
Advances in Engineering Software 157–158 (2021) 103010

Available online 16 May 2021
0965-9978/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research paper

Performance evaluation of massively parallel and high speed
connectionless vs. connection oriented communication sessions

Zoltán Gál a,*, Gergely Kocsis a, Tibor Tajti b, Robert Tornai a

a University of Debrecen Faculty of Informatics Debrecen P.O. Box 400 H-4002 Hungary
b Eszterházy Károly University Institute of Mathematics and Informatics Hungary

A R T I C L E I N F O

Keywords:
High speed networking
High performance computing
Parallel communication
Internet
Congestion control
Traffic engineering
Statistical analysis
Scale independence

A B S T R A C T

In this paper we focus on the fast communication issues of the Big Data processing tasks shared between High
Performance Computing systems. In our performance evaluation framework we designed and developed two
traffic measurement tools in order to answer some theoretical questions related to congestion control in practice.
The first one is based on iperf and tcpdump softwares to capture data flows of TCP and UDP sessions. Classifi
cation aspects of the measurement cases were: homogeneity of the traffics, number of parallel communication
sessions, and implementation types of the TCP congestion control algorithm. Dozens of parallel traffic scenarios
were executed in a dumbbell topology to evaluate effects of the massively parallel communication sessions in
wireline local and metropolitan area networks. Since we found that connection oriented data transfer sessions
have limited performance features during communication, we implemented a second communication tool named
Fast Manager of File Transfer (FMFT). This application with transfer rate monitoring and regulation capability is
based on parallel connectionless data transfer sessions supervised by a common connection oriented control
session and provides better transfer rate than the classical file transfer mechanisms using TCP services. Meth
odology of the statistical analysis and highlights of this heterogeneous parallel communication mechanism are
explained, too.

1. Introduction

Main issues of the Big Data (BD) processing include not just
computation or storing huge amount of data in the High Performance
Computing (HPC) machines but high speed transmission of these data
between different nodes of the infocommunication systems as well. Best
effort based datagram delivery of the protocol data unit streams pro
vides usable time critical services just in networks having minimal
bandwidth in the scale of n ∗ 10 Mb/s. Although IntServ and DiffServ
QoS mechanisms make possible for time critical data flows to be for
warded under reasonable conditions, high speed transmission of the big
data in LAN/WAN environments remains hot topic. Different imple
mentations of the TCP congestion control mechanism with various ef
ficiency of the transmission speed were developed by research institutes,
standardization institutes, and ICT companies in the last decades. The
requirements for proper congestion control modules are defined by
RFCs, e.g. [8,9]. The QoS strategies applied in LAN environment are
weakly usable in wide area data networks producing low usage

efficiency of the communication path traversing autonomous systems
belonging to different ISPs. Comparison and analysis of the high speed
communication mechanisms existing today makes possible to set
configuration for best transmission performance.

Big Data processing requires high-speed networks and high
computing power too [1]. Very large data sets can be processed in
shared memories. Hierarchical structure of the memory types involves
intensive communication among these modules. Grid or cluster based
high performance computation systems use IP based communication to
offer common virtual memory system for the BD applications. Network
type file systems offer access to the data with reliable transfer capability.
When the client-server system is connected by IP technology, the
transfer of raw data requires significant time sometimes even acting as
the bottleneck of efficient BD processing [2]. Fast packet switching
transmission mechanisms are necessary for BD operations, making hard
the decision of server operators to manage data movement services
optimally. Fast delivery of the BD contents makes time sensitive appli
cations degraded by the lack of bandwidth on the communication path.

* Corresponding author.
E-mail addresses: zgal@unideb.hu (Z. Gál), kocsis.gergely@inf.unideb.hu (G. Kocsis), tajti.tibor@uni-eszterhazy.hu (T. Tajti), tornai.robert@inf.unideb.hu

(R. Tornai).

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

https://doi.org/10.1016/j.advengsoft.2021.103010
Received 15 November 2019; Received in revised form 22 February 2021; Accepted 15 April 2021

mailto:zgal@unideb.hu
mailto:kocsis.gergely@inf.unideb.hu
mailto:tajti.tibor@uni-eszterhazy.hu
mailto:tornai.robert@inf.unideb.hu
www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2021.103010
https://doi.org/10.1016/j.advengsoft.2021.103010
https://doi.org/10.1016/j.advengsoft.2021.103010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2021.103010&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Advances in Engineering Software 157–158 (2021) 103010

2

For our performance evaluation framework we engineered and
developed an own measurement tool based on iperf and tcpdump soft
ware to acquire statistics about data flows of TCP and UDP sessions.
Classification aspects of the measurement cases were: homogeneity of
the traffics (TCP only, UDP only, heterogeneous TCP and UDP), number
of parallel communication sessions (1…100) and type of the TCP
congestion control algorithm (16 different implementations). More than
four hundred traffic scenarios were executed in a dumbbell topology
containing routers and Linux machines. Statistical analysis methods
were used to evaluate effects of the aspects mentioned above in the
wireline local and metropolitan area networks. All the research results of
this framework serve as design and development consideration of a high
speed reliable file transfer application based on UDP based sessions
managed by a common TCP control session.

The structure of the paper is the following: In chapter two we give a
short overview of the BD communication issues and possible solutions
given in the literature. Chapter three contains characteristics of the
transport layer services based on packet switching including features of
the connection oriented and connectionless mechanisms, respectively.
In chapter four measurement scenario and performance analysis of high
number of parallel traffics controlled by sixteen different congestion
control mechanisms is presented. In chapter five we described details of
a new fast file transfer application (FMFT: Fast Manager of File Trans
ferM M) together with its communication performance characteristics.
At the end we conclude and we give possible continuation of this work in
chapter five. Because of high number of measurements, a set of plots is
attached in annex.

Current work is partially published before in the proceedings of
PARENG 2019 conference [3]. However, at several points we have
extended the current paper with new aspects. These observations are
concerning the second traffic analysis tool being a new server - client
software pair and the corresponding GUI we have developed. Section 5
in this paper is newly introduced and gives details of the fast file transfer
application (FMFT). Characteristics of high speed connectionless data
traffic parallel sessions managed through a common connection ori
ented control session is also presented here.

2. Related works of the parallel vs. serial communication

Two methods exist to transmit data between digital devices: serial
and parallel transmissions. Serial data transmission sends data bit-by-bit
through a communication channel. Parallel data transmission sends
multiple data bits in the same time through different channels. Data bits
of the protocol data unit are sent in a given order rule applied by both
the sender and receiver nodes. In the process of serial transmission, a
given bit can be sent just after the previous bit was forwarded on the
channel. This rule should be maintained in both timing variants of this
communication: synchronous or asynchronous.

Most of the digital computer network technologies are based on se
rial transmission mechanisms because in practice long-distance data
delivery tasks should be executed by the peer entities. The protocol data
unit (PDU) has special record structure with frame check sequence field
at the tail part to detect any bit error during the transmission and correct
it if the error affects just a single bit. The number of error combinations
is a O(Lk), where L is the size of PDU in bits and k is the number of bits
affected by error. In practice no correction just error detection is applied
in case of multiple bit errors in the PDU. Fortunately, majority of
channel errors are single bit based, making possible to detect and correct
such frames.

Parallel transmission sends multiple bits simultaneously. In practice
digital channels are basebands providing no parallel forwarding possi
bilities on the physical channel. Because the low efficiency of the upper
logical network layer mechanisms, the physical channel may remain
underutilized for variable period of time. Starting with network layer
toward the application layer communication mechanisms use queue
pairs to manage PDU transmission between the sender and receiver

protocol entity. In practice such queue pairs exist in parallel because
several simultaneous sessions are running on the network nodes. Parallel
transmission can transfer data quicker than serial sessions on the same
logical level but requires more than one parallel channels. Having more
than one channel, the sent data segments may arrive out of sending
order to the destination. To solve reordering of such segments, extra task
is needed both sides.

Finding algorithms with low computation processing level for PDU
management remains an open question in the network and transmission
logical levels for high speed communication services. Big Data pro
cessing requires high volume of data to be delivered between client and
high performance computation systems. This implies usage of applica
tions providing fast file transmission compatible with the existing IP
based stacks. Usage of multiple physical interfaces makes possible to
enhance the file transmission rate with multipath TCP (MPTCP) [4]. The
drawback of this method is that if there is only one interface available,
the bandwidth is lower compared to the case without using MPTCP. In
practice the majority of the client nodes with multicore processors have
only one high speed LAN interface card, including usage of fast file
transfer applications based on MPTCP [5]. These applications should
take into consideration best effort property of the IP layer services.
Because UDP services are datagram based, unbalanced usage of the IP
layer services on the client node level can be provided for UDP in
detriment of TCP services. Of course care should be taken regarding
maximum usage of the physical channel by the multiple UDP sessions in
order not to starve all TCP sessions running on the common communi
cation path toward the server node.

3. Characteristics of the transport layer communication services

Transport layer protocols have big impact on the packet switched
based communication services. Data transmission rate depends on three
critical factors: the transmission speed of the links, the end-to-end la
tency, and the protocol efficiency. Depending on the complexity and
intelligence of the connection type reliable or unreliable data delivery
solutions are provided. In case of Internet both transport service types
are using unreliable classical IP networks layer mechanism, delivery
guarantees imply extra communication in the control plane making
longer delivery time of the application data units in case of connection
oriented services. However, low latency data unit forwarding can be
provided with reduced reliability, time sensitive applications like voice
and video prefer to use connectionless network services.

3.1. Overview of the connection oriented services

Most of the applications on the Internet use Transmission Control
Protocol (TCP) transport layer mechanism for data exchange. TCP is a
mature and efficient protocol which ensures that the sent data arrives to
the receiver. TCP is adaptive speed control protocol and has few tune
able attributes. One of these parameters is the congestion control algo
rithm type which can be chosen for the connection. These congestion
control algorithms regulate the sending of data packets in order to avoid
inefficiency caused by congestion. On the core links of the communi
cation path huge amount of consecutive flows exist each having influ
ence on the other flows to provide fair usage of the total bandwidth.
Several such algorithms have been developed, so we can choose one of
them which gives the best result in our environment. Since congestion
control is part of the transfer control in TCP over IP, changing the
congestion control means that we will use another TCP variant. Since
understanding and the usage of the theoretical results is an essential
property of engineering, below we describe essential characteristics of
various congestion control mechanisms of the TCP.

BBR - Bottleneck Bandwidth and RTT congestion control algorithm
This algorithm has been developed at Google and deployed to be

used by YouTube. It is a model based algorithm which is measuring
bottleneck bandwidth and round-trip propagation time. When it starts

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

3

sending data stream, BBR first tries to raise the transfer rate. After
observing from acknowledgement (ACK) loss that the pipe is full, it
drains the queue and changes the state to probe bandwidth. Monitoring
the round trip time (RTT) during the transmission is key element of the
algorithm. This is the main state of BBR, spending most of the time in it.
Since the network bottleneck bandwidth and the round-trip propagation
time can vary dynamically through time, the algorithm must recalculate
them periodically. So from the ACKs it recalculates the two-way RTT of
the path (RTProp). If it is not updated, then BBR goes to probe RTT state.
In that state it sets the TCP window to a low size to check whether a
lower RTT is possible. Disadvantage of BBR is the missing of scalability
feature and slaughtering concurrent loss-based flows in an ecosystem of
TCP flows [6,7].

BIC - Binary Increase Congestion control algorithm
BIC has been optimized for fast, long distance networks [10]. Ac

cording to the paper written by the developers of BIC, it has focused on
the following features: scalability, RTT fairness, TCP friendliness, fair
ness and convergence. The BIC algorithm is based on the idea to

determine the TCP window size with a search algorithm. It uses binary
search increase to fast approximation of the optimal TCP window size
and uses additive increase for fine convergence. These two increase
strategies are combined with multiplicative decrease when the RTT in
creases. Linux up to kernel version 2.6.18 uses BIC by default [10].

CDG - CAIA Delay-Gradient congestion control algorithm
The Linux module implementation is based on the paper [11]. The

Linux implementation does not make major changes, however there are
several smaller differences, improvements. CDG works based on the
delay gradient. The delay gradient is used as a congestion indicator and
the flow control is based on loss of segments. It is sensitive and reduces
the amount of sent segments when packets are lost due to congestion but
it tolerates packets lost due to non-congestion network events. The al
gorithm uses the moving average of the gradients of minimum and
maximum RTT values within a specified window for smoothing.

CUBIC - TCP CUBIC: Binary Increase Congestion control algorithm
Linux kernel 2.6.19 and later uses CUBIC by default [12]. This

congestion control algorithm changes the function for increasing the
TCP window size to be more aggressive, so it can reach more effective
window size faster compared to earlier versions (e.g. TCP-Reno). On
high-speed networks it can cause big effect, since without this aggressive
increase a TCP stream might not reach or even get close to the optimal
window size before it finishes. The idea is similar to BIC-TCP, however
the aggressive increase in case of BIC-TCP can be ineffective for low
speed networks or when RTT is short. CUBIC utilizes multiplicative
decrease and fast convergence in increase using heuristics which can
adapt to cases e.g. when a new parallel stream starts on the same
network.

DCTCP - DataCenter TCP (DCTCP) congestion control algorithm
DCTCP is an enhancement of Reno algorithm, it is designed for data

Fig. 1. Architecture elements of Tool 1. (Left): Architecture elements of the measurement tool. (Right): Dumbbell topology of the measurement.

Fig. 2. (left) The time amount needed to deliver frames versus time based on the aggregated time series of two competing sessions in case of different TCP versions.
(right) Contribution of each segment to the total channel utilization in case of 100 sessions of cubic TCP. Red dots are representing the averages over measurement,
while error bars illustrate quite large fluctuation of values using 1s timescale. The dashed line indicates the theoretical unbiased value.

Table 1
Sampling data set of the transport layer traffic.

Sending Receiving Port Maximum Packet
time stamp [s] time stamp [s] ID Transfer Unit

[B]
ID

1545154926.170711 1545154926.173984 50286 1500 0000
1545154926.170714 1545154926.174111 50286 1500 02d4
1545154926.170717 1545154926.174235 50286 1500 05a8
1545154926.170724 -1 50286 1500 087c
1545154926.170727 1545154926.174485 50286 1500 0b50
1545154926.170730 -1 50286 1500 0e24

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

4

Fig. 3. The ratio of the re-sent TCP segments relative to the amount of delivered segments as a function of the number of TCP sessions. All the curves belong to
different TCP versions.

Fig. 4. (left) Data loss in percentages as a function of the number of sessions. (right) Aggregated speed of the sessions as a function of the session number. Our
findings show that in contrary to homogeneous TCP session sets homogeneous UPD sessions do not utilize the maximal possible bandwidth.

Fig. 5. (left) Separate and aggregated speed of 10 UDP sessions as a function of time. (right) The aggregated speed at 10 s in our measurements as functions of the
session number. Values for the same markers are for the same aggregated transmit speed.

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

5

Fig. 6. (left) Waiting times of packages for 50 sessions. (right) The average delay of sessions as a function of session numbers. While below 10 sessions the delay
increases by the number of sessions, over 10 it stays constant.

Fig. 7. The number of delivered TCP segments as a function of the number of TCP/UDP sessions. Dashed line indicate the maximum number of delivered TCP
segments within 10 seconds. For several parallel sessions, the proportion of TCP traffic is approximately constant.

Fig. 8. The number of delivered TCP segments for 40 TCP+UDP sessions (their ratio is changing along the horizontal axis). The interaction of TCP and UDP sessions
results in non-trivial behaviour.

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

6

centers with the goals to achieve high burst tolerance, low latency, and
high throughput [13,14]. DCTCP is more than a congestion control al
gorithm, since it introduces protocol modifications to TCP. Marking of
the packages based on the RED marking feature of modern switches is
used to provide active queue management. The way to send the ACK
packets has been changed to send back Explicit Congestion Notification
(ECN) with flagging Congestion Experienced (CE) codepoints which
ensures quick notification about queue overloads. This mechanism has
high burst tolerance, low latency and high throughput with slightly
loaded buffers of the backend switches.

High Speed TCP congestion control algorithm
Sally Floyd’s High Speed TCP congestion control algorithm (RFC

3649) is based on increasing/decreasing the TCP window size to offer
more realistic packet drop rates [15,16]. It modifies additive-increase
and multiplicative-decrease parameters in function of current window
size to faster reach of high speed in TCP slow-start and to quickly recover
from occasional slow-down periods. For compatibility with earlier TCPs

it uses their parameter values when the packet loss is higher than a
specified limit.

HTCP - H-TCP congestion control algorithm
H-TCP is a congestion control protocol for high-speed and long dis

tance networks [17]. It uses bandwidth estimation and changes the TCP
window increase/decrease parameters according to the estimated min
imal and maximal bandwidth. It takes into consideration that the
parameter for additive increase should be small in slower networks and
should be large in high-speed and long distance networks in order to
achieve fast adaptation to the available bandwidth.

Hybla - TCP-HYBLA congestion control algorithm
This algorithm aims to achieve higher speeds compared to other TCP

versions on heterogeneous networks which encounter higher error rates
and longer round-trip propagation times., e.g. on satellite link [18]. It
uses modified rules for the congestion window increase based on an
analytical study of the congestion window dynamics. Additionally, this
algorithm uses the SACK option and timestamps.

Illinois - TCP congestion control algorithm
The TCP-Illinois is a congestion control for high-speed networks. It

uses packet loss information to determine the window size increase/
decrease [19]. The more standard AIMD (additive increase/multiplica
tive decrease) window change function is not optimal for high-speed
networks, since it takes long after start or when recovering from a
network hang/slowdown. TCP-Illinois maintains fairness and stability as

Fig. 9. Architecture view of the server - client application (Tool 2). Data con
tent forwarding is provided by a number of concurrent connectionless sessions
(UDP) and control service of the file content delivery is supervised by a single
connection oriented (TCP) session.

Fig. 10. The FMFT Windows GUI application

Table 2
Parameter ranges of the sliders of the GUI.

Parameter Minimum value Maximum value

Port number 1024 65535
Chunk size 1 65535
Transfer rate 1 1000
Start chunk size 1 65535
Chunk size step 1 10000
End chunk size 1 65535

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

7

well as router independence. It manages the factor for the additive in
crease (α) so that the factor is larger when far from congestion and
smaller when close to congestion, while the factor for the multiplicative
decrease (β) is smaller when far from congestion and larger when close
to congestion. It keeps the features of TCP-NewReno except the AIMD

algorithm.
LP - TCP Low Priority (TCP-LP) congestion control algorithm
While most TCP congestion control algorithms aim to reach highest

possible bandwidth while trying to keep fairness, the main goal of TCP
Low Priority is to take fairness as priority and utilize the network only to
a fair share so minimally disturb other applications using the same
network connection [20]. TCP-LP uses AIMD with an addition of an
inference phase and use of a modified back-off policy.

NV TCP New Vegas congestion control algorithm
TCP-NV (New Vegas) is a successor of TCP-Vegas optimized for use in

data center. It detects congestion before packet losses occur. It allows
high-speed and should be used only when all connections are using TCP-
NV congestion control.

Table 3
Size of files transmitted and sampled with FMFT tool.

Host File1 (MB) File2 (MB) Segments, m

Client1 102.431 444.951 1... 19
Client2 198.442 323.299 1... 33

Fig. 12. Measured data transfer rate. The 20 stripes of the background corespond to different values of bandwidth parameter k. Number of measurements for a given
value of k is m. Up-left: Client1, file1; Up-right: Client1, file2; Down-left: Client2, file1; Down-right: Client2, file2.

Fig. 11. Transfer time of files transmitted and sampled with FMFT tool. The 20 stripes of the background correspond to different values of bandwidth parameter k.
Number of measurements for a given value of k is m. (Up-left): Client1, file1, (Up-right): Client1, file2, (Down-left): Client2, file1, (Down-right): Client2, file2.

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

8

Reno TCP (New) Reno congestion control algorithm
TCP Reno is ancient TPC congestion control algorithm which was

obsoleted by TCP New Reno which still lives in the Linux kernel. Reno
performs well when packet losses are rare was only able to detect single
packet losses. New Reno can also detect multiple packet losses.

Scalable - Scalable TCP congestion control algorithm
It is a simple change to the traditional TCP congestion control al

gorithm. Scalable TCP makes a simple change to the congestion window
change function aiming faster reach of the available bandwidth on a
high-speed network.

Vegas - TCP Vegas congestion control algorithm
TCP Vegas is a modification of TCP Reno congestion control. It can

detect packet losses but also it can detect congestion before packet losses
occur, so it tries to be proactive instead of reactive. It has a modified
slow-start, in that it increases TCP window size exponentially after every
RTT.

Veno - TCP Veno congestion control algorithm
TCP Veno is a modification of TCP Reno optimized for wireless

networks [21]. It changes the multiplicative decrease of TCP Reno to
adaptively adjust to the perceived network congestion level. The Veno

Fig. 13. Measured channel load. The 20 stripes of the background correspond to different values of bandwidth parameter k. Number of measurements for a given
value of k is m. Up-left: Client1, file1; Up-right: Client1, file2; Down-left: Client2, file1; Down-right: Client2, file2.

Fig. 14. Comparison of file transfer times. Up-left: Client1, file1; Up-right: Client1, file2; Down-left: Client2, file1; Down-right: Client2, file2.

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

9

algorithm estimates the connection state and in case of packet loss it
classifies the case whether it happens because of network congestion or
random packet loss.

Westwood - TCP Westwood+ congestion control algorithm
The TCP Westwood congestion control algorithm is a sender side

modification of the TCP protocol [22]. It is based on end-to-end band
width estimation with distinguishing the cause of packet loss if it occurs.
Especially effective can be its fast recovery mechanism in case of mixed
wired and wireless network environment.

Yeah - YeAH-TCP: Yet Another Highspeed TCP congestion control

algorithm
This congestion control algorithm belongs to the ones which give

solution for high-speed networks where the earlier TCP variants have
not adapted quickly to the high available bandwidth [23]. YeAH-TCP
does it very efficiently. It can use the high bandwidth but still main
tain friendliness. It is friendly at least as Reno and it is Reno-friendly.

3.2. Overview of the connectionless services

In contrary to connection oriented ones, in the case of connectionless

Fig. 15. Dependence of the dispersion indexes on the preset bandwidth (Left: Dispersion index of measured transfer time; Middle: Dispersion index of measured
transfer rate; Right: Dispersion index of measured channel load.

Fig. A.1. Histogram of transmit (Tx Time), receive (Rx Time), transmit interval (Tx interval) and receive interval (Rx Interval) (Only TCP parallel sessions - TCP
mechanisms: BBR, BIC, CDG, CUBIC, DCTCP, HIGHSPEED, HTCP, HYBLA). Transmit and receive times of the TCP segments are roughly uniform distributed for each
congestion control mechanism. Transmit and receive time intervals of the TCP segments have exponential distribution.

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

10

protocols data units sent between the communicating entities have no
relation to each other. The name comes from the fact that these services
do not build a connection before the communication starts. This usually
results in a very lightweight communication solution [24]. Con
nectionless communication protocols appear on several levels of the OSI
reference model including protocols like some services of the LLC sub
layer of the Data Link layer or the IP protocol in the Network layer
however from the point of our investigations the Transport layer User
Datagram Protocol (UDP) [25] is the interesting one. Operating as an L4
data transmission protocol UDP segment headers contain only port in
formation about the sender and the receiver followed by fields useful to
provide data integrity.

Since sent segments have no information about each other conges
tion control mechanisms like those that the TCP protocol implementa
tions have are missing from this protocol. This usually results in a much
less fair utilization of the link bandwidth. Intuitively this means that one
strong UDP session can force multiple TCP sessions to the background.
On the other hand however, without tracking the segments UPD pro
tocol on its own cannot guarantee reliable data transfer. As a result, if no
application layer segment management is added, some segments will be

lost. Knowing this, the amount of lost data segments is a key property we
have studied in the case of this protocol.

4. Efficiency analysis of the parallel sessions in transport layer

Chapter two described the general problem of the multisession file
transmission mechanisms. Usage of multipath TCP on single physical
LAN interface card of the client computer with multiple core processor
degrades the performance of the overall communication. Asymmetric
usage of the IP based best effort network services inside of client node in
favour of UDP sessions makes usable greater amount of network re
sources for fast file transfer mechanisms based on UDP. This hypothesis
is analyzed in the next subsections using special measurement network
scenario. Parallel file transfer sessions were running to evaluate cross
effect of simultaneous data transfer processes. It should be mentioned
that the packet capturing tools were running on the same nodes as the
fast file transfer processes using low but non negligible amount of
computation capacity of the test nodes. This implies that the results
found in favour of UDP should provide greater performance in practice
than the results shown in our figures.

Fig. A.2. Histogram of transmit (Tx Time), receive (Rx Time), transmit interval (Tx interval) and receive interval (Rx Interval) (Only TCP parallel sessions - TCP
mechanisms: ILLINOIS, LP, NV, RENO, VEGAS, VENO, WESTWOOD, YEAH). Transmit and receive times of the TCP segments are roughly uniform distributed for
each congestion control mechanism. Transmit and receive time intervals of the TCP segments have exponential distribution.

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

11

4.1. Measurement scenario of the parallel communication sessions (Tool
1)

In order to be as close to the actual real use-case as possible, a
physical measurement environment was engineered and built between
two end nodes running servers. The system consists of a dedicated IEEE
802.3 (Ethernet) interface between the servers with two routers. Fig. 1
shows the relationship between the parts. R1 and R2 routers are used to
provide LAN/MAN network connectivity and to have better control over
the Ethernet line. These intermediate nodes are reached through sepa
rate interfaces (C1 and C2) to modify the configurations and allow
customized measurements.

Both servers are connected to the Internet, as well. These connections
provide direct interaction with routers R1 and R2 without disturbing any
measurement running on the dedicated line. The servers are connected
with gigabit Ethernet interfaces to the routers and the dedicated link
between the routers is Ethernet, too. The transmission ratio of this link is
set to maximum 10 Mb/s to limit the amount of output data generated in
each measurement case and form a bottleneck of the dumbbell network.

Our framework has been tested and validated before running the
performance measurements. During several tests we have also evaluated
and fine-tuned the parameters to be used for the performance
evaluation.

We measured TCP and UDP throughput on our test system. It was
necessary to run many parallel sessions, try out TCP congestion control
algorithms and run mixed TCP and UDP tests. We also needed to monitor
every packet sent and arrived on the measurement interface for further
evaluation. We used iperf3 to generate the data flow being a widely used
network throughput measurement software. iperf3 can generate both
TCP and UDP streams in multiple parallel sessions, it can control UDP
bitrate and use TCP congestion control algorithms.

To be able to analyze the network behaviour during the measure
ment we needed to capture and store each IP packet. We also needed to
measure the amount of time passed between the packet being sent from
server S1 and arrived to server S2. This task is provided by a script
sniffing on the Ethernet line during the communication both on server
S1 (sender) and S2 (receiver) and catches each packet with its time
stamp. At the end of each measurement test case the two data set

Fig. A.3. Bandwidth usage (Only TCP parallel sessions - TCP mechanisms: BBR, BIC, CDG, CUBIC, DCTCP, HIGHSPEED, HTCP, HYBLA). The higher is the number of
parallel TCP sessions, the lower bandwidth remains for each TCP session and the lower is the standard deviation. Dynamicity of each congestion control mechanism
determine the behaviour of parallel sessions.

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

12

sampled at both servers were joined. The output data set then contains
every package sent with its sending and arrival timestamps. This means
that we needed to pair up each packet captured on S1 with its coun
terpart on S2. The pairing of the packets with the necessary time stamps
require unique identification method. Because neither the IP header nor
the TCP or UDP headers contain unique identification field, we had to
implement this functionality in the payload of each packet. The base
implementation of iperf3 sends random generated data as the payload of
each package. We modified this behaviour so each package contains a 32
bit number at the start of the payload, and we used this number as an
identifier.

To sniff on the Ethernet line we chose tcpdump. It catches every
packet which goes through the local interface of the server. It can parse
the binary data of the packet, and returns the header information and
the pure packet payload data. tcpdump assigns the timestamp to the
packet at the capturing moment. We used this timestamp to measure the
delay of each packet. We also got the session port number, the packet
size and the generated 32 bit data from the payload of each packet.

After each measurement session the software collects the output data
from both servers, then joins those using the generated packet ID. The
final output data is in a CSV file format. Rules of the data structure or
ganization are following:

1. The first number is the timestamp when the packet is sent from server
S1 in epoch seconds with microsecond accuracy (Column 1).

2. The second number is the timestamp when the packet arrives to
server S2 in the same format. The value is ”-1” when the packet did
not arrive to server S2. Such event can occur in UDP sessions because
this protocol does not guaranty that each packet will be successfully
delivered (Column 2) in congestion situation.

3. The third number is the session port number used to separate the
captured data from parallel sessions (Column 3).

4. The next number is the size of the IP packet in bytes (Column 4), and
5. The last one is the generated identification number for each indi

vidual sent and received packet (Column 5).

Six records of the measured data set in a CSV file is given in the
Table 1.

To ensure accuracy of the delay time between consecutive packets
and delivery time of each individual packet it was necessary to syn
chronize the two server clocks. We installed a time server on Server S2
and before each measurement case the application syncs the clock of
server S1 to server S2. The final software architecture is shown on Fig. 1.

There were executed different simultaneous traffics between the
servers S1 and S2: i) Homogeneous TCP sessions; ii) Homogeneous UDP

Fig. A.4. Bandwidth usage (Only TCP parallel sessions - TCP mechanisms: ILLINOIS, LP, NV, RENO, VEGAS, VENO, WESTWOOD, YEAH). The higher is the number
of parallel TCP sessions, the lower bandwidth remains for each TCP session and the lower is the standard deviation. Dynamicity of each congestion control
mechanism determine the behaviour of parallel sessions.

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

13

sessions; iii) Heterogeneous TCP and UDP with equal number of flows;
iv) Heterogeneous TCP and UDP with unequal number of flows. The
number of homogeneous sessions were: 1, 2, 5, 10, 20, 50, 100. The
number of heterogeneous sessions TCP/UDP sessions were k/k (k = 1, 2,
5, 10, 20, 50, 100) for equal and k/(40-k), (k = 0, 1, 2, 5, 10, 15, 20, 25,
30, 35, 38, 39,40) for unequal number of flows, respectively. Sixteen
different congestion control mechanisms were applied when TCP was
used as transport layer service: BBR, BIC, CDG, CUBIC, DCTCP, HIGH
SPEED, HTCP, HYBLA, ILLINOIS, LP, NV, RENO, VEGAS, VENO,
WESTWOOD and YEAH.

4.2. Efficiency aspects of the homogeneous parallel TCP sessions

Based on the transmitting and receiving timestamps, the delivery
time τ of frames is analyzed as a function of time. This time series
analysis showed the differences of the flow control mechanisms of
various TCP versions. Some representative examples are illustrated in
Fig. 2 (left). The behavioural differences of TCP version are visible, saw
tooth curves are different in shape, amplitude and frequency. That is
why it is important to know the effect of these differences in case of a
more complex network session scenario.

Not just the TCP versions differ, but also each session in case of the
same control flow mechanism. Fig. 2 (right) shows the huge variety of
the average performance of individual session and the significant fluc
tuation of them during the measurement. As one can see the interacting
behaviour of this complex parallel system cannot be predicted by the
behaviour of only one session.

The channel utilization of the aggregated traffic between the routers
are always high, even in case of 100 parallel TCP sessions it is above
99.46%. However the version of TCP has influence on this value, it is
negligible. Consequently the collective behaviour of parallel sessions of
any TCP version ensure high performance, nevertheless the individual
performance of sessions strongly fluctuates.

Due to the heavy load and the bottleneck of the system router R1
sometimes discards incoming packets from server S1. This leads to
retransmission of the related TCP segments, resulting in more traffic.
The number of re-sent segments as a function of the number of parallel
sessions obeys to power-law in case of most TCP version. Significantly
the BBR congestion control algorithm of the TCP has the highest ratio of
retransmission. (see Fig. 3)

More graphical details with short explanations of the homogeneous
parallel TCP sessions can be found in the Annex (see Figs. A.1, A.2, A.3,

Fig. A.5. Delivery time (Only TCP parallel sessions - TCP mechanisms: BBR, BIC, CDG, CUBIC, DCTCP, HIGHSPEED, HTCP, HYBLA). The higher is the number of
sessions, the higher time is required to deliver TCP segments. For high number of parallel TCP sessions the delivery time decreases in time.

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

14

A.4, A.5, and A.6).

4.3. Efficiency aspects of the homogeneous parallel UDP sessions

As it was pointed out in Section 3.2 in the case of homogeneous UDP
protocol sessions one of the most interesting property of the sessions is
data loss. We ran simulations for 1, 2, 5, 10, 20, 50 and 100 homoge
neous UDP sessions where the maximal speed of each session was
limited to 1 Mb/s. As one can see on Fig. 4 when the number of sessions
is less than 10 not surprisingly we get linear growth of the aggregated
speed and no lost segments for the sessions. However, both (left) and
(right) graphs on Fig. 4 show that even though in case of 10 sessions the
amount of data would just fit to the bandwidth we lose some segments
and the speed stays on a lower level than the possible theoretical
maximum. This speed stays constant for more than 10 segments while
the ratio of dropped data increases.

Examining the speed of the sessions separately for different session
numbers one can find that the lost data is not originated equally from the
different sessions. Instead of that some sessions show relatively high
speed while others hardly send anything during the measurements. It is
also interesting to note that even in case of relatively high number of
sessions a small number of behaviours are followed by all the sessions

instead of behaving independently. As an illustrative picture see Fig. 5
(left) where it is shown the speed of 10 separate UDP sessions and their
aggregated speed as a function of time.

Here the sessions group to three sets between 0 and 1 Mb/s. The most
interesting part of course of the above investigations is that for the case
of 10 or more sessions the total capacity of the link is not used. Partic
ularly, for 10 pieces of 1 Mb/s sessions the aggregated speed is not 10
Mb/s but only about 9.5 Mb/s. This maximal speed of the link in case of
homogeneous UDP sessions seems to be robust, since for all cases where
we have more than 10 sessions the same result was found. In order to
find out whether this behaviour is somehow related to the session
number we compared equal aggregated speed cases - i.e. cases where we
had different number of sessions, while their aggregated transmit speed
were the same. As plotted on Fig. 5 (right) we found that for lower than
10 Mb/s aggregated transmit speed this ratio is the simple sum of the
transmit speeds of the sessions, while in cases where we had a greater or
equal to 10 Mb/s aggregated transmit speed this ratio was about to take
a constant value somewhere close to 9.5 Mb/s or even less in cases when
some sessions died out as a result of always congesting packets.

As some basic properties of the sessions we also examined the
waiting times and the delays as functions of time. Our measurements
showed that the dependence on the session number we seen in the case

Fig. A.6. Delivery time (Only TCP parallel sessions - TCP mechanisms: ILLINOIS, LP, NV, RENO, VEGAS, VENO, WESTWOOD, YEAH). The higher is the number of
sessions, the higher time is required to deliver TCP segments. For high number of parallel TCP sessions the delivery time decreases in time.

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

15

of the previous properties do not appear for the waiting time. More
precisely the waiting times (the time elapsed between two sent seg
ments) proven to be around 0.011s in all cases for all sessions. As an
illustrative example we plotted the case of 50 sessions on Fig. 6 (left).
For the delays we saw some fluctuations for lower than 10 number of
while from 10 sessions for all the session numbers we found that the
delays are about 0.1s. Fig. 6 (right) shows the average delays as a
function of the session number.

4.4. Efficiency aspects of the heterogeneous parallel TCP and UDP
sessions

When the channel is used by the same amount of TCP and UDP
sessions in parallel, the aggregated utilization of the 10 Mb/s channel is
very close to the 100% independently of the number of sessions. We
found that the ratio of the TCP and UDP traffic as a number of sessions
has two regimes: i) When the UDP sessions alone are not able to fill the
channel totally, the number of delivered TCP segments is changing.
More sessions lead to less delivered TCP segments. ii) After the crossover
around 10 TCP and 10 UDP sessions, the number of UDP drops is linearly
increasing, while the number of successfully delivered TCP segments is

constant. Thus in case of several competing TCP and UDP sessions, UDP
cannot suppress completely the TCP, at least the 6% of the channel is
loaded by TCP traffic independently of the heavy UDP traffic (see Fig. 7).

More graphical details with short explanations of the heterogeneous
parallel TCP+UDP sessions can be found in the Annex. Dependence of
the TCP and UDP segments delivery time on the number of parallel UDP
sessions is given in Figs. A.7, A.8, A.9 and A.10, respectively.

When the number of parallel sessions is constant, just the ratio of the
two protocols is changing and crossover can be observed again just its
location is different. Numerous UDP sessions dominate over the few TCP
sessions naturally, but when the number of TCP sessions is higher than
the number of UDP ones significant TCP traffic can be found in the
channel as it is shown in Fig. 8. Generally, the channel utilization is high
but one can observe a minimum just before the pure TCP case (at 38 TCP
and 2 UDP sessions).

5. FMFT (Fast Manager of File Transfer) (Tool 2)

A new server - client model software pair was developed based on
Xinan Liu’s work (see Fig. 9) [26]. This software tool is based on parallel
data forwarding and control sessions.

Fig. A.7. Delivery time of TCP segments (Equal No. of TCP and UDP sessions - TCP mechanisms: BBR, BIC, CDG, CUBIC, DCTCP, HIGHSPEED, HTCP, HYBLA). The
higher is the number of parallel TCP and UDP sessions, the higher becomes the delivery time of TCP segments for each TCP session. For high number of parallel TCP
and UDP sessions the delivery time of TCP segments decreases in time independently of the congestion control mechanism. Somme congestion control mechanisms do
not permit any number of parallel sessions (e.g. HTCP, NV, VENO, WESTWOOD).

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

16

5.1. Architecture and service description of FMFT

As a part of our software engineering tasks we have improved the
logging subsystem. The new software is command line driven and the
transfer rate can be limited. Moreover, the type how the transfer rate is
controlled can be set to bursted or equally distributed among a time slot
of one second. Basically a TCP control channel is used for UDP based file
transfer. A boolean array is utilized for the received packages.

The channel opening fixed length first chunk (describing the
required channel parameters) is repeatedly sent until the first
acknowledgement package is received. Afterwards, there is a first round
of trying to send all the packages in consecutive order. Later the new
resend round starts again from the first element.

In this way the maximum time slot is given for the sent packages to
arrive at the destination. The chunks can arrive in mixed order, the
software stores them in the target file at the appropriate places.
Resending phases happen in full loops containing less and less unde
livered elements. A Windows GUI application was developed for testing
purposes as it is shown in Fig. 10.

Here we can easily setup the parameters. The GUI has control ele
ments for our client, as follows:

• Browse button, for selecting the folder holding data files. Choosing
the folder can be done by using a standard dialog panel.

• Server combo box, it holds the predefined target server machine
addresses for file transfers.

• Files list, it contains the files of the selected folder.
• Copy button, initiate the transfer of the selected data file.
• Burst mode checkbox, it sets how the transfer rate is controlled.

Bursted or equally distributed segment transfer modes can be chosen.
• Overwrite checkbox, it enables overwriting the file on the server

size. It makes testing easier by enabling to use the same test file
multiple times.

• Small log checkbox, when just the basic information as transfer
time is enough for the measurements.

• Port number control, sets the port of communication.
• Chunk size control, sets the desired chunk length sent at once. Test

of UDP segments transmission is executed on control channel at end
of each chunk.

• Transfer rate control, it can limit the usage of the bandwidth,
thus allow other network nodes to have a reserved part of the
channel.

Fig. A.8. Delivery time of TCP segments (Equal No. of TCP and UDP sessions - TCP mechanisms: ILLINOIS, LP, NV, RENO, VEGAS, VENO, WESTWOOD, YEAH). The
higher is the number of parallel TCP and UDP sessions, the higher becomes the delivery time of TCP segments for each TCP session. For high number of parallel TCP
and UDP sessions the delivery time of TCP segments decreases in time independently of the congestion control mechanism. Somme congestion control mechanisms do
not permit any number of parallel sessions (e.g. HTCP, NV, VENO, WESTWOOD).

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

17

• Start chunk size control, for testing purposes it sets the smallest
chunk size to test.

• Chunk size step control, defines the incremental step of the chunk
size during a sweep copy test.

• End chunk size control, this is the maximum allowed chunk size
for transferring the data. Lower or equal size is used in a sweep copy
series.

• Sweep copy button, initiates a series of consecutive transfers of the
same file using varying parameters. The target file is always over
written if it already exists.

The valid ranges of the slider controls are enlisted in Table 2.
In this way the application is well suited for making sweep tests

across parameter value ranges. Series of measurements can be carried
out easily. The results are saved in log files. The send and receive events
have time stamps. The inner resolution of the time measurement is

nanosecond. Albeit, in the full log only microseconds are stored.
A small log item typically looks like this:

The structure of a full log is the following (note, that packages in the
range 193848-193855 arrived in the end in mixed order, after a
resending loop):

Fig. A.9. Delivery time of UDP segments (Equal No. of TCP and UDP sessions - TCP mechanisms: BBR, BIC, CDG, CUBIC, DCTCP, HIGHSPEED, HTCP, HYBLA). The
higher is the number of parallel TCP and UDP sessions, the higher becomes the delivery time of UDP segments for each UDP session. The delivery time of UDP
segments is 3...10 times faster than of TCP segments. Depending on the congestion control algorithm type (e.g. DCTCP, LP, NV, WESTWOOD) of the parallel TCP
sessions higher number of the parallel UDP sessions fail to transmit segments. When the channel becomes congested due of parallel sessions the UDP sessions start to
fluctuate the delivery time of segments.

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

18

5.2. Evaluation of parallel communication sessions with FMFT tool

We have used two desktop machines as clients for testing. This two
machine configurations were applied: Test machine 1 (Client1: Windows
10 Enterprise 64-bit, Intel Core i7 4771 @ 3.50GHz, Haswell 22nm
Technology, 24 GB RAM DDR3 @ 799MHz ASRock H87M Pro4 Moth
erboard, Intel Gigabit NIC); Test machine 2 (Client2: Windows 8.1, Intel
Core i3 2120 @ 3.30GHz, Sandy Bridge 32nm Technology, 8 GB RAM
DDR3 @ 665MHz, Gigabyte Technology Co. H61M-S2PV REV 2.2
Motherboard, Realtek PCIe GBE NIC). Both clients were connected to a
common server running Linux operating system. Each client executed
transfers of two files with different transfer rate preset in FMFT tool to
capture data segment transmission details. File transfer tests were
executed in non-overlapping time intervals. The preset data rates were
Bw[Mbps] = k⋅50, k = 1, ..., 20. The number of measurements for each
value of k depends on the file size and segments size values. Possible
segment size in number of bytes is given by Ss[B] = 1000 + (m − 1)⋅2000
formula. The file sizes and segment sizes used in the measurement sce
nario are included in Table 3. The UDP segment size was incremented by
2,000 bytes starting from 1,000 bytes for both clients. The maximum
UDP segment size for Client1 was 65,000 B. Because of small capacity of
Client2 the maximum size of UDP segments were just 35,000 bytes.

Measured transfer time of the files is represented in Fig. 11. As the
preset bandwidth of the communication increases, the transfer time for
each of the four files decreases. It should be mentioned that the variance
of transfer time increases with parameter k. Each set of measurements
with fixed value of bandwidth starts very slowly, implying spike at each

strip of the graph. However, quick decrease of the transmit time can be
observed inside of strip region. This feature of the UDP traffic produced
with FMFT emulates slow start feature of the TCP protocol.

Transfer rate of the files measured is given in Fig. 12. As the preset
bandwidth of the communication increases, the average measured
transfer rate for each of the four files increases. However the transfer
rate at the beginning of each set of measurements for preset bandwidth
is relatively small then the data rate increases significantly. For big file
sizes exist some segment sizes with relatively low communication per
formance. This phenomenon is more intensive for client with higher
computation capacity.

Measured channel load of the file transfer is given in Fig. 13. It is a
special feature of the FMFT tool to use higher bandwidth than was preset
previously. It can be observed that neither low nor high bandwidth
preset values are advantageous. Several local maximums appear and
even the global maximum channel usage may be reached with more than
one preset parameter tuples. Similar feature can be detected for lower
capacity of the client, as well. We must be careful with the preset
bandwidth parameter because during the transmission of large files all
the network resources of the physical LAN channel can be consumed.

Comparison of data transfer times is given in Fig. 14. Increasing the
preset bandwidth decreases the transfer time for any file size and client
processing capacity. Windows 8.1 operating systems behaves unusually
for different segment sizes when the data transfer rate limit is preset high
for relatively low capacity client (See Down-left and Down-right).

Dispersion index of the measured transfer time, measured data
transfer rate, and measured channel load are represented in Fig. 15. As
we mentioned earlier, the dispersion of the measured values increases
when the preset transfer rate limit increases.

6. Conclusions and future work

Cross effect of the simultaneous communication flows in transport
layer was analyzed in this paper. Sixteen different congestion control
algorithms were used in a dumbbell traffic measurement scenario. Ho
mogeneous TCP, homogeneous UDP and heterogeneous TCP/UDP flows
were transmitting simultaneous data flows in the same communication
path. It was found that TCP mechanism cannot use the maximum
channel bandwidth because of the dynamic adaptable congestion and
flow control algorithm. Different congestion control algorithms have
different behaviour in LAN network environment with high number of
simultaneous communication sessions and intensive traffic rate. UDP
delivers segment stream much faster than TCP but needs efficient su
pervising mechanism of the transport layer PDUs to provide controlled
transmission time of a big file. Limit needs to be set for the maximum
transmission rate to protect the channel from the intensive UDP data
gram retransmissions. More analyses are proposed to evaluate parallel
communication sessions in WAN environment, too.

The FMFT software tool is written in Java. To further improve the
performance of the tool, reimplementation in C++ would increase the
overall speed and timing at reduced stress on the CPU hopefully. It is
planned to find the optimal number of UDP channels for the highest
preset data transfer capacity in the future. FMFT shall be improved to
handle SCP connections as well and make comprehensive throughout
tests. Beyond testing, the software is planned to be enhanced to use it for
regular high speed reliable file transfer for big files on busy connections.
Thanks to the chosen Qt framework, the GUI can be compiled for various
platforms, including mobile platforms. Moreover, using the WASM
target it will also be available through a web browser.

CRediT authorship contribution statement

Zoltán Gál: Conceptualization, Methodology, Supervision, Writing -
review & editing. Gergely Kocsis: Visualization, Validation, Writing -
original draft. Tibor Tajti: Data curation, Investigation, Validation,
Writing - original draft. Robert Tornai: Software, Validation, Writing -

Z. Gál et al.

Advances in Engineering Software 157–158 (2021) 103010

19

original draft.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This paper was supported by two projects of the University of
Debrecen, Debrecen, Hungary: Big Data project with code FIKP-20428-
3/2018/FEKUTSTRAT. This work was also supported by the construc
tion EFOP-3.6.3-VEKOP-16-2017-00002. The project was supported by
the European Union, co-financed by the European Social Fund and
EFOP-3.6.3-VEKOP-16-2017-00002, respectively. Thanks to QoS-HPC-
IoT Laboratory for technological assistance.

Appendix A. Annex: Figures of parallel data traffics

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.advengsoft.2021.103010

References

[1] Elgendy N, Elragal A. Big data analytics: a literature review paper. In: Perner P,
editor. Advances in data mining. applications and theoretical aspects. ICDM 2014.
Lecture Notes in Computer Science. vol. 8557. Cham: Springer; 2014.

[2] Lee R, Luo T, Huai Y, Wang F, He Y, Zhang X. Ysmart: Yet another SQL-to-
mapreduce translator. IEEE International conference on distributed computing
systems (ICDCS). 2011. p. 25–36.

[3] Gál Z, Varga I, Tajti T, Kocsis G, Langmajer Z, Kosa M, Panovics J. Performance
evaluation of massively parallel communication sessions. In: Iványi P,
Topping BHV, editors. Proceedings of the sixth international conference on
parallel, distributed, GPU and cloud computing for engineering. Stirlingshire, UK:
Civil-Comp Press; 2019. p. 34. https://doi.org/10.4203/ccp.112.34.

[4] Bagnulo M. Threat analysis for TCP extensions for multipath operation with
multiple addresses. RFC 6181. INTERNET STANDARD; 2011.

[5] Ford A. Architectural guidelines for multipath TCP development. RFC 6182.
INTERNET STANDARD; 2011.

[6] Huston G.. TCP and BBR, RIPE 76 meeting. 2018. https://ripe76.ripe.net/presen
tations/10-2018-05-15-bbr.pdf(last visited 08.11.2019).

[7] Cardwell N, Cheng Y, Gunn CS, Yeganeh SH, Jacobson V. BBR: congestion-based
congestion control - measuring bottleneck bandwidth and round-trip propagation
time. ACMQueue Netw 2016;14:5.

[8] Allman M, Paxson V, Blanton E. TCP congestion control. RFC 5681. 2009.

Fig. A.10. Delivery time of UDP segments (Equal No. of TCP and UDP sessions - TCP mechanisms: ILLINOIS, LP, NV, RENO, VEGAS, VENO, WESTWOOD, YEAH).
The higher is the number of parallel TCP and UDP sessions, the higher becomes the delivery time of UDP segments for each UDP session. The delivery time of UDP
segments is 3...10 times faster than of TCP segments. Depending on the congestion control algorithm type (e.g. DCTCP, LP, NV, WESTWOOD) of the parallel TCP
sessions higher number of the parallel UDP sessions fail to transmit segments. When the channel becomes congested due of parallel sessions the UDP sessions start to
fluctuate the delivery time of segments.

Z. Gál et al.

https://doi.org/10.1016/j.advengsoft.2021.103010
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0001
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0001
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0001
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0002
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0002
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0002
https://doi.org/10.4203/ccp.112.34
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0004
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0004
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0005
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0005
https://ripe76.ripe.net/presentations/10-2018-05-15-bbr.pdf
https://ripe76.ripe.net/presentations/10-2018-05-15-bbr.pdf
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0007
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0007
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0007
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0008

Advances in Engineering Software 157–158 (2021) 103010

20

[9] Floyd S. Congestion control principle. ser RFC2914. Internet Engineering
TaskForce (IETF); 2000.

[10] Xu L, Harfoush K, Rhee I. Binary increase congestion control for fast, long distance
networks. IEEE INFOCOM. 2004.

[11] Hayes DA, Armitage G. Revisiting TCP congestion control using delay gradients.
IFIP Networking. Springer; 2011. p. 328–41.

[12] CUBIC T. A transport protocol for improving the performance of TCP in long
distance high bandwidth cyber-physical systems. IEEE International conference on
communications workshops (ICC Workshops). 2018.

[13] Alizadeh M, Greenberg A, Maltz DA, Padhye J, Patel P, Prabhakar B, Sengupta S,
Sridharan M. Data center TCP (DCTCP). Proc. ACM SIGCOMM, New Delhi. Data
Center Networks session; 2010.

[14] Alizadeh M, Javanmard A, Prabhakar B. Analysis of DCTCP: stability, convergence,
and fairness. Proc ACM SIGMETRICS, San Jose. 2011.

[15] Floyd S. Highspeed TCP for large congestion windows. RFC. INTERNET
STANDARD; 2003.

[16] Floyd S, Ratnasamy S, Shenker S. Modifying TCP’s congestion control for high
speeds. Technical note. 2002.

[17] Shorten RN, Leith DJ. H-TCP: TCP for high-speed and long-distance networks. Proc
PFLDnet, Argonne. 2004.

[18] Caini C, Firrincieli R. TCP-hybla: a TCP enhancement for heterogeneous networks.
Int J Satell Commun 2004.

[19] Liu S, Basar T, Srikant R. TCP-illinois: a loss and delay-based congestion control
algorithm for high-speed networks. ScienceDirect Perform Eval 2008;65:417–40.

[20] Kuzmanovic A, Knightly EW. TCP-LP: a distributed algorithm for low priority data
transfer. IEEE INFOCOM. 2003.

[21] Fu CP, Liew SC. TCP veno: TCP enhancement for transmission over wireless access
networks. IEEE J Sel Areas Commun 2003.

[22] Mascolo S, Casetti CE, Gerla M, Sanadidi MY, Wang R. TCP westwood: Bandwidth
estimation for enhanced transport over wireless links. MobiCom; 2001.

[23] Baiocchi A, Castellani AP, Vacirca F. YeAH-TCP: Yet another highspeed TCP.
CiteSeerX; 2008.

[24] Meister BW, Janson PA, Svobodova L. Connection-oriented versus connectionless
protocols: a performance study. IEEE Trans Comput 1985:1164–73.C34/12

[25] Postel J. ISI, user datagram protocol. RFC 768. INTERNET STANDARD; 1980.
[26] Liu X.. 2019. https://github.com/xinan/ReliableFileTransferProtocol/tree/ma

ster/src(last visited 08.11).

Z. Gál et al.

http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0009
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0009
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0010
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0010
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0011
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0011
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0012
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0012
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0012
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0013
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0013
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0013
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0014
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0014
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0015
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0015
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0016
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0016
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0017
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0017
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0018
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0018
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0019
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0019
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0020
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0020
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0021
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0021
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0022
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0022
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0023
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0023
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0024
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0024
http://refhub.elsevier.com/S0965-9978(21)00039-9/sbref0025
https://github.com/xinan/ReliableFileTransferProtocol/tree/master/src
https://github.com/xinan/ReliableFileTransferProtocol/tree/master/src

	Performance evaluation of massively parallel and high speed connectionless vs. connection oriented communication sessions
	1 Introduction
	2 Related works of the parallel vs. serial communication
	3 Characteristics of the transport layer communication services
	3.1 Overview of the connection oriented services
	3.2 Overview of the connectionless services

	4 Efficiency analysis of the parallel sessions in transport layer
	4.1 Measurement scenario of the parallel communication sessions (Tool 1)
	4.2 Efficiency aspects of the homogeneous parallel TCP sessions
	4.3 Efficiency aspects of the homogeneous parallel UDP sessions
	4.4 Efficiency aspects of the heterogeneous parallel TCP and UDP sessions

	5 FMFT (Fast Manager of File Transfer) (Tool 2)
	5.1 Architecture and service description of FMFT
	5.2 Evaluation of parallel communication sessions with FMFT tool

	6 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Annex: Figures of parallel data traffics
	Supplementary material
	References

