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Introduction

In 1900, Hilbert published 23 problems in mathematics. These were all unsolved

at that time, and many of them were later very influential for 20th-century math-

ematics. The tenth of these problems was to provide a general algorithm which

for any given Diophantine equation, can decide whether the equation has a solu-

tion with all unknowns taking integer values. It was later proved by Matiyasevich,

that such algorithm does not exist. This posed the need for methods which can be

used to solve large families of Diophantine equations. A major breakthrough was

the application Baker’s method to give effective finiteness results for several types

of equations. However, the bounds obtained with Baker-type arguments were of-

ten too high for practical applications. For particular equations reduction methods

(such as the result of Baker and Davenport [15]) can be used to determine all

solutions.

In our PhD dissertation, we will combine the latest effective methods with our own

observations to give effective results for families of diophantine equations and

inequalities with interesting number theoretic backgrounds. In all our chapters,

we will combine several methods to compute the solutions to these equations. In

the introduction, we will focus on one particular method, however the details can

be found in the appropriate chapter.

In our first chapter, we will show, how elementary considerations and modular
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arithmetic can be applied to show, that a certain family of polynomial-exponential

diophantine equations have only the trivial solution. Suppose that a, b and c are

known positive integer numbers, and consider the exponential diophantine equa-

tion

ax + by = cz, (1)

in positive integer unknowns x, y and z. The application of Baker’s theorem on

effective lower bounds on linear forms of logarithms led to many exciting results

concerning such equations (see for example [103]). The triple of positive integers

(a, b, c) is called a Pythagorean triple, if

a2 + b2 = c2.

Also, (a, b, c) is called a primitive Pythagorean triple, if a, b and c are co-prime.

The study of equation (1) with Pythagorean triples as bases has a long history.

In 1955, Sierpiński proved that for the smallest and most famous Pythagorean

triple (a, b, c) = (3, 4, 5), the corresponding equation (1) has the unique solution

(x, y, z) = (2, 2, 2) (see [105]). Similar results were given by Jeśmanowicz in

1956. He showed that if

(a, b, c) ∈ {(5, 12, 13), (7, 24, 25), (9, 40, 41), (11, 60, 61)},

then the only solution of (1) is again (x, y, z) = (2, 2, 2). Based on his results he

proposed the following conjecture (also known as Jeśmanowicz’s conjecture).

Conjecture 1. Let (a, b, c) be a primitive Pythagorean triple such that a2 + b2 =

c2. Then the only solution of (1) is (x, y, z) = (2, 2, 2).

Conjecture 1 and its generalizations have received a great deal of attention over

the years, however the problem in its general form is still open. It is well known

that for any primitive Pythagorean triple (a, b, c), we can write

a = m2 − n2, b = 2mn, c = m2 + n2, (2)
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where m and n are positive co-prime integers of different parities with m > n. In

1959, Lu [67], and in 1965 Dem’janenko [40] proved Conjecture 1 for

n = 1; (a, b, c) = (m2 − 1, 2m, m2 + 1)

and

n = m− 1; (a, b, c) = (2m− 1, 2m(m− 1), 2m2 − 2m+ 1),

respectively. Since 1990 a lot of progress has been made towards the proof of

Conjecture 1. In 1993, Takakuwa and Asaeda, and Takakuwa (See [112], [114],

[113],) proved Conjecture 1 for various infinite families of triples (a, b, c). In sev-

eral papers between 1995 and 2009 Le ([60], [61], [63]) applied the theory of

linear forms in logarithms to give quantitative results, and prove Conjecture 1 for

many triples. In 1994, Terai [118] introduced a generalization of Conjecture 1

(known as Terai’s conjecture). In the following years he proved it for several spe-

cial cases (see for example [119], [116], [117]). In the last few years, Miyazaki

made many important contributions to this field. He proved both Conjecture 1 and

Terai’s conjecture for various infinite families of triples (see for example [79],

[81]). A comprehensive collection of classical and recent results on Jeśmanovicz’

conjecture, and its generalizations can be found in [82].

In our work [98], we will extend a result of Miyazaki [80], and prove a modified

version of the Jeśmanowicz conjecture for an infinite number of triplets.

In the second chapter, we will show, how recurrent sequences can be applied to

give sharp bounds for the size of the solutions of some hyperelliptic diophantine

equations of special shape. We will consider the generalized Ramanujan-Nagell

equation

x2 +D = yn, (3)

whereD > 0 is a given integer and x, y, n are positive integer unknowns with n ≥

3. Results obtained for general superelliptic equations clearly provide effective
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finiteness results for this equation, too (see for example [2], [101], [103], and the

references given there).

The first result concerning the above equation was due to V. A. Lebesque [64]

who proved that there are no solutions for D = 1. Ljunggren [65] solved (3) for

D = 2, and Nagell [89], [91] solved it for D = 3, 4 and 5. In his elegant paper

[34], Cohn gave a fine summary of the earlier results on equation (3). Further, he

developed a method by which he found all solutions of the above equation for 77

positive values of D ≤ 100. For D = 74 and D = 86, equation (3) was solved

by Mignotte and de Weger [78]. By using the theory of Galois representations and

modular forms Bennett and Skinner [25] solved (3) for D = 55 and D = 95. On

combining the theory of linear forms in logarithms with Bennett and Skinner’s

method and with several additional ideas, Bugeaud, Mignotte and Siksek [126]

gave all the solutions of (3) for the remaining 19 values of D ≤ 100.

Let S = {p1, . . . , ps} denote a set of distinct primes and S the set of non-zero

integers composed only of primes from S. Put P := max{p1, . . . , ps} and denote

by Q the product of the primes of S. In recent years, equation (3) has been con-

sidered also in the more general case when D is no longer fixed but D ∈ S with

D > 0. It follows from Theorem 2 of [111] that in (3) n can be bounded from

above by an effectively computable constant depending only on P and s. In [54]

an effective upper bound was derived for n which depends only on Q. Cohn [33]

showed that if D = 22k+1 then equation (3) has solutions only when n = 3 and in

this case there are three families of solutions. The case D = 22k were considered

by Arif and Abu Muriefah [4]. They conjectured that the only solutions are given

by (x, y) = (2k, 22k+1) and (x, y) = (11·2k−1, 5·22(k−1)/3), with the latter solution

existing only when (k, n) = (3M + 1, 3) for some integer M ≥ 0. Partial results

towards this conjecture were obtained in [4] and [35] and it was finally proved by

Arif and Abu Muriefah [7]. Arif and Abu Muriefah [5] proved that if D = 32k+1
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then (3) has exactly one infinite family of solutions. The case D = 32k has been

solved by Luca [68] under the additional hypothesis that x and y are coprime. In

fact in [69] Luca solved completely equation (3) if D = 2a3b and gcd(x, y) = 1.

Abu Muriefah [86] established that equation (3) with D = 52k may have a so-

lution only if 5 divides x and p does not divide k for any odd prime p dividing

n. The case D = 2a3b5c7d with gcd(x, y) = 1, where a, b, c, d are non-negative

integers was studied by Pink [93]. The cases when D = 72k and D = 2a5b were

also considered by Luca and Togbe [70], [71]. For the case D = 2a5b13c, see

Goins, Luca and Togbe [45], while if D = 5a13b, see [48]. The cases D = 2a11b

and D = 5a11b have been recently considered in [88] and [52], respectively. Let

p ≥ 5 be an odd prime with p 6≡ 7 (mod 8). Arif and Abu Muriefah [8] deter-

mined all solutions of the equation x2 + p2k+1 = yn, where gcd(n, 3h0) = 1 and

n ≥ 3. Here h0 denotes the class number of the field Q(
√
−p). They also obtained

partial results [6] if D = p2k, where p is an odd prime. In the particular case when

gcd(x, y) = 1, D = p2, p prime with 3 ≤ p < 100, Le [62] gave all the solutions

of equation (3). The case D = p2k with 2 ≤ p < 100 prime and gcd(x, y) = 1

was considered by Bérczes and Pink [30]. If in (3) D = a2 with 3 ≤ a ≤ 501 and

a is odd then Tengely [115] solved completely equation (3) under the assumption

(x, y) ∈ N2, gcd(x, y) = 1. The equation A4 + B2 = Cn for AB 6= 0 and n ≥ 4

was completely solved by Bennett, Ellenberg and Nathan [73] (see also Ellenberg

[46]). For more related results concerning equation (3) see [99], [100] and the

references given there. For a survey concerning equation (3) see [125].

In our work [94], we gave all solutions for (3) with D = 5k17l with k and l being

non-negative integers.

In the third chapter we will show how to apply the combination of Baker’s method

with approximation techniques to give bounds for the number of solutions of a

family of parametric Thue inequalities, and to completely solve a sub-family of
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such equations. A classical problem in number theory is the approximation of

algebraic numbers by rationals, underlying which one has a theorem of Liouville:

Theorem 1. (Liouville, 1844) If α is a given algebraic number of degree n ≥ 2,

then there exists a constant c(α) such that, for every x
y
∈ Q with y > 0, we have∣∣∣∣α− x

y

∣∣∣∣ > c(α)

yn
.

For applications to Diophantine equations, it is of utmost importance to reduce the

exponent n here, i.e. to deduce like inequalities with some exponent λ < n. In full

generality, the first such result was due to Thue [120] who proved the following

theorem.

Theorem 2. (Thue, 1909) If α is an algebraic number of degree n ≥ 3, then,

given ε > 0, there exists a constant c(α, ε) such that for all integers x and y > 0

we have ∣∣∣∣α− x

y

∣∣∣∣ > c(α, ε)

y
n
2
+1+ε

.

From this result, Thue deduced that if F (x, y) ∈ Z[x, y] is an irreducible binary

form of degree n ≥ 3, and m is a fixed nonzero integer then the corresponding

Thue equation

F (x, y) = m (4)

has at most finitely many solutions in integers x and y. This result is, however, in-

effective in the sense that it does not provide any way to actually compute c(α, ε),

and hence cannot be applied to determine the solutions of the corresponding equa-

tions.

Whilst there is now a well-developed literature on effective solution of Thue equa-

tions, based upon a variety of techniques (including, for instance, lower bounds

for linear forms in logarithms of algebraic numbers; see e.g. [13]), in our work,

we concentrated on bounding the number of solutions to such equations, rather
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than their heights. In this regard, it is known that the number of solutions to equa-

tion (4) in integers is bounded above in terms of only the degree of F and the

number of distinct prime divisors of m (see e.g. Bombieri and Schmidt [27]). We

will restrict our attention to what is, in some sense, the simplest possible case, that

of binomial Thue equations and inequalities. For these equations, the number of

such solutions is bounded in terms of m alone (see Mueller and Schmidt [85]). In

particular, we will consider equations of the form

|axn − byn| = c, (5)

where a, b and c are given positive integers, and x, y and n are unknown integers.

Siegel [104], refining earlier work of Thue, showed that if the coefficients a and b

are large enough compared to c and n, then (5) has at most one positive solution.

Later, Evertse [47] was able to substantially sharpen Siegel’s theorem (see our

Lemma 12). Both results depend on the so-called hypergeometric method. Related

work in this area, including applications and generalizations to cases where a and

b are taken to be S-units rather than fixed, may be found in, for example, Mahler

[75], [76], Baker [11], [10], [12], Chudnovsky [32] and many, many other papers,

including [1]. [16], [17], [18], [19], [20], [21], [74], [28], [29], [56], [55], [49],

[50], [51], [77] and [121]. In our work [72], we will extend a result of Bennett and

De Weger [23] and Bennett [20], and prove that except for some triples (a, b, n),

with c ≤ 3, (5) has only the trivial solution.

In the final chapter, we will discuss how the theory of elliptic logarithms can be

applied to solve certain genus 1 equations. Let m be a fixed integer with m ≥ 3.

Then the number

Pyrm(x) =
x(x+ 1)((m− 2)x+ 5−m)

6
(6)

is called the pyramidal number with parameters m and x. Interesting aspects of

pyramidal numbers are the binomial coefficients Pyr3(x) =
(
x
3

)
with integers
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x ≥ 3, and the successive partial sum of the series of triangular numbers. Ac-

cording to Dickson [44], the first mention of pyramidal numbers dates back to the

ancient Greece. For detailed historical background, please refer to [44]. Pyrami-

dal numbers and their generalizations, figurate numbers, play an important role in

discrete mathematics and number theory. (For a detailed introduction into figurate

numbers, consult [43].) The diophantine and arithmetic properties of pyramidal

and figurate numbers have been widely investigated over the years. Dickson [44]

proved, that every sufficiently large integer is the sum of eight pyramidal num-

bers. Numerical results due to Richmond [97] and Deng and Yang [41] make it is

plausible that the result of Dickson can be improved.

There are also several classical results related to the equal values of pyramidal

and other combinatorial numbers. In 1962, Segal [102] proved, that 10 is the only

pyramidal number whose double is also a pyramidal number. In 1998, Brindza,

Pintér and Turjányi [9] investigated the equal values of pyramidal and polygonal

numbers. They considered the equation

Polym(x) = Pyrn(y),

where Polym(x) denotes the sequence of polygonal numbers (for details please

refer to [9]) and proved that for all but a finite, computable set of pairs (m,n),

max(x, y) is effectively bounded. In 2012, Dujella, Győry and Pintér [3] studied

the power values of pyramidal numbers. Recently, in two papers Pintér and Varga

[87] and Hajdu, Tengely, Pintér and Varga [58] used various effective methods

to investigate the equal values of general figurate numbers. In our work [57], we

consider the equation

Pyrm(u) = Pyrn(v)

for given positive integers m and n in positive integer unknowns u and v. We give

an effective upper bound for the size of the solutions u and v, and also present a

method to solve the equation completely for given m and n.
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Our dissertation is based on the results mentioned in articles [98], [94], [72] and

[57].
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Chapter 1

The shuffle variant of Jeśmanovicz’

conjecture

In this section, we will combine elementary methods and modular arithmetic to

show that a certain family of polynomial-exponential equations have no solution.

Recall that if a, b and c are known positive integer numbers and (a, b, c) is a

primitive Pythagorean triple, than it was conjectured by Jeśmanowicz that the

only solution of the equation

ax + by = cz, (1.1)

is (x, y, z) = (2, 2, 2) in unknown integers x, y and z (See Conjecture 1 in the In-

troduction). We will state several results of Miyazaki which will play an important

role in the section.

For any positive integer N , denote by rad(N) the radical of N (i.e. the product of

the distinct prime divisors of N ), and ord2(N) the 2-order of N (i.e. the largest

non-negative integer k, such that 2k|N ). In their recent papers, Miyazaki [83] and

Miyazaki, Yuan and Wu [110] proved (among others) the following theorems.

Theorem 3. If c ≡ 1 (mod b), then Conjecture 1 is true.
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Theorem 4. Let b0 be a divisor of b, such that b0 is divisible by rad(b). Suppose

that Conjecture 1 is true for

c ≡ 1 (mod b0).

Then Conjecture 1 is true for all c ≡ 1 (mod b0/2).

Theorem 5. If c ≡ 1 (mod b/2ord2(b)), then Conjecture 1 is true.

Note that here b is always even thus Theorem 5 is an improvement of Theorem 3.

It was noted by Miyazaki in [80] that, if (a, b, c) is a primitive Pythagorean triple

and c = b+ 1, then

c+ b = a2.

From this, he proposed the following problem. Let (a, b, c) be a given primitive

Pythagorean triple such that a2 + b2 = c2, and consider the equation

cx + by = az (1.2)

in positive integer unknowns x, y and z.

Conjecture 2. With the above conditions, equation (1.2) has the only solution

(x, y, z) = (1, 1, 2) if c = b+ 1. If c > b+ 1 then (1.2) has no solutions.

This is referred to as the shuffle variant of Jeśmanovicz’ problem. In [80],

Miyazaki proved that Conjecture 2 is true if c ≡ 1 (mod b). This result is stated

as the following lemma.

Lemma 1. If c ≡ 1 (mod b), then Conjecture 2 is true.

In June 2014, during a visit to Hungary, Miyazaki proposed the following prob-

lem. Is it possible to give a generalization of Lemma 1, similar to the way Theorem

5 generalizes Theorem 3? In our current chapter, we give a positive answer to this

question.
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1.1 Results

Consider the equation

cx + by = az (1.3)

in positive integer unknowns x, y and z. Our main results are the following.

Theorem 6. Let b0 be a divisor of b, such that b0 is divisible by rad(b). Suppose

that Conjecture 2 is true for all Pythagorean triples (a, b, c) with

c ≡ 1 (mod b0). (1.4)

Then Conjecture 2 is true for all Pythagorean triples (a, b, c) with

c ≡ 1 (mod b0/2). (1.5)

Theorem 7. Conjecture 2 is true for all Pythagorean triples (a, b, c) with

c ≡ 1 (mod b/2ord2(b)).

Combining Lemma 1 and Theorem 6, it is easy to verify Theroem 7. We will give

a proof of Theorem 6 in sections 2 and 3. In the last section, we will report about

numerical results concerning (1.3) about cases, that are not covered by Lemma 1

and Theorem 7, giving some further evidence for Conjecture 2.

1.2 Preliminaries and auxiliary results

By (2), we can rewrite (1.3) into the form

(m2 + n2)x + (2mn)y = (m2 − n2)z, (1.6)

where m and n are given co-prime positive integers of different parities with m >

n, and x, y and z are unknown positive integers.
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Our proof of Theorem 6 will closely follow the work of Miyazaki, Yuan and Wu

in [110]. We start with several auxiliary results and general observations. In the

proof, the parities of the exponents x, y and z will play a crucial rule. Thus first

we give some preliminary remarks about the exponents. The following notation

was previously established by Miyazaki in [83]. By Lemma 1, we may suppose

that in (1.3) c 6= b + 1 and n 6= 1. Define integers α, β and e with α ≥ 1, β ≥ 2

and e = ±1 and odd positive integers i and j as follows:

m = 2αi, n = 2βj + e if m is even,

m = 2βj + e, n = 2αi if m is odd.
(1.7)

Now, assume that Conjecture 2 holds with (1.4), and suppose that it does not hold

for (1.5) (or in other words (1.3) has a solution with (1.5)). We will show that this

will result in a contradiction. Again it is clear that both b and b0 are even. By (1.5),

we have c ≡ 1 (mod b0/2) that is c = 1 + t · b0/2 for some positive integer t.

Since b0/2 is a divisor of b/2 = mn, we can write

b0/2 = m0n0,

where gcd(m0, n0) = 1, m0|m and n0|n. Moreover, m0 and n0 are uniquely de-

termined. Since c = m2 + n2 we have

m2 + n2 = 1 +m0n0t. (1.8)

If 2||b0, then b0/2 is odd. However, since c = m2 + n2 is odd, we have that t

is even. Thus we have c = 1 + (t/2)b0, which means that c ≡ 1 (mod b0), for

which Conjecture 2 is true by assumption. Thus, in what follows, we can assume

that 4|b0. We may also assume that t is odd, else we have again c = 1 + (t/2)b0,

for which Conjecture 2 is true. Then (1.8) implies that m0 or n0 is even, and

rad(m0) = rad(m), rad(n0) = rad(n).
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From (1.8), we have that

m2 ≡ 1 (mod n0), n2 ≡ 1 (mod m0). (1.9)

Next, we present some lemmas, which will be used in the proof.

Lemma 2. With the above notation, we have

c− 1 ≡ 0 (mod 2min(2α,β+1)) (1.10)

and
a− 1 ≡ 0 (mod 2min(2α,β+1)), if m is odd,

a+ 1 ≡ 0 (mod 2min(2α,β+1)), if m is even.
(1.11)

Proof. This lemma can be proven similarly to Lemma 4 in [110], by simply

substituting (1.7) into (1.6).

�

Lemma 3. With the above notations, we have 2α 6= β + 1. Moreover, we have

α ≥ β + 1.

Proof. By Lemma 2, and (1.8), we have

min(2α, β + 1) ≤ ord2(c− 1) = ord2(m0n0t) ≤ ord2(mn) = α.

This implies our lemma.

�

Lemma 4. Let d > 1 and let u, v be non-zero co-prime integers. Let p be a prime

factor of u− v. If p is odd, or p = 2 and 4 divides u− v, then

ordp(u
d − vd) = ordp(u− v) + ordp(d).
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Proof. See for example on p. 11 in [95].

�

The next lemma is similar to Lemma 3.1 in [80]. However, we prove it in detail,

because we want to emphasize a somewhat different conclusion. We will use this

alternate statement to avoid Baker’s method during the proof of Theorem 6.

Lemma 5. Assume that α > 1, α 6= β and 2α 6= β + 1. Let (x, y, z) be a solution

of (1.6). Then both x and z are even.

Proof. Set

M =

{
4, if m is even,

m0, if m is odd.
(1.12)

It is clear that M ≥ 3. Taking (1.6) modulo M and using (1.9), we see that

1 ≡ (−1)z (mod M).

Since M ≥ 3, we conclude that z is even. Now, assume that x is odd and m is

even. Then from (1.6) we have

(2mn)y ≡ −m2(zn2z−2 + xn2x−2) + n2z − n2x (mod 22α+1).

Write

A = −m2(zn2z−2 + xn2x−2), B = n2z − n2x.

Since x is odd, zn2z−2 + xn2x−2 is odd, thus by Lemma 4

ord2(A) = ord2(m
2) = 2α,

ord2(B) = ord2(n
2|x−z| − 1) = ord2(n

2 − 1) = β + 1.

Since ord2((2mn)y) = (α + 1)y, and 2α 6= β + 1, we have

(α + 1)y =

{
2α if 2α < β + 1

β + 1 if 2α > β + 1
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which means that either α = 1 and y = 1 or α = β and y = 1 holds. The case,

where m is odd can be treated similarly.

�

Lemma 6. Assume that 2α 6= β + 1. Let (x, y, z) be a solution of (1.6). If y > 1

and x and z are even, then X ≡ Z (mod 2), where x = 2X and z = 2Z for

some X,Z ≥ 1.

Proof. See Lemma 3.1 and Lemma 3.2 in [80].

�

1.3 Proof of Theorem 6

We are now ready to prove Theorem 6. It follows from Lemmas 3 and 5 that both

x and z are even. So, we can write x = 2X , z = 2Z with integers X,Z > 1, and

(2mn)y = D · E

with

D = (m2 − n2)Z + (m2 + n2)X , E = (m2 − n2)Z − (m2 + n2)X .

Now, if y = 1, then

(m− n)2 = m2 + n2 − 2mn ≤ (m2 + n2)X − 2mn =
D − E

2
−DE ≤ 0,

which is a contradiction, since m 6= n. Thus, in what follows, we can assume that

y > 1 holds.

By Lemma 6, we have

X ≡ Z (mod 2).

Suppose that X and Z are both even. Then the congruences

D ≡ 2 (mod 4), D ≡ 2 (mod m0), D ≡ 2 (mod n0)
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are obtained by (1.9). These imply that D/2 is odd, and co-prime to m0n0, thus to

mn. Therefore we get D = 2 which is impossible. Hence both X and Z are odd.

Then we compute

(D,E) ≡

 (0, 2) (mod 4) if m is even,

(2, 0) (mod 4) if m is odd,

and

D ≡ 2 (mod n0), E ≡ −2 (mod n0)

which yield the equality

(D,E) =

 (2y−1my, 2ny) if m is even,

(2my, 2y−1ny) if m is odd.

Now, we discuss the two cases separately.

The case that m is even;

If m is even, then we have

D − E
2

= 2y−2my − ny = (1 +m0n0t)
X .

Reducing both sides modulo m0, we get

ny ≡ −1 (mod m0).

If y is even, then

−1 ≡ ny ≡
(
n2
)y/2 ≡ 1 (mod m0),

which is a contradiction, if m0 ≥ 3. Thus, either y is odd, or m0 = 2. In both

cases we have n ≡ −1 (mod m0). However, using this we get

ord2(m0) ≤ ord2(n+ 1) < ord2(n
2 − 1)

= ord2(−m2 +m0n0t) = ord2(m0) + ord2(−m2/m0 + n0t) = ord2(m0),

which is a contradiction. Thus, neither of the above cases are possible.
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The case that m is odd;

Proceeding in a similar way, we get

my − 2y−2ny = (1 +m0n0t)
X ,

which yields

my ≡ 1 (mod n0).

Suppose now that y is odd. Then m ≡ 1 (mod n0). This yields a contradiction as

in the previous case by estimating ord2(n0). Thus, we now have thatm is odd, and

y = 2Y , with some integer Y . We complete the proof of Theorem 6 by proving

the following proposition.

Proposition 1. Let m and n be co-prime positive integers with n even, m odd and

m > n. Then the system of equations (m2 − n2)Z + (m2 + n2)X = 2m2Y ,

(m2 − n2)Z − (m2 + n2)X = 22Y−1n2Y
(1.13)

has no solution in positive integers X , Y and Z.

Proof. Note that the equations are equivalent to (m2 − n2)Z = m2Y + 22Y−2n2Y ,

(m2 + n2)X = m2Y − 22Y−2n2Y ,
(1.14)

simultaneously. Assume that there are positive integer solutionsX , Y and Z. First

we shall show

1 < X < Y.

Indeed, the inequality X < Y is obtained by

m2X < (m2 + n2)X = m2Y − 22Y−2n2Y < m2Y .
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Further, if X = 1, then Y ≥ 2 and

m2 + n2 = m2Y − 22Y−2n2Y ≥ mY + 2Y−1nY ≥ m2 + 2n2

that is impossible. Next we claim that

n ≡ 0 (mod 4).

If not, then we have ±n2 ≡ 4 (mod 8) and

5X ≡ 5Z ≡ 1 + 22Y−24Y = 1 + 42Y−1 ≡ 1 (mod 8).

Therefore both X and Z are even. Multiplying the left and right hand sides of

(1.13) respectively, we get a solution of the equation S4−T 4 = U2. But it is well-

known that this has no non-trivial solutions, and the congruence n ≡ 0 (mod 4)

has been shown. Now, from the second equation of (1.14), we get

(m2 + n2)X = m2Y − 22Y−2n2Y = (mY + 2Y−1nY )(mY − 2Y−1nY ).

Since gcd(mY +2Y−1nY ,mY −2Y−1nY ) = 1, there are co-prime positive integers

s, t satisfying

st = m2 + n2, sX = mY + 2Y−1nY , tX = mY − 2Y−1nY .

Note that X > 1 and s− t ≡ 0 (mod 4). Thus we can apply Lemma 4 so that

ord2(s− t) + ord2(X) = ord2((2n)Y ) = (1 + ord2(n))Y ≥ 3Y,

by n ≡ 0 (mod 4), while we can confirm that ord2(X) < Y , usingX < Y < 2Y .

Then we get ord2(s− t) > 2Y , in particluar,

22Y ≤ s− t < st = m2 + n2.

On the other hand, since n2 ≡ −m2 (mod m2 + n2), we have from (1.14) again,

0 ≡ m2Y − 22Y−2n2Y ≡ (1± 22Y−2)m2Y (mod m2 + n2).
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Then it follows from gcd(m,m2 +n2) = 1 that 22Y−2± 1 is divisible by m2 +n2.

Note that 22Y−2 − 1 > 0, since Y > X ≥ 2. Hence

m2 + n2 ≤ 22Y−2 ± 1 < 22Y ,

which is inconsistent with the inequality shown above. This completes the proof

of Proposition 1, and thus the proof of Theorem 6.

�

1.4 Examples

In this section we show how to utilize Lemma 1 and Theorem 7 combined with

some elementary calculation to prove Conjecture 2 for a finite set of triples. For

this purpose we will consider all primitive Pythagorean triples (a, b, c) for which

a2 + b2 = c2 (1.15)

and

5 ≤ c ≤ 100, (1.16)

and prove the following proposition.

Proposition 2. If (a, b, c) is a primitive Pythagorean triple with a2 + b2 = c2 and

5 ≤ c ≤ 100, then Conjecture 2 is true.

Proof. Altogether there are sixteen triples with (1.15) and (1.16), ten of these are

covered by either Lemma 1 or Theorem 7. The remaining six cases are

(a, b, c) ∈ {(21, 20, 29), (45, 28, 53)(33, 56, 65), (39, 80, 89), (77, 36, 85), (65, 72, 97)}.

Since the bases are thus fixed in (1.3), it is possible to use the classical theory

of S-unit equations. However we will apply here a more recent approach based
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on a paper of Bertók and Hajdu [26]. In this paper the authors use basic search

for small solutions and modular arithmetic to give very good upper bounds for

the size of the solutions, and also provide a program code written in SAGE to do

the calculations. Consider first the triple (a, b, c) = (21, 20, 29). This gives us the

equation

29x + 20y = 21z, (1.17)

where x, y and z are positive unknown integers. Since (x, y, z) = (0, 1, 1) is

a solution of (1.17), it is impossible to find a suitable integer M , such that the

congruence

29x + 20y ≡ 21z (mod M)

is not solvable. However using the program of Bertók and Hajdu we get that if we

choose

M = 32 · 72 · 13 · 17 · 19 · 37 · 73 · 97 · 109 · 163 · 193 · 257 · 433 · 487 · 577 · 769,

then the congruence

29x + 20y ≡ 212 · 21z0 (mod M)

is not solvable for any non-negative integers x, y and z0. Thus in (1.17) we have

that z ≤ 1, that is

29x + 20y = 21,

which has no solutions in positive integers (and the obvious solution (x, y, z) =

(0, 1, 1) in non-negative integers). The remaining five cases do not possess trivial

solution, and can be dealt with similarly. We omit the details, and only list the

results in the following table.
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(a, b, c) Modulus Result

(45, 28, 53) 13 · 19 · 37 · 73 · 109 No solutions

(33, 56, 65) 17 · 19 · 37 · 73 No solutions

(39, 80, 89) 32 · 7 · 132 No solutions

(77, 36, 85) 13 · 19 · 37 · 73 No solutions

(65, 72, 97) 17 · 19 · 37 · 73 · 577 No solutions

Thus we covered all the six cases, proving Proposition 2.

�
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Chapter 2

The generalized Ramanujan-Nagell

Equation

In this chapter, consider the equation

x2 + 5k17l = yn (2.1)

in integer unknowns x, y, k, l, n satisfying

x ≥ 1, y > 1, n ≥ 3, k ≥ 0, l ≥ 0 and gcd(x, y) = 1. (2.2)

We will combine a deep result of Bilu, Hanrot and Voutier [124] with Ljunggren-

type and Elliptic equations to compute all solutions of (2.1).

2.1 Results

Our main result is the following.

Theorem 8. Consider equation (2.1) satisfying (2.2). Then all solutions of equa-

tion (2.1) are:

(x, y, k, l, n) ∈ {(94, 21, 2, 1, 3), (2034, 161, 3, 2, 3), (8, 3, 0, 1, 4)}.
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Remark 1. We may assume without loss of generality that in (2.1) n ≥ 5 prime

or n ∈ {3, 4}. The proof of our Theorem 8 is organized as follows. If n ≥ 5 prime

we combine some results concerning the general properties of Lucas-sequences

with a deep , result of Bilu, Hanrot and Voutier [124] concerning the existence of

primitive prime divisors in Lucas-sequences to derive a sharp upper bound for n

(see also Pink [93], Theorem 2).

If n ∈ {3, 4} there is a general method for giving all solutions of equations of

the form x2 + pkql = yn. Namely the problem is reduced to finding S-integral

points on several elliptic curves, where S = {p, q}. This works well, but in some

cases the computation of the rank and the Mordell-Weil group becomes very time

consuming so we need another approach. By using the parametrization provided

by a theorem of Cohn (see Lemma 7) we get several equations of the form

X ± Y = 3u2,

where X , Y are S-units and S = {p, q}. These equations are considered locally

to get a contradiction or are transformed to Ljunggren-type equations. In fact, we

have to give all S-integral points on the resulting Ljunggren-type curves. Then,

using the program package MAGMA we solve completely the equations under

consideration.

2.2 Auxiliary results

Let S = {p1, . . . , ps} be a set of distinct primes and denote by S the set of non-

zero integers composed only of primes from S. Equation (2.1) is a special case of

an equation of the type

X2 +D = Y n, (2.3)

where

gcd(X, Y ) = 1 (2.4)
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and

D ∈ S, D > 0, X ≥ 1, Y > 1, n ≥ 3. (2.5)

The next lemma provides a parametrization for the solutions of equation (2.3).

Lemma 7. Suppose that equation (2.3) has a solution under the assumptions (2.4)

and (2.5) with n ≥ 3 prime. Denote by d > 0 the square-free part of D = dc2 and

let h be the class number of the field Q(
√
−d). Then equation (2.3) has a solution

with d 6≡ 7 (mod 8) in one of the following cases:

(a) there exist u, v ∈ Z such thatX+c
√
−d = (u+v

√
−d)n and Y = u2+dv2.

(b) d ≡ 3 (mod 8) and there exist U, V ∈ Z with U ≡ V ≡ 1 (mod 2) such

that X + c
√
−d =

(
U+V

√
−d

2

)3
and Y = U2+dV 2

4
.

(c) n = 3 if D = 3u2 ± 8 or if D = 3u2 ± 1 for some u ∈ Z.

(d) n = 5 if D ∈ {19, 341}.

(e) p | h.

Proof. This is a theorem of Cohn [36].

�

Recall that a Lucas-pair is a pair (α, β) of algebraic integers such that α + β and

αβ are non-zero coprime rational integers and α/β is not a root of unity. Given a

Lucas-pair (α, β) one defines the corresponding sequence of Lucas numbers by

Ln =
αn − βn

α− β
, (n = 0, 1, 2...).

A prime number p is called a primitive divisor of Ln if p divides Ln but does not

divide (α− β)2L1 · · ·Ln−1.
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The next lemma gives a necessary condition for an odd prime p to be a primitive

prime divisor of the n-th term of a Lucas-sequence if n is an odd prime. Namely

we have the following.

Lemma 8. Let Ln = αn−βn
α−β be a Lucas-sequence and suppose that n is an odd

prime. Further, let A = (α − β)2. If p is a primitive prime divisor of Ln then

n | p −
(
A
p

)
, where

(
·
p

)
denotes the Legendre-symbol with respect to the prime

p.

Proof. See Carmichael [31].

�

The next lemma is a deep result of Bilu, Hanrot and Voutier [124] concerning the

existence of primitive prime divisors in a Lucas sequence.

Lemma 9. Let Ln = Ln(α, β) be a Lucas sequence. If n ≥ 5 is a prime then

Ln has a primitive prime divisor except for finitely many pairs (α, β) which are

explicitly determined in Table 1 of [124].

Proof. This follows from Theorem 1.4 of [124] and Theorem 1 of [122].

�

The following lemma of Holzer gives a criterium for the existence of solutions of

ternary quadratic equations.

Lemma 10. Let a, b, c be coprime integers, and consider the equation

ax2 + by2 + cz2 = 0 (2.6)

where x, y, z are unknown integers. If there is a non-trivial solution for (2.6), then

there is one satisfying

| x |≤
√
| bc |, | y |≤

√
| ac |, | z |≤

√
| ab |
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Proof. See [84].

�

2.3 Proof of Theorem 8

We introduce some notations which will be used in the course of the proof of our

Theorem. Consider equation (2.1) satisfying the assumptions (2.2). Denote by d >

0 the square-free part of 5k17l that is 5k17l = d(5a17b)2 where d ∈ {1, 5, 17, 85}

and a, b ∈ Z≥0. Further, let K be the imaginary quadratic field K = Q(
√
−d)

and denote by h the class number of K. As was mentioned in Remark 1, we have

to distinguish essentially three cases without loss of generality. Namely, we may

assume that in equation (2.1) n ≥ 5 prime or n ∈ {3, 4}.

Case 1: n ≥ 5 prime.

Suppose first that (2.1) holds satisfying (2.2) with n ≥ 5 prime. If in (2.1) y > 1 is

even we obviously have that x is odd. Since for any odd integer t we have t2 ≡ 1

(mod 8) we get that 1 + d ≡ 0 (mod 8) by reducing (2.1) modulo 8. This leads

to d ≡ 7 (mod 8) for d ∈ {1, 5, 17, 85} which is clearly a contradiction. Hence

in what follows we may assume that in (2.1) y > 1 is odd (and hence x ≥ 1 is

even). Since for d ∈ {1, 5, 17, 85} the class number of the field K = Q(
√
−d) is 1

or 2m, (m ≥ 1) we get by Lemma 7 that equation (2.1) can have a solution under

assumption (2.2) with n ≥ 5 prime only in the cases (a) and (d). Since k ≥ 0 and

l ≥ 0 we see that in (2.1)D = 19 cannot occur. Further, ifD = 341 = 11 ·31 then

since D = 5k · 17l this choice for D is impossible, too. Hence equation (2.1) can

have a solution only in case (a) of Lemma 7. Namely, using the parametrization

provided by Lemma 7 and taking complex conjugation, we get

(x+ 5a17b
√
−d) = (u+ v

√
−d)n and (x− 5a17b

√
−d) = (u− v

√
−d)n (2.7)
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for some u, v ∈ Z. Further, we also have y = u2 + dv2. By (2.7) we see that

u | x and since y > 1 is odd and gcd(x, y) = 1 we get that gcd(2u, y) = 1. Let

α = u + v
√
−d and β = u − v

√
−d. Then gcd(αβ, α + β) = gcd(y, 2u) = 1.

If α/β is a root of unity then since n ≥ 5 is prime we have α/β ∈ {±1,±i} if

d = 1. This leads to u = 0 or u = ±v. Now u = 0 yields x = 0 which is a

contradiction by (2.3). If u = ±v then 2 | y = u2 + v2 which contradicts the fact

that y is odd. If d ∈ {5, 17, 85}, then α/β is a root of unity if α/β ∈ {±1}, which

leads to either u = 1, v = 0 or u = 0, v = 1. If u = 1, v = 0, then we get a

contradiction with y ≥ 3. If u = 0, v = 1, then y = d holds, which leads to a

contradiction with gcd(x, y) = 1. Thus

Ln =
(u+ v

√
−d)n − (u− v

√
−d)n

2v
√
−d

(2.8)

is a Lucas sequence.

Further, by (2.8) we have

Ln =
5a17b

v

for some non-negative integers a, b. By Lemma 9 we get that Ln has a primitive

divisor for n ≥ 5 prime. Also the only prime divisors of Ln can be 5 or 17. By

Lemma 8 we get that if p is a primitive divisor of Ln, then p ≡ ±1 (mod n), so

n | p± 1 holds. Since p ∈ {5, 17}, we have that one of the following cases holds:

n | 4 = 22, n | 6 = 2 · 3, n | 16 = 24, n | 18 = 2 · 32

Since n ≥ 5 we get a contradiction for all cases, which implies that (2.1) does not

have a solution for n ≥ 5.

Case 2: n = 3.

At first, we point out that the usual method concerning the search for S-integral

points on certain elliptic curves proves to be time consuming in this case, so we
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show a different approach.

By Lemma 7, we see that

x+ 5a17b
√
−d = (u+ v

√
−d)3 (2.9)

holds, where d ∈ {1, 5, 17, 85} and u, v ∈ Z. After expanding the right handside

of equation (2.9), and comparing the imaginary parts, we get that

5a17b = v(3u2 − dv2). (2.10)

In (2.10) gcd(v, 3u2 − dv2) = 1 holds, since otherwise we would get gcd(u, v) 6=

1, which implies gcd(x, y) 6= 1, which is clearly a contradiction. From this, we

get the following type of equations:3u2 − dv2 = f

v = g,

(2.11)

where

(f, g) ∈ {(±1,±5a17b), (±5a,±17b), (±17b,±5a), (±5a17b,±1)}.

Since d ∈ {1, 5, 17, 85}, we get a total of 16 cases, we have to deal with. We will

illustrate the method in one of the more interesting cases, all the others can be

done in the same way. Let d = 5, f = ±17b, g = ±5a. From this, we get that

3u2 − 52a+1 = ±17b (2.12)

holds. Our main goal is to transform this to Ljunggren-type curves. To reduce the

number of curves, and so the time of the computation we write (2.12) to the form

of Ax2 + By2 + Cz2 = 0. Now using Holzer’s theorem (see Lemma 10) we get,

that (2.12) has a nontrivial solution if and only if b is odd and 3u2−52a+1 = −17b

holds. Now we transform this to the following type.

3
( u

172b1

)2
= 5i+1

(
5a1

17b1

)4

− 17j+1 (2.13)
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where i, j ∈ {0, 2}, and a = 4a1 + i + 1, b = 4b1 + j + 1. So, the problem is

reduced to finding all the {17}-integral points on quartics of the form of

3Y 2 = 5i+1X4 − 17j+1, i, j ∈ {0, 2}, where X =
5a2

17b2
and Y =

u

172b2
.

Now, we can use MAGMA to determine all the solutions of the above equations.

Repeating this for all the 16 cases we get that all the solutions of (2.1) with n = 3

are:

(x, y, k, l, n) ∈ {(94, 21, 2, 1, 3), (2034, 161, 3, 2, 3)}.

We point out that, in many of the above cases the method used can be combined

with local methods to simplify the computations.

Case 3: n = 4.

If n = 4 holds, then we can write the following:

y4 − x2 = 5k17l

which can be factored as

(y2 − x)(y2 + x) = 5k17l. (2.14)

In (2.14) gcd(y2 − x, y2 + x) = 1 holds, else we would get a contradiction with

gcd(x, y) = 1. So, we get that y
2 − x = f

y2 + x = g

where (f, g) ∈ {(1, 5k17l), (5k, 17l), (17l, 5k), (5k17l, 1)}. Now, by adding the

first equation to the second, we get, that

2y2 = f + g
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holds. Using a similar method as in the n = 3 case we get that with n = 4 all the

solutions of (2.1) are

(x, y, k, l, n) ∈ {(8, 3, 0, 1, 4)}.
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Chapter 3

Binomial Thue Inequalities

In this chapter we will apply Baker’s method combined with hypergeometric ap-

proximation techniques to give effective (and computable) upper bounds for the

number of solutions of binomial Thue inequalities. Despite the fact that the situ-

ation we will consider is a very specialized one, we believe it is instructive to see

what can be said explicitly, as a test of the current state of refinement of compu-

tational and analytic techniques. As a starting point, we note that, implicit in the

techniques of [20] and [23] is the following result.

Theorem 9. Let c be a positive integer. Then there exists an effectively computable

finite set Sc of triples of positive integers a, b and n with the property that if a, b

and n ≥ 3 are any positive integers for which the Diophantine inequality

|axn − byn| ≤ c (3.1)

has more than a single solution in positive integers x and y, then (a, b, n) ∈ Sc.

The main result of [20] is that the set S1 is empty.
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3.1 Results

Extending the aforementioned theorem, our main result is the following.

Theorem 10. With Sc defined above, we have S3 ⊆ S∗3 ∪ T3, where

S∗3 = {(1, 2, 3), (2, 1, 3), (1, 3, 3), (3, 1, 3), (2, 5, 3), (5, 2, 3)}

and

T3 = {(1, 3, n), (3, 1, n), (2, 5, n), (5, 2, n) with 37 ≤ n ≤ 347, n prime } .

For (a, b, n) ∈ S∗3 , the solutions in positive integers to inequality (3.1) with c = 3

are, in each case, (x, y) = (1, 1), and also

(a, b, n) (1, 2, 3) (2, 1, 3) (1, 3, 3) (3, 1, 3) (2, 5, 3) (5, 2, 3)

(x, y) (5, 4) (4, 5) (3, 2) (2, 3) (19, 14) (14, 19)

In case n = 3, this theorem represents a slight sharpening of a classical result of

Ljunggren [66], who considered equation (5) with n = 3 and c ∈ {1, 3}. It is very

likely that S3 = S∗3 (which should be provable with a finite but currently infeasible

amount of computation). We can, in any case, certainly prove a sharpened version

of Theorem 10, with T3 replaced by a somewhat smaller set, through more care-

ful application of the hypergeometric method; in our opinion the effort involved

would somewhat exceed the payoff.

3.2 Some lemmata

In this section, we collect a number of lemmata that we use in the proof of Theo-

rem 10. The first is a state-of-the-art lower bound for linear forms in the logarithms

of two algebraic numbers, due to Laurent (Theorem 2 of [59]). For any algebraic
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number α of degree d over Q, we define as usual the absolute logarithmic height

of α by the formula

h(α) =
1

d

(
log |a0|+

d∑
i=1

log max
(
1, |α(i)|

))
,

where a0 is the leading coefficient of the minimal polynomial of α over Z and the

α(i)s are the conjugates of α in the field of complex numbers.

Lemma 11. Let α1 and α2 be multiplicatively independent algebraic numbers, h,

ρ and µ be real numbers with ρ > 1 and 1/3 ≤ µ ≤ 1. Set

σ =
1 + 2µ− µ2

2
, λ = σ log ρ, H =

h

λ
+

1

σ

ω = 2

(
1 +

√
1 +

1

4H2

)
, θ =

√
1 +

1

4H2
+

1

2H
.

Consider the linear form Λ = b2 logα2 − b1 logα1, where b1 and b2 are positive

integers. Put

D = [Q(α1, α2) : Q] / [R(α1, α2) : R]

and assume that

h ≥ max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
, (3.2)

ai ≥ max {1, ρ| logαi| − log |αi|+ 2Dh(αi)} (i = 1, 2), (3.3)

and

a1a2 ≥ λ2. (3.4)

Then

log |Λ| ≥ −C
(
h+

λ

σ

)2

a1a2 −
√
ωθ

(
h+

λ

σ

)
− log

(
C ′
(
h+

λ

σ

)2

a1a2

)
(3.5)

with

C =
µ

λ3σ

(
ω

6
+

1

2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4

3

(
1

a1
+

1

a2

)
λω

H

)2

(3.6)
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and

C ′ =

√
Cσωθ

λ3µ
. (3.7)

The next lemma is a result of Evertse (Theorem 2.1 of [47]) and, as mentioned

earlier, represents a refinement of prior work of Siegel on the hypergeometric

method.

Lemma 12. Suppose that a, b, c and n are positive integers with n ≥ 3. Define

Tn = 3−
n−2
n n

∏
p|n

p
1
p−1 , µ3 = T

11/2
3 , µn = T

max{ n+2
2(n−3)

, n
n−2}

n if n ≥ 4,

and

α3 = 9, αn = max

{
3n− 2

2(n− 3)
,
2(n− 1)

n− 2

}
if n ≥ 4.

Then the inequality (3.1) has at most one solution in positive coprime integers x

and y satisfying

max {axn, byn} ≥ µnc
αn .

The final three lemmata we will use are results of the first author [18], [19], [20]

and [22]. To be precise, they are a combination of Theorem 5.2 of [20] with The-

orem 5.2 of [22], a special case of Theorem 1.1 of [18], and a special case of

Theorem 1.1 of [19], respectively. We will use them to treat inequality (3.1) for

“small” values of n.

Lemma 13. Suppose b > a are coprime positive integers and m =
[
n+1
3

]
. Let n,

c1(n) and d(n) be as given in the the following table.
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n c1(n) d(n) n c1(n) d(n) n c1(n) d(n)
17 8.93 13.06 107 83.55 50.84 227 201.15 116.91
19 9.40 15.46 109 84.18 58.97 229 202.11 100.61
23 13.03 17.66 113 89.22 77.93 233 207.50 102.49
29 17.39 29.95 127 100.47 72.61 239 213.74 105.66
31 17.92 30.55 131 105.34 71.51 241 214.95 95.14
37 21.2 − 137 111.44 79.94 251 226.83 115.64
41 25.83 36.08 139 112.15 77.27 257 233.75 113.23
43 26.62 33.95 149 122.53 85.82 263 240.15 119.49
47 30.46 40.16 151 123.41 89.04 269 246.54 124.75
53 34.78 35.37 157 129.07 81.61 271 247.72 134.21
59 39.18 48.34 163 134.80 93.64 277 254.62 119.17
61 39.96 55.93 167 139.95 82.87 281 260.46 116.79
67 44.76 43.56 173 146.07 87.71 283 261.67 118.21
71 48.36 54.80 179 151.40 83.92 293 274.23 129.73
73 52.83 48.11 181 152.20 91.69 307 289.00 124.89
79 58.27 54.65 191 163.78 84.40 311 294.70 130.14
83 62.70 49.64 193 164.81 91.51 313 296.38 130.18
89 67.56 60.29 197 170.17 104.53 317 302.73 134.63
97 73.71 62.14 199 170.80 110.41 331 317.41 147.69
101 78.29 50.36 211 183.12 124.02 337 324.63 139.95
103 79.16 60.85 223 195.74 112.93 347 338.02 133.98

If

(
m
√
b− m
√
a)mec1(n) < 1, (3.8)

then, for all x and y > 0 integers, we have∣∣∣∣∣
(
b

a

)1/n

− x

y

∣∣∣∣∣ > (C2(
m
√
b+ m
√
a)m)−1y−λ1 ,

where

C2 =

 3.15 · 1024(m− 1)2nm−1ec1(n)+d(n) if n 6= 37

5 · 1075 if n = 37
,

and

λ1 = (m− 1)

{
1− log(( m

√
b+ m
√
a)mec1(n)+1/20)

log(( m
√
b− m
√
a)mec1(n))

}
.

Lemma 14. Let c ∈ {1, 2, 3} and a be a positive integer which satisfies

8
(√

a+
√
a+ c

)2
> c4 · (κ(c))3, (3.9)
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where

κ(c) =

 3
√

3 for c = 1, 2
√

3 for c = 3.

Then, for all positive integers x and y,∣∣∣∣ 3

√
1 +

c

a
− x

y

∣∣∣∣ > (4 · a · κ(c))−1
(
104y

)−λ3 , (3.10)

where

λ3 = 1 +
log
(
κ(c)
2

(
√
a+
√
a+ c)2

)
log
(

2
c2·κ(c)(

√
a+
√
a+ c)2

) .
Lemma 15. Let a be a positive integer, c ∈ {1, 2, 3} and n ∈ {4, 5, 7, 11, 13}. If

(√
a+
√
a+ c

)2(n−2)
> c2(n−1)

(
κ(c, n)

c2(n)

)n
, (3.11)

then for all positive integers x and y,∣∣∣∣ n√1 +
c

a
− x

y

∣∣∣∣ > 1

a
· (1010y)−λ4 , (3.12)

where

λ4 = 1 +
log
(
κ(c,n)
c2(n)

(√
a+
√
a+ c

)2)
log
(

c2(n)
c2κ(c,n)

(√
a+
√
a+ c

)2) , κ(c, n) =
∏
p|n

pmax{ordp(nc )+ 1
p−1

,0},

c2(4) = 1.62, c2(5) = 1.84, c2(7) = 1.76, c2(11) = 1.67 and c2(13) = 1.65.

3.3 Proof of Theorem 10

We will consider the inequality

|axn − byn| ≤ 3 (3.13)

46



in integer unknowns x, y, a, b and n which satisfy, without loss of generality,

b > a ≥ 1, n ≥ 3, x ≥ 1, y ≥ 1. (3.14)

We may further assume, again without loss of generality, that in (3.13) the expo-

nent n is either 4 or an odd prime. By Lemma 12, it follows that if

xn ≥ µn · 3αn ,

then (3.13) has at most one solution in positive integers x and y. This implies that,

apart from when n ∈ {3, 4, 5}, inequality (3.13) has at most one positive solution

with x ≥ 2. We may thus distinguish two cases.

Case I : The inequality (3.13) has (x, y) = (1, 1) as a solution. We thus have

b = a+ c for c ∈ {1, 2, 3} and hence are led to consider the inequality

|axn − (a+ c)yn| ≤ 3, (3.15)

where c ∈ {1, 2, 3} and a, x, y and n are positive integers with n ≥ 3.

Case II : We have n ∈ {3, 4, 5}, b− a > 3 and inequality (3.13) has a solution in

positive integers x and y with x ≥ 2.

We first deal with Case I.

3.3.1 Linear forms in two logarithms

The main purpose of this subsection is to prove the following.

Theorem 11. If there is a solution to inequality (3.15) in positive integers x and

y with (x, y) 6= (1, 1), then n ≤ 347.

To prove this, we will have use of the following technical lemma.

Lemma 16. If inequality (3.15) has a solution in positive integers (x, y) 6= (1, 1)

then x > na
c

.
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Proof of Lemma 16 : If x ≤ y and y > 1, then

|axn − (a+ c)yn| ≥ cyn > 3,

contradicting (3.15). We may thus suppose that x ≥ y+ 1, which by (3.15) yields

axn − (a+ c)yn ≥ a(y + 1)n − (a+ c)yn.

By the binomial theorem, the right hand side of this is

nayn−1 + a

((
n

2

)
yn−2 + · · ·+

(
n

n− 1

)
y + 1

)
− cyn.

Since

a

((
n

2

)
yn−2 + · · ·+

(
n

n− 1

)
y + 1

)
> 3,

it follows from (3.15) that

nayn−1 − cyn < 0, (3.16)

which in turn implies that x > y > na
c

. �

Proof of Theorem 11 Suppose that inequality (3.15) has a positive solution (x, y) 6=

(1, 1) with n > 347. By Lemma 16, it follows that x > na/c. We consider the

linear form

|Λ| =
∣∣∣∣log

(
1 +

c

a

)
− n log

(
x

y

)∣∣∣∣ . (3.17)

Since (3.15) is equivalent to the inequality∣∣∣1− (1 +
c

a

)(y
x

)n∣∣∣ ≤ 3

axn
,

and since, for every z ∈ C with |z − 1| < 0.795, we have | log(z)| < 2|z − 1|, it

follows that

|Λ| < 6

xn
. (3.18)
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We write

α1 =
x

y
, α2 = 1 +

c

a
, b1 = n, b2 = 1, µ = 0.63, σ = 0.93155, D = 1,

ρ = 1 +
log(a+ c)

log(1 + c
a
)
, and choose a1 = 2.003 log(x) and a2 = 3 log(a+ c).

Applying Lemma 11, one may readily check that (3.4) holds. We distinguish two

cases according to whether a ≥ 14 or a ≤ 13, respectively.

If a ≥ 14 then, by calculus, we find that there exist absolute constants c1, c2 such

that

c1 σ log(a+ c) < λ < c2 σ log(a+ c) (3.19)

Here we may choose c2 = 1.3646 if c = 1, c2 = 1.1835 if c = 2 and c2 = 1.1226

if c = 3. The corresponding values of c1 are c1 = 1 if c ∈ {1, 2}, (c1, a) =

(0.96, 14), (0.98, 16), or (0.99, 17), if c = 3 and 14 ≤ a ≤ 17, and c1 = 1 if c = 3

and a ≥ 18. Since n > 347 and x > na
c

, it follows that log(a+c)
log(x)

< 1 and, via

(3.19),

log

(
n

3 log(a+ c)
+

1

2.003 log(x)

)
+log(λ)+1.81 < log

(c2σn
3

+
c2σ

2.003

)
+1.81.

Hence, for a ≥ 14, we may take

h = max
{

log
(c2σn

3
+

c2σ

2.003

)
+ 1.81, λ

}
.

Suppose first that h = log
(
c2σn
3

+ c2σ
2.003

)
+ 1.81. Then, by (3.19) and the assump-

tion that a ≥ 14,

h

λ
+

1

σ
≤ A :=

log
(c2σn

3
+

c2σ

2.003

)
+ 1.81

σc1 log(a+ c)
+

1

σ
. (3.20)

Lemma 11 and (3.20) together imply that

log |Λ| > −Cλ2a1a2A2 −
√
ωθλA− log(C ′a1a2λ

2A2) (3.21)
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and hence, comparing (3.18) and (3.21), we have

n < Cλ2A2 a1a2
log(x)

+
√
ωθ

λ

log(x)
A+

log(2cC ′a1a2λ
2A2)

log(x)
. (3.22)

Write C = µ
λ3σ

C̃. Then, from the definitions of a1 and a2, and from (3.19), nec-

essarily

Cλ2
a1a2

log(x)
<
C̃ 6.009µ

c1σ2
.

Since x > na/c and n > 347, we have log(a+c)
log(x)

< 1. Combining this with (3.19)

we obtain that λ
log(x)

< c2σ and, further,

log(2cC ′a1a2λ
2A2)

log(x)
< 0.421 log(A) + 1.858.

Inequality (3.22) thus implies

n <

(
µ

σ2c1
C̃ · 6.009

)
A2 + c2σ

√
ωθA+ 0.421 log(A) + 1.858. (3.23)

Since in Lemma 11 we have H ≥ 1 + 1
σ

, necessarily H > 2.0734, whence

ω < 4.058 and θ < 1.27. Further, since λ√
a1a2

< c2σ√
6.009

and λ
(

1
a1

+ 1
a2

)
<

c2σ
(

1
2.003

+ 1
3

)
, we have C̃ < 5.262 if c = 1, C̃ < 4.853 if c = 2 and C̃ < 4.735

if c = 3. By combining these estimates with (3.23), we obtain, for a ≥ 14, that

n <

(
6.009C̃ · µ

σ2

1

c1

)
A2 + 2.271c2σA+ 0.421 log(A) + 1.858. (3.24)

To remove the dependence on a in this bound, we appeal to the inequalities

log(a + c) ≥ log(15) for c = 1, log(a + c) ≥ log(16) and a ≥ 14, log(a + c) ≥

log(21) for a ≥ 18 and c = 3 and log(a + c) = log(a + 3) for c = 3 and

a ∈ {14, 16, 17}. Hence we obtain n ≤ 347 for c ∈ {1, 2, 3} and a ≥ 14, pro-

vided h = log
(
c2nσ
3

+ c2σ
2.003

)
+ 1.81. If h = λ, inequality (3.24) actually implies

a stronger bound upon n.

For a ≤ 13 and c ∈ {1, 2, 3}, we omit the general estimates and use exact values

for a. We will provide details in case a = 3 and c = 2; the other cases proceed

50



in a similar fashion. We first note that direct calculation of the bounds in Lemma

11 with the same parameters as previously, and with a = 3, c = 2, x > 347a/c,

yields an initial upper bound for n of the shape n < 446. For each prime n between

347 and 446 we apply an algorithm of Pethő [92] (essentially nothing more than

an analysis of convergents in the infinite simple continued fraction expansions to
n
√
b/a) to search for solutions to our Thue inequality with x ≤ 10500. After a short

computation, we find that the only such solution is (x, y) = (1, 1). We may thus

assume that x > 10500. Using this, (3.22) now yields n ≤ 326, as desired. �

3.3.2 The hypergeometric method

Theorem 11 leaves us with only finitely many fixed exponents to treat in (3.15).

In this subsection, we will assume that n is either 4 or an odd prime between 3

and 347. We first apply Lemma 12 to (3.15). Observe, that

max {axn, (a+ c)yn} ≥ a,

so if

a ≥ µnc
αn ,

then (3.15) has at most one solution. Put a0(n) = µn3αn . We remark here, that

a0(3) = 22678753, a0(4) = 23943 and a0(n) ≤ 1103 for all other values of n.

We thus need to consider (3.15) only with a ≤ a0(n). Note that (3.15) implies the

inequality ∣∣∣∣ n√1 +
c

a
− x

y

∣∣∣∣ ≤ 3

anyn
. (3.25)

To deduce an upper bound for y in (3.15) we combine (3.25) with Lemmata 13,

14 and 15. We thus have

• for n = 3 :

y <

(
12 · κ(c) · 104λ3

n

) 1
n−λ3

,
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• for n ∈ {4, 5, 7, 11, 13} :

y <

(
3 · 1010λ4

n

) 1
n−λ4

,

• for 17 ≤ n ≤ 347 :

y <

(
3C2

(
m
√
a+ c+ m

√
a
)m

an

) 1
n−λ1

.

If we assume that

(a, c) 6∈ {(1, 1), (1, 2), (1, 3), (2, 3)},

routine computations in MAPLE show that these bounds are less then 101000, ex-

cept for some “small”’ values of a and n, where we can appeal to PARI/GP to

solve the corresponding Thue equations directly. By a well known theorem of

Legendre, we have that in (3.15) the ratio x/y is a convergent in the continued

fraction expansion of n
√

1 + c
a
. We can thus apply the aforementioned algorithm

of Pethõ [92] to compute all solutions of the occurring inequalities. The excep-

tional cases here which do not satisfy the requirements of Lemmata 13, 14 and

15 (again, all with “small” values of a and n) may also be treated via PARI/GP. It

remains to deal with the pairs

(a, c) ∈ {(1, 1), (1, 2), (1, 3), (2, 3)},

for n = 4 or prime n, 3 ≤ n ≤ 347. In case (a, c) = (1, 1), the desired result is an

immediate consequence of Proposition 5.1 of [22]; we find an additional solution

with n = 3 and (x, y) = (5, 4). Suppose next that (a, c) = (1, 3). The Diophantine

equations

xn − 4yn = ±1,±2

52



can be shown to have no solutions in positive integers for n ≥ 3 by combining

work of Ribet [96] with elementary arguments, while

xn − 4yn = ±3

has no solutions in integers x and y with |xy| > 1, provided n has a prime divisor

p ≥ 7 (see Theorem 1.2 of [24]). It remains, therefore, to treat inequality (3.15)

with (a, c) = (1, 2) or (2, 3) and n ∈ {3, 4, 5, 7, 11, 13, 17}, and (a, c) = (1, 3),

n ∈ {3, 4, 5}. We appeal to PARI/GP and find no further nontrivial solutions to

(3.15), unless (a, c, n) = (1, 2, 3) (where there is the additional solution (x, y) =

(3, 2)) or (a, c, n) = (2, 3, 3) (where we have (x, y) = (19, 14)). This completes

the proof of Case I.

Case II can be handled similarly. We can assume, for the remainder of the proof,

that for any positive solution (x, y) of (3.13), we have x ≥ 2. Denote by (x0, y0)

a known solution of (3.13). As previously, we may conclude from Lemma 12 that

if max(x0, y0) is larger than a computable constant Xn, then the only positive

solution of (3.13) is (x0, y0). Hence, we have only to consider (3.13) with n ∈

{3, 4, 5} and with a given finite set X of the pairs (x0, y0). By way of example, if

a = 1 and n = 3, we have 2 ≤ x0 ≤ 283, and determine by30 by factoring ax30 + t

for t ∈ {±1,±2,±3}. In general, applying Lemma 12 to our set of pairs X , we

arrive at a finite set of possible pairs (a, b), with corresponding finite set of Thue

inequalities (really, in this case, equations) to solve. In most cases, we can carry

this out easily via the hypergeometric method. Assume that (x0, y0) is given and

that axn0 − byn0 = −t, with t ∈ {±1,±2,±3}. Then b can be written as axn0+t

yn0
and,

after substituting this into (3.13), we find that∣∣∣∣axn − axn0 + t

yn0
yn
∣∣∣∣ ≤ 3.
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Applying Lemmata 14 and 15, we are led to inequalities of the shape

c1
(x0y)λ

<

∣∣∣∣∣xy0x0y
− n

√
1 +

t

axn0

∣∣∣∣∣ ≤ 3 · yn0
a(x0y)n

,

where the constant c1 can be deduced from the statements of Lemmata 14 or 15.

This yields, in a similar fashion to Case I, that y is bounded by some absolute

constant (usually around 10500). From (3.13),∣∣∣∣∣xy − n

√
b

a

∣∣∣∣∣ < 3

anyn

and hence, via Legendre’s theorem, we have that x/y is a convergent in the sim-

ple continued fraction expansion of n
√
b/a. Thus, we may again apply Pethõ’s

algorithm [92] to compute all solutions of the corresponding inequalities. Repeat-

ing this procedure for all (x0, y0) ∈ X , and using PARI/GP for some exceptional

equations with small coefficients which we are unable to handle via the hyperge-

ometric method, we conclude that (3.13) has at most one solution for each triple

(a, b, n) in Case II. This completes the proof of Theorem 10. Full details of these

computations are available from the authors upon request.
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Chapter 4

Equations concerning pyramidal

numbers

In the last chapter we will apply linear forms in elliptic logarithms to solve a

family of genus 1 equations. Set Pyrm(x) =
x(x+ 1)((m− 2)x+ 5−m)

6
and

consider the equation

Pyrm(u) = Pyrn(v), (4.1)

in positive integers u and v for given m and n. In what follows, we give effective

upper bounds for the size of the solutions of (4.1). We apply the so-called Elliptic

Logarithm method, which was developed by Stroeker and Tzanakis [108], and

independently by Gebel, Pethő and Zimmer [53] and later improved by Stroeker

and Tzanakis [109]. Two interesting special cases are studied by computational

number-theoretic tools.

Before stating the main results, we would like to introduce another form of the

problem. It is easy to see that (4.1) is equivalent to the equation

(m− 2)u3 + 3u2 + (5−m)u = (n− 2)v3 + 3v2 + (5− n)v (4.2)

in positive integer unknowns u and v.
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4.1 Results

With this latter form, the main results are the following.

Theorem 12. Let m and n be given positive integers with 3 ≤ min(m,n) and

m 6= n. Then the equation (4.2) has at most finitely many solutions in integer

unknowns u and v. In fact max(u, v) < C1, where C1 is an effectively computable

positive constant depending only on m and n.

Remark We would like to mention here, that Theorem 12 is also a direct conse-

quence of the celebrated result of Baker and Coates (see [14]). However, the cur-

rently discussed Elliptic Logarithm method gives more practical bounds. Sadly,

due to the nature of the method, it is currently not possible to make C1 explicit in

terms of m and n.

Using the techniques mentioned above and the program packages MAGMA [123],

SAGE [42] and MAPLE, we prove

Theorem 13. For given m and n with 3 ≤ n < m ≤ 10, all solutions of (4.2) in

(u, v) integers with (u, v) 6∈ {(0, 0)(−1,−1), (−1, 0), (0,−1), (1, 1)} are given in

the following table.
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(m,n) (u, v)
(4, 3) (0,−2), (−1,−2)
(5, 3) (0,−2), (−1,−2), (−35,−51)
(6, 3) (0,−2), (−1,−2), (−16,−26)
(7, 3) (0,−2), (−1,−2), (−2,−4)
(7, 5) (−5,−6), (6, 7)
(8, 3) (0,−2), (−1,−2), (7, 12)
(8, 4) (−2,−3), (3, 4)
(8, 6) (−276,−316)
(9, 3) (0,−2), (−1,−2), (−8,−16), (2, 3)
(9, 4) (−13,−20)
(9, 7) (152, 170)
(10, 3) (0,−2), (−1,−2)
(10, 4) (55, 87)
(10, 6) (35, 44)

(4.3)

As a direct corollary to Theorem 13, we can state the following.

Corollary 1. For given m and n with 3 ≤ n < m ≤ 10, all solutions of (4.1) in

positive integers (u, v) with (u, v) 6= (1, 1) are given by

(m,n, u, v) ∈

(8, 3, 7, 12), (9, 3, 2, 3), (8, 4, 3, 4), (10, 4, 55, 87),

(7, 5, 6, 7), (10, 6, 35, 44), (9, 7, 152, 170).

 (4.4)

Before proceeding with the proofs, we would like to make some preliminary re-

marks.

Remarks. Easy substitution shows that the elements of the excluded set

{(0, 0), (−1,−1), (−1, 0), (0,−1), (1, 1)}

are solutions of (4.2) for all m and n.

As the computational data shows, giving all the solutions with unknown m, n, u

and v is hopeless, as there does not seem to be any pattern in the solutions. If we

consider (4.2) for given u and v in integer unknowns m and n, we get a linear
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equation. In this case (4.2) has either no solutions or infinitely many. The latter is

the case if and only if

gcd
(
u3 − u, v3 − v

) ∣∣(2u3 − 3u2 − 5u− 2v3 + 3v2 + 5v
)

We would also like to mention here, that in the case where both m− 2 and n− 2

are perfect cubes, we can apply elementary calculations to deduce an upper bound

for max{u, v}. Indeed, suppose that in (4.2), m− 2 = k3 and n− 2 = l3. Set

U = k3l2u+ l2, V = k2l3v + k2.

Then we have

U3−V 3 = l4((k3−3)k3 +3)U−k4((l3−3)l3 +3)V + l6(3k3−2)−k6(3l3−2).

Here U = V cannot occur. Using the triangle inequality, we get

(max{U, V })2 ≤ U2 + UV + V 2 ≤ C0 max{U, V },

with

C0 = k4((l3 − 3)l3 + 3) + l4((k3 − 3)k3 + 3) + k6(3l3 − 2) + l6(3k3 − 2),

and so

max{U, V } ≤ C0.

4.2 Auxiliary Results

Lemma 17. Let m and n be given positive integers with m 6= n. Then equation

(4.2) is birationally equivalent to the Weierstrass curve

y2 = x3 + c(m,n)x+ d(m,n), (4.5)
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where
c(m,n) = −48n2m2 + 336nm2+

+4368m− 624m2 − 624n2+

+4368n− 8112− 2352nm+ 336mn2,

and

d(m,n) = 281216− 227136m− 227136n− 4352n3 − 4352m3 + 256m4−

−52544nm2 + +57424n2 + 57424m2 + 194656nm+ 64n4m2−

−52544mn2 + 4352mn3 + 4352nm3 − 256n4m− 256nm4−

−1088n2m3 + 64n2m4 + 256n4 + 14592n2m2 − 1088n3m2.

Moreover, there exist mutually invertible birational transformations Φ(x, y) and

Ψ(x, y), under which

u = Φ(x, y), and v = Ψ(x, y). (4.6)

Proof. We prove Lemma 17 using an algorithm due to Nagell [90]. We will

closely follow the method described by Connell in [37]. Let us start with (4.1),

which has the rational point (u, v) = (0, 0).

Step 1. Substitute u = U/W and v = V/W in (4.2), and clear the denominators

to get the homogenous form

F = F3 + F2W + F1W
2 = 0, (4.7)

where
F3 = (m− 2)U3 − (n− 2)V 3,

F2 = 3U2 − 3V 2,

F1 = (5−m)U − (5− n)V.

The rational point P with (u, v) = (0, 0) has the projective coordinates [U : V :

W ] = [0 : 0 : 1]. The tangent line to (4.7) in P , given by F1 = 0 meets (4.7) in
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Q = [e2(5− n), e2(5−m), e3], where

e2 = F2(−(5− n),−(5−m)) = 3(5− n)2 − 3(5−m)2,

e3 = F3(−(5− n),−(5−m)) = −(m− 2)(5− n)3 + (n− 2)(5−m)3.

The aim of this step is to bring Q into the origin with a suitable change of coor-

dinates. Before we can do this, we have to examine e2 and e3 a little further. It is

easy to see, that e2 can only be 0 if and only if |5 −m| = |5 − n|, which means

that (m,n) comes from the set

S = {(1, 9), (2, 8), (3, 7), (4, 6), (6, 4), (7, 3), (8, 2), (9, 1)}.

On the other hand, e3 cannot be 0, since that would mean, that

(5−m)3

m− 2
=

(5− n)3

n− 2
(4.8)

holds. But the derivative of (5−x)3
x−2 is negative for every positive integer x other

than 5. Thus, for x 6= 5, the function

(5− x)3

x− 2

is monotonous which means, that form 6= n 6= 5, (4.8) cannot occur. By choosing

m = 5 in (4.8), we get, that n = 5, which contradicts m 6= n.

Thus we can distinguish two cases: either we have e2 6= 0 and e3 6= 0 with

(m,n) 6∈ S, or we have e2 = 0, e3 6= 0 with (m,n) ∈ S. If (m,n) is in S, then Q

is the origin, thus Q is a flex. If this is the case, one can jump directly to Step 2 .

We make the coordinate transformation

U = U ′ +
(5− n)e2

e3
W ′,

V = V ′ +
(5−m)e2

e3
W ′,

W = W ′
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to send Q to the origin. We can now return to affine coordinates u′ = U ′/W ′,

v′ = V ′/W ′.

Step 2. Now our equation is of the form f ′ = f ′1 + f ′2 + f ′3 = 0, where f ′i denotes

the homogenous part of f ′(u′, v′) of degree i, i ∈ {1, 2, 3}. Introduce t = v′

u′
, and

denote f ′i(1, t) by φi to get the quadratic equation

u′2φ3 + u′φ2 + φ1 = 0. (4.9)

Let δ = φ2
2 − 4φ3φ1. Then

u′ =
−φ2 ±

√
δ

2φ3

, and v′ = tu′ (4.10)

The zeros of δ are the slopes of the tangents to the curve in the (u′, v′)-plane that

pass through Q. One such value is

t0 =
5−m
5− n

.

Thus (t− t0) is a linear factor of δ. Write τ = (t− t0)−1, and let ρ = τ 4δ. Clearly,

ρ is a cubic polynomial in τ .

Step 3. Finally, if

ρ = c1τ
3 + c2τ

2 + c3τ + c4,

then substitute τ = x′

c1
, ρ = y2

c21
to get the elliptic equation

y2 = x′3 + c2x
′2 + c1c3x

′ + c21c4.

Substituting x′ = x− c2
3

yields (4.5). The transformations Φ and Ψ can be traced

back starting with (4.10).

�
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4.3 Outline of the proof of Theorem 12

By Lemma 17, our initial equation is equivalent to the Weierstrass curve (4.5).

Our goal is to apply the Elliptic Logarithm method to deduce the upper bound c1.

To do this, we have to make sure first, that (4.5) is non-singular. The discriminant

of (4.5) is

D(m,n) = −6912 ·D1(m,n) · (m− n)2 (4.11)

where

D1(m,n) =

−12303200− 4987111n2 − 4987111m2 − 14047282nm+ 4409272nm2+

+4409272mn2 − 90912mn3 − 90912nm3 + 13540280m+ 13540280n+ 546080n3+

+546080m3 + 48224m4 − 8704m5 + 256m6 + 48224n4 − 8704n5 + 256n6−

−637744n2m2 − 436552n3m2 − 158176n4m+ 154792n4m2 − 158176nm4−

−436552n2m3 + 154792n2m4 + 17920n5m− 14080n5m2 + 287712n3m3

−65376n3m4 − 512n6m+ 384n6m2 − 65376n4m3 + 12176n4m4 + 17920m5n

−14080m5n2 − 512m6n+ 384m6n2 + 5120n5m3 − 800n5m4 + 5120n3m5−

−128n3m6 − 128n6m3 − 800n4m5 + 32n5m5 + 16m4n6 + 16m6n4.

Clearly, D(m,n) = 0 if and only if D1(m,n) = 0. Write
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Pol0 = 256n6 − 8704n5 + 48224n4 + 546080n3 − 4987111n2 + 13540280n−

−12303200,

Pol1 = −512n6 + 17920n5 − 158176n4 − 90912n3 + 4409272n2 − 14047282n+

+13540280 +m(384n6 − 14080n5 + 154792n4 − 436552n3 − 637744n2+

+4409272n− 4987111),

Pol2 = −128n6 + 5120n5 − 65376n4 + 287712n3 − 436552n2 − 90912n+ 546080+

+m (16n6 − 800n5 + 12176n4 − 65376n3 + 154792n2 − 158176n+ 48224) ,

Pol3 = 32n5 − 800n4 + 5120n3 − 14080n2 + 17920n− 8704,

Pol4 = 16n4 − 128n3 + 384n2 − 512n+ 256.

Thus, D1 = Pol4m
6 + Pol3m

5 + Pol2m
3 + Pol1m + Pol0. It is obvious, that

for suitably large m all the polynomials Poli are monotonously increasing in n,

thus always positive for large enough n. Easy calculation shows that D1 > 0 for

min{m,n} > 30. Now fix m for m = m0 ≤ 30. Then D1(m0, n) is a polynomial

in n. Searching for the integer roots of D1(m0, n) for all 1 ≤ m0 < 30 we find,

that D1(m,n) = 0 can occur only with m = n = 5. Repeating this last step with

fixing n = n0 ≤ 30 we get the same result thus proving that (4.5) is non-singular

for all (m,n), where m 6= n.

Now, we turn to the Elliptic Logarithms. Here we follow the approach described

by Stroeker and Tzanakis in [108] and Stroeker de Weger in [107]. Let r be the

rank of the curve (4.5), P1, . . . Pr a basis of the Mordell-Weil group, and Pr+1

a torsion pont on E. Then a rational point P on the curve is of the shape P =

m1P1 + · · ·+mrPr + Pr+1 with mi ∈ Z. Write M = max
1≤i≤r

|mi|. Then according

to [107] the linear form in elliptic logarithms has the form

L(P ) = m0ω +m1u1 + · · ·+mrur + ur+1 − u0,
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where ui are the elliptic logarithms of the points Pi, u0 is the elliptic logarithm of

a well-chosen Q0 point on E, and m0 is a scaling factor. Using this notation, we

have max{M, |m0|} ≤ rM + 1.

On one hand, we have an upper bound for this linear form:

|L(P )| < exp(c1 − c2M2), (4.12)

where the constants c1 and c2 are effectively determinable. On the other hand a

result by David [38] provides a lower bound for the linear form L(P ). Combining

this with (4.12) provides an upper bound forM . Thus x and y are bounded in terms

of m and n, which combined with (4.6) yields an upper bound for max{u, v}

completing the proof of Theorem 12.

4.4 Examples

In what follows, we will illustrate the method described in Section 4.3 in two

interesting special cases. Iterating the steps described here for 3 ≤ n ≤ m ≤ 10,

we get the set of solutions (4.3), thus proving Theorem 13. First, we consider (4.2)

with (m,n) = (9, 7). More precisely, we prove the following theorem.

Theorem 14. The only positive integer, which is both 9-pyramidal and 7-pyramidal,

is 4108560.

Theorem 14 is the direct consequence of the following lemma.

Lemma 18. All solutions of the equation

7u3 + 3u2 − 4u = 5v3 + 3v2 − 2v (4.13)

in integer unknowns u and v are

(u, v) ∈ {(−1,−1), (−1, 0), (0,−1), (1, 1), (152, 170)}. (4.14)
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Proof. Equation (4.13) is birationally equivalent to the minimal Weierstrass curve

Y 2 = X3 − 1209X + 19361, (4.15)

under the transformation

(X, Y ) =

(
20u− 18− 43v

2u− v
,
3(231u3 + 129u2 − 26u− 165v3 − 156v2 − 14v)

(2u− v)2

)
.

Using the program package MAGMA, we get that the rank of (4.15) is 4, and the

torsion subgroup of (4.15) is O. The generators of the Mordell-Weil group are:

P1 = (19, 57), P2 = (25,−69), P3 = (−5,−159), P4 = (−41, 3).

Let P = m1P1 +m2P2 +m3P3 +m4P4 be a rational point on (4.15) which is the

image of an integer point on (4.13). Then the linear form L(P ) is of the shape

L(P ) = m0ω +m1u1 +m2u2 +m3u3 +m4u4 − u0,

where ω is the fundamental real period of (4.15), and ui (i = 0, . . . , 4) are the

elliptic logarithms of Q0 and Pi, (i = 1, . . . , 4). After some calculation we have

Q0 = (−31.8884 . . . , 159.6485 . . . ),

ω = 2.1510 . . . , u0 = 0.9728 . . . , u1 = 0.5717 . . . ,

u2 = 1.6797 . . . , u3 = 1.3289 . . . , u4 = 1.0739 . . . .

Also, in this particular case, (4.12) reads as

|L(P )| < exp(10.168− 1.23M2).

Combining this with the aforementioned result of David, we getM < 0.384·10116.

To reduce the upper bound, we apply de Weger’s [39] method based on the LLL-

algorithm. After a few iterations we get M < 13. Searching for all points on

(4.15) with M < 13, and applying the inverse of the birational transformations
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mentioned above, we are able to calculate the set of solutions (4.14).

�

As a second application for the method, we consider the following problem. For

given integers x ≥ 1 and y ≥ 1, what are the solutions of the diophantine equation

(
x+ 2

3

)
= 12 + 22 + · · ·+ y2. (4.16)

Using the definition of the binomial coefficients, and some well-known properties

of sums of squares, we get, that (4.16) is equivalent to (4.2) with (m,n) = (4, 3).

We have the following theorem.

Theorem 15. The only solution of (4.16) in integers x ≥ 1 and y ≥ 1 is the trivial

solution (x, y) = (1, 1).

This is the direct consequence of the following lemma.

Lemma 19. The diophantine equation

2u3 + 3u2 + u = v3 + 3v2 + 2v (4.17)

has no solutions in integers (u, v) other than the trivial solutions

(u, v) ∈ {(−1,−1), (−1, 0), (0,−1)(1, 1)}.

Proof. We proceed as in the previous case. Equation (4.17) is birationally equiv-

alent to the minimal Weierstrass curve

Y 2 = X3 − 48X + 272, (4.18)

under the transformation

(X, Y ) =

(
−4(5u+ 9 + 5v)

u− 2v
,

12(30u3 + 66u2 + 41u− 15v3 − 39v2 − 28v)

(u− 2v)2

)
.
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The rank of (4.18) is 1, and the torsion subgroup of (4.18) is trivial. The generator

of the Mordell-Weil group is

P1 = (16, 60).

Denote by P = m1P1 a rational point on (4.18), which is the image of an integer

solution of (4.17). Then we have the following linear form

L(P ) = m0ω +m1u1 − u0,

where ω is the fundamental real period of (4.17), and u0, u1 are the elliptic loga-

rithms of the points P1 and Q0 = (29.7388 . . . , 158.5738 . . . ). After some calcu-

lation, we have

ω = 3.7814 . . . , u0 = 0.3685 . . . , u1 = 0.5074 . . . .

In this case, (4.12) reads as

|L(P )| < exp(8.02852− 0.05909M2).

Combining this with David’s result, we get M < 0.2919 · 1052. After a few itera-

tions of de Weger’s algorithm, we arrive at M < 18. Checking for solutions with

this condition, we find that the only solution of (4.17) is the trivial one.

�

4.5 Computational Remarks

We would like to make some remarks concerning the practical details of the com-

putation. Due to MAPLE’s powerful symbolic computational capabilities, the bi-

rational transformation between (4.2) and the Weierstrass model was computed
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using a simple implementation of Nagell’s algorithm in MAPLE 18. The calcula-

tion of the elliptic logarithms, the upper bound and the reduction was also done in

MAPLE 18, using MAPLE’s built-in LLL routine. The computation of the group

of rational points on the curves and the search using the bounds from the reduc-

tion were carried out in both MAGMA and SAGE. The runtimes on a personal

computer equipped with an AMD A10-7800 CPU ranged from being only a few

seconds to few minutes depending on the curves. The most time consuming steps

were the computation of the Mordell-Weil generators, the reduction process and

the exhaustive search below the reduced bound. Compared to the run times pre-

sented for example in [106], no big difference is seen. This may be caused by

the small absolute value of the parameters. The goal of the present paper is to

investigate an interesting family of diophantine equations, as the run times show

however one can extend these results to higher values of m and n if desired. Also,

we think that an algorithm could be written in MAGMA (or any other of the three),

that gives a list of all solutions for given m and n, similarly to some other special

cases of genus 1 equation solvers already present in MAGMA.

68



Chapter 5

Summary

In our dissertation, we combine the latest effective methods with our own ob-

servations to give effective results for infinite families of diophantine equations

and inequalities with interesting number theoretic backgrounds. The dissertation

consists of four chapters. In the first, we use elementary methods with modular

arguments to give all solutions to an infinite family of equations. Let (a, b, c) be

a given primitive Pythagorean triple such that a2 + b2 = c2, and consider the

equation

cx + by = az (5.1)

in positive integer unknowns x, y and z.

Conjecture 3. With the above conditions, equation (5.1) has the only solution

(x, y, z) = (1, 1, 2) if c = b+ 1. If c > b+ 1 then (5.1) has no solutions.

This is referred to as the shuffle variant of Jeśmanovicz’ problem. In [80],

Miyazaki proved that Conjecture 3 is true if c ≡ 1 (mod b). In our work, we

extend his work with the following results.

Theorem 16. Let b0 be a divisor of b, such that b0 is divisible by rad(b). Suppose
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that Conjecture 3 is true for all Pythagorean triples (a, b, c) with

c ≡ 1 (mod b0). (5.2)

Then Conjecture 3 is true for all Pythagorean triples (a, b, c) with

c ≡ 1 (mod b0/2). (5.3)

Theorem 17. Conjecture 3 is true for all Pythagorean triples (a, b, c) with

c ≡ 1 (mod b/2ord2(b)).

In the second chapter, we combine a deep result of Bilu, Hanrot and Voutier [124]

with results concerning Ljunggren-type and elliptic curves to give all solutions to

the equation

x2 + 5k17l = yn (5.4)

in integer unknowns x, y, k, l, n satisfying

x ≥ 1, y > 1, n ≥ 3, k ≥ 0, l ≥ 0 and gcd(x, y) = 1. (5.5)

The latter equation is often called the generalized Ramanujan-Nagell equation.

The first results concerning equations similar to (5.4) were given by Lebesque

[64], Ljunggren [65] and Nagell [89], [91]. In our work, we prove an analogues

results such as by Luca and Togbe [70], [71]. Our main result is the following.

Theorem 18. Consider equation (5.4) satisfying (5.5). Then all solutions of equa-

tion (5.4) are:

(x, y, k, l, n) ∈ {(94, 21, 2, 1, 3), (2034, 161, 3, 2, 3), (8, 3, 0, 1, 4)}.

In the third chapter, we combine a refined version of Baker’s method with hyper-

geometric approximation methods to effectively bound the number of solutions of

a family of binomial Thue inequalities. Here we extend a former result of Bennett

[20] and prove the following.
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Theorem 19. Let c be a positive integer. Then there exists an effectively com-

putable finite set Sc of triples of positive integers a, b and n with the property that

if a, b and n ≥ 3 are any positive integers for which the Diophantine inequality

|axn − byn| ≤ c (5.6)

has more than a single solution in positive integers x and y, then (a, b, n) ∈ Sc.

Theorem 20. With Sc defined above, we have S3 ⊆ S∗3 ∪ T3, where

S∗3 = {(1, 2, 3), (2, 1, 3), (1, 3, 3), (3, 1, 3), (2, 5, 3), (5, 2, 3)}

and

T3 = {(1, 3, n), (3, 1, n), (2, 5, n), (5, 2, n) with 37 ≤ n ≤ 347, n prime } .

For (a, b, n) ∈ S∗3 , the solutions in positive integers to inequality (5.6) with c = 3

are, in each case, (x, y) = (1, 1), and also

(a, b, n) (1, 2, 3) (2, 1, 3) (1, 3, 3) (3, 1, 3) (2, 5, 3) (5, 2, 3)

(x, y) (5, 4) (4, 5) (3, 2) (2, 3) (19, 14) (14, 19)

In the final chapter, we apply the so-called Ellog method which was developed by

Stroeker and Tzanakis [108], and independently by Gebel, Pethő and Zimmer [53]

and later improved by Stroeker and Tzanakis [109] to solve a problem concerning

pyramidal numbers. Set Pyrm(x) =
x(x+ 1)((m− 2)x+ 5−m)

6
and consider

the equation

Pyrm(u) = Pyrn(v), (5.7)

in positive integers u and v for given m and n. We prove the following results.

Theorem 21. Let m and n be given positive integers with 3 ≤ min(m,n) and

m 6= n. Then the equation (5.7) has at most finitely many solutions in integer

unknowns u and v. In fact max(u, v) < C1, where C1 is an effectively computable

positive constant depending only on m and n.
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Theorem 22. For given m and n with 3 ≤ n < m ≤ 10, all solutions of (5.7) in

positive integers (u, v) with (u, v) 6= (1, 1) are given by

(m,n, u, v) ∈

(8, 3, 7, 12), (9, 3, 2, 3), (8, 4, 3, 4), (10, 4, 55, 87),

(7, 5, 6, 7), (10, 6, 35, 44), (9, 7, 152, 170).

 (5.8)
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Chapter 6

Összefoglaló

Jelen disszertációban effektív végességi tételeket kombináltunk saját észrevételeinkkel,

melyekkel végességi eredményeket tudtunk bizonyítani érdekes számelméleti hát-

térrel rendelkező diofantikus egyenletek végtelen családjaira. A disszertáció négy

fejezetből áll. Az elsőben elemi módszerek és a lokális módszer kombinálásával

megadjuk egy végtelen egyenletcsalád összes megoldását. Legyen (a, b, c) egy

primitív pitagorarszi számhármas, melyre a2 + b2 = c2, és tekintsük a

cx + by = az (6.1)

egyenletet pozitív egész x, y és z ismeretlenekben.

1. Sejtés A fenti feltételekkel a (6.1) egyenlet egyetlen megoldása (x, y, z) =

(1, 1, 2), ha c = b+ 1. Ha c > b+ 1 akkor (6.1)-nak nincs megoldása.

Ez utóbbi eredményt szokás a kevert Jeśmanovicz problémának hívni. Miyazaki

[80] bizonyította, hogy az 1. Sejtés igaz, ha c ≡ 1 (mod b). Disszertációnkban ez

utóbbi eredményét általánosítjuk. A fő eredményeink a következők.

1. Tétel Legyen b0 egy osztója b-nek, melyre b0 osztható b radikáljával. Tegyük

fel hogy az 1. Sejtés igaz minden olyan (a, b, c) pitagoraszi hármasra, melyre

c ≡ 1 (mod b0). (6.2)
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Ekkor az 1. Sejtés igaz minden olyan (a, b, c) hármas esetén, melyre

c ≡ 1 (mod b0/2). (6.3)

2. Tétel Az 1. Sejtés igaz minden olyan (a, b, c) hármas esetén, melyre

c ≡ 1 (mod b/2ord2(b)).

A második fejezetben Bilu, Hanrot és Voutier [124] egy Lucas-sorozatokra vonatkozó

mély eredményét kombináljuk Ljunggren típusú és elliptikus görbékre vonatkozó

eredményekkel, hogy meghatározzuk az

x2 + 5k17l = yn (6.4)

egyenlet összes megoldását x, y, k, l, n egész ismeretlenekben, melyekre

x ≥ 1, y > 1, n ≥ 3, k ≥ 0, l ≥ 0 and gcd(x, y) = 1. (6.5)

Az utóbbi egyenletet gyakran hívják általánosított Ramanujan-Nagell egyenlet-

nek. Az első, (6.4)-hez hasonló egyenletekre vonatkozó eredmények Lebesque-

hez [64], Ljunggrenhez [65] és Nagellhez [89], [91] köthetők. Munkánkban néhány

szerző ( például Luca és Togbe [70], [71]) friss eredményeivel analóg eredményeket

bizonyítunk. Fő eredményünk a következő.

3. Tétel Az (6.4) egyenlet (6.5) feltételnek eleget tevő összes megoldása

(x, y, k, l, n) ∈ {(94, 21, 2, 1, 3), (2034, 161, 3, 2, 3), (8, 3, 0, 1, 4)}.

A harmadik fejezetben a Baker módszer egy Laurent [59] által kidolgozott vál-

tozatát kombináljuk hipergeometrikus approximációs technikákkal, hogy effektív

korlátot adjunk binom Thue egyenlőtlenésgek egy végtelen családjának megoldásszámára.

Ezzel Bennett egy korábbi eredményét [20] általánosítjuk. Fő eredményünk a

következő.
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4. Tétel Legyen c egy pozitív egész. Ekkor létezik a, b és n egészekből álló hár-

masok egy effektíven meghatározható Sc halmaza azzal a tulajdonsággal, hogy ha

a, b és n ≥ 3 olyan pozitív egészek, melyekre az

|axn − byn| ≤ c (6.6)

egyenlőtlenségnek egynél több megoldása van x és y pozitív egészekben, akkor

(a, b, n) ∈ Sc.

5. Tétel Ha Sc a fenti módon adott, akkor S3 ⊆ S∗3 ∪ T3, ahol

S∗3 = {(1, 2, 3), (2, 1, 3), (1, 3, 3), (3, 1, 3), (2, 5, 3), (5, 2, 3)}

and

T3 = {(1, 3, n), (3, 1, n), (2, 5, n), (5, 2, n) ahol 37 ≤ n ≤ 347, n prím } .

Ha (a, b, n) ∈ S∗3 , akkor a (6.6) egyenlőtlenség összes megoldása c = 3 esetén

minden esetben (x, y) = (1, 1), valamint

(a, b, n) (1, 2, 3) (2, 1, 3) (1, 3, 3) (3, 1, 3) (2, 5, 3) (5, 2, 3)

(x, y) (5, 4) (4, 5) (3, 2) (2, 3) (19, 14) (14, 19)

Az utolsó fejezetben az úgynevezett Elliptikus logaritmusok módszerét alkalmaz-

zuk egy piramidális számok egyenlő értékeire vonatkozó probléma megoldására.

Ezt a módszert Stroeker és Tzanakis [108] fejlesztette ki, illetve tőlük függetlenül

Gebel, Pethő és Zimmer [53]. Legyenek m és n adott pozitív egész számok,

valamint Pyrm(x) =
x(x+ 1)((m− 2)x+ 5−m)

6
. Tekintsük a

Pyrm(u) = Pyrn(v), (6.7)

egyenletet u és v pozitív egész ismeretlenekben. Fő eredményeink a következők.
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6. Tétel Legyenek m és n adott pozitív egészek, melyekre 3 ≤ min(m,n) és

m 6= n. Ekkor a (6.7) egyenletnek csak véges sok megoldása van u és v pozitív

egészekben. Továbbá max(u, v) < C1, ahol C1 egy effektíven meghatározható,

csak m-től és n-től függő konstans.

7. Tétel Adott m és n egészekre, melyekre 3 ≤ n < m ≤ 10, a (6.7) egyenlet

összes megoldása (u, v) pozitív egészekben, melyre (u, v) 6= (1, 1),

(m,n, u, v) ∈

(8, 3, 7, 12), (9, 3, 2, 3), (8, 4, 3, 4), (10, 4, 55, 87),

(7, 5, 6, 7), (10, 6, 35, 44), (9, 7, 152, 170).

 (6.8)
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[3] K. Győry A. Dujella and Á. Pintér. On power values of pyramidal numbers,

I. Acta Arith., 155(2):217–226, 2012.

[4] S. A. Arif and F .S. Muriefah. On the diophantine equation x2 + 2k = yn.

Internat. J. Math. Math. Sci., 20:299–304, 1997.

[5] S. A. Arif and F. S. Muriefah. The diophantine equation x2 + 3m = yn.

Internat. J. Math. Math. Sci., 21:619–620, 1998.

[6] S. A. Arif and F. S. Muriefah. The diophantine equation x2 + q2k = yn.

Arab. J. Sci. Sect. A Sci., 26:53–62, 2001.

[7] S. A. Arif and F. S. Muriefah. On the diophantine equation x2 + 2k = yn

ii. Arab J. Math. Sci., 7:67–71, 2001.

[8] S. A. Arif and F. S. Muriefah. On the diophantine equation x2+q2k+1 = yn.

J. Number Theory, 95:95–100, 2002.

77



[9] Á. Pintér B. Brindza and S. Turjányi. On equal values of pyramidal and

polygonal numbers. Indag. Math. (N.S.), 9(2):183–185, 1998.

[10] A. Baker. Rational approximations to 3
√

2 and other algebraic numbers.

Quart. J. Math. Oxford Ser. (2), 15:375–383, 1964.

[11] A. Baker. Rational approximations to certain algebraic numbers. Proc.

London Math. Soc. (3), 14:385–398, 1964.

[12] A. Baker. Simultaneous rational approximations to certain algebraic num-

bers. Proc. Cambridge Phil. Soc, 63:693–702, 1967.

[13] A. Baker. Contributions to the theory of diophantine equations. Phil. Trans.

Roy. Soc. London,, 263:173–208, 1968.

[14] A. Baker and J. Coates. Integer points on curves of genus 1. Mathemat-

ical Proceedings of the Cambridge Philosophical Society, 67(3):595–602,

1970.

[15] A. Baker and H. Davenport. The equations 3x2−2 = y2 and 8x2−7 = z2.

Quart. J. Math. Oxford Ser. (2), 20:129–137, 1969.

[16] A. Bazsó. On binomial thue equations and ternary equations with s-unit

coefficients. Publ. Math. Debrecen, 77:499–516, 2010.

[17] M. A. Bennett. Simultaneous rational approximation to binomial functions.

J. Austral. Math. Soc., 348:1717–1738, 1996.

[18] M. A. Bennett. Effective measures of irrationality for certain algebraic

numbers. J. Austral. Math. Soc., 62:329–344, 1997.

[19] M. A. Bennett. Explicit lower bounds for rational approximation to alge-

braic numbers. Proc. London Math. Soc., 75:63–78, 1997.

78



[20] M. A. Bennett. Rational approximation to algebraic numbers of small

height: the diophantine equation |axn − byn| = 1. J. Reine Angew. Math.,

535:1–49, 2001.

[21] M. A. Bennett. Products of consecutive integers. Bull. London Math. Soc.,

36:683–694, 2004.

[22] M. A. Bennett. The diophantine equation (xk − 1)(yk − 1) = (zk − 1)t.

Indag. Math. (N.S.), 18(4):507–525, 2007.

[23] M. A. Bennett and B. M. M. de Weger. On the diophantine equation |axn−

byn| = 1. Math. Comp., 67:413–438, 1998.

[24] M. A. Bennett and C. Skinner. Ternary diophantine equations via galois

representations and modular forms. Canad. J. Math., 56:23–54, 2004.

[25] M. A. Bennett and C. M. Skinner. Ternary diophantine equations via galois

representations and modular forms. Canad. J. Math., 56(1):23–54, 2004.

[26] Cs. Bertók and L. Hajdu. A Hasse-type principle for exponential dio-

phantine equations and its applications. Mathematics of Computation,

85(298):849–860, 2016.

[27] E. Bombieri and W. Schmidt. On thue’s equation. Invent. Math., 88:69–81,

1987.
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[60] M. Le. A note on Jeśmanowicz’ conjecture. Colloq. Math., 69(1):47–51,

1995.
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