). In

particular, we will consider equations of the form
jaz™ — by"| = c, 5)

where a, b and c are given positive integers, and z, y and n are unknown integers.
Siegel [104], refining earlier work of Thue, showed that if the coefficients ¢ and b
are large enough compared to ¢ and n, then (5) has at most one positive solution.
Later, Evertse [47] was able to substantially sharpen Siegel’s theorem (see our
Lemma 12). Both results depend on the so-called hypergeometric method. Related
work in this area, including applications and generalizations to cases where a and
b are taken to be S-units rather than fixed, may be found in, for example, Mahler
[75], [76], Baker [11], [10], [12], Chudnovsky [32] and many, many other papers,
including [1]. [16], [17], [18], [19], [20], [21], [74], [28], [29], [56], [55], [49],
[50], [51], [77] and [121]. In our work [72], we will extend a result of Bennett and
De Weger [23] and Bennett [20], and prove that except for some triples (a, b, n),

with ¢ < 3, (5) has only the trivial solution.

In the final chapter, we will discuss how the theory of elliptic logarithms can be
applied to solve certain genus 1 equations. Let m be a fixed integer with m > 3.

Then the number

z(x+1)((m—2)z+5—m)
6

Pyr,, (v) = (6)

is called the pyramidal number with parameters m and z. Interesting aspects of

pyramidal numbers are the binomial coefficients Pyry(z) = (3) with integers
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x > 3, and the successive partial sum of the series of triangular numbers. Ac-
cording to Dickson [44], the first mention of pyramidal numbers dates back to the
ancient Greece. For detailed historical background, please refer to [44]. Pyrami-
dal numbers and their generalizations, figurate numbers, play an important role in
discrete mathematics and number theory. (For a detailed introduction into figurate
numbers, consult [43].) The diophantine and arithmetic properties of pyramidal
and figurate numbers have been widely investigated over the years. Dickson [44]
proved, that every sufficiently large integer is the sum of eight pyramidal num-
bers. Numerical results due to Richmond [97] and Deng and Yang [41] make it is
plausible that the result of Dickson can be improved.

There are also several classical results related to the equal values of pyramidal
and other combinatorial numbers. In 1962, Segal [102] proved, that 10 is the only
pyramidal number whose double is also a pyramidal number. In 1998, Brindza,
Pintér and Turjanyi [9] investigated the equal values of pyramidal and polygonal

numbers. They considered the equation

Poly,, (x) = Pyr, (y),
where Poly, (z) denotes the sequence of polygonal numbers (for details please
refer to [9]) and proved that for all but a finite, computable set of pairs (m,n),
max(z,y) is effectively bounded. In 2012, Dujella, Gy6ry and Pintér [3] studied
the power values of pyramidal numbers. Recently, in two papers Pintér and Varga
[87] and Hajdu, Tengely, Pintér and Varga [58] used various effective methods
to investigate the equal values of general figurate numbers. In our work [57], we
consider the equation

Pyr, (u) = Pyr, (v)
for given positive integers m and n in positive integer unknowns u and v. We give
an effective upper bound for the size of the solutions v and v, and also present a

method to solve the equation completely for given m and n.

17



Our dissertation is based on the results mentioned in articles [98], [94], [72] and

[57].
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Chapter 1

The shuffle variant of JeSmanovicz’

conjecture

In this section, we will combine elementary methods and modular arithmetic to
show that a certain family of polynomial-exponential equations have no solution.
Recall that if a, b and ¢ are known positive integer numbers and (a,b,c) is a
primitive Pythagorean triple, than it was conjectured by JeSmanowicz that the
only solution of the equation

a® + b’ = ¢, (1.1)

is (z,y, z) = (2,2,2) in unknown integers x, y and z (See Conjecture 1 in the In-
troduction). We will state several results of Miyazaki which will play an important
role in the section.

For any positive integer N, denote by rad(/V) the radical of N (i.e. the product of
the distinct prime divisors of N), and ordy (V) the 2-order of N (i.e. the largest
non-negative integer k, such that 2*| V). In their recent papers, Miyazaki [83] and

Miyazaki, Yuan and Wu [110] proved (among others) the following theorems.

Theorem 3. If c = 1 (mod b), then Conjecture 1 is true.
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Theorem 4. Let by be a divisor of b, such that by is divisible by rad(b). Suppose

that Conjecture 1 is true for
c=1 (mod by).
Then Conjecture 1 is true for all c =1 (mod by /2).
Theorem 5. Ifc = 1 (mod b/2°7%2®), then Conjecture 1 is true.

Note that here b is always even thus Theorem 5 is an improvement of Theorem 3.
It was noted by Miyazaki in [80] that, if (a, b, ¢) is a primitive Pythagorean triple
and c = b+ 1, then

c+b=ad

From this, he proposed the following problem. Let (a, b, ¢) be a given primitive

Pythagorean triple such that a® + b?> = 2, and consider the equation
"+ =a" (1.2)
in positive integer unknowns z, y and z.

Conjecture 2. With the above conditions, equation (1.2) has the only solution

(z,y,2) = (1,1,2) ifc = b+ 1. If ¢ > b+ 1 then (1.2) has no solutions.

This is referred to as the shuffle variant of JeSmanovicz’ problem. In [80],
Miyazaki proved that Conjecture 2 is true if c = 1 (mod b). This result is stated

as the following lemma.
Lemma 1. Ifc = 1 (mod b), then Conjecture 2 is true.

In June 2014, during a visit to Hungary, Miyazaki proposed the following prob-
lem. Is it possible to give a generalization of Lemma 1, similar to the way Theorem
5 generalizes Theorem 3? In our current chapter, we give a positive answer to this

question.
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1.1 Results

Consider the equation

"+ =a* (1.3)

in positive integer unknowns z, y and z. Our main results are the following.

Theorem 6. Let by be a divisor of b, such that by is divisible by rad(b). Suppose

that Conjecture 2 is true for all Pythagorean triples (a, b, c) with
c=1 (mod by). (1.4)
Then Conjecture 2 is true for all Pythagorean triples (a, b, c) with
c=1 (mod by/2). (1.5)
Theorem 7. Conjecture 2 is true for all Pythagorean triples (a, b, c) with
c=1 (mod b/2o42®)),

Combining Lemma 1 and Theorem 6, it is easy to verify Theroem 7. We will give
a proof of Theorem 6 in sections 2 and 3. In the last section, we will report about
numerical results concerning (1.3) about cases, that are not covered by Lemma 1

and Theorem 7, giving some further evidence for Conjecture 2.

1.2 Preliminaries and auxiliary results
By (2), we can rewrite (1.3) into the form
(m? +n?)* + (2mn)Y = (m?* — n?)?, (1.6)

where m and n are given co-prime positive integers of different parities with m >

n, and x, y and z are unknown positive integers.
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Our proof of Theorem 6 will closely follow the work of Miyazaki, Yuan and Wu
in [110]. We start with several auxiliary results and general observations. In the
proof, the parities of the exponents z, y and z will play a crucial rule. Thus first
we give some preliminary remarks about the exponents. The following notation
was previously established by Miyazaki in [83]. By Lemma 1, we may suppose
that in (1.3) ¢ # b+ 1 and n # 1. Define integers o, § and e with a > 1, § > 2

and e = #1 and odd positive integers 7 and j as follows:

m = 2%, n=2% +e ifmiseven,
(1.7)
m=2%+e, n=2% if m is odd.

Now, assume that Conjecture 2 holds with (1.4), and suppose that it does not hold
for (1.5) (or in other words (1.3) has a solution with (1.5)). We will show that this
will result in a contradiction. Again it is clear that both b and b are even. By (1.5),
we have ¢ = 1 (mod by/2) thatis ¢ = 1 + ¢ - by/2 for some positive integer .

Since by /2 is a divisor of b/2 = mn, we can write
bo/ 2 = mgny,

where ged(mg, ng) = 1, mg|m and ng|n. Moreover, mq and ng are uniquely de-

termined. Since ¢ = m? + n? we have
m? +n? =1+ mgynot. (1.8)

If 2||by, then by/2 is odd. However, since ¢ = m? + n? is odd, we have that ¢
is even. Thus we have ¢ = 1 + (¢/2)by, which means that ¢ = 1 (mod by), for
which Conjecture 2 is true by assumption. Thus, in what follows, we can assume
that 4|by. We may also assume that ¢ is odd, else we have again ¢ = 1 + (¢/2)by,

for which Conjecture 2 is true. Then (1.8) implies that m or n is even, and
rad(mg) =rad(m),  rad(ng) = rad(n).
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From (1.8), we have that
m*=1 (mod ny), n*=1 (mod myg). (1.9)
Next, we present some lemmas, which will be used in the proof.

Lemma 2. With the above notation, we have
c—1=0 (mod 2minGxA+)) (1.10)

and

a—1=0 (mod 2GS+ " ifm is odd,
| (1.11)
a+1=0 (mod 2mnCx8+) " ifm is even.

Proof. This lemma can be proven similarly to Lemma 4 in [110], by simply
substituting (1.7) into (1.6).
OJ

Lemma 3. With the above notations, we have 2ac # 3 + 1. Moreover, we have

a> G+ 1.

Proof. By Lemma 2, and (1.8), we have
min(2«a, 4+ 1) < orda(c — 1) = ordy(monet) < ordy(mn) = a.

This implies our lemma.

O

Lemma 4. Let d > 1 and let u, v be non-zero co-prime integers. Let p be a prime

Jactor of w — v. If p is odd, or p = 2 and 4 divides u — v, then

ord, (u? — v?) = ord,(u — v) + ord,(d).
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Proof. See for example on p. 11 in [95].

OJ
The next lemma is similar to Lemma 3.1 in [80]. However, we prove it in detail,
because we want to emphasize a somewhat different conclusion. We will use this

alternate statement to avoid Baker’s method during the proof of Theorem 6.

Lemma 5. Assume that « > 1, « # [ and 2« # [+ 1. Let (x,y, z) be a solution
of (1.6). Then both x and z are even.

Proof. Set

4, if m is even,
M — (1.12)
mg, if mis odd.

It is clear that M > 3. Taking (1.6) modulo M and using (1.9), we see that
1=(-1)* (mod M).

Since M > 3, we conclude that z is even. Now, assume that z is odd and m is

even. Then from (1.6) we have
2mn)Y = —m?(2n®* 7 + 2n* %) +n** —n**  (mod 2°*T).

Write
A= _m2<zn2z—2 + I,',LQQ:—Q)7 B = an . n2x‘
Since x is odd, zn?*~2 4+ zn?*~? is odd, thus by Lemma 4
ordy(A) = ordy(m?) = 2a,
ordy(B) = ordy(n?®=# — 1) = ordy(n® — 1) = B + 1.

Since ords((2mn)Y) = (a + 1)y, and 2a # 5 + 1, we have

200 if 2a<p+1

(a+1)y={
B+1 if 2a>p8+1
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which means that either « = 1 and y = 1 or &« = [$ and y = 1 holds. The case,
where m is odd can be treated similarly.

O

Lemma 6. Assume that 2 # 3 + 1. Let (x,y, z) be a solution of (1.6). If y > 1
and x and z are even, then X = Z (mod 2), where x = 2X and z = 2Z for

some X, 7 > 1.

Proof. See Lemma 3.1 and Lemma 3.2 in [80].

1.3 Proof of Theorem 6

We are now ready to prove Theorem 6. It follows from Lemmas 3 and 5 that both

x and z are even. So, we can write x = 2X, z = 27 with integers X, Z > 1, and
(2mn)Y =D -FE
with
D= (m* —n?Z + (m*+nH)*, E=(m?—n?? - (m*+nH*.
Now, if y = 1, then
D—-F

(m—n)2:m2+n2—2mn§(m2+n2)X—2mn:T—DE§O,

which is a contradiction, since m # n. Thus, in what follows, we can assume that
y > 1 holds.
By Lemma 6, we have

X =7 (mod 2).
Suppose that X and Z are both even. Then the congruences
D=2 (mod4), D=2 (modmg), D=2 (mod ng)
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are obtained by (1.9). These imply that D /2 is odd, and co-prime to mgn, thus to
mn. Therefore we get D = 2 which is impossible. Hence both X and Z are odd.

Then we compute

(0,2) (mod 4) if m is even,

(2,0) (mod 4) if m is odd,

(D, F) =

and

D=2 (modny), £E=-2 (mod ng)
which yield the equality

(0. E) (2v=tm¥,2nY) if m is even,
’ (2m¥,2¢"'n¥)  if m is odd.

Now, we discuss the two cases separately.

The case that m is even;

If m is even, then we have

D—-FE
5 = 27 2mY —n¥ = (1 + monot)™.

Reducing both sides modulo m, we get
nY = —1 (mod my).
If y is even, then
—1l=n'= (n2)y/2 =1 (mod my),

which is a contradiction, if my > 3. Thus, either y is odd, or my = 2. In both
cases we have n = —1 (mod my). However, using this we get
ordy(mg) < ordy(n + 1) < ordy(n? — 1)

= ordy(—m® + monot) = orda(mg) + ordy(—m?/mg + net) = ords(my),

which is a contradiction. Thus, neither of the above cases are possible.
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The case that m is odd;
Proceeding in a similar way, we get
mY — 2V72n¥ = (1 + monet)~,
which yields
mY =1 (mod ny).

Suppose now that y is odd. Then m = 1 (mod ny). This yields a contradiction as
in the previous case by estimating ords(ng). Thus, we now have that m is odd, and
y = 2Y, with some integer Y. We complete the proof of Theorem 6 by proving

the following proposition.

Proposition 1. Let m and n be co-prime positive integers with n even, m odd and

m > n. Then the system of equations

(mQ _ nQ)Z + (mQ + n?)X — 2,’,”/2)’7

(1.13)
(m2 —n2)Z — (m? + n2)X = 22 ~1p2Y
has no solution in positive integers X, Y and Z.
Proof. Note that the equations are equivalent to
(m? — n2)% = m2 4 22V =22V
’ (1.14)

(m2 + n2>X — m2Y 9222V

simultaneously. Assume that there are positive integer solutions X, Y and Z. First
we shall show

1< X <Y
Indeed, the inequality X < Y is obtained by

2X

m < (m2 4 nQ)X — mQY - 22Y—2n2Y < mZY‘
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Further, if X = 1,then Y > 2 and
m? 4+ n? =m? — 2222 > Y LoV lnY s 2 4 oop?
that is impossible. Next we claim that
n=0 (mod 4).
If not, then we have +n? = 4 (mod 8) and
55 =52=1+2""24" =14+4""1=1 (mod8).

Therefore both X and Z are even. Multiplying the left and right hand sides of
(1.13) respectively, we get a solution of the equation S* — 7% = U?. But it is well-
known that this has no non-trivial solutions, and the congruence n = 0 (mod 4)

has been shown. Now, from the second equation of (1.14), we get
(m2 + nQ)X — mQY o 22Y_277,2Y — (mY + 2Y—1nY)<mY - 2Y—1nY)_

Since ged(mY +2Y 7Y mY —2Y=1nY) = 1, there are co-prime positive integers

s, t satisfying
st=m?4+n?, s¥=m¥ +2¥ 1InY, X =m¥ -2V InY.
Note that X > 1 and s — ¢ =0 (mod 4). Thus we can apply Lemma 4 so that
ordy(s — t) + ordy(X) = ordy((2n)") = (1 + ordy(n))Y > 3Y,

byn =0 (mod 4), while we can confirm that ordy(X) < Y, using X <Y < 2V,
Then we get ordy(s — t) > 2Y/, in particluar,

2%y Ss—t<3t:m2+n2.
On the other hand, since n? = —m? (mod m? + n?), we have from (1.14) again,

0=m* — 2272 = (14£22 " Hm?  (mod m? + n?).
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Then it follows from ged(m, m? +n?) = 1 that 22¥ =2 £ 1 is divisible by m? + n?.

Note that 22¥ =2 — 1 > 0, since Y > X > 2. Hence
m?4+n? <2241 <2¥

which is inconsistent with the inequality shown above. This completes the proof

of Proposition 1, and thus the proof of Theorem 6.

1.4 Examples

In this section we show how to utilize Lemma 1 and Theorem 7 combined with
some elementary calculation to prove Conjecture 2 for a finite set of triples. For

this purpose we will consider all primitive Pythagorean triples (a, b, ¢) for which
a’+b* = (1.15)

and

o < ¢ <100, (1.16)

and prove the following proposition.

Proposition 2. If (a, b, c) is a primitive Pythagorean triple with a* + v* = ¢* and

5 < ¢ < 100, then Conjecture 2 is true.

Proof. Altogether there are sixteen triples with (1.15) and (1.16), ten of these are

covered by either Lemma 1 or Theorem 7. The remaining six cases are
(a,b,c) € {(21,20,29), (45,28, 53)(33, 56, 65), (39, 80, 89), (77, 36, 85), (65, 72,97) }.

Since the bases are thus fixed in (1.3), it is possible to use the classical theory

of S-unit equations. However we will apply here a more recent approach based
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on a paper of Bertok and Hajdu [26]. In this paper the authors use basic search
for small solutions and modular arithmetic to give very good upper bounds for
the size of the solutions, and also provide a program code written in SAGE to do
the calculations. Consider first the triple (a, b, ¢) = (21, 20, 29). This gives us the
equation

297 4 20¥ = 217, (1.17)

where z, y and z are positive unknown integers. Since (z,y,2) = (0,1,1) is
a solution of (1.17), it is impossible to find a suitable integer M, such that the
congruence

29% 4 20Y = 21°  (mod M)

is not solvable. However using the program of Berték and Hajdu we get that if we

choose
M=3*-7"-13-17-19-37-73-97-109 - 163 - 193 - 257 - 433 - 487 - 577 - 769,
then the congruence

29" +20¢ = 217 - 21*  (mod M)

is not solvable for any non-negative integers x, y and zy. Thus in (1.17) we have
that z < 1, that is

29% 4+ 20¥ = 21,

which has no solutions in positive integers (and the obvious solution (x,y, z) =
(0,1, 1) in non-negative integers). The remaining five cases do not possess trivial
solution, and can be dealt with similarly. We omit the details, and only list the

results in the following table.
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(a,b,c) Modulus Result
(45,28,53) | 13-19-37-73-109 | No solutions
(33, 56,65) 17-19-37-73 No solutions
(39, 80, 89) 32713 No solutions
(77,36,85) 13-19-37-73 No solutions
(65,72,97) | 17-19-37-73 - 577 | No solutions

Thus we covered all the six cases, proving Proposition 2.
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Chapter 2

The generalized Ramanujan-Nagell

Equation

In this chapter, consider the equation
2 + 5817 =y 2.1)
in integer unknowns x, y, k, [, n satisfying
r>1,y>1,n>3k>0,1>0andged(z,y) = 1. (2.2)

We will combine a deep result of Bilu, Hanrot and Voutier [124] with Ljunggren-

type and Elliptic equations to compute all solutions of (2.1).

2.1 Results

Our main result is the following.

Theorem 8. Consider equation (2.1) satisfying (2.2). Then all solutions of equa-

tion (2.1) are:
(x,y,k,l,n) € {(94,21,2,1,3),(2034,161, 3,2,3),(8,3,0,1,4) }.
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Remark 1. We may assume without loss of generality that in (2.1) n > 5 prime
orn € {3,4}. The proof of our Theorem 8 is organized as follows. If n > 5 prime
we combine some results concerning the general properties of Lucas-sequences
with a deep , result of Bilu, Hanrot and Voutier [124] concerning the existence of
primitive prime divisors in Lucas-sequences to derive a sharp upper bound for n
(see also Pink [93], Theorem 2).

If n € {3,4} there is a general method for giving all solutions of equations of
the form 22 4 p*¢' = y™. Namely the problem is reduced to finding S-integral
points on several elliptic curves, where S = {p, ¢}. This works well, but in some
cases the computation of the rank and the Mordell-Weil group becomes very time
consuming so we need another approach. By using the parametrization provided

by a theorem of Cohn (see Lemma 7) we get several equations of the form
X +Y =3,

where X, Y are S-units and S = {p, ¢}. These equations are considered locally
to get a contradiction or are transformed to Ljunggren-type equations. In fact, we
have to give all S-integral points on the resulting Ljunggren-type curves. Then,
using the program package MAGMA we solve completely the equations under

consideration.

2.2 Auxiliary results

Let S = {pi,...,ps} be a set of distinct primes and denote by S the set of non-
zero integers composed only of primes from S. Equation (2.1) is a special case of
an equation of the type

X’+D=Y", (2.3)

where

ged(X,Y) =1 (2.4)
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and

DeS, D>0,X>1,Y>1n>3. (2.5)
The next lemma provides a parametrization for the solutions of equation (2.3).

Lemma 7. Suppose that equation (2.3) has a solution under the assumptions (2.4)
and (2.5) with n > 3 prime. Denote by d > 0 the square-free part of D = dc? and
let h be the class number of the field Q(/—d). Then equation (2.3) has a solution
with d Z 7 (mod 8) in one of the following cases:

(a) there existu,v € Z such that X +cv/—d = (u+vy/—d)" and Y = u?+dv?.

(b) d = 3 (mod 8) and there exist U,V € Z withU =V =1 (mod 2) such

3
that X + cv/—d = (W) andY = W.

(c) n=3if D = 3u? £ 8orif D = 3u?® £ 1 for some u € Z.
(d) n=>5if D € {19,341}.

(e) p|h

Proof. This is a theorem of Cohn [36].
O

Recall that a Lucas-pair is a pair («, 3) of algebraic integers such that o + ( and
a5 are non-zero coprime rational integers and «/ is not a root of unity. Given a

Lucas-pair («, 3) one defines the corresponding sequence of Lucas numbers by

an_ﬂn
L, = . (n=0,1,2...).
P (n )

A prime number p is called a primitive divisor of L, if p divides L,, but does not

divide (& — 8)2Ly -+ Ly,_1.
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The next lemma gives a necessary condition for an odd prime p to be a primitive
prime divisor of the n-th term of a Lucas-sequence if n is an odd prime. Namely

we have the following.

a™

a:gn be a Lucas-sequence and suppose that n is an odd

Lemma 8. Let L, —
prime. Further;, let A = (o — B)2 If p is a primitive prime divisor of L, then
nlp-— (%), where (1—3) denotes the Legendre-symbol with respect to the prime

p-

Proof. See Carmichael [31].
O

The next lemma is a deep result of Bilu, Hanrot and Voutier [124] concerning the

existence of primitive prime divisors in a Lucas sequence.

Lemma 9. Let L,, = L,(«a, ) be a Lucas sequence. If n > 5 is a prime then
L,, has a primitive prime divisor except for finitely many pairs (c, 3) which are

explicitly determined in Table 1 of [124].

Proof. This follows from Theorem 1.4 of [124] and Theorem 1 of [122].
O

The following lemma of Holzer gives a criterium for the existence of solutions of

ternary quadratic equations.
Lemma 10. Let a, b, c be coprime integers, and consider the equation
az? +by* +c2* =0 (2.6)

where x,y, z are unknown integers. If there is a non-trivial solution for (2.6), then

there is one satisfying

|z < Vibel [yl<V]acl [ 2]<V]ab]
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Proof. See [84].

2.3 Proof of Theorem 8

We introduce some notations which will be used in the course of the proof of our
Theorem. Consider equation (2.1) satisfying the assumptions (2.2). Denote by d >
0 the square-free part of 5817 that is 517! = d(5%17°)? where d € {1,5,17,85}
and a,b € Zso. Further, let K be the imaginary quadratic field K = Q(v/—d)
and denote by A the class number of K. As was mentioned in Remark 1, we have
to distinguish essentially three cases without loss of generality. Namely, we may

assume that in equation (2.1) n > 5 prime or n € {3,4}.
Case 1: n > 5 prime.

Suppose first that (2.1) holds satisfying (2.2) withn > 5 prime. If in (2.1) y > 11is
even we obviously have that z is odd. Since for any odd integer ¢ we have t* = 1
(mod 8) we get that 1 +d = 0 (mod 8) by reducing (2.1) modulo 8. This leads
tod =7 (mod 8) for d € {1,5,17,85} which is clearly a contradiction. Hence
in what follows we may assume that in (2.1) y > 1 is odd (and hence x > 1 is
even). Since for d € {1,5,17,85} the class number of the field K = Q(v/—d) is 1
or 2™, (m > 1) we get by Lemma 7 that equation (2.1) can have a solution under
assumption (2.2) with n. > 5 prime only in the cases (a) and (d). Since £ > 0 and
[ > 0 we see thatin (2.1) D = 19 cannot occur. Further, if D = 341 = 11-31 then
since D = 5* - 17! this choice for D is impossible, too. Hence equation (2.1) can
have a solution only in case (a) of Lemma 7. Namely, using the parametrization

provided by Lemma 7 and taking complex conjugation, we get

(z 4 517V =d) = (u+ vv/—d)" and (z — 517"V —d) = (u — vvV/—d)" (2.7)

36



for some u,v € Z. Further, we also have y = u? + dv?. By (2.7) we see that
u | « and since y > 1is odd and ged(z,y) = 1 we get that ged(2u,y) = 1. Let
o = u + vy/—dand 3 = u — vy/—d. Then ged(af,a + ) = ged(y, 2u) = 1.
If o/ is a root of unity then since n > 5 is prime we have o/ € {£1, £i} if
d = 1. This leads to u = 0 or u = £v. Now u = 0 yields x = 0 which is a
contradiction by (2.3). If u = 4w then 2 | y = u* + v? which contradicts the fact
that y is odd. If d € {5, 17,85}, then /3 is a root of unity if a/5 € {£1}, which
leads to either u = 1,v = 0oru = 0,v = 1. If u = 1,v = 0, then we get a
contradiction with y > 3. If u = 0,v = 1, then y = d holds, which leads to a
contradiction with ged(z, y) = 1. Thus

(u+vvV—=d)" — (u — vy/—d)"
2'0\/—_d

L, = (2.8)

is a Lucas sequence.

Further, by (2.8) we have

5017
N (%

Ly

for some non-negative integers a, b. By Lemma 9 we get that L,, has a primitive
divisor for n > 5 prime. Also the only prime divisors of L, can be 5 or 17. By
Lemma 8 we get that if p is a primitive divisor of L,, then p = £1 (mod n), so

n | p£ 1 holds. Since p € {5, 17}, we have that one of the following cases holds:
n|4=2>n[6=2-3,n|16=2* n|18=2.3?

Since n > 5 we get a contradiction for all cases, which implies that (2.1) does not

have a solution for n > 5.

Case 2: n = 3.
At first, we point out that the usual method concerning the search for S-integral

points on certain elliptic curves proves to be time consuming in this case, so we
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show a different approach.

By Lemma 7, we see that

z + 517V —d = (u + vv/—d)? (2.9)

holds, where d € {1,5,17,85} and u,v € Z. After expanding the right handside

of equation (2.9), and comparing the imaginary parts, we get that
5717 = v(3u® — dv?). (2.10)

In (2.10) ged(v, 3u? — dv*) = 1 holds, since otherwise we would get ged(u, v) #
1, which implies ged(x,y) # 1, which is clearly a contradiction. From this, we

get the following type of equations:

3u? — dv? = f
@.11)

where
(f,9) € {(£1,£517%), (£5%, £17%), (£17°, £5%), (£5°17°, £1)}.

Since d € {1,5,17,85}, we get a total of 16 cases, we have to deal with. We will
illustrate the method in one of the more interesting cases, all the others can be

done in the same way. Let d = 5, f = £17°, g = £-5%. From this, we get that
3u? — 5% = £17° (2.12)

holds. Our main goal is to transform this to Ljunggren-type curves. To reduce the
number of curves, and so the time of the computation we write (2.12) to the form
of Az? + By* + C2% = 0. Now using Holzer’s theorem (see Lemma 10) we get,
that (2.12) has a nontrivial solution if and only if b is odd and 3u? — 5%¢+! = —17°

holds. Now we transform this to the following type.

u 2 i1 [ 9% ! j+1
3 (5 ) =5 () 17 (2.13)
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where i,j € {0,2},and a = 4a; + i+ 1, b = 4b; + j + 1. So, the problem is
reduced to finding all the {17}-integral points on quartics of the form of

az

32 =5Xt — 17t g j € {0,2}, where X = 176 and Y = 171;)2‘

Now, we can use MAGMA to determine all the solutions of the above equations.
Repeating this for all the 16 cases we get that all the solutions of (2.1) withn = 3
are:

(z,y,k,1,n) € {(94,21,2,1,3), (2034, 161, 3,2, 3)}.

We point out that, in many of the above cases the method used can be combined

with local methods to simplify the computations.

Case 3: n = 4.

If n = 4 holds, then we can write the following:
gt — g2 = 517!
which can be factored as
(y? — z)(y* + ) = 5*17". (2.14)

In (2.14) ged(y? — x,y* + x) = 1 holds, else we would get a contradiction with

ged(z,y) = 1. So, we get that

where (f,g) € {(1,5%17"), (5% 17", (17',5%), (5*17',1)}. Now, by adding the

first equation to the second, we get, that
20" =f+yg
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holds. Using a similar method as in the n = 3 case we get that with n = 4 all the

solutions of (2.1) are

<m7 y7 k:7 l’ n) e {(8’ 37 07 17 4)}'
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Chapter 3

Binomial Thue Inequalities

In this chapter we will apply Baker’s method combined with hypergeometric ap-
proximation techniques to give effective (and computable) upper bounds for the
number of solutions of binomial Thue inequalities. Despite the fact that the situ-
ation we will consider is a very specialized one, we believe it is instructive to see
what can be said explicitly, as a test of the current state of refinement of compu-
tational and analytic techniques. As a starting point, we note that, implicit in the

techniques of [20] and [23] is the following result.

Theorem 9. Let c be a positive integer. Then there exists an effectively computable
finite set S, of triples of positive integers a,b and n with the property that if a,b

and n > 3 are any positive integers for which the Diophantine inequality
lax™ — by"| < ¢ (3.1)
has more than a single solution in positive integers x and y, then (a,b,n) € S..

The main result of [20] is that the set S; is empty.
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3.1 Results
Extending the aforementioned theorem, our main result is the following.
Theorem 10. With S, defined above, we have S5 C S5 U 15, where
Sy =1{(1,2,3),(2,1,3),(1,3,3),(3,1,3),(2,5,3),(5,2,3)}
and
T3 ={(1,3,n),(3,1,n),(2,5,n),(5,2,n) with 37 <n < 347, n prime } .

For (a,b,n) € S%, the solutions in positive integers to inequality (3.1) with ¢ = 3
are, in each case, (z,y) = (1,1), and also

(@b | (1L23)| 213) (1.3,3)] 63,13 253623
(o) | G0 | @) | 3.2 | @3 09140419

In case n = 3, this theorem represents a slight sharpening of a classical result of
Ljunggren [66], who considered equation (5) with n = 3 and ¢ € {1, 3}. Itis very
likely that S3 = S5 (which should be provable with a finite but currently infeasible
amount of computation). We can, in any case, certainly prove a sharpened version
of Theorem 10, with 73 replaced by a somewhat smaller set, through more care-
ful application of the hypergeometric method; in our opinion the effort involved

would somewhat exceed the payoff.

3.2 Some lemmata

In this section, we collect a number of lemmata that we use in the proof of Theo-
rem 10. The first is a state-of-the-art lower bound for linear forms in the logarithms

of two algebraic numbers, due to Laurent (Theorem 2 of [59]). For any algebraic
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number « of degree d over Q, we define as usual the absolute logarithmic height
of « by the formula
1 d ,
h(a) = 7 <log lag| + ;logmax (1, |Oz(%)|>) ,
where ay is the leading coefficient of the minimal polynomial of o over Z and the

aWs are the conjugates of « in the field of complex numbers.

Lemma 11. Let oy and oy be multiplicatively independent algebraic numbers, h,
p and p be real numbers with p > 1 and 1/3 < p < 1. Set

142 — p? h 1
J:uj )\:glogp’ H:X—i__
g

Consider the linear form A = by log as — by log iy, where by and by are positive

integers. Put
D =[Q(a1, a2) : Q] / [R(ar, ) : R]

and assume that

Dlog?2
h > max {D (log (ﬁ + b—2> +log A + 1.75) +0.06, \, &} . (3.2)
a2 3]
a; > max {1, p|log ;| — log |o;| +2Dh(c;)} (i =1,2), (3.3)
and
aras > N2 (3.4)
Then
22 A A2
log |A] > —C (h + —> a1as — Vwb (h + —) — log <C” <h + —) a1a2>
o o o
3.5)
with

2
po (w1 Jw? o 8OV 41 1 Mw

o=t (Y e v )Y 3.6
Ao <6+2\/9+3\/a1a2H1/2+3 a1+a2 H (3.6)
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and

Cowb
I — . v
C'=y] N (3.7)

The next lemma is a result of Evertse (Theorem 2.1 of [47]) and, as mentioned
earlier, represents a refinement of prior work of Siegel on the hypergeometric

method.

Lemma 12. Suppose that a, b, c and n are positive integers with n > 3. Define

Tn = 3_nT_2n pﬁ’ [’[’3 = T311/2’ Mn g

pln

max{ A+2_ _n_ .
Tn {2(n73) 7L72} lfTL Z 4’

and
3n—2 2(n-1)
2(n—3)" n—2

ag =9, ozn:max{

} if n > 4.

Then the inequality (3.1) has at most one solution in positive coprime integers
and y satisfying

max {az", by"} > p,c*".

The final three lemmata we will use are results of the first author [18], [19], [20]
and [22]. To be precise, they are a combination of Theorem 5.2 of [20] with The-
orem 5.2 of [22], a special case of Theorem 1.1 of [18], and a special case of
Theorem 1.1 of [19], respectively. We will use them to treat inequality (3.1) for

“small” values of n.

Lemma 13. Suppose b > a are coprime positive integers and m = [”TH} Let n,

c1(n) and d(n) be as given in the the following table.
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n c(n) dn)| n can) dn) | n ca(n) dn)

17 893 13.06 | 107 83.55 50.84 | 227 201.15 116.91
19 940 1546|109 84.18 5897 |229 202.11 100.61
23 13.03 17.66 | 113 89.22 7793 | 233 207.50 102.49
29 1739 29.95|127 100.47 72.61 | 239 213.74 105.66
31 1792 30.55 | 131 105.34 71.51 | 241 214.95 95.14
37 21.2 — | 137 111.44 79.94 | 251 226.83 115.64
41 25.83 36.08 | 139 112.15 77.27 | 257 233.75 113.23
43 26.62 33.95|149 122.53 85.82 | 263 240.15 119.49
47 30.46 40.16 | 1561 123.41 89.04 | 269 246.54 124.75
03 34.78 35.37 | 157 129.07 81.61 | 271 247.72 134.21
29 39.18 48.34 | 163 134.80 93.64 | 277 254.62 119.17
61 39.96 55.93 | 167 139.95 82.87 | 281 260.46 116.79
67 44.76 43.56 | 173 146.07 87.71 | 283 261.67 118.21
71 48.36 54.80 | 179 151.40 83.92 | 293 274.23 129.73
73 52.83 48.11 | 181 152.20 91.69 | 307 289.00 124.89
79 58.27 54.65 | 191 163.78 84.40 | 311 294.70 130.14
83 62.70 49.64 | 193 164.81 91.51 | 313 296.38 130.18
89 67.56 60.29 | 197 170.17 104.53 | 317 302.73 134.63
97 73.71 62.14 199 170.80 110.41 | 331 317.41 147.69
101 78.29 50.36 | 211 183.12 124.02 | 337 324.63 139.95
103 79.16 60.85 | 223 195.74 112.93 | 347 338.02 133.98

If
(Vb — ¥/a)"er™ <1, (3.8)

then, for all x and y > 0 integers, we have
N\ oz
B

. 3.15 - 10%4(m — 1)2nm~tea(m+d) if p £ 37
2 — )

5-107 it n =237

> (Co( Vb + Xfa)™) ly™,

where

and

=(m— _ log(( Vb + x/a)mecr(m+1/20)
A= ( 1) {1 log(( /b — x/a)ymeer(®) }

Lemma 14. Let ¢ € {1,2,3} and a be a positive integer which satisfies

8 (\/5 +Va+ 0)2 >t (k(e))?, (3.9)
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where

3V3 forc=1,2
k(c) =
V3 forc=3.
Then, for all positive integers x and v,
1+ S - D s (4ak(e) 7 (10%y) 70, (3.10)
a -y
where
log (@(\/m ¢a—+c)2>
)\3 =1 +

log( (\/_+\/a+c)>
Lemma 15. Let a be a positive integer, ¢ € {1,2,3} andn € {4,5,7,11,13}. If
(Va+vate) s 20 (%) , 3.11)
Co\ T

then for all positive integers x and v,

n 1+E_£
V a Yy

K(em)
- log ( (n) (\/_ +va—+ C) ) : l'i c, Tl Hpmax{ordp ) -‘r* 0}
log (chc(c 21) (\/_+ Va+ C) ) pln

1
> = - (1010y) ™M, (3.12)
a

where

)\4:

e5(4) = 1.62, ¢2(5) = 1.84, ¢5(7) = 1.76, co(11) = 1.67 and c5(13) = 1.65.

3.3 Proof of Theorem 10

We will consider the inequality

lax™ — by"| <3 (3.13)
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in integer unknowns x, y, a, b and n which satisfy, without loss of generality,
b>a>1,n>3, z>1,y>1. (3.14)

We may further assume, again without loss of generality, that in (3.13) the expo-

nent 7 is either 4 or an odd prime. By Lemma 12, it follows that if
x" Z o - 304n’

then (3.13) has at most one solution in positive integers x and y. This implies that,
apart from when n € {3,4, 5}, inequality (3.13) has at most one positive solution
with x > 2. We may thus distinguish two cases.

Case I : The inequality (3.13) has (z,y) = (1,1) as a solution. We thus have

b=a+ cforc e {1,2,3} and hence are led to consider the inequality
laz™ — (a + ¢)y"| < 3, (3.15)
where ¢ € {1,2,3} and a, x, y and n are positive integers with n > 3.

Case Il : We have n € {3,4,5}, b — a > 3 and inequality (3.13) has a solution in

positive integers x and y with z > 2.

We first deal with Case 1.

3.3.1 Linear forms in two logarithms

The main purpose of this subsection is to prove the following.

Theorem 11. [f there is a solution to inequality (3.15) in positive integers x and

y with (z,y) # (1,1), then n < 347.
To prove this, we will have use of the following technical lemma.

Lemma 16. If inequality (3.15) has a solution in positive integers (x,y) # (1,1)

then r > %
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Proof of Lemma 16 : If © < y and y > 1, then
laz™ — (a + ¢)y"| > cy™ > 3,
contradicting (3.15). We may thus suppose that x > y + 1, which by (3.15) yields
az” — (a+c)y" > aly+1)" — (a + c)y".

By the binomial theorem, the right hand side of this is

n—1 n n—2 n n
nay' +a 5 y ot S y+1|—cy”.
al (D) 24+ (" Jy+1) >3,

2 n—1

it follows from (3.15) that

Since

nay™ ' — cy™ <0, (3.16)

which in turn implies that z > y > =%, UJ

Proof of Theorem 11 Suppose that inequality (3.15) has a positive solution (x, y) #

(1,1) with n > 347. By Lemma 16, it follows that > na/c. We consider the

log (1 n 2) _nlog (g) ’ . (3.17)

Since (3.15) is equivalent to the inequality

- () )

and since, for every z € C with |z — 1| < 0.795, we have |log(z)| < 2|z — 1], it

linear form

Al =

3

ax™

<

Y

follows that

6
A < s (3.18)
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We write
x c

ap=—, ap=14—,by=n,bp=1, p=0.63, 0 =0.93155, D =1,
Y a

log(a + ¢

y_p . Joslare)

B log(1+ %)
Applying Lemma 11, one may readily check that (3.4) holds. We distinguish two

, and choose a; = 2.003log(z) and as = 3log(a + ¢).

cases according to whether a > 14 or a < 13, respectively.

If @ > 14 then, by calculus, we find that there exist absolute constants c;, ¢, such
that

ciologla+c) < A< cyolog(a—+ c) (3.19)

Here we may choose ¢, = 1.3646 if c = 1, co = 1.1835 if ¢ = 2 and ¢ = 1.1226
if ¢ = 3. The corresponding values of ¢; are ¢; = 1if ¢ € {1,2}, (¢1,a) =
(0.96, 14), (0.98,16), or (0.99,17),ifc=3and 14 < a < 17,and¢; = lifc =3

and a > 18. Since n > 347 and = > ”—c“, it follows that 289 ~ | and, via

log(2)
(3.19),
n 1 CooMn Co0
1 log(A)+1.81 < 1 ( ) 1.81.
°8 (310g(a+c) +2.00310g(:v))+0g( + %6\ 73 T 2003/
Hence, for a > 14, we may take
Coomn Co0
h— {1 ( ) 1. 1,)\}.
max q log \ =5= + 57553 ) 18

Suppose first that b = log (22" + 522-) + 1.81. Then, by (3.19) and the assump-

tion that a > 14,

1 <020n+ CoO > 1181 .
< A= 3 2.003 T (3.20)
ocy log(a + c¢) o

SY

>

+
Lemma 11 and (3.20) together imply that

log |A| > —CONa1asA? — VWOAA — log(C'ajas\* A?) (3.21)
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and hence, comparing (3.18) and (3.21), we have

2 Wl A A+log(200’a1a2)\2A2)

2
" O e TV o) log(2)

(3.22)

Write C' = ﬁé’ . Then, from the definitions of a; and as, and from (3.19), nec-

essarily 3
o022 a9 C'6.009

log(x) c10?

Since # > na/cand n > 347, we have “E2 < 1. Combining this with (3.19)

we obtain that 14 < cy0 and, further,
og(z)

log(2cC’ajasA\? A?)
log()

< 0.4211log(A) + 1.858.
Inequality (3.22) thus implies

n < (%C : 6.009) A2 4 cp0V/WlA +0.421 log(A) + 1.858.  (3.23)

[ &]

Since in Lemma 11 we have H > 1 + %, necessarily H > 2.0734, whence
w < 4.058 and 6 < 1.27. Further, since \/%TQ < \/2?—0% and A\ <a_11 + a—t) <
020 (3255 + %), we have €' < 5.262if c = 1, C' < 4.853 if c = 2 and C' < 4.735

if ¢ = 3. By combining these estimates with (3.23), we obtain, for a > 14, that

L oul
n < (6.0090- %—) A2 +2.2T1c30A + 0.421log(A) + 1.858.  (3.24)

o° C

To remove the dependence on a in this bound, we appeal to the inequalities
log(a + ¢) > log(15) for ¢ = 1, log(a + ¢) > log(16) and a > 14, log(a + ¢) >
log(21) for a > 18 and ¢ = 3 and log(a + ¢) = log(a + 3) for ¢ = 3 and
a € {14,16,17}. Hence we obtain n < 347 for ¢ € {1,2,3} and a > 14, pro-

vided h = log (22 4 5222) + 1.81. If h = ), inequality (3.24) actually implies

a stronger bound upon n.
For a < 13 and ¢ € {1, 2,3}, we omit the general estimates and use exact values

for a. We will provide details in case a = 3 and ¢ = 2; the other cases proceed
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in a similar fashion. We first note that direct calculation of the bounds in Lemma
11 with the same parameters as previously, and with a = 3, ¢ = 2, x > 347a/c,
yields an initial upper bound for n of the shape n < 446. For each prime n between
347 and 446 we apply an algorithm of Pethé [92] (essentially nothing more than
an analysis of convergents in the infinite simple continued fraction expansions to
{/b/a) to search for solutions to our Thue inequality with z < 10°%°. After a short
computation, we find that the only such solution is (x,y) = (1,1). We may thus

assume that x > 10°°°, Using this, (3.22) now yields n < 326, as desired. O

3.3.2 The hypergeometric method

Theorem 11 leaves us with only finitely many fixed exponents to treat in (3.15).
In this subsection, we will assume that n is either 4 or an odd prime between 3

and 347. We first apply Lemma 12 to (3.15). Observe, that
max {az", (a +c)y"} > a,
so if
a > flpc™™,

then (3.15) has at most one solution. Put ag(n) = pu,3%*. We remark here, that
ao(3) = 22678753, ap(4) = 23943 and ag(n) < 1103 for all other values of n.

We thus need to consider (3.15) only with a < ag(n). Note that (3.15) implies the

R
a vy

To deduce an upper bound for y in (3.15) we combine (3.25) with Lemmata 13,
14 and 15. We thus have

inequality

3
< .
- oany™

(3.25)

e forn =3:

<12-/{(c) : 10%)”33
y < ;

n
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o forn € {4,5,7,11,13} :

3. 10100\ 7
< (=) .

o for17 <n < 347 :

. (302(%—+c+ w)m>"-*1

an

If we assume that

(a,¢) {(1,1),(1,2),(1,3),(2,3)},

routine computations in MAPLE show that these bounds are less then 10!°%, ex-
cept for some “small”” values of a and n, where we can appeal to PARI/GP to
solve the corresponding Thue equations directly. By a well known theorem of
Legendre, we have that in (3.15) the ratio =/y is a convergent in the continued
fraction expansion of m . We can thus apply the aforementioned algorithm
of Pethd [92] to compute all solutions of the occurring inequalities. The excep-
tional cases here which do not satisfy the requirements of Lemmata 13, 14 and
15 (again, all with “small” values of a and n) may also be treated via PARI/GP. It

remains to deal with the pairs

(a,¢) € {(1,1),(1,2),(1,3),(2,3)},

for n = 4 or prime n, 3 < n < 347.In case (a,c) = (1, 1), the desired result is an
immediate consequence of Proposition 5.1 of [22]; we find an additional solution
withn = 3 and (x,y) = (5,4). Suppose next that (a, c) = (1, 3). The Diophantine
equations

2" — 4y = +1, 42
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can be shown to have no solutions in positive integers for n > 3 by combining

work of Ribet [96] with elementary arguments, while
" —4y" =43

has no solutions in integers = and y with |zy| > 1, provided n has a prime divisor
p > 7 (see Theorem 1.2 of [24]). It remains, therefore, to treat inequality (3.15)
with (a,c¢) = (1,2) or (2,3) and n € {3,4,5,7,11,13,17}, and (a,c) = (1,3),
n € {3,4,5}. We appeal to PARI/GP and find no further nontrivial solutions to
(3.15), unless (a, c,n) = (1,2, 3) (where there is the additional solution (x,y) =
(3,2)) or (a,c,n) = (2,3,3) (Where we have (x,y) = (19, 14)). This completes
the proof of Case I.

Case Il can be handled similarly. We can assume, for the remainder of the proof,
that for any positive solution (x,y) of (3.13), we have x > 2. Denote by (xg, o)
a known solution of (3.13). As previously, we may conclude from Lemma 12 that
if max(zg,yo) is larger than a computable constant X,,, then the only positive
solution of (3.13) is (x¢, yo). Hence, we have only to consider (3.13) with n €
{3,4,5} and with a given finite set X of the pairs (¢, yo). By way of example, if
a = 1and n = 3, we have 2 < zg < 283, and determine byg’ by factoring axg +t
for t € {£1,+2,4+3}. In general, applying Lemma 12 to our set of pairs X, we
arrive at a finite set of possible pairs (a, b), with corresponding finite set of Thue
inequalities (really, in this case, equations) to solve. In most cases, we can carry

this out easily via the hypergeometric method. Assume that (zy, yo) is given and
azxgy+t
Yo

that axg — byg = —t, witht € {£1, 42, £3}. Then b can be written as and,

after substituting this into (3.13), we find that

_arg +t

vy

n

axr "

y"l < 3.
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Applying Lemmata 14 and 15, we are led to inequalities of the shape

(&1
(c’lﬁoy)A

x t
o el
Toy axy

where the constant ¢; can be deduced from the statements of Lemmata 14 or 15.
This yields, in a similar fashion to Case I, that y is bounded by some absolute
constant (usually around 10°%°). From (3.13),

3
any™

T )

Yy a

and hence, via Legendre’s theorem, we have that z/y is a convergent in the sim-
ple continued fraction expansion of m. Thus, we may again apply Pethd’s
algorithm [92] to compute all solutions of the corresponding inequalities. Repeat-
ing this procedure for all (z,yy) € X, and using PARI/GP for some exceptional
equations with small coefficients which we are unable to handle via the hyperge-
ometric method, we conclude that (3.13) has at most one solution for each triple
(a,b,n) in Case II. This completes the proof of Theorem 10. Full details of these

computations are available from the authors upon request.
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Chapter 4

Equations concerning pyramidal

numbers

In the last chapter we will apply linear forms in elliptic logarithms to solve a
z(z+1)((m = 2)x +5—m)

d
5 an

family of genus 1 equations. Set Pyr, (z) =

consider the equation
Pyr, (u) = Pyr,(v), 4.1)

in positive integers u and v for given m and n. In what follows, we give effective
upper bounds for the size of the solutions of (4.1). We apply the so-called Elliptic
Logarithm method, which was developed by Stroeker and Tzanakis [108], and
independently by Gebel, Pethé and Zimmer [53] and later improved by Stroeker
and Tzanakis [109]. Two interesting special cases are studied by computational
number-theoretic tools.

Before stating the main results, we would like to introduce another form of the

problem. It is easy to see that (4.1) is equivalent to the equation
(m —2)u® +3u> + (5 —m)u = (n — 2)v* + 30? + (5 — n)v 4.2)

in positive integer unknowns u and v.
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4.1 Results

With this latter form, the main results are the following.

Theorem 12. Let m and n be given positive integers with 3 < min(m, n) and
m # n. Then the equation (4.2) has at most finitely many solutions in integer
unknowns u and v. In fact max(u, v) < Cy, where C is an effectively computable

positive constant depending only on m and n.

Remark We would like to mention here, that Theorem 12 is also a direct conse-
quence of the celebrated result of Baker and Coates (see [14]). However, the cur-
rently discussed Elliptic Logarithm method gives more practical bounds. Sadly,
due to the nature of the method, it is currently not possible to make C'; explicit in

terms of m and n.
Using the techniques mentioned above and the program packages MAGMA [123],

SAGE [42] and MAPLE, we prove

Theorem 13. For given m and n with 3 < n < m < 10, all solutions of (4.2) in
(u,v) integers with (u,v) & {(0,0)(—1,—1),(—1,0),(0,-1),(1,1)} are given in
the following table.
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(m,n) (u,v)

(4a 3) (07 _2)7 (_17 _2)

(5,3) | (0,-2), (=1, —2),(—35, —51)
6,3) | (0,-2),(—1,-2),(—16,—26)
(77 3) (07_2)7 — 7_2>7( 2, _4)
(7,5) (=5,-6),(6,7)

(8? 3) (07 _2)a (_17 _2)a (77 12)
(3,6) (—276, —316)

(973) (07_2)7(_17_2)7(_87_16>7(273)
9,4) (=13, —20)

(9,7) (152, 170)

(107 3) (07 _2)7 (_17_2)

(10, 4) (55, 37)

(10,6) (35, 44)

As a direct corollary to Theorem 13, we can state the following.

Corollary 1. For given m and n with 3 < n < m < 10, all solutions of (4.1) in

positive integers (u, v) with (u,v) # (1, 1) are given by

(8, 3,7, 12), (9, 3, 2, 3), (8, 4,3, 4), (10, 4,55, 87),
(m,n,u,v) € (4.4)
(7,5,6,7), (10,6, 35,44), (9,7, 152, 170).

Before proceeding with the proofs, we would like to make some preliminary re-

marks.

Remarks. Easy substitution shows that the elements of the excluded set

{(07 0)7 (_17 _1>7 (_17 0)7 (07 _1)7 (17 1)}
are solutions of (4.2) for all m and n.

As the computational data shows, giving all the solutions with unknown m, n, u
and v is hopeless, as there does not seem to be any pattern in the solutions. If we

consider (4.2) for given v and v in integer unknowns m and n, we get a linear
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equation. In this case (4.2) has either no solutions or infinitely many. The latter is

the case if and only if

ged (u3 —u, v — v) |(2u3 — 3u* — 5u — 20% + 30* + 51})

We would also like to mention here, that in the case where both m — 2 and n — 2
are perfect cubes, we can apply elementary calculations to deduce an upper bound

for max{u, v}. Indeed, suppose that in (4.2), m — 2 = k®* and n — 2 = [3. Set
U=kPu+1? V=KPBv+ k.
Then we have
U —V3 =14k = 3)K* +3)U — K* (I’ = 3)I> + 3)V + °(3k* — 2) — k°(31° - 2).
Here U = V cannot occur. Using the triangle inequality, we get
(max{U, V})> < U2 + UV + V2 < Cymax{U, V},

with

Co=k* (1> = 3)1® +3) + 1*((k* — 3)k® + 3) + k°(31° — 2) + I°(3k* — 2),

and so

max{U,V} < Cj.

4.2 Auxiliary Results

Lemma 17. Let m and n be given positive integers with m #* n. Then equation

(4.2) is birationally equivalent to the Weierstrass curve

y? = 2® 4 c(m,n)z + d(m,n), (4.5)
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where
c(m,n) = —48n>m? + 336nm?*+

+4368m — 624m? — 624n%+
+4368n — 8112 — 2352nm + 336mn?,

and

d(m,n) = 281216 — 227136m — 227136n — 4352n3 — 4352m> + 256m*—
—52544nm? + +57424n2 + 57424m? + 194656nm + 64n*m?—
—52544mn? + 4352mn? + 4352nm?> — 256nim — 256nm*—
—1088n2m3 + 64n*m* + 256n* + 14592n?m? — 1088n3m?.

Moreover, there exist mutually invertible birational transformations ®(x,y) and

U(x,y), under which

u=®(z,y), and v ="V (z,y). (4.6)

Proof. We prove Lemma 17 using an algorithm due to Nagell [90]. We will
closely follow the method described by Connell in [37]. Let us start with (4.1),

which has the rational point (u,v) = (0, 0).

Step 1. Substitute u = U/W and v = V/W in (4.2), and clear the denominators

to get the homogenous form

F=F+ FBW+ FRW? =0, 4.7)
where

Fy=(m—2)U?— (n—2)V3,

Fy =3U? - 3V?,

FF=6-m)U—-(5—n)V.
The rational point P with (u,v) = (0, 0) has the projective coordinates [U : V :

W] =0:0 : 1]. The tangent line to (4.7) in P, given by F; = 0 meets (4.7) in
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Q = [e2(5 —n),es(b — m), e3], where

e = Fy(—(5—n),—(5—m)) =35 —n)? —3(5 —m)?,
es=F3(—(5-—n),—(5—m))=—(m —2)(5—n)*+ (n — 2)(5 — m)>.

The aim of this step is to bring () into the origin with a suitable change of coor-
dinates. Before we can do this, we have to examine e, and es a little further. It is
easy to see, that e; can only be 0 if and only if |5 — m| = |5 — n|, which means

that (m, n) comes from the set
§=1{(1,9),(2,8),(3,7), (4,6),(6,4),(7,3),(8,2), (9, D}

On the other hand, e3 cannot be 0, since that would mean, that

G-mP _ (5-n)’ ws)

m — 2 n—2

. . —_ 3 . . .o, . .
holds. But the derivative of % is negative for every positive integer = other

than 5. Thus, for x # 5, the function

(5—x)°

r—2

is monotonous which means, that for m # n # 5, (4.8) cannot occur. By choosing
m = 5in (4.8), we get, that n = 5, which contradicts m # n.
Thus we can distinguish two cases: either we have e; # 0 and e; # 0 with
(m,n) € S, or we have e5 = 0, e3 # 0 with (m,n) € S. If (m,n) is in S, then Q)
is the origin, thus () is a flex. If this is the case, one can jump directly to Step 2 .
We make the coordinate transformation

(5 —n)ey

U=U+ W,
€3

oy Bomey,
€3 ’

W =W
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to send @ to the origin. We can now return to affine coordinates v’ = U’'/W’,

o=V W

Step 2. Now our equation is of the form f' = f| + f; + f; = 0, where f/ denotes
the homogenous part of f’(u’,v’) of degree i, i € {1,2,3}. Introduce t = Z—; and

denote f/(1,t) by ¢; to get the quadratic equation

U @3 + /gy + ¢y = 0. (4.9)
Letd = Qb% — 4¢3¢1. Then
= M, and v/ = tu/ 4.10)
2¢3

The zeros of § are the slopes of the tangents to the curve in the (v, v’)-plane that

pass through (). One such value is

5—m

to = .
0 5—n

Thus (t — o) is a linear factor of 6. Write 7 = (£ —ty) ™, and let p = 744. Clearly,

p is a cubic polynomial in 7.

Step 3. Finally, if

3 2
p=CT —+ CoT +Cg7’+C4,

. / 2 .. .
then substitute 7 = f—l, p= Z? to get the elliptic equation
y? = 2" + con + cres’ + ey

Substituting 2" = x — 2 yields (4.5). The transformations ® and ¥ can be traced
back starting with (4.10).
O]
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4.3 Outline of the proof of Theorem 12

By Lemma 17, our initial equation is equivalent to the Weierstrass curve (4.5).
Our goal is to apply the Elliptic Logarithm method to deduce the upper bound ¢;.
To do this, we have to make sure first, that (4.5) is non-singular. The discriminant
of (4.5)1s

D(m,n) = —6912 - Dy(m,n) - (m — n)? 4.11)

where

Dy(m,n) =

—12303200 — 4987111n% — 4987111m? — 14047282nm + 4409272nm>+
+4409272mn? — 90912mn> — 90912nm3 + 13540280m + 13540280n + 546080n3+
+546080m3 + 48224m* — 8704m® + 256m° + 48224n* — 8704n> + 256n°—
—637744n>m? — 436552n3m? — 158176n*m + 154792n*m? — 158176nm*—
—436552n>m? + 154792n*m* + 17920n5m — 14080n°m? + 287712n>m3
—65376n3m?* — 512n5m + 384n5m? — 65376n m? + 12176n*m* + 17920m°n
—14080m°n® — 512m°n + 384m°n? + 5120n°m? — 800n°m* + 5120n°m°—
—128n3mS — 128n%m3 — 800n*m® + 32n°m® + 16m*nb + 16mSn.

Clearly, D(m,n) = 0 if and only if D;(m,n) = 0. Write
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Poly = 256n° — 8704n5 + 48224n* + 546080n3 — 4987111n? + 13540280n—
—12303200,

Poly = —512n% 4 17920n° — 158176n* — 90912n3 + 4409272n2 — 14047282n+
+13540280 + m(384n° — 14080n° + 154792n* — 436552n — 637744n>+
+4409272n — 4987111),

Poly = —128n°% + 5120n° — 65376n* + 287712n% — 436552n% — 90912n + 546080+
+m (16n° — 800n° + 12176n* — 653760 + 154792n? — 158176n + 48224) ,

Pols = 32n° — 800n* + 5120n3 — 14080n2 + 17920n — 8704,

Pol, = 16n* — 128n3 + 384n2 — 512n + 256.

Thus, D; = Polym® + Polsm® + Polam?® + Polym + Poly. It is obvious, that
for suitably large m all the polynomials Pol; are monotonously increasing in n,
thus always positive for large enough n. Easy calculation shows that D; > 0 for
min{m,n} > 30. Now fix m for m = my < 30. Then D;(mg,n) is a polynomial
in n. Searching for the integer roots of D;(mg,n) for all 1 < my < 30 we find,
that D;(m,n) = 0 can occur only with m = n = 5. Repeating this last step with
fixing n = ny < 30 we get the same result thus proving that (4.5) is non-singular

for all (m,n), where m # n.

Now, we turn to the Elliptic Logarithms. Here we follow the approach described
by Stroeker and Tzanakis in [108] and Stroeker de Weger in [107]. Let r be the
rank of the curve (4.5), P,... P, a basis of the Mordell-Weil group, and P,
a torsion pont on £. Then a rational point P on the curve is of the shape P =
miPy + -+ +m,.P. + P,y withm; € Z. Write M = max |m;|. Then according

1<i<r
to [107] the linear form in elliptic logarithms has the form

L(P) = mow + mquy + -+ + My + Upyq — U,

63



where u; are the elliptic logarithms of the points F;, ug is the elliptic logarithm of
a well-chosen (), point on E, and my is a scaling factor. Using this notation, we
have max{M, |mo|} <rM + 1.

On one hand, we have an upper bound for this linear form:
|L(P)| < exp(c; — caM?), (4.12)

where the constants ¢; and ¢, are effectively determinable. On the other hand a
result by David [38] provides a lower bound for the linear form L(P). Combining
this with (4.12) provides an upper bound for M. Thus = and y are bounded in terms
of m and n, which combined with (4.6) yields an upper bound for max{u, v}

completing the proof of Theorem 12.

4.4 Examples

In what follows, we will illustrate the method described in Section 4.3 in two
interesting special cases. Iterating the steps described here for 3 < n < m < 10,
we get the set of solutions (4.3), thus proving Theorem 13. First, we consider (4.2)

with (m,n) = (9, 7). More precisely, we prove the following theorem.

Theorem 14. The only positive integer, which is both 9-pyramidal and 7-pyramidal,
is 4108560.

Theorem 14 is the direct consequence of the following lemma.
Lemma 18. All solutions of the equation
7u® + 3u® — du = 50 + 30 — (4.13)
in integer unknowns u and v are
(u,v) € {(-1,-1),(-1,0),(0,—1),(1,1),(152,170)}. (4.14)
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Proof. Equation (4.13) is birationally equivalent to the minimal Weierstrass curve
Y? = X3 —1209X + 19361, (4.15)

under the transformation

2u— v

(X,Y) = (20u — 18 — 43v 3(231u® + 129u? — 26u — 16503 — 15602 — 141))) ‘

’ (2u — v)*
Using the program package MAGMA, we get that the rank of (4.15) is 4, and the
torsion subgroup of (4.15) is O. The generators of the Mordell-Weil group are:

Py = (19,57), P, = (25, —69), Py = (=5, —159), P, = (—41,3).

Let P = my P, + ms P> + m3P3 + my P, be a rational point on (4.15) which is the

image of an integer point on (4.13). Then the linear form L(P) is of the shape
L(P) = Mpw + MUy + Mala + M3usg + Mg — Uy,

where w is the fundamental real period of (4.15), and w; (i = 0,...,4) are the

elliptic logarithms of Qy and P;, (i = 1, ...,4). After some calculation we have
Qo = (—31.8884...,159.6485...),

w=2.1510..., up=0.9728..., u; = 0.5717...,
us = 1.6797..., us = 1.3289..., uy = 1.0739....

Also, in this particular case, (4.12) reads as
|L(P)| < exp(10.168 — 1.23M?).

Combining this with the aforementioned result of David, we get M < 0.384-1016,
To reduce the upper bound, we apply de Weger’s [39] method based on the LLL-
algorithm. After a few iterations we get M < 13. Searching for all points on

(4.15) with M < 13, and applying the inverse of the birational transformations
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mentioned above, we are able to calculate the set of solutions (4.14).

O

As a second application for the method, we consider the following problem. For

given integers x > 1 and y > 1, what are the solutions of the diophantine equation

2
("”’;: >:12+22+---+y2. (4.16)

Using the definition of the binomial coefficients, and some well-known properties
of sums of squares, we get, that (4.16) is equivalent to (4.2) with (m,n) = (4, 3).

We have the following theorem.

Theorem 15. The only solution of (4.16) in integers x > 1 and y > 1 is the trivial

solution (z,y) = (1, 1).
This is the direct consequence of the following lemma.

Lemma 19. The diophantine equation
2u® 4 3u® + u = v* 4+ 3v* + 20 (4.17)

has no solutions in integers (u, v) other than the trivial solutions

(u,v) € {(—1,-1),(=1,0),(0,—1)(1,1)}.

Proof. We proceed as in the previous case. Equation (4.17) is birationally equiv-

alent to the minimal Weierstrass curve

Y? = X3 — 48X + 272, (4.18)
under the transformation
(X,Y) = —4(5u+ 9+ 5v)  12(30u” + 66u” + 41u — 150° — 390” — 28v)
o u— 20 ' (u —20)? '
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The rank of (4.18) is 1, and the torsion subgroup of (4.18) is trivial. The generator
of the Mordell-Weil group is

P, = (16,60).

Denote by P = m; P, arational point on (4.18), which is the image of an integer

solution of (4.17). Then we have the following linear form
L(P) = mow + mqu; — uy,

where w is the fundamental real period of (4.17), and ug, u; are the elliptic loga-
rithms of the points P, and Qy = (29.7388...,158.5738...). After some calcu-

lation, we have
w=3.7814..., ug=10.3685..., uy = 0.5074....
In this case, (4.12) reads as
|L(P)| < exp(8.02852 — 0.05909M?).

Combining this with David’s result, we get M < 0.2919 - 1052, After a few itera-
tions of de Weger’s algorithm, we arrive at M/ < 18. Checking for solutions with

this condition, we find that the only solution of (4.17) is the trivial one.

4.5 Computational Remarks

We would like to make some remarks concerning the practical details of the com-
putation. Due to MAPLE’s powerful symbolic computational capabilities, the bi-

rational transformation between (4.2) and the Weierstrass model was computed
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using a simple implementation of Nagell’s algorithm in MAPLE 18. The calcula-
tion of the elliptic logarithms, the upper bound and the reduction was also done in
MAPLE 18, using MAPLE’s built-in LLL routine. The computation of the group
of rational points on the curves and the search using the bounds from the reduc-
tion were carried out in both MAGMA and SAGE. The runtimes on a personal
computer equipped with an AMD A10-7800 CPU ranged from being only a few
seconds to few minutes depending on the curves. The most time consuming steps
were the computation of the Mordell-Weil generators, the reduction process and
the exhaustive search below the reduced bound. Compared to the run times pre-
sented for example in [106], no big difference is seen. This may be caused by
the small absolute value of the parameters. The goal of the present paper is to
investigate an interesting family of diophantine equations, as the run times show
however one can extend these results to higher values of m and n if desired. Also,
we think that an algorithm could be written in MAGMA (or any other of the three),
that gives a list of all solutions for given m and n, similarly to some other special

cases of genus 1 equation solvers already present in MAGMA.
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Chapter 5

Summary

In our dissertation, we combine the latest effective methods with our own ob-
servations to give effective results for infinite families of diophantine equations
and inequalities with interesting number theoretic backgrounds. The dissertation
consists of four chapters. In the first, we use elementary methods with modular
arguments to give all solutions to an infinite family of equations. Let (a, b, c) be
a given primitive Pythagorean triple such that a®> + b?> = ¢?, and consider the
equation

A +b=a’ (5.1
in positive integer unknowns x, y and z.

Conjecture 3. With the above conditions, equation (5.1) has the only solution

(x,y,2) = (1,1,2) ifc=b+ 1. If ¢ > b+ 1 then (5.1) has no solutions.

This is referred to as the shuffle variant of JeSmanovicz’ problem. In [80],
Miyazaki proved that Conjecture 3 is true if ¢ = 1 (mod b). In our work, we

extend his work with the following results.

Theorem 16. Let by be a divisor of b, such that by is divisible by rad(b). Suppose
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that Conjecture 3 is true for all Pythagorean triples (a, b, c) with
c=1 (mod by). (5.2)
Then Conjecture 3 is true for all Pythagorean triples (a,b, c) with
c=1 (mod by/2). (5.3)
Theorem 17. Conjecture 3 is true for all Pythagorean triples (a, b, c) with

c=1 (mod b/2o%®)),

In the second chapter, we combine a deep result of Bilu, Hanrot and Voutier [124]
with results concerning Ljunggren-type and elliptic curves to give all solutions to
the equation

2 + 5817 =y (5.4)
in integer unknowns x, y, k, [, n satisfying

r>1l,y>1,n>3 k>0,1>0andged(z,y) = 1. (5.5)

The latter equation is often called the generalized Ramanujan-Nagell equation.
The first results concerning equations similar to (5.4) were given by Lebesque
[64], Ljunggren [65] and Nagell [89], [91]. In our work, we prove an analogues

results such as by Luca and Togbe [70], [71]. Our main result is the following.

Theorem 18. Consider equation (5.4) satisfying (5.5). Then all solutions of equa-

tion (5.4) are:

(z,y,k,1,n) € {(94,21,2,1,3), (2034, 161,3, 2, 3), (8,3,0,1,4)}.

In the third chapter, we combine a refined version of Baker’s method with hyper-
geometric approximation methods to effectively bound the number of solutions of
a family of binomial Thue inequalities. Here we extend a former result of Bennett

[20] and prove the following.

70



Theorem 19. Let ¢ be a positive integer. Then there exists an effectively com-
putable finite set S. of triples of positive integers a, b and n with the property that

if a,band n > 3 are any positive integers for which the Diophantine inequality
lax™ — by"| < ¢ (5.6)
has more than a single solution in positive integers x and y, then (a,b,n) € S..
Theorem 20. With S, defined above, we have Ss C S5 U T3, where
S5 =14{(1,2,3),(2,1,3),(1,3,3),(3,1,3),(2,5,3),(5,2,3) }
and
T3 ={(1,3,n),(3,1,n),(2,5,n),(5,2,n) with 37 <n < 347, n prime } .

For (a,b,n) € S%, the solutions in positive integers to inequality (5.6) with ¢ = 3
are, in each case, (z,y) = (1,1), and also
(@b | (123 213) (1.3,3)] 613259623
@y | 64 | @5 | 62 | @3 [19.19)] 0419

In the final chapter, we apply the so-called Ellog method which was developed by
Stroeker and Tzanakis [108], and independently by Gebel, Peth6 and Zimmer [53]

and later improved by Stroeker and Tzanakis [109] to solve a problem concerning
z(z +1)((m —2)x +5—m)

5 and consider

pyramidal numbers. Set Pyr, (z) =

the equation

Pyr, (u) = Pyr, (v), (5.7)
in positive integers v and v for given m and n. We prove the following results.
Theorem 21. Let m and n be given positive integers with 3 < min(m,n) and
m # n. Then the equation (5.7) has at most finitely many solutions in integer

unknowns u and v. In fact max(u,v) < Cy, where C is an effectively computable

positive constant depending only on m and n.
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Theorem 22. For given m and n with 3 < n < m < 10, all solutions of (5.7) in

positive integers (u,v) with (u,v) # (1, 1) are given by

(8,3,7,12),(9,3,2,3), (8,4,3,4), (10, 4,55, 87),
(m,n,u,v) € (5.8)
(7,5,6,7), (10,6,35, 44), (9, 7, 152, 170).
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Chapter 6

Osszefoglalé

Jelen disszertacioban effektiv végességi tételeket kombinaltunk sajat észrevételeinkkel,
melyekkel végességi eredményeket tudtunk bizonyitani érdekes szdmelméleti hat-
térrel rendelkez6 diofantikus egyenletek végtelen csalddjaira. A disszertacidé négy
fejezetbdl all. Az els6ben elemi modszerek és a lokdlis mdédszer kombindlasaval
megadjuk egy végtelen egyenletcsaldd Osszes megoldasat. Legyen (a, b, c) egy

primitfv pitagorarszi szdmhdrmas, melyre a® + b*> = ¢, és tekintsiik a
& +b=a’ (6.1)
egyenletet pozitiv egész x, y és z ismeretlenekben.

1. Sejtés A fenti feltételekkel a (6.1) egyenlet egyetlen megolddsa (z,y,2) =
(1,1,2),hac=0b+ 1. Hac > b+ 1 akkor (6.1)-nak nincs megoldasa.

Ez utébbi eredményt szokds a kevert JeSmanovicz problémanak hivni. Miyazaki
[80] bizonyitotta, hogy az 1. Sejtés igaz, hac =1 (mod b). Disszertdciénkban ez

utébbi eredményét altaldnositjuk. A f6 eredményeink a kovetkezok.

1. Tétel Legyen b, egy osztéja b-nek, melyre by oszthat b radikaljaval. Tegyiik

fel hogy az 1. Sejtés igaz minden olyan (a, b, ¢) pitagoraszi harmasra, melyre
c=1 (mod by). (6.2)
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Ekkor az 1. Sejtés igaz minden olyan (a, b, ¢) hdrmas esetén, melyre
c=1 (mod by/2). (6.3)
2. Tétel Az 1. Sejtés igaz minden olyan (a, b, ¢) harmas esetén, melyre

c=1 (mod b/20742®),

A mésodik fejezetben Bilu, Hanrot és Voutier [124] egy Lucas-sorozatokra vonatkozé
mély eredményét kombindljuk Ljunggren tipust és elliptikus gorbékre vonatkoz6

eredményekkel, hogy meghatdrozzuk az
22+ 517 =y (6.4)
egyenlet 0sszes megoldasat x, y, k, [, n egész ismeretlenekben, melyekre
r>1,y>1n>3k>0,1>0andged(z,y) = 1. (6.5)

Az utébbi egyenletet gyakran hivjdk altalanositott Ramanujan-Nagell egyenlet-
nek. Az elsd, (6.4)-hez hasonl6 egyenletekre vonatkozé eredmények Lebesque-
hez [64], Ljunggrenhez [65] és Nagellhez [89], [91] kothetok. Munkdnkban néhany
szerzd ( példaul Luca és Togbe [70], [71]) friss eredményeivel anal6g eredményeket

bizonyitunk. F6 eredményiink a kovetkezd.

3. Tétel Az (6.4) egyenlet (6.5) feltételnek eleget tevs Osszes megoldasa

(z,y,k,1,n) € {(94,21,2,1,3), (2034, 161, 3,2,3), (8,3,0,1,4)}.

A harmadik fejezetben a Baker modszer egy Laurent [59] altal kidolgozott val-
tozatat kombindljuk hipergeometrikus approximécids technikdkkal, hogy effektiv
korlatot adjunk binom Thue egyenl&tlenésgek egy végtelen csalddjanak megolddsszamara.
Ezzel Bennett egy kordbbi eredményét [20] altaldnositjuk. F6 eredményiink a

kovetkezb.
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4. Tétel Legyen c egy pozitiv egész. Ekkor 1étezik a, b és n egészekbdl allé har-
masok egy effektiven meghatdrozhat6 S, halmaza azzal a tulajdonsaggal, hogy ha

a,bés n > 3 olyan pozitiv egészek, melyekre az
lax™ — by"| < ¢ (6.6)

egyenldtlenségnek egynél tobb megolddsa van x és y pozitiv egészekben, akkor

(a,b,n) € S..
5. Tétel Ha S, a fenti médon adott, akkor S3 C S5 U 75, ahol
Sy =1(1,2,3),(2,1,3),(1,3,3),(3,1,3),(2,5,3),(5,2,3)}
and
T3 ={(1,3,n),(3,1,n),(2,5,n),(5,2,n) ahol 37 <n < 347, n prim }.

Ha (a,b,n) € S3, akkor a (6.6) egyenlStlenség dsszes megolddsa ¢ = 3 esetén

minden esetben (z,y) = (1, 1), valamint

(@b | (1L23)| 213)] (133|613 259623
(o) | 54 | @) | 3.2 | @3 09,14 14,19

Az utolsoé fejezetben az tigynevezett Elliptikus logaritmusok médszerét alkalmaz-
zuk egy piramidalis szdmok egyenld értékeire vonatkozé probléma megoldasara.
Ezt a médszert Stroeker és Tzanakis [108] fejlesztette ki, illetve t6liik fiiggetleniil

Gebel, Pethd és Zimmer [53]. Legyenek m és n adott pozitiv egész szamok,
r(z+1)((m—2)x+5—m)
6

valamint Pyr, (z) = . Tekintsiik a

Pyr, (u) = Pyr,(v), (6.7)

egyenletet u és v pozitiv egész ismeretlenekben. F§ eredményeink a kovetkezok.
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6. Tétel Legyenek m és n adott pozitiv egészek, melyekre 3 < min(m,n) és
m # n. Ekkor a (6.7) egyenletnek csak véges sok megoldasa van u €s v pozitiv
egészekben. Tovabbd max(u,v) < (1, ahol C] egy effektiven meghatarozhato,

csak m-t6l és n-tdl fliggd konstans.

7. Tétel Adott m és n egészekre, melyekre 3 < n < m < 10, a (6.7) egyenlet

osszes megoldésa (u, v) pozitiv egészekben, melyre (u,v) # (1, 1),

(8,3,7,12),(9,3,2,3),(8,4,3,4), (10,4, 55, 87),
(m,n,u,v) € (6.8)
(7,5,6,7), (10,6, 35,44), (9, 7,152,170).
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