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A doktori értekezés összefoglalója 
 

SOME NEW FINDINGS ON MIXED BERTRAND-EDGEWORTH DUOPOLIES 
(VEGYES BERTRAND-EDGEWORTH DUOPÓLIUMOK JÁTÉKELMÉLETI 

MODELLEZÉSE) 
 

 

A mindennapi életben gyakran találkozunk duopol piaci szituációkkal. Ezért fontosnak 

tartjuk, hogy egzakt és alkalmazható modelleket építsünk a vállalatok döntéseinek megértése 

és előrejelzése érdekében. Minden modell, melynek a gyakorlatra alkalmazható kiindulási 

feltevései vannak, hozzájárul ahhoz, hogy jobban megértsük egy termék piacának kínálati 

oldalát. 

 

A disszertáció fő célja, hogy bemutassa, hogyan döntenek a vállalatok egyensúlyban a vegyes 

Bertrand-Edgeworth duopólium-modellekben. Feltételezve állami tulajdon jelenlétét a piacon, 

az értekezés részletesen elemzi a vállalatok ár- és mennyiségi döntéseit, az időzítési játékot, 

valamint az állami tulajdon társadalmi jólétre gyakorolt hatásait. A disszertáció 

újdonságértéke a Bertrand-Edgeworth duopóliumokkal kapcsolatos ismeretek kibővítésében 

rejlik. 

 

A disszertáció fókuszában a Bertrand-Edgeworth duopóliumok azon típusa áll, amelyben az 

állam egy versengő vállalat részbeni vagy kizárólagos tulajdonosként megjelenik a piacon. Az 

értekezés célja az ilyen vegyes duopol piacok játékelméleti elemzése. 

 

A disszertáció hozzáadott értéke a következőképp foglalható össze: 

 

1. Választ adunk arra a kérdésre, hogy meglehetősen gyenge feltevések mellett a vegyes 

Bertrand-Edgeworth duopol modelleknek milyen feltételek mellett létezik tiszta Nash-

egyensúlyi pontja. Ezen kívül meg is adjuk a tiszta Nash-egyensúlyi pontokat. 

2. Feltéve, hogy a vállalatok döntési sorrendje endogén (azaz a vállalatok időzítési 

játékot is játszanak), megadjuk az egyensúlyi döntési sorrendet az összes vizsgált 

vegyes- és félig-vegyes Bertrand-Edgeworth duopóliumra. 

3. Vizsgáljuk a vállalaton belüli állami tulajdon össztársadalmi jólétre gyakorolt hatását 

is a tisztán magánvállalatos esettel történő összehasonlításban. 

  



Summary of the doctoral thesis 
 

SOME NEW FINDINGS ON MIXED BERTRAND-EDGEWORTH DUOPOLIES 
 

 

Duopolies are present in our everyday life. Therefore, it is important to build sophisticated 

models that explain and predict oligopolist behavior. Every model that has valid assumptions 

in describing or helping in the description of a real life market structure contributes to 

knowledge on producer behavior. 

 

The dissertation aims at presenting equilibrial firm behavior in a mixed Bertrand-Edgeworth 

duopoly environment. Assuming partial public ownership on the market, we provide a 

thorough analysis concerning equilibrium prices and quantities, endogenous timing and social 

welfare effects. The contribution of the thesis to knowledge is broadening the theory of 

Bertrand-Edgeworth models for a better understanding of duopolistic markets with public 

ownership. 

 

The main contribution of the thesis is summarized as follows: 

1. The existence of a pure strategy Nash equilibrium in a mixed Bertrand-Edgeworth 

duopoly is analyzed. Furthermore, the equilibrium profiles are characterized for all the 

given subcases. 

2. Provided that the ordering of firms' decisions is endogenous (i.e. we consider the 

timing game), the equilibrial ordering of moves is given for mixed and semi-mixed 

Bertrand-Edgeworth duopolies. 

3. A social welfare analysis is carried out for the mixed Bertrand-Edgeworth duopoly, 

i.e. we characterize the difference the presence of a public firm makes in social 

welfare compared to the standard case with only private firms competing on the 

market. 
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Being a member of his MTA ”Lendület” research group means I have the opportunity

to share ideas in a challenging atmosphere.

I wish to thank Prof. Christian Ewerhart for having me at the University of

Zurich during the 2012/13 academic year. Under his leadership I had the exceptional

opportunity to experience the scientific excellence as well as the everyday life of a

leading European university, and, of course, the Swiss way of life.

I am also very grateful to the official reviewers of the first version of my disserta-
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1 Introduction

Why are there fewer available units if only two or three firms control the market

of a given product? Why do monopolies set higher prices than sellers on a perfect

competition market? Questions that might arise in people’s everyday life. Whether

they are natural persons or legal entities, as consumers, everyone is affected by the

different market structures that emerge on the supplier side of a desired product or

service. As far as prices and available quantities are concerned, it is by far not the

same, whether the buyer faces a perfect competition, an oligopoly or a monopoly on

the market.

Since the birth of microeconomic theory, the discipline has been trying to explain

consumer and supplier behavior by building mathematical models. Of course, one

does not have to assume that the participants of a given market are robots who

execute commands based on exact models. However, models have proved to be useful

in describing and understanding the reasons why certain decisions are preferred to

others in most of the real-life market situations.

Modelling consumer and producer behavior is separated already in most of the

bachelor microeconomics textbooks. The field of Industrial Organization (IO) fo-

cuses on problems on the supplier side. Needless to say, IO literature has become

widespread in the last decades. It gave birth to lots of models discussing different

market structures. Within IO, oligopoly theory discusses markets with at least two

firms on the producer side. The number of firms can grow to any positive integer.

Oligopolies form a link between monopolies and perfect competition markets. They

are present in our everyday life and have several specific features. If there are only

two firms that control the market of a homogenous good, we arrive at a duopoly. The

theory of duopolies has been investigated since the 19th century. Although there are

many problems that have been solved since then, there have remained some open

questions. A survey on duopoly theory is presented later on in the dissertation. The

main focus of the thesis lies in some specific open questions of duopoly theory.

The most frequently used modelling tool in duopoly (and oligopoly) literature is
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game theory. If there are several producers of a given homogenous good, then all the

firms have to keep an eye on all competitors and build the others’ behavior in their

own decisions. In other words, they are in a strategic interaction with each other.

Game theory has useful tools to deal with all kinds of strategic interaction situa-

tions.1 The main task is to find an equilibrium of a situation: according to the most

frequently used approach - the Nash equilibrium concept - an equilibrium stands

for a strategy profile that none of the interacting participants have an incentive to

alter. If such a profile is found in the model, one may predict that this profile also

emerges in real life situations. The methodology of the dissertation builds strongly

on the above mentioned Nash equilibrium concept.

The oldest examples of duopoly models date back to the 19th century. Named

after Antoine Augustin Cournot and Joseph Louis Francois Bertrand, Cournot-

duopoly and Bertrand-duopoly are the classical duopoly models. In the Cournot

framework, the decision variable is the quantity. The market price is obtained by

substituting the quantities into an exogenously given market demand function. On

the contrary, the Bertrand model assumes that the firms’ decision variable is the

price.

These two simple models provide evidence why duopoly prices and quantities lie

between monopoly and perfect competition prices and quantities. However, simple

models often ignore the important assumption of capacity constraints, i.e. the as-

sumption that firms may be capable of (or interested in) producing only a limited

amount of the given good.

Edgeworth criticised the lack of the previous assumption and built capacity

constraints in the Bertrand duopoly model, giving birth to Bertrand-Edgeworth

duopolies (Edgeworth [1925]). Capacity constraints have been employed also for the

Cournot-model, for an early contribution in this direction we refer the reader to

Burger [1966].

Nowadays, Bertrand-Edgeworth duopoly models, that lie in our focus, have sev-

1Among many others, we refer the reader to an interesting application by Balogh and Kormos

[2014].
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eral versions. As far as the decision variables are concerned, the Bertrand-Edgeworth

framework allows that both price and quantity can become decision variables. This

leads to a more realistic modelling tool than Cournot and Bertrand duopolies.

In other versions, price is the primary decison variable, but taking into account

the capacity constraints, production limitation is a built-in feature of a Bertrand-

Edgeworth duopoly.

There are numerous situations where the state is the exclusive owner or has an

interest in one of the competitors of an oligopoly market. Oligopolies with a state-

owned firm are called mixed oligopolies, while standard oligopolies refer to a market

with only private firms. The same terminology is valid for duopolies.

Game theory assumes that all participants (players) aim at maximizing their

own payoff. Similarly, if a firm has full private ownership, then it is assumed that its

main goal is to maximize its profit. However, if the state is present on the market as

the owner of a firm, then the objective of the state-owned firm is not to maximize

the firm’s profit any more, but to set the total social welfare as high as possible.

Thus, the payoff-maximizing behavior of a public firm is equivalent to maximizing

welfare.

1.1 Contribution of the thesis and applied methodology

In general, modeling duopol markets by means of game theory has the following

steps.

1. Setting the framework and assumptions.

2. Setting the participants (players), their decision sets (strategy sets) and their

objective functions (that they want to maximize).

3. Solving the model (finding the equilibrial behavior of the players) using an

equilibrium concept (most frequently the Nash equilibrium).

4. Discussion of the results.
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We will follow these steps in our analysis. Because of its frequent use in the

present dissertation, we give the formal definition of the pure-strategy Nash equi-

librium as it can be found for example in Forgó, Pintér, Simonovits, and Solymosi

[2005].

Definition 1.1. Let us denote by G = {1, ..., n;S1, ..., Sn; f1, ..., fn} a game with n

players, where Si denotes the strategy set of player i, while fi stands for the payoff

function of player i. A strategy profile s∗ is a pure-strategy Nash equilibrium, if

fi(s
∗
i , s
∗
−i) ≥ fi(si, s

∗
−i) holds true for every si ∈ Si and every i = 1, ..., n.

In other words, a strategy profile is a Nash equilibrium if and only if none of the

players can increase her payoff by a unilateral strategy modification. The definition

can be trivially restricted to the two-player case.

Clearly, the solution of a game depends strongly on the objective functions of the

participants. Provided that there is a difference in the objective functions between

the standard and the mixed models, the equilibria of the two model versions will

not remain the same.

The dissertation focuses on Bertrand-Edgeworth duopolies where the state is

present on the market as the exclusive or partial owner of a firm. The overall aim

of the thesis is to provide a thorough game theoretic analysis of such markets.

The main contribution of the thesis is summarized as follows:

1. The existence of a pure strategy Nash equilibrium in a mixed Bertrand-

Edgeworth duopoly is analyzed. Furthermore, the equilibrium profiles are char-

acterized for all the given subcases.

2. Provided that the ordering of firms’ decisions is endogenous (i.e. we consider

the timing game), the equilibrial ordering of moves is given for mixed and

semi-mixed Bertrand-Edgeworth duopolies.

3. A social welfare analysis is carried out for the mixed Bertrand-Edgeworth

duopoly, i.e. we characterize the difference the presence of a public firm makes
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in social welfare compared to the standard case with only private firms com-

peting on the market.

1.2 Motivation

Oligopolies are present in our everyday life. Therefore, it is important to build

sophisticated models that explain and predict oligopolist behavior. For a thorough

analysis of earlier models in oligopoly theory we refer the reader to the seminal work

of Friedman [1983].

Every model that has valid assumptions in describing or helping in the descrip-

tion of a real life market structure contributes to knowledge on producer behavior.

To illustrate the importance of the topic, we provide evidence from practical life.

We present the following incomplete list of famous duopolies and oligopolies on the

global and on the Hungarian national markets:

• credit card market: competition between VISA and MasterCard (and Ameri-

can Express in the U.S.)

• airplane industry: competition between Airbus and Boeing

• market of computers’ graphics processing units: competition between AMD

and Nvidia

• sports equipment industry: competition between the leading Nike and Adidas

• oil industry: the competition between the Norwegian Statoil and the Russian

Gazprom in certain countries

• commercial banks in New Zealand and Hungary: one of the competitors

(Kivibank) is state-owned in New Zealand, while Budapest Bank has recently

been purchased by the Hungarian state

• Hungarian mobile phone network supplier market: competition between

Telekom, Telenor and Vodafone
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• Hungarian petrol station suppliers: the partially state-owned MOL competes

with OMV, Shell, Agip and a few smaller suppliers

• Hungarian hypermarket suppliers: Tesco, Auchan and InterSpar

A market can be considered a duopoly (or oligopoly) if two (or three, four,

etc...) firms have large control over the whole market, even if there exist other

smaller suppliers. Still, a game theoretic framework needs strict assumptions about

the participants, strategies and objective functions.

As listed above, there exist oligopolies where the state is also present on the

market as an owner. These oligopolies provide motivation for the analysis of mixed

oligopoly models. An initial building block of oligopoly theory is duopoly theory.

There are many different ways of modelling a mixed duopoly. As we will present

later on, the Bertrand-Edgeworth framework has proved to grasp some important

features of this market structure that appear in real life. Thus, adding new results to

the theory of Bertrand-Edgeworth duopolies is a step towards a better understanding

of duopolist behavior.

1.3 Key research questions

When doing research by means of game theory in general, one of the most important

issues to be discussed is the existence of a pure-strategy equilibrium in the given

game. If exactly one pure strategy equilibrium exists, then the game is theoretically

easy to handle, rational players are expected to choose their one and only strategy

that leads to equilibrium.2 If there are multiple pure strategy equilibria, then several

strategy profiles can emerge in equilibrium. If the number of pure strategy equilibria

equals zero, then the concept of mixed equilibrium is needed to give a solution to the

game. There are several ways to prove that a mixed Nash equilibrium profile exists

for any game with some specific features. One can use for example a fixed point

theorem, such as Kakutani’s or Brouwer’s (see e.g. Fudenberg and Tirole [1991]).

2We have to note that it cannot be guaranteed in practice that people really choose their

equlibrial strategy.

9



Shubik [1955] was the first to state that in the case of Bertrand-Edgeworth

duopolies, the existence of a pure-strategy Nash equilibrium cannot be guaranteed.

Therefore, when observing this type of duopolies, the first research question refers

to the existence of pure-strategy Nash equilibrium.

Research question 1. Under what conditions does a pure-strategy Nash

equilibrium in a Bertrand-Edgeworth duopoly with public ownership exist?

When solving the existence problem, the characterization of the pure strategy

Nash equilibria also has to be dealt with. The goal of this analysis is stated in the

next research question.

Research question 2. Given entire or partial public ownership in one of

the competitors in a Bertrand-Edgeworth duopoly and provided that a pure Nash

equilibrium exists, what are the equilibrium prices and quantities of both firms for

the simultaneous and the sequential versions of the game?

As far as the timing of decisions is concerned, there exist simultaneous and

sequential games. In the simultaneous case, all the players make their strategic

decisions without knowing any other player’s choice, while in the sequential case,

players choose strategies in sequence, therefore, the latter players can observe the

others’ choice before making the decision.

The timing of decisions is often endogenized in the oligopoly literature. For sem-

inal contributions in this field, we refer the reader to Hamilton and Slutsky [1990],

Deneckere and Kovenock [1992] and Matsumura [1995]. Endogenous timing means

that the ordering of firm decisions is not exogenously given. In this framework the

two firms’ equilibrium payoffs for different orderings will lead to an equilibrial timing

of decisions. Of course, a lack of pure strategy equilibrium can also occur in the

timing game. The third research question involves the problem of endogenous timing.

10



Research question 3. Which ordering of decisions emerges if a private and

a purely or partially public firm compete on the market in a Bertrand-Edgeworth

duopoly provided that timing is endogenous?

The main objective of the state is assumed to maximize social welfare. In mixed

oligopoly frameworks, the state is not assumed to be a regulator, but it is a market

participant that tries to maximize welfare by its price and production decisions, see

e.g. Merrill and Schneider [1966], Harris and Wiens [1980], or Brandao and Castro

[2007]. When the state enters a duopoly market by acquiring some or all shares of

one of the competing firms, the level of social welfare generated on the market may

not remain the same, as there is a modification in one firm’s objective function.

Therefore, it is necessary to state a question concerning the change in social welfare

the presence of a public firm may cause.

Research question 4. What is the direction and magnitude of social welfare

change the appearance of a purely or partially public firm generates in a Bertrand-

Edgeworth duopoly framework?

The four main research questions are linked to each other. The links are as fol-

lows. Firstly, we will give constructive proofs to the existence of pure strategy Nash

equilibria, wherever it is possible. This means that when proving the existence,

we present the equilibrium profile. Secondly, when analyzing the timing game, we

strongly rely on the results of the exogenous orderings of moves. Thirdly, the so-

cial welfare effect of public ownership can be examined by comparing the public

firm’s equilibrium payoff (objective function value) in the mixed duopoly case to the

calculated social welfare in the standard case.
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1.4 Structure of the thesis

The dissertation consists of seven sections. We aim at providing a clear structure

where background, related work, detailed analysis of the topic and own work is

presented. The remainder of the thesis is organized as follows.

Section 2 recalls relevant results from the field of duopoly theory. We present

classical models from both price-setting and quantity-setting types. Furthermore,

Bertrand-Edgeworth duopolies are introduced. We present some different approaches

of the model. The key assumptions are introduced, the existence of a game theoretic

equilibrium is investigated, and some interesting contributions are recalled.

Section 3 offers a survey on mixed oligopolies, i.e. models with a state-owned

competitor. The difference in the assumptions of the standard and mixed versions

of the model is highlighted. We also specify the models used in the main analysis.

The survey follows a unified way of presenting the results: the main assumptions

from some important contributions are collected, the outcomes of the models are

presented and the differences from other models are highlighted.

Section 4 provides a detailed analysis of the mixed Bertrand-Edgeworth duopoly

in the so-called production-to-order (PTO) framework. In this section the public firm

is assumed to be fully owned by the state. The PTO setting assumes that production

takes place after the amount of sales are fixed in a contract. This setting models

among others the airplane industry. We give the pure-strategy Nash equilibrium for

all the three possible orderings of moves, solve the timing game and discuss the

public firm’s social welfare effect.

Section 5 deals with the mixed Bertrand-Edgeworth duopoly in the production-

in-advance (PIA) case. In the PIA case we assume that production takes place

already before sales are realized. Markets of perishable goods can be modelled with

this setting. Just like the previous section, this section also contains the results on

the existence and characterization of pure-strategy Nash equilibria for all possible

orderings of moves. Furthermore, the timing game and the social welfare issue is

also discussed.
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In Section 6, the assumption of pure public ownership is relaxed: we will assume

that one of the firms is only partially owned by the state. The objective function

of the firm with both public and private ownership changes compared to the case

of pure public ownership. Its objective function becomes a weighted sum of total

social welfare and its own profit, where the weights are the proportions of public and

private ownership. This modification leads to new model outcomes. Within Section

6, we refer to the results on the production-to-order case and present the analysis

of the production-in-advance case.

Finally, Section 7 concludes and restates the contribution of the dissertation.

The main results are also collected in Section 7.
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2 Standard duopolies

Throughout the dissertation - in accordance with the literature -, a standard duopoly

or oligopoly will stand for a model with only pure profit maximizer firms. on the

contrary, mixed duopolies and oligopolies involve at least one firm that is fully or

partially owned by the state, and therefore its objective differs from pure profit

maximization.

This section offers a collection of relevant results from the literature on duopolies

and oligopolies. Our aim is to present how oligopoly theory had developed until the

most important results of Bertrand-Edgeworth models were published.

Thus, first, we present the classical Cournot and Bertrand duopoly models. We

also offer an introduction to mixed duopolies and a collection of the relevant contri-

butions from this field. Mixed duopolies are introduced later on in Section 3.

From the game theoretic perspective, each duopoly model can be considered as a

game. A game in strategic (normal) form is well-defined if the following ingredients

are given (see any game theory textbooks, e.g. Fudenberg and Tirole [1991]):

• the set of players,

• the strategy sets of all players,

• the payoff functions of all players.

There exist several different approaches to determine the outcome of a game. In

most of the cases the Nash equilibrium concept is used due to its simplicity and

wide applicability. The dissertation follows this practice. Other concepts include the

dynamic approach (see e.g. Okuguchi and Szidarovszky [1990]) and the successive

elimination of strictly dominated strategies (see e.g. Forgó [2013]).

Finding the Nash equilibria of a game has the following steps.

1. Determining the best response correspondance for all the players.

2. Finding all the strategy profiles that contain strategies that are the best re-

sponses to each other.
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3. Proving that no other Nash equilibrium profile exists.

For most of the referred contributions, we will omit the detailed solution concept

and will focus only on the results.

2.1 Cournot duopoly

The birth of Cournot duopoly (sometimes - when more than two firms are involved -

referred to as Cournot competition, see e.g. Anderson and Neven [1991]) dates back

to the 19th century (Sandmo [2011]). This model is a classical framework predicting

two firms’ behavior in equilibrium, if there are no more firms on the market of a

given, homogenous good. According to Varian [2006], the assumptions of the basic

model are as follows.

Assumption 2.1. The market demand function of the homogenous good is linear,

i.e. D(p) = a− bQ, where p refers to the price, Q = q1 + q2, the total production of

the two firms, while a and b are parameters. It is also assumed that a > c.

We note that the strict assumption of linear demand will be relaxed later on.

Assumption 2.2. Both firms have identical unit costs denoted by c.

Assumption 2.3. The payoff functions of the firms are: πi = (a − bQ)qi − cqi for

i = {1, 2}.

Assumption 2.4. Both firms simultaneously decide on their quantities. The mar-

ket price is then determined by substituting the total production into the market

demand function.

In the Cournot game the players are the two firms, their strategy sets are the

quantities (any non-negative number), and their payoff functions are their profit

functions. Thus, the game is well defined.

The only Nash equilibrium price and quantities of the Cournot competition are

the following.

q∗1 = q∗2 =
a− c

3b
; p∗1 = p∗2 =

a+ 2c

3
(1)
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The equilibrium for a specific demand function and cost level is illustrated below

in Figure 1.

Figure 1: Cournot duopoly - equilibrium price and quantities

Comparing this result to a quantity-setting monopoly and a perfect competition

on a market with the same parameters, we obtain that both Counot production

and Cournot price lies between monopolist and perfect competition production and

price. Hence, from the point of view of social welfare, Cournot duopoly is less effective

than perfect competition, but more effective than monopoly. This simple model is

the first example that predicts duopolist behavior and places a duopoly in a social

welfare ranking of different market structures on a homogenous good’s market.

An important finding has confirmed the content of the last paragraph. Namely,

if the number of competitors in a Cournot competition (oligopoly) converges to

infinity, then the equilibrium price converges to p∗ = MC = c, the marginal cost.

This is called the ”Folk theorem”, which is precisely stated and proved in Novshek

[1980]. This finding links Cournot competition even more to monopoly and perfect

competition.
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We emphasize that only the simultaneous moves case of this simple model is

named after Cournot. The sequential game with the same assumptions is another

classical model in the field and is called Stackelberg duopoly. According to Stackel-

berg [1934], the model’s outcome is that in equilibrium the first mover (the Stack-

elberg leader) sets its output equal to what a monopolist would set on the same

market, while the second mover (the Stackelberg follower) produces half of the mo-

nopolist amount:

q∗1 =
a− c

2b
; q∗2 =

a− c
4b

; p∗1 = p∗2 =
a+ 3c

4
(2)

Thus, Stackelberg competition results in higher social welfare than monopoly,

but lower than perfect competition. Comparing Stackelberg to Cournot equilibrium,

one can conclude that the social welfare generated on the Stackelberg market is

somewhat higher (due to lower market price and higher production in equilibrium).

2.2 Bertrand duopoly

Named after the French mathematician Joseph Louis Francois Bertrand, the other

classical two-firm model is called Bertrand duopoly (or Bertrand competition). To

state the assumptions of the basic homogenous good Bertrand model, we refer the

reader to Assumptions 2.1-2.3 of Cournot competition. The main difference is that

in the Bertrand model the firms’ decision variable is their price level. A main finding

of the general Bertrand oligopoly model is that the firm with the lowest price offered

will serve the entire market. When turning to the Nash equilibrium analysis of the

game with two firms, we arrive at the following unique Nash equilibrium3:

q∗1 = q∗2 =
a− c

2b
; p∗ = MC = c (3)

3For both Bertrand and Cournot models it is important to note that the birth of the Nash

equilibrium concept Nash [1950] dates to much later than that of the classical duopoly concepts.

Consequently, Cournot and Bertrand could not use the definition of Nash in their models. Still,

nowadays Nash equilibrium is the most frequently used equilibrium concept, and the results of

Bertrand and Cournot are referred to in this framework.
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The argument that supports this equilibrium is that neither of the firms can

set its price above c, because then the competitor has an incentive to undercut the

price and serve the entire demand at a lower price. On the contrary, setting the price

below c would mean negative profits.

The Bertrand outcome for a specific cost level is illustrated in Figure 2 below.

Figure 2: Bertrand duopoly - equilibrium price and quantities

The outcome is somewhat unrealistic as the market price level remains the same

as that of the perfect competition market. Thus, the Bertrand model predicts that

there is no decrease in social welfare compared to perfect competition. This is fre-

quently referred to as the Bertrand paradox, see e.g. Tirole [1988] or Hehenkamp

[2002].

As far as the ordering of decisions is concerned, the outcome of the Bertrand

competition remains the same for the simultaneous moves case and for the sequential

moves cases.

After going through the Cournot and Bertrand competition, we can conclude

that there are several features of real-life markets that these models do not grasp.

The following list contains a selection of shortcomings:
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• The firms’ capacities are unlimited, they can always satisfy the demand they

face. On the contrary, firms have limited capacities in practice.

• In the original framework the market demand function is linear, which might

not be the case on several markets in practice.4

• The decision variable of the firms is either price or quantity, the other value

is obtained by a substitution into the market demand function. However, on

certain markets, there might be left-over supplies that cannot be sold.

The shortcomings of the models have led the way to the birth of more realistic

frameworks. As we will present in the next subsection, the Bertrand-Edgeworth

model tackles some problematic issues of Cournot and Bertrand duopolies. On the

other hand, some major problems arise, including the existence of equilibrium.

2.3 Bertrand-Edgeworth competition

Francis Ysidro Edgeworth [1925] was the first to criticize the outcome of the Bertrand

competition. In his paper originally dating from 18975, the assumption that the firm

with the lowest price can satisfy the entire demand on that specific price level is

considered to be unrealistic.

Bertrand-Edgeworth competition is a price- (and quantity-) setting oligopoly

that is specified by the fact that production of the firms is restricted by their re-

spective capacity constraints. (Osborne and Pitchik [1986]) We will give the formal

definition of capacity constraints later on.

When introducing capacity constraints to the model where the demand side is

represented by an aggregated demand function6, we have to face two major problems

that have not yet been present in the Cournot and Bertrand models:

4There are contributions in the field of Cournot oligopolies that relax strict assumptions towards

market demand and cost functions, e.g. Forgó [1995].
5The original English version of the paper was lost, the Italian paper was translated back to

English in 1925. For further details visit the following website:

http://cruel.org/econthought/texts/edgeworth/edgepapers.html
6i.e. the way the basic Bertrand and Cournot games are specified
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1. The model is not sufficiently specified, unless the firm offering the lowest price

is capable of satisfying the entire demand.

2. The existence of a pure-strategy Nash equilibrium cannot be guaranteed.

We discuss these two problems in the following subsections.

2.3.1 Rationing rules

If we assume that consumers choose the firm with the lowest price and we also

assume that the firm with the lowest price cannot satisfy all the consumers, then

the simple question arises: which consumers should be served? This question needs

to be answered by an extra assumption that is called rationing rule. A rationing

rule aims at determining the ordering according to which consumers are served if

demand exceeds supply at a certain price level.

There are several types of rationing rules. The most frequently used version is

called efficient rationing. Efficient rationing in the duopoly case intuitively means

the following: if the firm with lower price cannot satisfy the entire demand, then

it serves consumers in a decreasing order of their reservation prices. Thus, the first

served consumer is the one with the highest reservation price for the good. The firm

with the lower price serves residual demand. The efficient rationing rule is given

formally in the following definition.

Definition 2.1. Function ∆ denotes an efficient rationing rule if the demand of

firm i ∈ {1, 2} is the following:

∆i (D, p1, q1, p2, q2) =


D (pi) if pi < pj

Ti(p, q1, q2) if p = pi = pj

(D (pi)− qj)+ if pi > pj

for all i ∈ {1, 2}, where Ti stands for a tie-breaking rule that dictates the shares of

firms from the demand given equal prices.7

7We note that (D (pi)− qj)
+

= max{D (pi)− qj ; 0}.
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The efficient rationing rule means that the demand function of the higher-price

firm (i.e. the residual demand function, Dr) is generated by a parallel leftward shift

of function D by qj units where qj stands for the quantity sold by the lower-price

firm.

An example for the original and the residual demand curves are depicted in

Figure 3 below.

Figure 3: Original and residual demand curves

For contributions that make use of efficient rationing, we refer the reader to Kreps

and Scheinkman [1983], Dixon [1990], Tasnádi [1999b], Boccard and Waughty [2000],

and Lepore [2008].

Another well-known rationing rule is called proportional rationing. The idea

behind proportional rationing is that the firm with the lower price can only satisfy

the proportion of its capacity and the demand it faces. For further discussion of

proportional rationing and for other rationing rules we refer the reader to Tasnádi

[2001].
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Adding a rationing rule to the set of players (firms), the payoff functions (prof-

its) and the market demand function, the Bertrand-Edgeworth game becomes well-

defined.

2.3.2 Existence of pure-strategy Nash equilibria

The existence of pure-strategy Nash equilibria is not guaranteed for Bertrand-

Edgeworth oligopolies (see e.g. Shubik [1955]). We summarize the related results

from Tirole [1988] and Levitan and Shubik [1972]. For equal unit costs and exoge-

nously given capacity constraints the following theorem holds true.

Theorem 2.1. In an n-firm Bertrand-Edgeworth oligopoly with capacity constraints,

depending on the shape of D and the capacity constraints of the competing firms (ki

for ∀i ∈ {1...n}) one of the following cases holds true:

1. Firms’ prices equal their unit costs.

2. There is no pure-strategy Nash equilibrium.

3. Firms set the Cournot competition equilibrium price.

The first case of the previous theorem emerges if the sum of firms’ capacities

is large enough for the Bertrand equilibrium (i.e. perfect competition). That is,

D−1(
n∑

i=1

ki) = 0.8 The third case occurs if D−1(
n∑

i=1

ki) > 0 and firms maximize

profits by setting p∗i = D−1(
n∑

i=1

ki) price level.

The second, intermediate case is the most interesting and the most frequently ob-

served one. That is, D−1(
n∑

i=1

ki) > 0, but p∗i > D−1(
n∑

i=1

ki), i.e. the profit-maximizing

price levels of the firms exceed the inverse demand function value.

In their seminal paper, Levitan and Shubik [1972] established that for a Bertrand-

Edgeworth model with efficient rationing and linear demand a Nash equilibrium in

8We denote by D−1 the inverse demand function whenever it exists. We will restrict our analysis

to demand functions that have an inverse. The exact specification of the demand function is given

in Section 4.
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mixed strategies exists for the intermediate case. Furthermore, the mixed equilibrium

was characterized.

To establish more general results on the existence of Nash equilibria (taking

into account the possible non-linear shape of the demand function), an applica-

ble existence theorem was needed. One main shortage of the Bertrand-Edgeworth

competition is that the competitors’ profit functions are not continuous and not qua-

siconcave (Tasnádi [2001]). The existence theorem that tackled these shortcomings

was published by Dasgupta and Maskin [1986a]. In their paper, the authors proved

that a Nash equilibrium in mixed strategies exists for games with a special family

of discontinuous payoff functions. Some applications of the theorem is presented in

Dasgupta and Maskin [1986b]. Later on, there appeared more general versions of

the existence theorem (see e.g. Simon [1987] or Reny [1999]).

As far as the characterization of the mixed Nash equilibrium is concerned, the

result of Levitan and Shubik [1972] was developed further for a more general setting -

the case of strictly decreasing demand functions - by Davidson and Deneckere [1986],

although this paper contained only an implicit formula of the mixed equilibrium.

Later on, the explicit formula was presented by Allen and Hellwig [1993].

Thus, from a game theoretic perspective, a general standard Bertrand-Edgeworth

model was solved. However, provided that for certain games there is no Nash equilib-

rium in pure strategies, practical relevance of the results has become questionable.

In the related literature we find examples of two directions concerning the way

of handling the lack of pure-strategy Nash equilibria. The first approach avoids the

concept of Nash equilibrium and uses other concepts, such as ε-equilibrium or it-

erated elimination of strictly dominated strategies. For contributions we refer the

reader to Dixon [1987] and Börgers [1992]. The second approach is the characteri-

zation of pure and/or mixed Nash equilibria, including the reconstruction of models

so that the new model has a pure-strategy Nash equilibrium. Examples of this ap-

proach are, among others, Deneckere and Kovenock [1992], Deneckere and Kovenock

[1996], Reynolds and Wilson [2000], Chowdhury [2005], and Lepore [2008].

In our main analysis in Sections 4, 5 and 6 we will present models that always
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have pure-strategy Nash equilibria.9 Before that, it is necessary to present results

on oligopolies with a state-owned competitor. Section 3 offers an introduction to the

theory of mixed oligopolies and collects the most relevant contributions.

9We note that for models in Section 6 the existence of pure Nash equilibria will depend on the

parameters.
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3 Mixed duopolies

This section considers mixed duopolies and oligopolies. The mixed structure refers

to the fact that at least one of the competitors is owned by the state (partially

or exclusively). From the game theoretic point of view, this means that one of the

players has a different payoff function. When dealing with state-owned firms, the

state’s social welfare maximizing behavior is captured through their payoff function.

It is important to emphasize that in such models the state does not play the role of

an external regulator, but as a competitor, it tries to control the market towards a

socially optimal equilibrium.

In what follows, we offer a survey on mixed oligopolies and characterize the

model of our main analysis.

3.1 Contributions on mixed oligopolies and endogenous

timing

The very first contribution on mixed oligopolies was published in 1966. Merrill and

Schneider [1966] mention three ways of ownership and control in an industry: com-

plete private ownership, complete government ownership, and private ownership

restricted by close government control. They introduce and build a simple model for

a fourth way of ownership: public control of some, and private control of the other

competing firms in the same industry. This is in fact the structure that nowadays is

called mixed oligopolies.

Thereafter, until the 1980s, mixed oligopolies have not been investigated in de-

tail. The early literature considered games with a predetermined order of moves and

investigated market regulation possibilities through a public firm, especially, in order

to increase social welfare. The first contributions considered quantity-setting mod-

els. For instance, Beato and Mas-Colell [1984] investigate possible ways to regulate

a market: they analyze the marginal cost pricing rule in detail. Cremer, Marchand,

and Thisse [1989] analyze the regulation of a simultaneous-move quantity-setting

oligopoly market. Their main research question is whether the government should
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nationalize some of the competing firms - departing from a Cournot-Nash equilib-

rium - on an oligopolistic market in order to maximize social welfare. They report

that the market outcome is equivalent to the solution, in which the central authority

maximizes total surplus subject to the constraints that the public firms must break

even. Fraja and Delbono [1989] show for a mixed quantity-setting homogeneous good

oligopoly that public leadership leads to higher social welfare than the simultaneous-

move mixed or standard oligopolies. However, comparing the simultaneous-move

case with or without a public firm leads to an ambivalent result: It can happen that

if there are sufficiently many identical firms on the market, then the public firm is

better advised to maximize its profits in order to increase social welfare. Remaining

in the quantity-setting framework, Corneo and Jeanne [1994] derive conditions un-

der which the presence of a public firm can be beneficial. Anderson, de Palma, and

Thisse [1997] consider an oligopoly with one public and several private firms. They

investigate whether the privatization of the public firm is harmful. In their model,

the market demand is given by a representative consumer’s utility function. They

report that even if the public firm makes a loss, total social welfare might be higher if

there is public ownership in the long run. Therefore, according to their framework, a

single public firm on an oligopolistic market should not be privatized. A more recent

study by Fujiwara [2007] deals with partial privatization in a differentiated mixed

oligopoly.

The analysis of endogenous timing of decisions in mixed oligopolies began later.

Endogenous timing means that firstly firms choose the time to announce their price

or production10 (relatively to each other), then, secondly, prices or productions are

announced. Thus, timing of decisions becomes an endogenized problem of the model,

and therefore, an equilibrium analysis of the timing game can be carried out. The

Nash equilibrium of the timing game lies at an ordering of moves where it is of none

of the players’ interest to deviate from11.

The timing question in purely private oligopolies has been investigated since the

10Depending on the decision variable of the given model.
11Based on their payoff function values for the different orderings.
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mid 1980s. We will not go into a detailed survey, but list some contributions. Ear-

lier research was carried out among others by Gal-Or [1985], Dowrick [1986],Boyer

and Moreaux [1987], Hamilton and Slutsky [1990], Robson [1990], Deneckere and

Kovenock [1992], Anderson and Engers [1992], Anderson and Engers [1994], Mat-

sumura [1995] and Pal [1996]. More recent contributions on the purely private case

include Huck, Müller, and Norman [2002], Matsumura [2002], Tasnádi [2003], Fon-

seca, Muller, and Normann [2006], Etro [2008], and Matsumura and Ogawa [2009].

Timing issues have also been addressed in the mixed oligopoly framework. In a

seminal paper Pal [1998] investigates the endogenous emergence of certain orders of

moves for mixed oligopolies. Assuming linear demand and constant marginal costs,

he shows for a quantity-setting oligopoly with one public firm that the simultaneous-

move case does not emerge, the public firm as a first mover emerges just in the

two-period duopolistic case, while the private firms moving simultaneously in the

first period followed by the public firm in the second period always constitutes a

subgame-perfect Nash equilibrium of the timing game. His main observations are

that incorporating a public firm substantially changes the outcome of the timing

game and that the presence of a public firm increases social welfare.

Referring to Pal [1998], Jacques [2004] noted that in the duopolistic case with

more than two periods the public firm producing in the first period and the private

firm producing in the last period is also a subgame-perfect Nash equilibrium. In

addition, Lu [2007] shows for the duopolistic case there are even more subgame-

perfect Nash equilibria in which the private firm can produce in any period with

the exception of the last one and the public firm has to produce in a subsequent

period. Matsumura [2003] relaxes the assumptions of linear demand and identical

marginal costs employed by Pal [1998] and considers a two-period mixed model.

The paper states that there are several pure-strategy Nash equilibria of the model,

including simultaneous Cournot-type and sequential Stackelberg-type equilibria with

the public firm being the follower. By introducing small inventory costs, the only

remaining equilibrium is the Stackelberg solution with private leadership. The case of

increasing marginal costs in Pal’s [1998] framework has recently been investigated by
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Tomaru and Kiyono [2010]. Their main achievement is that unlike in earlier results,

both private and public leadership can emerge in equilibrium. Another direction

to extend the results in Pal [1998] can be found in Anam, Basher, and Chiang

[2007] that assumes uncertain demand. They find that under demand uncertainty

both private and public leadership can emerge in equilibrium of the timing game.

Whether the public or the private firm becomes the leader, depends on the degree

of privatization and market volatility. Finally, Lu and Poddar [2009] consider a two-

stage private and mixed duopoly. In the first stage, firms reveal their capacities,

then they decide upon production. Assuming linear demand, they obtain that there

are far more Nash equilibria in the mixed version than in the standard version of

the game. Furthermore, equilibria are characterized for both settings.

There is less literature on price-setting mixed oligopolies. Ogawa and Kato [2006]

consider mixed duopolies in the framework of a homogeneous good price-setting

game. They investigate a symmetric Bertrand duopolistic setting in which the firms

have to serve the entire demands they face. Assuming linear demand and identical

quadratic cost functions, they find for the two sequential-move games that the pres-

ence of a public firm may be either harmful or beneficial, while for the simultaneous-

move game the outcome remains the same as shown by Dastidar [1995] for the purely

private case. Dastidar [2011] extends these results to strictly convex cost functions

and decreasing demand functions. In another recent work Chowdhury [2009] consid-

ers a price-setting mixed Bertrand duopoly (that is, firms have to serve the demands

they face) and a mixed semi-Bertrand duopoly (in which only the public firm has to

meet all demand). However, he focuses on the simultaneous-move case, and thus, he

does not solve the timing problem. For a heterogeneous goods price-setting mixed

duopoly timing game Bárcena-Ruiz [2007] obtained the endogenous emergence of

simultaneous moves.

Other questions that have been addressed in the literature of capacity-

constrained Bertrand-Edgeworth framework are partial privatization (as initiated

by Matsumura [1998]), free entry (as investigated for the quantity-setting case, for

instance, by Ino and Matsumura [2010]), the presence of foreign private firms (see for
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example, Fjell and Pal [1996]) and the endogenous emergence of capacity differen-

tials between private and public firms (like by Corneo and Rob [2003], in which the

efficiency gap between private and public firms is derived from workers’ incentives).

Our main analysis in Sections 4, 5 and 6 will consider a both price- and quantity-

setting framework. However, in the production-to-order framework, the interaction

situation will reduce to a price-setting game. The difference between production-

to-order and production-in-advance frameworks needs to be highlighted. The next

subsection deals with this distinction.

3.2 Production-to-order and production-in-advance frame-

works

We can distinguish between production-in-advance (PIA) and production-to-order

(PTO) concerning how the firms organize their production in order to satisfy the

consumers’ demand.12 In the former case production takes place before sales are

realized, while in the latter one sales are determined before production takes place.

Markets of perishable goods are usually mentioned as examples of advance produc-

tion on a market. On the other hand, if a consumer (be it the state, a company or

even a natural person) shows demand for a certain product that is only available

upon order - as producers are not willing to keep stocks -, the market can be mod-

elled by PTO. Phillips, Menkhaus, and Krogmeier [2001] emphasized that there are

also goods which can be traded both in a PIA and in a PTO environment since

PIA markets can be regarded as a kind of spot market, whereas PTO markets as a

kind of forward market. For example, coal and electricity are sold in both types of

environments.

The comparison of PIA and PTO environments have been made in experimental

and theoretical frameworks for standard oligopolies. For instance, assuming strictly

increasing marginal cost functions Mestelman, Welland, and Welland [1987] found

12The PIA game is also frequently called the price-quantity game (briefly PQ-game) or even

production-to-stock (PTS game). Throughout the thesis we use the PIA abbreviation.
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that in an experimental posted offer market the firms’ profits are lower in case of PIA.

A more recent experimental analysis of the PIA environment can be found in Cracau

and Franz [2012]. The authors point out that the mixed strategy equilibrium of the

linear-demand oligopoly game predicts producer behavior better than Bertrand and

Cournot models do. It is also demonstrated that prices and profits in the experiment

exceed the theoretically predicted values, but the level of collusion remains lower

than that in the theory. In another recent experimental analysis Davis [2013] observes

similar equilibrium prices given PIA and PTO settings and lower profits in PIA.

Much earlier, in a theoretical paper, Shubik [1955] 13 investigated the pure-

strategy equilibrium of the PIA game and conjectured that profits will be lower in

the case of PIA than in the case of PTO. Davis [2013] can be considered as an ex-

perimental evidence of Shubik [1955]. Levitan and Shubik [1978] and Gertner [1986]

(Essay one) focus on determining the mixed-strategy equilibrium for the constant

unit cost case. Gertner [1986] also derived some important properties of the mixed-

strategy equilibrium of the PIA game for strictly convex cost functions. In a later

contribution van den Berg and Bos [2011] deal with collusions in oligopolies in both

PIA and PTO frameworks.

Assuming constant unit costs and identical capacity constraints, Tasnádi [2004]

found that profits are identical in the two environments and that prices are higher

under PIA than under PTO. In a recent paper Zhu, Wu, and Sun [2014] showed

for the case of strictly convex cost functions that PIA equilibrium profits are higher

than PTO equilibrium profits. In addition, considering different orders of moves

and asymmetric cost functions Zhu, Wu, and Sun [2014] demonstrated that the

leader-follower PIA game leads to higher profits than the simultaneous-move PIA

game. From the mentioned papers on the constant unit cost and identical capacity

constraint-case only Zhu, Wu, and Sun [2014] considered sequential orders of moves.

More leader-follower games are analyzed in Boyer and Moreaux [1987], Deneckere

and Kovenock [1992] and Tasnádi [2003] in the Bertrand-Edgeworth framework.

13We referred to the same paper in Section 2 where we deal with the existence of pure-strategy

Nash equilibria in Bertrand-Edgeworth oligopolies.
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3.3 Setting the framework of the analysis

After an introduction to both Bertrand-Edgeworth competition and mixed

oligopolies, we set the assumptions of the model that lies in the focus of the disser-

tation.

In the following sections, we will carry out thorough game theoretic analyses of

four mixed Bertrand-Edgeworth duopoly models with capacity constraints.

Due to the fact that models might differ slightly from each other, the exact

model specifications are given at the beginning of each chapter. However, for a

clear view of the thesis as a whole, we collected the common features of the models

in the following list:

1. There are two firms competing on the market of a homogenous good.

2. The decision variables of the firms are both price and quantity.

3. The consumer side is given by a market demand function.

4. The market demand function is monotone, strictly decreasing and twice con-

tinuously differentiable.

5. The two firms cannot produce a higher amount than their respective capacity

constraints.

6. Both firms have constant and identical unit costs.

7. One of the competing firms has pure private ownership, while there is a certain

share of the state in the other one.

8. There is no information asymmetry, the demand function, the unit cost, the

capacities and the payoff functions are common knowledge.

The exact scope of our models can be divided according to two axes. The first

axis is the degree of state ownership in one of the firms. We discuss separately the
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case where there is pure state ownership and the case where the share of the state is

limited.14. The second axis is the timing of production. We will distinguish between

production-to-order and production-in-advance frameworks and carry out analyses

for both types. Thus, we have four models all together.

The following Table 1 illustrates these two ways of model differentiation and

indicates the sections which the separate models are discussed in.

Table 1: Discussed models

Models Pure public ownership Limited public ownership

PTO Section 4 Section 6.2

PIA Section 5 Section 6.3

We note that results for models with limited public ownership ratio are derived

from the results of the models with pure public ownership.

A close paper to our theoretical setting is Tasnádi [2004], since we will investigate

the constant unit cost case with capacity constraints. The main difference is that

we will replace one profit-maximizing firm with a purely or partially social welfare

maximizing firm.

The PTO mixed duopoly case to be discussed in Section 4 is published in

Balogh and Tasnádi [2012]. Our main findings for this case are the following:

1. There is payoff equivalence between the games with exogenously given order

of moves.

2. The social welfare increases in equilibrium compared to the standard version.

3. An equilibrium in pure strategies exists for all possible orderings of moves.

14We note that the other firm is always considered purely private.
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However, only one of these strong results remains valid for the production-in-

advance case, namely, that a pure-strategy equilibrium exists for all possible order-

ings of moves. The analysis of the PIA case will be presented in Section 5 and can

also be found in Balogh and Tasnádi [2014]. We will demonstrate for the PIA mixed

duopoly the existence of an equilibrium in pure strategies, (weakly) lower social wel-

fare than in the case of the PTO mixed duopoly and the emergence of simultaneous

moves as a solution of a timing game.

As far as the models with limited public ownership are concerned, even the exis-

tence of a pure strategy Nash equilibrium will depend on the parameters. Therefore,

as demonstrated in Section 6, not as many positive results can be stated as in Sec-

tions 4 and 5. Some results presented in Section 6 are published in Balogh [2014].
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4 Mixed Bertrand-Edgeworth duopolies -

Production-to-order framework

In this section we determine the pure-strategy Nash equilibria and the endogenous

order of moves for the production-to-order (PTO) version of the mixed Bertrand-

Edgeworth duopoly. We establish the payoff equivalence of the games with an ex-

ogenously given order of moves if the most plausible equilibrium is realized on the

market. Hence, in this case it does not matter whether one becomes a leader or a

follower. We also show that replacing a private firm by a public firm in the stan-

dard Bertrand-Edgeworth game with capacity constraints increases social welfare

and that a pure-strategy equilibrium always exists.

As introduced in Section 3, we will investigate a homogeneous good mixed

Bertrand-Edgeworth duopoly with capacity constraints. In contrast with the lit-

erature on endogenous timing in purely private firm oligopolies as well as mixed

oligopolies we find that the order of moves does not matter (Corollary 4.1). In addi-

tion, social welfare is higher in the mixed version of the Bertrand-Edgeworth game

than in its standard version with only private firms (Corollary 4.2). We also obtain

that the mixed version of the Bertrand-Edgeworth duopoly game has an equilibrium

in pure strategies for any capacity levels (Corollary 4.3).

The remainder of this section is organized as follows. In Section 4.1 we present

our exact framework of the PTO case and introduce the necessary notations. In

Section 4.2 we recall the results of Deneckere and Kovenock [1992] on the capacity-

constrained Bertrand-Edgeworth duopoly game with purely private firms, which we

will need in comparing the results of the mixed version of the Bertrand-Edgeworth

game to its standard version. Section 4.3 determines the equilibria of three games

with exogenously given orderings of moves. Section 4.4 gathers the main conse-

quences of our analysis carried out in Section 4.3. Section 4.5 presents an illustrative

example of our results in the case of linear demand. Finally, we draw the conclusions

of Section 4.
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4.1 The framework

The demand is given by function D on which we impose the following restrictions:

Assumption 4.1. The demand function D intersects the horizontal axis at quantity

a (where a > 0) and the vertical axis at price b. D is strictly decreasing, concave

and twice continuously differentiable on (0, a); moreover, D is right-continuous at 0,

left-continuous at b and D(p) = 0 for all p ≥ b.

Clearly, any price-setting firm will not set its price above b. Let us denote by P

the inverse demand function. Thus, P (q) = D−1 (q) for 0 < q ≤ a, P (0) = b, and

P (q) = 0 for q > a.

On the producers’ side we have a public firm and a private firm, that is, we

consider a so-called mixed duopoly. We label the public firm with 1 and the private

firm with 2. Our assumptions imposed on the firms’ cost functions are as follows:

Assumption 4.2. The two firms have zero unit costs up to their respective positive

capacity constraints k1 and k2.
15

We shall denote by pc the market clearing price and by pM the price set

by a monopolist without capacity constraints, i.e. pc = P (k1 + k2) and pM =

arg maxp∈[0,b] pD (p). In what follows p1, p2 ∈ [0, b] stand for the prices set by the

firms.

For all i ∈ {1, 2} we shall denote by pmi the unique revenue maximizing price on

the firms’ residual demand curves with respect to the capacity constraint of firm i

(i.e. the high-price firm produces the quantity given by its residual demand curve).

Dr
i (p) = (D(p)− kj)+, where j ∈ {1, 2} and j 6= i, i.e. pmi = arg maxp∈[0,b] pD

r
i (p).

The inverse residual demand curves will be denoted by R1 and R2. Clearly, pc and

pmi are well defined whenever Assumptions 6.1 and 6.2 are satisfied.

Let us denote by pdi the price for which pdi min{ki, D
(
pdi
)
} = pmi D

r
i (pmi ), when-

15The real assumption here is that firms have identical unit costs since in case of production-to-

order, as will be assumed later, this is just a matter of normalization.
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ever this equation has a solution.16 Provided that the private firm has ‘sufficient’

capacity (i.e. pc < pm2 ), then if it is a profit-maximizer, it is indifferent whether it

is serving residual demand at price level pmi or selling min{ki, D
(
pdi
)
} at the lower

price level pdi .

In the following Figure 4 we illustrate the way pmi and pdi are determined.

Figure 4: Determining pmi and pdi

Concerning the employed rationing rule, we impose the following assumption.

Assumption 4.3. We assume efficient rationing on the market.

Thus, the firms’ demands equal

∆i (D, p1, q1, p2, q2) =


D (pi) if pi < pj

Ti(p, q1, q2) if p = pi = pj

(D (pi)− qj)+ if pi > pj

16The equation defining pdi has a solution if, for instance, pmi ≥ pc, which will be the case in our

analysis when we will refer to pdi .
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for all i ∈ {1, 2}, where Ti stands for a tie-breaking rule.17 We will consider two

sequential-move games (one with the public firm as the first mover and one with

the private firm as the first-mover) and a simultaneous-move game. An appropriate

tie-breaking rule will be specified for each of the three cases.

We assume that the firms play the production-to-order type Bertrand-Edgeworth

game, and therefore, the game reduces to a price-setting game since the firms can

adjust their productions to the demands they face. Now we are ready to specify the

firms objective functions. The public firm aims to maximize total surplus, that is,

π1(p1, p2) =

∫ min{(D(pj)−ki)+,kj}

0

Rj(q)dq +

∫ min{a,ki}

0

P (q)dq, (4)

where 0 ≤ pi ≤ pj ≤ b.

Figure 5 illustrates the social welfare, where the area indicated by dark gray

corresponds to the second integral, while the area indicated by light gray corresponds

to the first integral in expression (4).

Figure 5: Social welfare

17The selection of the appropriate tie-breaking rule will ensure the existence of a Nash equilibrium

or subgame-perfect Nash equilibrium in order to avoid the consideration of ε-equilibria implying a

more difficult analysis without substantial gain.
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It should be mentioned that the first integral is not directly taken based on

Rj, but by a rightward shift of the vertical axis by ki units, which enables us to

illustrate the social welfare in one figure. It can easily be seen that in determining

social welfare the low price does not play a role unless both prices are too high.

The private firm is a profit-maximizer, and therefore,

π2(p1, p2) = p2 min {k2,∆2 (D, p1, k1, p2, k2)} . (5)

4.2 The benchmark

We will compare our price-setting mixed-oligopoly games with the price-setting

games with purely private firms, that is, both firms’ profit functions take the form

of the expression given by (40). The purely private case was investigated by De-

neckere and Kovenock [1992] from which we recall the interesting case in which

the simultaneous-move game does not have an equilibrium in pure strategies, i.e.,

pm2 > pc in case of k2 ≥ k1.
18 We shall emphasize that Deneckere and Kovenock

[1992] assume for the sequential-move games that the demand is allocated first to

the second mover19 and for the simultaneous-move case that the demand is allocated

in proportion of the firms’ capacities. 20

Proposition 4.1 (Deneckere and Kovenock,1992). Under k2 ≥ k1, pm2 > pc and

Assumptions 4.1-4.3, the results below are valid about the equilibrium of the three

games.

1. The simultaneous-move game only has an equilibrium in mixed strategies with

common support [pd2, p
m
2 ] and equilibrium profits are equal to πS

1 = pd2k1 and

πS
2 = pm2 D

r
2(p

m
2 ) = pd2 min{k2, D

(
pd2
)
}.21

18For other cases the game reduces to the standard Cournot and Bertrand games.
19This distinction ensures that the second mover does not need to slightly undercut the first

mover.
20It should be emphasized that the obtained results remain valid for a large class of other tie-

breaking rules employed in the simultaneous-move game.
21The results gathered in case 1 summarize the results obtained by Levitan and Shubik [1972],

Kreps and Scheinkman [1983] and Osborne and Pitchik [1986].
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2. If firm 2 moves first and firm 1 second, then in a subgame-perfect equilibrium

the equilibrium prices are given by p2 = p1 = pm2 and the respective equilibrium

profits equal πL
2 = pm2 D

r
2(p

m
2 ) and πF

1 = pm2 k1. In addition, if k1 = k2, then we

also have a second subgame-perfect equilibrium with equilibrium prices given

by p2 = pd2 and p1 = pm2 .

3. If firm 1 moves first and firm 2 second, then in a subgame-perfect equilibrium

the equilibrium prices are given by p1 = pd2 and p2 = pm2 and the respective

equilibrium profits equal πL
1 = pd2k1 and πF

2 = pm2 D
r
2(p

m
2 ). In addition, if k1 =

k2, then we also have a second subgame-perfect equilibrium with equilibrium

prices given by p1 = pm2 and p2 = pm2 .

Deneckere and Kovenock [1992] find that firm 2 moving first and firm 1 moving

second constitutes an equilibrium of the timing game, which can be verified by

looking at the payoff table of a two-period timing game shown in Table 2, where in

the case of k2 > k1 we have πF
1 > πS

1 = πL
1 and πL

2 = πS
2 = πF

2 .

Table 2: Payoffs for the two period timing game.

First period Second period

First period (πS
1 , πS

2 ) (πL
1 , πF

2 )

Second period (πF
1 , πL

2 ) (πS
1 , πS

2 )

In addition, by introducing more time periods and discounting, Deneckere and

Kovenock [1992] show that this ordering of moves is the one and only emerging

endogenously.

4.3 Exogenously given order of moves

In our analysis we will discuss the above mentioned three games with exoge-

nously given ordering of moves for the mixed duopoly version of the Bertrand-

Edgeworth game. We are restricting ourselves again to the interesting case in which
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the simultaneous-move purely private version of the Bertrand-Edgeworth game does

not have an equilibrium in pure strategies, i.e. max{pm1 , pm2 } > pc.22 Note that as

there are two different types of firms (as far as their payoffs are concerned), it is

not the same whether the private or the public firm has the higher capacity. In

particular, we have to distinguish between the following two cases: (i) pm2 > pc and

(ii) pm1 > pc ≥ pm2 . We will also refer to the first case as the strong private firm case

and to the second case as the weak private firm case. Therefore, we would have to

analyze both cases separately for all the three orderings of moves.

4.3.1 The strong private firm case

Firstly, let us make it clear that the price pd2 having been defined earlier always exists

since pm2 > pc. Therefore, we make no mistake if we use this price in our results in

this section.

Now we collect some basic results in the following lemmas.

Lemma 4.1. Under Assumptions 4.1-4.3 and pm2 > pc, it is in none of the timing

games with an exogenously given order of moves optimal for the private firm to

declare p2 < pd2.

Proof. We get the result directly from the definition of pd2. By setting p2 = pm2 , even

if the private firm serves only residual demand, its profit will be higher than at a

price p2 less than pd2.

Lemma 4.2. Under Assumptions 4.1-4.3 and pm2 > pc, the social welfare in an

equilibrium cannot be larger than the social welfare associated with the case in which

both firms set price pd2.

Proof. The definition of the public firm’s profit implies that if a firm serves residual

demand, then the lower price it sets the higher the social welfare. On the other

22Otherwise, the ordinary price-setting game results in a market-clearing or a competitive out-

come, which also remains the outcome of the mixed duopoly game. For more details we refer to

the concluding remarks in Section 4.5.

40



hand, if a company is the low-price firm, and it produces at its capacity limit, then

changing its price, as long as it remains a capacity constrained low-price firm, does

not alter social welfare. The private firm will not set its price below pd2 by Lemma

4.1, while the public firm cannot increase social welfare by setting a price below pd2.

Hence, comparing all cases satisfying min{p1, p2} ≥ pd2, social welfare is maximized

when both firms set price pd2.

Lemmas 4.1 and 4.2 show that deleting strictly dominated strategies from the

private firms strategy set excludes prices below pd2 and after that pd2 turns out to be

a weakly dominant strategy of the public firm.

Now that we are aware of these results, we begin to discuss the three games

with an exogenously given ordering of moves. We will start with specifying the tie-

breaking rules for these games. The most common assumption, if two firms set the

same price, is that they share the consumers in proportion to their capacities (i.e.

firms i’s sales equal min {ki, D(p)ki/(k1 + k2)}. Clearly, any of the two firms has

the right to let its competitor serve a certain portion of its consumers. Such an act

would seem to be irrational at first sight, but we will see below that if it is carried

out by the public firm, it can drive the market to a socially better equilibrium. A

more complete specification of the game would allow the public firm to select the

consumers freely, strategically leaving them to the private firm. However, we fix a

tie-breaking rule, which turns out to be compatible with the public firms incentives,

and after determining the equilibria of the three games it can be easily verified that

the public firm could not have selected a better tie-breaking rule.

Assumption 4.4. We specify the tie-breaking rules for the three games in the

following way:

• In the simultaneous-move game we assume that if p1 = p2 ≤ pd2, then the

demand is allocated first to the private firm (in other words: the public firm

allows the private to serve the entire demand up to its previously given capacity

k2). Otherwise the two firms share the consumers proportionally, i.e. firm i’s

sales equal min {ki, D(p)ki/(k1 + k2)}.
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• When the public firm is the first mover, we assume that the entire demand is

allocated first to the private firm (i.e. to the second mover) at any price level

in the case of price ties.

• Provided that the private firm moves first, if p1 = p2 ≤ pd2, then the demand

is allocated first to the private firm; otherwise the entire demand is allocated

first to the public firm (i.e. to the second mover).

One can observe that for prices higher than pd2 we employ the same tie-breaking

rule as Deneckere and Kovenock [1992] in establishing Proposition ??. For the

simultaneous-move game we could have selected many other tie-breaking rules for

prices not equal to pd2. The main requirement for prices above pd2 is that none of

the firms has a priority to serve consumers up to its capacity constraint in case of

price ties. Turning to the game with a public leader, it is easy to see that in case of

other tie-breaking rules the subgames do not have a solution since the private firm

just wants to undercut the public firm’s price for prices above pd2. Hence, allocating

demand first to the second mover restores solvability without changing the nature

of the game.23 Finally, for the game with a private leader we should remark that

the public firm has many optimal replies since matching or undercutting the pri-

vate firm’s price does not change social welfare. However, if the public firm wants

to punish the private firm for setting high prices, then it should commit itself to

undercutting the private firm’s price. This commitment is credible since for prices

higher than pd2 the public firm has no incentive to deviate from undercutting the

private firm’s price in the second period, which explains why our tie-breaking rule

gives priority to the public firm.

Now we will give all the equilibria of the different cases in separate propositions.

We start with the simultaneous-move case.

23Another argument for our tie-breaking rule is as follows: one of the main corollaries of the

section is that the appearance of the public firm is beneficial from the point of view of social

welfare. Applying a tie-breaking rule that favors the private firm as a second mover makes this

result even stronger.
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Proposition 4.2 (Simultaneous moves). Assume that pm2 > pc and Assumptions

4.1-4.4 hold. Then the simultaneous-move game has the following two types of Nash-

equilibria in pure strategies:

p∗1 = p∗2 = pd2 (NE1) and p∗1 ≤ pd2, p
∗
2 = pm2 (NE2),

where the continuum of NE2 equilibria are payoff equivalent. Moreover, if k1 ≤ k2

and k1 ≤ D(pM), then the simultaneous-move game has in addition the following

set of Nash-equilibria

p∗1 > max
{
pM , P (k2)

}
, p∗2 = max

{
pM , P (k2)

}
(NE3).

Finally, no other equilibrium in pure strategies exists.

Proof. In obtaining a better understanding of the simultaneous-move game, the best

response correspondences B1 and B2 of the two firms will be helpful. In deriving B1,

note that the tie-breaking rule can be neglected since in the case of equal prices

social welfare does not depend on the allocation of consumers to the firms. We will

consider three cases. First, if the private firm sets price p2 such that none of the

two firms can solely serve the entire demand, then the public firm maximizes social

welfare by not setting a higher price than the private firm. We have multiple best

responses since decreasing the public firm’s price within [0, p2) results in converting

its income to consumer surplus. However, the sum (i.e. the payoff of the public

firm) remains the same. Raising its price above p2 would mean that the public firm

faces residual demand and achieves a lower level of social welfare than when it sets

p1 = p2. Second, if the private firm sets price p2 such that it can serve at least the

entire demand, while the public firm can serve at most the entire demand, then the

public firm loses its influence on social welfare and can set its price arbitrarily. Third,

if the private firm sets a sufficiently high price such that the public firm assures the

best social outcome by offering its whole capacity at price P (k1), then any price
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p1 ≤ P (k1) maximizes social welfare. Summarizing our findings,

B1(p2) =


[0, p2] if p2 < min{P (k1), P (k2)},

[0, b] if P (k2) ≤ p2 ≤ P (k1),

[0, P (k1)] if P (k1) < p2 or p2 = P (k1) < P (k2).

(6)

Turning to B2, if the public firm sets a price below pd2, then the private firm reacts

with pm2 . If the public firm sets price pd2, then the private firm has two optimal

replies: pd2 and pm2 because of Assumption 4.4. If p1 > pd2, then the private firm will

undercut the public firm’s price and an optimal reply does not exist as long as it

has to share the demand with the public firm at price p1. Finally, the public firm’s

price can be large enough not to be followed by the private firm. In particular, if p1

is larger than P (k2) and larger than pM , then the private firm will either set a price

to sell its entire capacity or the monopolist’s price. Thus, we have obtained

B2(p1) =



{pm2 } if p1 < pd2,

{pd2, pm2 } if p1 = pd2,

∅ if pd2 < p1 ≤ max{P (k2), p
M},

{max{P (k2), p
M}} if max{P (k2), p

M} < p1.

(7)

Now one can verify directly or by relying on the best response correspondences

that NE1, NE2 and NE3 are equilibrium profiles.24

It remains to be shown that no other equilibrium exists. Take an equilibrium

profile (p∗1, p
∗
2). By Lemma 5.1 p∗2 ≥ pd2. Let p = P (k1). Since the public firm can

ensure at least π1(p, p) social welfare at price p, even if the private firm sets a higher

price, we must have p∗1 ≤ p, which in turn implies that p∗2 ≤ p since Dr
2(p2) = 0 for

all p2 > p. We cannot have an equilibrium with pd2 < p∗1 = p∗2 ≤ p since otherwise

the private firm would gain from slightly undercutting the public firm’s price.

Assume that the equilibrium satisfies p∗1 < p∗2 ≤ p. Clearly, if pd2 < p∗1 < p, then

the private firm would benefit from undercutting price p∗1; a contradiction. If p∗1 = pd2,

then we must have either p∗2 = pd2 or p∗2 = pm2 ; and thus, we arrived to either an NE1

24In carrying out the verification, pd2 < P (k2) and pd2 < pm2 < P (k1) will be helpful.
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or NE2 type profile. If p∗1 < pd2, then we must have p∗2 = pm2 , which is an NE2 type

equilibrium profile.

Assume that the equilibrium satisfies p∗2 < p∗1 ≤ p. Suppose that k1 > k2. Then

p < P (k2), and therefore, the public firm faces a positive residual demand, which

means that it can increase social welfare by reducing its price; a contradiction.

Assume that k1 ≤ k2. If Dr
1(p
∗
1) > 0, then we cannot have an equilibrium since once

again the public firm would benefit from decreasing its price. If Dr
1(p
∗
1) = 0, then

the public firm cannot gain from altering its price. However, the private firm could

benefit from increasing its price by the concavity of D if p∗2 < pM . For the same

reason the private firm would gain from decreasing its price if p∗2 > pM subject to

p∗2 ≥ P (k2). Hence, we just can have an equilibrium if p∗2 = max
{
pM , P (k2)

}
and

we arrived at an NE3 type profile.

We have to remark that NE3 is a very implausible equilibrium since it requires

that the public firm sets very high prices in the market and practically does not

want to enter the market. While in the case of NE3 the public firm cannot increase

social welfare it still can increase consumer surplus and its own income by setting

a price below pM , which could be a natural secondary goal for the public firm if it

has to select between prices resulting in the same social welfare.

We continue with the case of public leadership.

Proposition 4.3 (Public firm moves first). Assume that pm2 > pc and Assumptions

4.1-4.4 hold. Then the sequential-move game with the public firm as a first mover

has the following unique subgame-perfect Nash-equilibrium in pure strategies:

p∗1 = pd2, p
∗
2(p1) =



pm2 if p1 < pd2,

pd2 if p1 = pd2,

p1 if pd2 < p1 ≤ max{P (k2), p
M},

max{P (k2), p
M} if max{P (k2), p

M} < p1.

(SPNE1)

Proof. First, we determine the reaction function p∗2(·) of the private firm. Observe

that the private firm’s best response correspondence can be obtained by altering

its best response correspondence (7) derived for the simultaneous-move game in the
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case of pd2 < p1 ≤ max{P (k2), p
M} for which in the public leadership game the

private firm matches the public firm’s price p1.

The first period action of the public firm depends on the decision of the private

firm when the public firm sets price pd2. In other words the private firm’s reaction

function is either the one given by SPNE1 or

p∗2(p1) =


pm2 if p1 ≤ pd2;

p1 if pd2 < p1 ≤ max{P (k2), p
M},

max{P (k2), p
M} if max{P (k2), p

M} < p1.

(8)

Concerning the reaction function given by SPNE1, the public firm maximizes social

welfare in the first period by choosing price p∗1 = pd2, and thus, SPNE1 is indeed a

subgame-perfect Nash equilibrium.

Turning to the second reaction function given by (8), a first period social welfare

maximizing price does not exist if the private firm reacts in the way given by (8)

since the public firm wants to set its price as close as possible to pd2, but above pd2.

Hence, (8) does not yield a subgame-perfect Nash equilibrium.

Finally, we consider the case of private leadership.

Proposition 4.4 (Private firm moves first). Assume that pm2 > pc and Assumptions

4.1-4.4 hold. Then the sequential-move game with the private firm as a first mover

has the following two types of subgame-perfect Nash-equilibria:

p∗2 = pd2, p
∗
1(p2) =


p2 if p2 ≤ pd2,

p1 ∈ [0, p2] if pd2 < p2 ≤ P (k1),

p1 ∈ [0, P (k1)] if p2 > P (k1);

(SPNE1)

and

p∗2 = pm2 , p
∗
1(p2) =

 p1 ∈ [0, p2] if p2 ≤ P (k1),

p1 ∈ [0, P (k1)] if p2 > P (k1);
(SPNE2)

where the continuum of SPNE1 as well as the continuum SPNE2 equilibria are

payoff equivalent, respectively. Moreover, if k1 ≤ k2 and k1 ≤ D(pM), then the
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sequential-move game has in addition the following set of subgame perfect Nash-

equilibria

p∗2 = max
{
pM , P (k2)

}
,

p∗1(p2) =



p1 ∈ [0, p2] if p2 < P (k2),

p1 ∈ [0, b] if P (k2) ≤ p2 < pM ,

p1 ∈
(
max

{
pM , P (k2)

}
, b
]

if p2 = max
{
pM , P (k2)

}
,

p1 ∈ [0, b] if max
{
pM , P (k2)

}
< p2 ≤ P (k1),

p1 ∈ [0, P (k1)] if P (k1) < p2;

(SPNE3)

where the continuum of SPNE3 equilibria are payoff equivalent. Finally, no other

equilibrium in pure strategies exists.

Proof. We solve the game by backward induction. Observe that the best response

correspondence of the public firm is given by (6) since it remains the same as in the

case of simultaneous moves. In addition, if the private firm sets a price not higher

than pd2, then the public firm should not set a price below the private firm’s price

since anticipating this behavior the private firm would set definitely price pm2 in

period 1.

However, if the price set by the private firm is high enough so that it can serve

the entire market, then the public firm loses its influence on social welfare. It might

be beneficial for the private firm to set an extremely high price if its capacity is larger

than the public firm’s capacity and the public firm cannot do better by matching or

undercutting the private firm’s price. Note that in this latter case only the reaction

of the public firm at price max
{
pM , P (k2)

}
matters.

Taking this into account, we can obtain SPNE1, SPNE2 and SPNE3 as possible

types of subgame-perfect equilibria.

We have to remark that SPNE3 is an implausible equilibrium since it requires,

for the same reasons as explained after the proof of Proposition 5.1, that the private

firm anticipates a very strange reaction of the public firm. Hence, in all three games

only type 1 or type 2 equilibria are plausible. But what will decide which of these two

equilibria is to be played? We now collect arguments in favor of (SP )NE1. Firstly,
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(SP )NE1 is the only Pareto-optimal equilibrium among all the subgame-perfect

Nash-equilibria. Secondly, an outcome very close to (SP )NE1 can be enforced by

the public firm. Namely, assume that the public company sets p1 = pd2 + ε in any

of the three cases. Then if the private firm sets its price slightly below this level, it

will be strictly better off than in the case of (SP )NE1 or (SP )NE2. Although the

social welfare will be a bit lower than in the case of (SP )NE1, but far higher than

in the case of (SP )NE2. Therefore, this act is worth for the public firm to avoid the

risk of an (SP )NE2 type outcome.

To sum up, we argued that p∗1 = p∗2 = pd2 is the most plausible outcome that is

expected to be played.

4.3.2 The weak private firm case

Our second case to be analyzed occurs when pm1 > pc ≥ pm2 . We begin the analysis

with the following lemma which asserts that the private firm does not intend to set

any price below the market clearing price.

Lemma 4.3. Under Assumptions 4.1-4.3 and pm1 > pc ≥ pm2 the private firm’s

strategies p2 < pc are strictly dominated in all three possible orderings.

Proof. The private firm can only be worse off by selling all its capacity at a lower

price than the market clearing price due to the definition of pc and the fact that

pm2 ≤ pc.

Before solving the game, we have to define how the firms share the market in the

case of price ties. In particular, we employ the same tie-breaking rule as Deneckere

and Kovenock [1992].

Assumption 4.5. If the two firms set the same price, then we assume for the

sequential-move games that the demand is allocated first to the second mover and

for the simultaneous-move game that the demand is allocated in proportion of the

firms’ capacities.
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In contrast to the previous section, there is only one (subgame-perfect) Nash-

equilibrium in the weak private firm case resulting in a market-clearing outcome.

This is pointed out in the following proposition.

Proposition 4.5. If pm1 > pc ≥ pm2 and Assumptions 4.1-4.3, 4.5 are satisfied, then

each price-setting game with an exogenously given ordering of moves has the follow-

ing (subgame-perfect) Nash-equilibria in pure strategies with the following equilibrium

prices:

p∗1 ∈ [0, pc], p∗2 = pc (SPNE4)

Moreover, there is no other equilibrium in pure strategies.

Proof. Now we do not consider the different orderings separately, like we did in the

previous subsection. It is easy to see that any equilibrium of type SPNE4 specifies

(subgame-perfect) Nash-equilibrium prices in all the three possible orderings.

We briefly show that there are no other equilibrium price profiles left. Since

by pm1 > pm2 we have k1 > k2, which in turn implies P (k1) < P (k2) none of the

firms will set a price above P (k1). Moreover, we cannot have an equilibrium with

P (k1) ≥ p∗2 > p∗1 and p∗2 > pc since this would imply that the private firm has to

serve residual demand, which would result in less profits for the private firm than

setting pc by the concavity of the residual demand function and by pm2 < pc. In

addition, there cannot be an equilibrium with pc < p∗2 < p∗1 ≤ P (k1) either because

then the public firm could increase social welfare by unilaterally decreasing its price.

These arguments are valid for any ordering of moves.

It remains to be shown that we cannot have pc < p∗1 = p∗2 ≤ P (k1) in an

equilibrium, which we will check separately for the different orderings of moves.

Concerning the simultaneous-move case, the private firm would have an incentive to

undercut the public firm’s price. Turning to private leadership, the private firm has

to serve residual demand by Assumption 4.5, and therefore, it would prefer price

pc to p∗2 by the concavity of the residual demand function and by pm2 < pc. Finally,

considering public leadership, the private firm matches the public firm’s price in
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region [pc, P (k1)], and thus, the public firm maximizes social welfare by setting its

price not larger than pc.

4.4 A numerical example

We illustrate our main results summarized in the previous section by the following

example.

Example 4.1. Let the demand function be D(p) = 1− p. We assume that k1 = 0.5,

k2 = 0.4 and in the mixed version of the game firm 1 is the public firm, while firm

2 is the private firm. We calculated the equilibrium prices and payoffs both for the

standard version of the game and for the mixed version as well. According to our

earlier arguments, we assumed in the example that NE1 or SPNE1-type equilibria

are played in each case. The calculated equilibrium prices and quantities are as

follows: p∗1 = p∗2 = pd2 = 0.156, q∗1 = 0.444, q∗2 = k2 = 0.4.

The (SP )NE1-type equilibrium is illustrated in Figure 6 below.

Figure 6: Equilibrium prices and quantities - Example 4.1
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The following tables show the values calculated for all the three possible orderings

of moves.

Table 3: Calculated values for the simultaneous-moves case.

Standard version Mixed version

p∗1 0.2254 0.1563

p∗2 0.2068 0.1563

π∗1 0.0900 0.4870

π∗2 0.0720 0.0625

Social welfare 0.4715 0.4870

Note that in the first column of Table 3 the equilibrium prices, profits and social

welfare given for the standard version of the game are expected values as there is

no pure-strategy equilibrium in the case of simultaneous moves. We have computed

these expected values by employing the explicit solution of the Bertrand-Edgeworth

game determined by Kreps and Scheinkman [1983].

Table 4: Calculated values when firm 1 moves first.

Standard version Mixed version

p∗1 0.3000 0.1563

p∗2 0.3000 0.1563

π∗1 0.0900 0.4870

π∗2 0.1200 0.0625

Social welfare 0.4550 0.4870
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Table 5: Calculated values when firm 2 moves first.

Standard version Mixed version

p∗1 0.3000 0.1563

p∗2 0.1800 0.1563

π∗1 0.0900 0.4870

π∗2 0.0720 0.0625

Social welfare 0.4550 0.4870

The values in Tables 3-5 show the social welfare-increasing effect of the appear-

ance of a public firm, which we emphasized in Section 4.3.

4.5 Corollaries and concluding remarks of the section

In this subsection we collect the corollaries of our analysis carried out in the previous

subsection. Our first corollary determines the endogenous order of moves based on

a two-period timing game in which both firms can select between two periods for

setting their prices. If one accepts our arguments brought forward in favor of a type 1

equilibrium (that is, an NE1 or an SPNE1) in case of a strong private firm, then by

checking Propositions 4.2-4.4 one immediately sees that the three type 1 equilibria

result in the same equilibrium price pd2 and the same equilibrium payoffs. The case

of a weak private firm is even simpler by Proposition 4.5.

Corollary 4.1. Assuming that a type 1 equilibrium is played in the case of a strong

private firm, the ordering of price decisions does not matter.

Now we turn to the question whether replacing a public firm by a private firm

(privatization) has a social welfare increasing effect. If one compares the equilibrium

payoffs in Proposition 4.1 with the type 1 equilibrium payoffs in Propositions 4.2-4.4

and Proposition 4.5, one can observe that for each ordering of moves switching from
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the standard PTO Bertrand-Edgeworth game (i.e. when there are only private firms

on the market) to its mixed version strictly increases social welfare.

Corollary 4.2. Assuming that a type 1 equilibrium is played in the case of a strong

private firm and capacities are in a range such that the standard simultaneous-move

PTO Bertrand-Edgeworth game does not have an equilibrium in pure strategies, then

the appearance of a public firm makes the outcome more competitive, i.e. the social

welfare of the mixed version of the PTO Bertrand-Edgeworth game is higher than

that of the standard PTO Bertrand-Edgeworth duopoly game.

Earlier research in this field has pointed out that in general the standard

simultaneous-move version of the Bertrand-Edgeworth game does not have an equi-

librium in pure strategies (see, for example, Proposition 4.1).25 Considering Propo-

sitions 2-6, we see that the simultaneous-move Bertrand-Edgeworth mixed duopoly

game always has an equilibrium in pure strategies.

Corollary 4.3. In contrast with the standard simultaneous-move Bertrand-

Edgeworth game its mixed duopoly version always has an equilibrium in pure strate-

gies under Assumptions 4.1-4.3.

To conclude, we have found that the appearance of a public firm is advantageous

from various points of view. First, the timing of decisions does not play a role since

all games with an exogenously given order of moves result in the same outcome.

Second, the appearance of a public firm increases social welfare. Third, the mixed

version of the simultaneous-move PTO Bertrand-Edgeworth game always has an

equilibrium in pure strategies.

In our analysis we focused on the interesting case in which the standard PTO

Bertrand-Edgeworth game does not have an equilibrium in pure strategies. It should

be emphasized that in the other case (i.e. pc ≥ max{pm1 , pm2 }) there is no real dif-

ference concerning the market outcome between the standard and mixed versions

25In fact the class of demand curves that admit an equilibrium in pure strategies for arbitrary

capacity levels cannot intersect both axes (Tasnádi 1999).
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of the Bertrand-Edgeworth game. In particular, sales take place only at the market

clearing price and the entire demand is served at that price regardless of the ordering

of moves. However, similarly to the strong private firm case the simultaneous-move

game and the private leadership game has an additional implausible outcome of

type 3, whenever k1 ≤ k2 and k1 ≤ D(pM), in which the private firm sets price

p∗2 = max
{
pM , P (k2)

}
and the public firm a higher price p∗1 > max

{
pM , P (k2)

}
.

We consider this latter outcome as implausible since this would require that the

public firm does not want to enter the market in order to achieve at least a positive

income or a higher consumer surplus though social welfare remains the same. The

equilibria can be determined in an analogous way to the strong private firm case.26

We have not investigated the situation yet, where more than one private firms

exist on the market. However, we should be aware that our knowledge concerning

the Bertrand-Edgeworth oligopoly game with only private firms is limited. Even

the existence of an equilibrium of multi-period games with exogenously given or-

dering of moves is not known for the case in which at least pairs of firms move in

different time periods. The most recent results on the mixed-strategy equilibria of

the simultaneous-move Bertrand-Edgeworth oligopoly game by Hirata [2009] and

De Francesco and Salvadori [2010] point to the difficulty of the problem.

In the current section we have investigated the production-to-order version of

the Bertrand-Edgeworth game. In the next section we consider the production-in-

advance case for which answering the same questions addressed in this section turns

out to be much harder. Namely, the PIA case will not reduce to a price-setting game,

separate price and production decisions need to be considered.

26A detailed proof is available upon request from the authors.
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5 Mixed Bertrand-Edgeworth duopolies -

Production-in-advance framework

Production-to-order and production-in-advance has been compared in many frame-

works. In this section we investigate a mixed production in advance version of the

capacity-constrained Bertrand-Edgeworth duopoly game and determine the solu-

tion of the respective timing game. We show that a pure-strategy (subgame-perfect)

Nash-equilibrium point exists for all possible orderings of moves. It is pointed out

that unlike the production-to-order case, the equilibrium of the timing game lies at

simultaneous moves. An analysis of the public firm’s impact on social welfare is also

carried out. All the results are compared to those of the production-to order version

of the respective game.

The remainder of the section is organized as follows. In Section 5.1 we present our

framework, Sections 5.2 - 5.4. contain the analysis of three cases: the strong private

firm case, the weak private firm case and the high unit cost case, respectively. The

analysis is carried out for all possible exogenously given orderings of moves, Section

5.5 solves the timing game, and finally, we conclude in Section 5.6.

The results of this section are put down in Balogh and Tasnádi [2014].

5.1 The framework

The demand is given by function D on which we impose the following restrictions:

Assumption 5.1. The demand function D intersects the horizontal axis at quantity

a (where a > 0) and the vertical axis at price b. D is strictly decreasing, concave

and twice continuously differentiable on (0, b); moreover, D is right-continuous at 0,

left-continuous at b and D(p) = 0 for all p ≥ b.

Clearly, no price-setting firm will set its price above b. Let us denote by P the

inverse demand function. Thus, P (q) = D−1 (q) for 0 < q ≤ a, P (0) = b, and

P (q) = 0 for q > a.
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On the producers’ side we have a public firm and a private firm, that is, we

consider a so-called mixed duopoly. We label the public firm with 1 and the private

firm with 2. Henceforth, we will also label the two firms by i and j, where i, j ∈ {1, 2}

and i 6= j. Our assumptions imposed on the firms’ cost functions are as follows:

Assumption 5.2. The two firms have identical c ∈ (0, b) unit costs up to the

positive capacity constraints k1, k2 respectively.

We shall denote by pc the market clearing price and by pM the price set

by a monopolist without capacity constraints, i.e. pc = P (k1 + k2) and pM =

arg maxp∈[0,b](p − c)D (p). In what follows p1, p2 ∈ [0, b] and q1, q2 ∈ [0, a] stand

for the prices and quantities set by the firms.

For any firm i and for any quantity qj set by its opponent j we shall denote by

pi(qj) the profit maximizing price on the firms’ residual demand curves Dr
i (p, qj) =

(D(p)− qj)+, i.e. pi(qj) = arg maxp∈[0,b](p − c)Dr
i (p, qj), where in the definition of

pi(qj) we do not include the capacity constraint of firm i. For notational convenience

we also introduce pmi (qj) as the price maximizing profits with respect to the residual

demand curve subject to the capacity constraint of firm i (i.e. the high-price firm

produces the quantity given by its residual demand curve). Clearly, pc, pi and pmi

are well defined whenever c < P (qj) and Assumptions 6.1-6.2 are satisfied. If c ≥

P (qj), then pi(qj) and pmi (qj) are not unique, as any price pi > P (qj) together with

quantity qi = 0 results in πi = 0 and πi cannot be positive. In other words, any

price pi > P (qj) is profit-maximizing on the residual demand curve. For notational

convenience we define pi(qj) and pmi (qj) by b in case of c ≥ P (qj).

For a given quantity qj we shall denote the inverse residual demand curve of

firm i by Ri(·, qj). It can be checked that Ri(qi, qj) = P (qi + qj) and pmi (qj) =

max{pi(qj), Ri(ki, qj)}. Let qi(qj) = arg maxqi∈[0,a] (Ri (qi, qj)− c) qi and qmi (qj) =

min{qi(qj), ki}. Clearly, qi(qj) = Dr
i (pi(qj), qj) and qmi (qj) = Dr

i (pmi (qj), qj).

Let us denote by pdi (qj) the smallest price for which

(pdi (qj)− c) min
{
ki, D

(
pdi (qj)

)}
= (pmi (qj)− c)qmi (qj),
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whenever this equation has a solution.27 Provided that the private firm has ‘suf-

ficient’ capacity, that is max{pc, c} < pm2 (k1), then if it is a profit-maximizer, it

is indifferent to whether serving residual demand at price level pm2 (q1) or selling

min{k2, D
(
pd2(q1)

)
} at the lower price level pd2(q1). Note that if Ri(ki, qj) ≥ pi(qj),

then pdi (qj) = pmi (qj).
28 We shall denote by q̃j the quantity for which qi(q̃j) = ki

in case of pM < P (ki) and quantity zero otherwise. From Deneckere and Kovenock

(1992, Lemma 1) it follows that pdi (·) is strictly decreasing on its domain and it can

be also verified that pi(·), qi(·), and pmi (·) are also strictly decreasing on the region

in which the profit maximization problem with respect to the residual demand curve

has an interior solution (i.e. not lying on one of the axes). Moreover, qmi (·) is strictly

decreasing on [q̃j, kj] and constant on [0, q̃j].

We assume efficient rationing on the market, and thus, the firms’ demands equal

∆i (D, p1, q1, p2, q2) =


D (pi) if pi < pj,

Ti(p, q1, q2), if p = pi = pj

(D (pi)− qj)+ if pi > pj,

for all i ∈ {1, 2}, where Ti stands for a tie-breaking rule.29 We will consider two

sequential-move games (one with the public firm as the first mover and one with

the private firm as the first-mover) and a simultaneous-move game. We employ the

same tie-breaking rule as Deneckere and Kovenock [1992].

Assumption 5.3. If the two firms set the same price, then we assume for the

sequential-move games that the demand is allocated first to the second mover and

for the simultaneous-move game that the demand is allocated in proportion of the

firms’ capacities.

27The equation defining pdi (qj) has a solution for any qj ∈ [0, kj ] if, for instance, pmi (kj) ≥

max{pc, c}, which will be the case in our analysis when we will refer to pdi (qj).
28This can be the case if pM < P (k1).
29The selection of the appropriate tie-breaking rule will ensure the existence of a Nash equilibrium

or subgame perfect Nash equilibrium in order to avoid the consideration of ε-equilibria implying a

more difficult analysis without substantial gain.

57



Now we specify the firms’ objective functions. The public firm aims at maximiz-

ing total surplus, that is,

π1(p1, q1, p2, q2) =

∫ min{(D(pj)−qi)+,qj}

0

Rj(q, qi)dq+

∫ min{a,qi}

0

P (q)dq−c(q1+q2), (9)

where 0 ≤ pi ≤ pj ≤ b. The private firm is a profitmaximizer, and therefore,

π2(p1, q1, p2, q2) = p2 min {k2,∆2 (D, p1, q1, p2, q2)} − cq2. (10)

We divide our analysis into three cases.

1. The strong private firm case, where we assume that p2(k1) > max{pc, c}.

This means that the private firm’s capacity is large enough to have strategic

influence on the outcome.

2. The weak private firm case, where we assume that p1(k2) > pc ≥ p2(k1) > c.

In this case the private firm’s capacity is not large enough to have strategic

influence on the outcome, but it has a unique profit-maximizing price on the

residual demand curve.

3. The high unit cost case, where we assume that c ≥ P (k1). In this case if the

public firm produces at its capacity level, then there is no incentive for the

private firm to enter the market, because the cost level is too high.

The three cases are well defined and disjoint from each other: in the first two cases

P (k1) > c is satisfied (otherwise c > p2(k1) would have to hold, a contradiction) and

these cases are divided by the relation of pc and p2(k1). Additionally, in the third

case P (k1) ≤ c.

We now determine all the equilibrium strategies of both firms for the three

possible orderings of moves in each of the three main cases. Within every case

we begin with the simultaneous moves subcase, thereafter we focus on the public-

firm-moves-first subcase, finally we analyze the private-firm-moves-first subcase. The

results are always illustrated with numerical examples. For better visibility, the most

interesting equilibria are depicted.
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5.2 The strong private firm case

The following two inequalities remain true for all three orderings of moves, therefore

we do not discuss them separately in each subsection.

Lemma 5.1. Under Assumptions 5.1-5.3 and p2(k1) > max{pc, c} we must have

p∗2 ≥ pd2(q
∗
1) (11)

in any equilibrium (p∗1, q
∗
1, p
∗
2, q
∗
2).

Proof. We obtain the result directly from the definition of pd2(q1). For any q1 ∈ [0, k1],

the private firm is better off by setting p2 = pm2 (q1) and q2 = qm2 (q1), than by setting

any price p2 < pd2(q1) and any quantity q2 ∈ [0, k2].

Lemma 5.2. Under Assumptions 5.1-5.3 and p2(k1) > max{pc, c} we have in case

of simultaneous moves and public leadership that

p∗2 ≤ max{P (k2), p
M} (12)

in any equilibrium (p∗1, q
∗
1, p
∗
2, q
∗
2).

Proof. Suppose that p∗2 > max{P (k2), p
M}. If p∗2 ≤ p∗1, then the private firm would

be better off by setting price max{P (k2), p
M} and quantity D

(
max{P (k2), p

M}
)
. If

p∗2 > p∗1, then the private firm serves residual demand, and therefore switching to ac-

tion (pm2 (q∗1), qm2 (q∗1)),
(
max{P (k2), p

M}, D
(
max{P (k2), p

M}
))

or just undercutting

the public firm would be beneficial. For both cases we have obtained a contradic-

tion.

5.2.1 Simultaneous moves

For the case of simultaneous moves we have two possible30 pure-strategy Nash equi-

librium families. The first equilibrium family contains profiles where the private firm

maximizes its profit on the residual demand choosing p∗2 = pm2 (q∗1) and q∗2 = qm2 (q∗1),

while the public firm can choose any price level not greater than pd2(q
∗
1) and produce

30Provided that certain conditions hold true.
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any non-negative amount up to its capacity. In the second equilibrium the private

firm acts as a monopolist up to its capacity limit on the original demand curve,

while the public firm is not present on the market. This is put down in the next

proposition.

Proposition 5.1 (Simultaneous moves). Let Assumptions 5.1-5.3 and p2(k1) >

max{pc, c} be satisfied. A strategy profile

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗1, q

∗
1, p

m
2 (q∗1) , qm2 (q∗1)) (13)

is for a quantity q∗1 ∈ [0, k1] and for any price p∗1 ∈
[
0, pd2 (q∗1)

]
a Nash-equilibrium

in pure strategies if and only if

π1
(
pd2 (q∗1) , q∗1, p

m
2 (q∗1) , qm2 (q∗1)

)
≥ π1 (P (k1) , k1, p

m
2 (q∗1) , qm2 (q∗1)) , 31 (14)

where there exists a nonempty closed subset H of [0, k1] satisfying condition (14).32

Moreover, if π1(p
′
2, 0, p

′
2, q
′
2) ≥ π1(P (k1), k1, p

′
2, q
′
2), where p′2 = max{P (k2), p

M} and

q′2 = D(max{P (k2), p
M}), then for all p1 ∈ [0, b]

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, 0, p

′
2, q
′
2) (15)

are also equilibrium profiles.33 Finally, no other equilibrium in pure strategies exists.

Proof. Assume that (p∗1, q
∗
1, p
∗
2, q
∗
2) is an arbitrary equilibrium profile. We divide our

analysis into three subcases. In the first case (Case A) we have p∗1 = p∗2, in the second

one (Case B) p∗1 > p∗2 holds true, while in the remaining case we have p∗1 < p∗2 (Case

C).

Case A: We claim that p∗1 = p∗2 implies q∗1 + q∗2 = D(p∗2). Suppose that q∗1 + q∗2 <

D(p∗2). Then34 because of p∗2 > max{pc, c} by a unilateral increase in output the

31Clearly, P (k1) < pm2 (q∗1) is a necessary condition for (14).
32In particular, there exists a subset [q, k1] of H.
33Observe that those Nash equilibria appearing in (15) for which p1 < p′2 are also included in

(13).
34Observe that by Lemma 5.1, the monotonicity of pd2(·) and p2(k1) > max{pc, c} we have

p∗2 ≥ pd2(q1) ≥ pd2(k1) > max{pc, c}.

60



public firm could increase social welfare or the private firm could increase its profit;

a contradiction. Suppose that q∗1 + q∗2 > D(p∗2). Then the public firm could increase

social welfare by decreasing its output or if q∗1 = 0, the private firm could increase

its profit by producing only D(p∗2); a contradiction.

We know that we must have p∗1 = p∗2 ≥ pd2(q
∗
1) by Lemma 5.1. Assume that

q∗1 > 0. Then we must have q∗2 = min{k2, D(p∗2)}, since otherwise the private firm

could benefit from reducing its price slightly and increasing its output sufficiently

(in particular, by setting p2 = p∗2 − ε and q∗2 = min{k2, D(p2)}). Observe that

pm2 (0) = pd2(0) = p′2, p
m
2 (q1) = pd2(q1) for all q1 ∈ [0, q̃1] and pm2 (q1) > pd2(q1) for all

q1 ∈ (q̃1, k1].
35 Moreover, it can be verified by the definitions of pm2 (q∗1) and pd2(q

∗
1)

that q∗1 +k2 ≥ D(pd2(q
∗
1)) ≥ D(p∗2), where the first inequality is strict if q∗1 > q̃1. Thus,

q∗1 > q̃1 is in contradiction with q∗2 = min{k2, D(p∗2)} since we already know that

q∗1 + q∗2 = D(p∗2) in Case A. Hence, an equilibrium in which both firms set the same

price and the public firm’s output is positive exists if and only if pm2 (q∗1) = pd2(q
∗
1)

(i.e., q∗1 ∈ (0, q̃1)) and (14) is satisfied. This type of equilibrium appears in (13).

Moreover, it can be verified that (p∗1, q
∗
1, p
∗
2, q
∗
2) = (p′2, 0, p

′
2, q
′
2) is an equilibrium

profile in pure strategies if and only if

π1(p
′
2, 0, p

′
2, q
′
2) ≥ π1(P (k1), k1, p

′
2, q
′
2), (16)

where p′2 = max{P (k2), p
M} and q′2 = D(max{P (k2), p

M}).

Case B: Suppose that p∗1 > p∗2 ≥ pd2(q
∗
1) and D(p∗2) > q∗2. Then the public

firm could increase social welfare by setting price p1 = p∗2 and q1 = D(p∗2) − q∗2; a

contradiction.

Assume that p∗1 > p∗2 ≥ pd2(q
∗
1) and D(p∗2) = q∗2. Then in an equilibrium we must

have q∗1 = 0, p∗2 = p′2 and q∗2 = q′2. Furthermore, it can be checked that these profiles

specify equilibrium profiles if and only if equation (16) is satisfied.

Clearly, p∗1 > p∗2 ≥ pd2(q
∗
1) and D(p∗2) < q∗2 cannot be the case in an equilibrium

since the private firm could increase its profit by producing q2 = D(p∗2) at price p∗2.

Case C: In this case p∗2 = pm2 (q∗1) and q∗2 = qm2 (q∗1) must hold, since otherwise the

35We recall that q̃i has been defined after pdi (qj).
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private firm’s payoff would be strictly lower. In particular, if the private firm sets a

price not greater than p∗1, we are not anymore in Case C; if q∗2 > min{Dr
2(p
∗
2, q
∗
1), k2},

then the private firm either produces a superfluous amount or is capacity con-

strained; if q∗2 < min{Dr
2(p
∗
2, q
∗
1), k2}, then the private firm could still sell more

than q∗2; and if q∗2 = min{Dr
2(p
∗
2, q
∗
1), k2}, then the private firm will choose a price-

quantity pair maximizing profits with respect to its residual demand curve Dr
2(·, q∗1)

subject to its capacity constraint. In addition, in order to prevent the private firm

from undercutting the public firm’s price we must have p∗1 ≤ pd2 (q∗1).

Clearly, for the given values p∗1, p
∗
2 and q∗2 from our equilibrium profile the pub-

lic firm has to choose a quantity q′1 ∈ [0, k1], which maximizes function f(q1) =

π1 (p∗1, q1, p
∗
2, q
∗
2) on [0, k1]. We show that q′1 = q∗1 must be the case. Obviously, it

does not make sense for the public firm to produce less than q∗1 since this would

result in unsatisfied consumers. Observe that for all q1 ∈ [q∗1,min {D (p∗2) , k1}]

f(q1) =

∫ D(p∗2)−q1

0

(R2(q, q1)− c) dq +

∫ q1

0

(P (q)− c) dq − c(q1 − q∗1) =

=

∫ D(p∗2)

0

P (q)dq −D(p∗2)c− c(q1 − q∗1). (17)

Since −c(q1 − q∗1) is a function of only q1 we see that f is strictly decreasing on

[q∗1,min {D (p∗2) , k1}].

Subase (i): In case of k1 ≤ D (p∗2) we have already established that q∗1 maximizes

f on [0, k1]. Moreover, (p∗1, q
∗
1) maximizes π1 (p1, q1, p

∗
2, q
∗
2) on [0, p∗2) × [0, k1] since

equation (17) is not a function of p∗1. Hence, for any p1 ≤ pd2 (q∗1) such that p1 < p∗2

we have that (p1, q
∗
1, p

m
2 (q∗1) , qm2 (q∗1)) specifies a Nash equilibrium for any q1 ∈ (0, k1]

satisfying k1 ≤ D (pm2 (q∗1)). However, note that in case of q∗1 ∈ [0, q̃1] and p1 = pd2 (q∗1)

we are leaving Case C and obtain a Case A Nash equilibrium.

Observe that pm2 (k1) > max {pc, c} implies that k1 < D (pm2 (k1)), and therefore

we always have Subcase (i) equilibrium profiles. If k1 = D (pm2 (q1)) has a solution

for q1 ∈ [0, k1), then we shall denote its solution by q̃, and otherwise let q̃ = 0. Since

D (pm2 (·)) is a continuous and strictly increasing function, interval [q̃, k1] ∩ (0, k1]

determines the set of quantities yielding an equilibrium for Subcase (i).
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Subase (ii): Turning to the more complicated case of k1 > D (p∗2), we also have

to investigate function f above the interval [D (p∗2) , k1] in which region the private

firm does not sell anything at all at price p∗2 and

f(q1) =

∫ min{q1,D(p∗1)}

0

(P (q)− c) dq − cq∗2 − c (q1 −D (p∗1))
+ . (18)

Observe that we must have P (k1) < p∗2. If the public firm is already producing

quantity q1 = D (p∗2), the private firm does not sell anything at all and contributes

to a social loss of cq∗2. Therefore, f(q) is increasing on [D (p∗2) ,min {D (p∗1) , k1}].

Assume that k1 ≤ D (p∗1). Then for any p1 ≤ pd2 (q∗1) we get that

(p1, q
∗
1, p

m
2 (q∗1) , qm2 (q∗1)) is a Nash equilibrium if and only if

π1
(
pd2 (q∗1) , q∗1, p

m
2 (q∗1) , qm2 (q∗1)

)
≥ π1

(
pd2 (q∗1) , k1, p

m
2 (q∗1) , qm2 (q∗1)

)
=

= π1 (P (k1) , k1, p
m
2 (q∗1) , qm2 (q∗1)) , (19)

where the last equality follows from the inequalities p∗1 ≤ P (k1) ≤ p∗2 valid for this

case and the fact that social welfare is maximized in (p1, q1) subject to the constraint

that the private firm does not sell anything at all if the public firm sets an arbitrary

price not greater than P (k1) and produces k1.

Assume that k1 > D (p∗1). Therefore, f(q) would be decreasing on [D (p∗1) , k1].

However, it can be checked that the public firm could increase social welfare by

switching to strategy (P (k1), k1) from strategy (p∗1, D (p∗1)). In addition, any strategy

(p1, k1) with p1 ≤ P (k1) maximizes social welfare subject to the constraint that the

private firm does not sell anything at all. Therefore,
(
pd2 (q∗1) , q∗1, p

m
2 (q∗1) , qm2 (q∗1)

)
is

a Nash equilibrium if and only if condition (14) is satisfied. Comparing equation (19)

with equation (14), we can observe that we have derived the same necessary and

sufficient condition for a strategy profile being a Nash equilibrium, which is valid

for Subcase (ii).

So far we have established that there exists a function g, which uniquely de-

termines the highest equilibrium price as a function of quantity q produced by the

public firm. Clearly, g(q) = pd2(q), where the domain of g is not entirely specified.

At least we know from Subcase (i) that the domain of g contains [q̃, k1]. Observe
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also that the equilibrium profiles of Subcase (i) satisfy condition (14). Let u (q1) =

π1
(
pd2 (q1) , q1, p

m
2 (q1) , q

m
2 (q1)

)
and v (q1) = π1 (P (k1) , k1, p

m
2 (q1) , q

m
2 (q1)). Hence,

q1 determines a Nash equilibrium profile if and only if u(q1) ≥ v(q1). It can be ver-

ified that u and v are continuous, and therefore, set H = {q ∈ [0, k1] | u(q) ≥ v(q)}

is a closed set containing [q̃, k1].

Example 5.1. Let the demand curve take the form of D(p) = 1 − p. From the

demand curve, the following functions can be directly derived: pm2 (q1) = 1−q1−c
2

,

qm2 (q1) = 1−q1+c
2

, while pd2(q1) =
(pm2 (q1)−c)qm2 (q1)

k2
+ c = (1−q1−3c)(1−q1+c)+4ck2

4k2
.

For the illustration of the first Nash equilibrium profile mentioned in the state-

ment let k1 = 0.5, k2 = 0.4 and c = 0.1. Now the following values can be calculated

directly from the exogenously given data: pc = 0.1, pm2 (k1) = 0.3, qm2 (k1) = 0.2,

pd2(k1) = 0.2.

The first Nash equilibrium profile mentioned in the statement is realized with

the above values as follows:

(p∗1, q
∗
1, p
∗
2, q
∗
2) =

(
p∗1, q

∗
1,

1− q∗1 − c
2

,
1− q1 + c

2

)
where q∗1 ∈ [0, 0.5] and p∗1 ∈ [0, 0.2].

In particular, if q∗1 = k1 = 0.5 and p∗1 = pd2(k1) = 0.2, then p∗2 = 0.3 and q∗2 = 0.2

(see Figure 7 below). Calculating the social welfare (the sum of dark gray and light

gray areas in Figure 7) and the private firm’s profit (the light gray area indicated

by π2), we obtain π1 = 0.435 and π2 = 0.04. It is easy to check that for this profile

the necessary Condition (14) is satisfied.
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Figure 7: Equilibrium - Example 5.1 (both firms have positive output)

Clearly, p∗1 and q∗1 can vary within the given ranges. Reducing p∗1 results in lower

producer surplus for the public firm, but equally large increase in consumer surplus.

Thus, payoffs remain the same. Altering q∗1 replaces the residual demand curve, and

results in varying payoffs. The possible payoff intervals can also be calculated for

the example: π1 ∈ [0.28, 0.435] and π2 ∈ [0.04, 0.2].

The second Nash equilibrium profile mentioned in the statement can also oc-

cur with the given demand function, capacities and unit cost. It can be checked

easily that π1(p
′
2, 0, p

′
2, q
′
2) ≥ π1(P (k1), k1, p

′
2, q
′
2). In what follows (p∗1, q

∗
1, p
∗
2, q
∗
2) =

(p1, 0, 0.6, 0.4) is also a Nash-equilibrium profile, where the private firm sells its en-

tire capacity at P (k2) price and the public firm does not enter the market (i.e. it can

choose any price level to its zero output). The payoffs are π1 = 0.28 and π2 = 0.2.

In case pM > P (k2), the private firm acts as a monopolist in the latter equilib-

rium. By changing the capacities and the unit cost to k1 = 0.1, k2 = 0.8 and c = 0.1

the private firm becomes a monopolist and the equilibrium lies at

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, 0, 0.55, 0.45)

for all p1 ∈ [0, 1]. The payoffs in this case are as follows: π1 = 0.304, while π2 = 0.203.
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5.2.2 Public firm moves first

We continue with the case of public leadership. Here, we have a unique family of

pure-strategy subgame-perfect Nash equilibria, where the public firm produces its

capacity limit at a price not greater than pd2(k1). The private firm serves residual

demand and acts as a monopolist on the residual demand curve, as presented in the

following proposition.

Proposition 5.2 (Public firm moves first). Let Assumptions 5.1-5.3 and p2(k1) >

max{pc, c} be satisfied. Then the set of SPNE prices and quantities are given by

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, k1, p

m
2 (k1) , q

m
2 (k1)) (20)

for any p1 ≤ pd2 (k1).

Proof. First, we determine the best reply BR2 = (p∗2(·, ·), q∗2(·, ·)) of the private firm.

Observe that the private firm’s best response correspondence can be obtained from

the proof of Proposition 5.1. Assuming that q1 > 0,36 BR2(p1, q1) =

{(pm2 (q1), q
m
2 (q1))} if p1 < pd2(q1);

{(pm2 (q1), q
m
2 (q1)) , (p1,min {k2, D(p1)})} if p1 = pd2(q1);

{(p1,min {k2, D(p2)})} if pd2(q1) < p1 ≤ max{P (k2), p
M};{(

max{P (k2), p
M}, D

(
max{P (k2), p

M}
))}

if max{P (k2), p
M} < p1.

Though there are two possible best replies for the private firm to the public firm’s

first-period action
(
pd2(q1), q1

)
, in an SPNE the private firm must respond with

(pm2 (q1), q
m
2 (q1)) because otherwise, there will not be an optimal first-period action

for the public firm. Hence, the public firm maximizes social welfare in the first period

by choosing price p∗1 = pd2(k1) and quantity k1.

Example 5.2. We recall only that simultaneous-move outcome from our example,

which matches the SPNE emerging in case of public leadership. Let the demand

curve take the form of D(p) = 1 − p. the capacities and the unit cost are fixed at

k1 = 0.5, k2 = 0.4 and c = 0.1.

36It is easy to see that if q1 = 0, then BR2(p1, 0) =
(
max{P (k2), pM}, D

(
max{P (k2), pM}

))
.
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Then the actions associated with the only subgame-perfect Nash equilibrium

profile are

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗1, 0.5, 0.3, 0.2) .

where p∗1 ∈ [0, 0.3]. The social welfare and the private firm’s profit are as follows:

π1 = 0.435 and π2 = 0.04.

5.2.3 Private firm moves first

Now we consider the case of private leadership. In this case, there exist two types

of subgame-perfect Nash equilibria. In the first equilibrium profile the private firm

becomes a monopolist up to its capacity limit, while the public firm remains out-

side the market. The second equilibrium family is somewhat more complicated: the

private firm produces on the original demand curve at the highest price level for

which it is still of the public firm’s interest to remain on the residual demand curve

and produce less than it would produce on the original demand curve. The equi-

librium profiles with their necessary conditions are given formally in the following

proposition.

Proposition 5.3 (Private firm moves first). Let Assumptions 5.1-5.3 and p2(k1) >

max{pc, c} be satisfied. If π1(p
′
2, 0, p

′
2, q
′
2) ≥ π1(P (k1), k1, p

′
2, q
′
2), where p′2 =

max{P (k2), p
M} and q′2 = D(max{P (k2), p

M}), then the equilibrium actions of the

firms associated with an SPNE are the following ones

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, 0, p

′
2, q
′
2) , (21)

where p1 ∈ [0, b] can be an arbitrary price. If π1(p
′
2, 0, p

′
2, q
′
2) < π1(P (k1), k1, p

′
2, q
′
2),

then the equilibrium actions of the firms associated with an SPNE are the following

ones:

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, D

r
1(p̃2,min{D(p̃2), k2}), p̃2,min{D(p̃2), k2}) (22)

where p1 ∈ [0, p̃2] and p̃2 =

sup {p2 | π1(p1, Dr
1(p2,min{D(p2), k2}), p2,min{D(p2), k2}) ≥ π1(P (k1), k1, p2,min{D(p2), k2})} .
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In addition, if π1(p
′
2, 0, p

′
2, q
′
2) = π1(P (k1), k1, p

′
2, q
′
2), then both (21) and (22) are

SPNE.

Proof. If π1(p
′
2, 0, p

′
2, q
′
2) ≥ π1(P (k1), k1, p

′
2, q
′
2), then the private firm becomes a mo-

nopolist on the market or sells its entire capacity since this is the best enforce-

able outcome for the private firm. Considering the other case π1(p
′
2, 0, p

′
2, q
′
2) <

π1(P (k1), k1, p
′
2, q
′
2), just like in the previous sequential case, we determine the reac-

tion function of the second mover. In particular, BR1(p2, q2) =

{(p1, Dr
1(p2, q2) | p1 ≤ p2)} if π1(p1, D

r
1(p2, q2), p2, q2) > π1(P (k1), k1, p2, q2);

{(p1, k1) | p1 ≤ P (k1)} if π1(p1, D
r
1(p2, q2), p2, q2) < π1(P (k1), k1, p2, q2);

{(p1, Dr
1(p2, q2) | p1 ≤ p2)}∪

{(p1, k1) | p1 ≤ P (k1)} if π1(p1, D
r
1(p2, q2), p2, q2) = π1(P (k1), k1, p2, q2);

Concerning the reaction function given by BR1, the private firm maximizes its profit

in the first period by selling its entire capacity k2 at the highest price p2, at which

it is still not worth for the public firm to sell its entire capacity k1.

Example 5.3. Let the demand function again be D(p) = 1−p. To illustrate the case

where π1(p
′
2, 0, p

′
2, q
′
2) ≥ π1(P (k1), k1, p

′
2, q
′
2), let k1 = 0.5, k2 = 0.4 and c = 0.1.

The following values can be calculated directly from the exogenously given data:

pc = 0.1, pM = 0.55, qM = 0.45, P (k2) = 0.6. In what follows, in the first step the

private firm will set p∗2 = P (k2) = 0.6 and q∗2 = k2 = 0.4. It can be checked that for

these values the public firm has no incentive to enter the market in the second step.

Thus, the actions associated with the SPNE in this case is for all p1 ∈ [0, 1]:

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, 0, 0.6, 0.4)

The payoffs in this case are as follows: π1 = 0.28 and π2 = 0.2.

Turning to the case where π1(p
′
2, 0, p

′
2, q
′
2) < π1(P (k1), k1, p

′
2, q
′
2), we fix the ca-

pacities and the unit cost at k1 = 0.6, k2 = 0.3 and c = 0.1. With these values

it can be checked that the public firm will enter the market. Being aware of this,

the private firm sets the highest price level (p̃2) at which it can still sell its entire

capacity so that the public firm has no incentive to undercut the price level set by
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the private firm. In this case p̃2 = 0.487. The public firm will then satisfy residual

demand at p̃2 price level, i.e. q∗1 = 0.213. The public firm can set its price to any

level within [0, 0.487]. To sum up, the actions associated with the SPNE in this case

are as follows:

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, 0.213, 0.487, 0.4) ,

where p1 ∈ 0, 0.487. The payoffs are π1 = 0.36 and π2 = 0.116.

5.3 The weak private firm case

The main assumption of the case: p1(k2) > pc ≥ p2(k1) > c. We begin the analysis

with the following lemma which dictates that the private firm does not intend to set

any price below the market clearing price.

Lemma 5.3. Assume that Assumptions 5.1-5.3 and p1(k2) > pc ≥ p2(k1) > c

hold true. Given any strategy (p1, q1) of the public firm, the private firm’s strategies

(p2, q2) with price level p2 < pc and any quantity q2 > 0 are strictly dominated, for

instance by a strategy with p2 = pc and q2 > 0, in all three possible orderings.

Proof. If p2 ≤ pc, then the private firm can sell its entire capacity, independently

from the public firm’s strategy. Clearly, given any (p1, q1) and q2 > 0, replacing the

private firm’s price level by p2 = pc, π2 increases, thus, the private firm’s strategy

with the lower price level becomes strictly dominated.

5.3.1 Simultaneous moves

Here, we have two main types of subgame perfect Nash equilibria. The first type

is similar to that of the strong private firm - private leadership case, that is, the

private firm sets the highest price level at which it can still produce on the original

demand curve. as a particular case of this equilibrium, clearing the market may

emerge. The second type contains profiles for which the private firm is a monopolist

on the original demand curve.
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Proposition 5.4 (Simultaneous moves). Assume that p1(k2) > pc ≥ p2(k1) > c and

Assumptions 5.1-5.3 hold. A strategy profile

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, Dr

1(p̂,min {k2, D(p̂)}) , p̂,min {k2, D(p̂)}) (23)

where p∗ ∈ [0, p̂], defines a Nash equilibrium family in pure strategies if and only if

all of the following conditions hold:

max{pM , P (k2)} ≥ p̂ ≥ pm2 (q∗1) 37 (24)

and38

π1(p
c, k1, p̂,min {k2, D(p̂)}) ≤ π1(p

∗,min{k1, Dr
1(p̂,min {k2, D(p̂)})}, p̂,min {k2, D(p̂)}).

(25)

In particular, if p̂ = pc, then

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, k1, p

c, k2) (26)

is a Nash equilibrium. Moreover, if π1(p
′
2, 0, p

′
2, q
′
2) ≥ π1(P (k1), k1, p

′
2, q
′
2), where p′2 =

max{P (k2), p
M} and q′2 = D(max{P (k2), p

M}), then for all p1 ∈ [0, b]

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, 0, p

′
2, q
′
2) (27)

are also equilibrium profiles. Finally, no other equilibrium exists in pure strategies.

Proof. Assume that (p∗1, q
∗
1, p
∗
2, q
∗
2) is an arbitrary equilibrium profile. It can be ver-

ified that q∗1 + q∗2 = D(p′), where p′ stands for the highest price from p∗1, p
∗
2 at which

at least one firm sells a positive amount. Like in the analysis of the strong private

firm case, we divide our analysis into three subcases. In the first case (Case A) we

have p∗1 = p∗2, in the second one (Case B) p∗1 > p∗2 holds, while in the remaining case

we have p∗1 < p∗2 (Case C).

Case A: By Lemma 5.3 we have p∗1 = p∗2 ≥ pc. First, we verify that the

strategy profile given by (23) is a Nash-equilibrium profile for any p̂ ≥ pc if

37Note that pm2 (q∗1) ≥ P (q∗1) ≥ pc.
38We note that from the definition of pm2 (·), max{pM , P (k2)} = pm2 (0).

70



(24) and (25) are satisfied. Hence, firms set quantities q∗2 = min {k2, D(p̂)} and

q∗1 = Dr
1(p̂,min {k2, D(p̂)}). By the second inequality in (24), the private firm has no

incentive to increase its price. If D(p̂) ≥ k2, then decreasing p2 is trivially irrational

for the private firm that already sells its entire capacity. In case k2 > D(p̂), we

obtain a particular equilibrium (p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, 0, p̂, D(p̂)), which means that

the public firm is not present on the market, and therefore, by the first inequality

in (24) the private firm has no incentive to decrease its price.

Now we consider the public firm’s actions. Clearly, increasing the public firm’s

price would not increase, but in fact reduce total surplus if q∗1 > 0. Moreover,

prices p∗1 = p∗2 = pc with quantities q∗1 = Dr
1(p̂,min {k2, D(pc)}) = k1 and q∗2 =

min {k2, D(pc)} = k2 would result in the best possible outcome for the public firm.

Hence, we still have to investigate the effect of a potential price decrease by the

public firm in the case of p∗1 = p∗2 > pc. If the public firm reduces its price without

increasing its quantity, obviously total surplus cannot increase. To analyze the case in

which the public firm decreases its price and increases its quantity at the same time,

observe that the sum of consumer surplus and the two firms’ revenues (which equals

π1(p1, q1, p2, q2) + c(q1 + q2)) is only a function of the highest price at which sales are

still positive. Therefore, total surplus is strictly decreasing in q1 on (q∗1, D(p̂)) and

strictly increasing in q1 on [D(p̂), k1] for a given p1 < p∗1. To see the latter statement

notice that within [D(p̂), k1] the superfluous production of the private firm remains

the same, that is its entire production. Hence, we have shown that the benchmark

action of the public firm in order to determine whether it has an incentive to reduce

its price is (pc, k1), which is in line with Condition (25).

Turning to the case where Condition (24) is violated, we show that (23) cannot

be a Nash-equilibrium profile. If p̂ < pm2 (q∗1) the private firm will increase its price

until pm2 (q1) to become a monopolist on the residual demand curve, where we are

not in Case A of our analysis any more. Note that any p∗1 ∈ [0, p̂] results in the

same outcome, but if p∗1 6= p∗2, we are again either in Case B or in Case C. If

max{pM , P (k2)} < p̂, the public firm will switch to price max{pM , P (k2)}.

As a special case of p̂ = pc, clearing the market is always a Nash equilibrium
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for the following reason: by pc ≥ p2(k1) the private firm cannot be better off by

unilaterally increasing its price even by reducing its quantity, accordingly. Note that

the market-clearing equilibrium ensures that an equilibrium in pure strategies always

exists in the weak private firm case.

Now we show that no other equilibrium exists given that p∗1 = p∗2 ≥ pc. As-

sume that q∗2 < min {k2, D(p∗1)}. In such cases the private firm gets better off by

slightly undercutting p∗1 and selling q∗2 = min {k2, D(p∗1 − ε)}. Now assume that

q∗1 6= Dr
1(p
∗
1,min {k2, D(p∗1)}. If the left hand side is larger, then there is superfluous

production that results in welfare loss; if the left hand side is smaller, then there is

a loss in consumer surplus. Thus, there are no more equlibria, if p∗1 = p∗2.

Case B: By Lemma 5.3 p∗1 > p∗2 ≥ pc. By decreasing p1 to p1 = p∗2, the public firm

can always increase social welfare, unless q∗1 = 0. In the extreme case of q∗1 = 0, p∗1

can obviously be any nonnegative amount. Besides, if k2 ≥ D(p∗2) and Condition (27)

holds, we arrive at the second Nash equilibrium family mentioned in the statement.

If k2 < D(p∗2), then the public firm can increase social welfare by setting price p1 = p∗2

and quantity q∗1 = D(p∗2)− k2.

Case C: Now we have p∗2 > p∗1. As already shown in Case A, this case emerges

in equilibrium if (p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, Dr

1(p̂,min {k2, D(p̂)}) , p̂,min {k2, D(p̂)}), and

p∗1 < p̂, that is, we have the Nash equilibrium mentioned in the statement. It remains

to show that there is no other possible equilibrium in this case. If p∗2 > p∗1, then

p∗2 = pm2 (q∗1) and q∗2 = Dr
2(p
∗
2, q
∗
1) = qm2 (q∗1) must hold, since otherwise the private

firm’s payoff would be strictly lower. The arguments for this are analogous to those

mentioned in the strong private firm case.39 From pc > p2(k1) we have that q2(k1) >

k2. Thus, due to the fact that q2(·) is increasing40 in q1, for any q1 < k1, q2(q1) >

q2(k1) > k2. In what follows, q∗2 must equal k2. It is easy to see that for this case the

39In particular, if the private firm sets a price not greater than p∗1, we are not anymore in Case

C; if q∗2 > Dr
2(p∗2, q

∗
1), then the private firm produces a superfluous amount; if q∗2 < Dr

2(p∗2, q
∗
1),

then the private firm could still sell more than q∗2 ; and if q∗2 = Dr
2(p∗2, q

∗
1), then the private firm will

choose a price-quantity pair maximizing profits with respect to its residual demand curve Dr
2(·, q∗1).

40Because p2(·) is a decreasing function in q1
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only possible type of equilibrium is characterized in the statement.

Example 5.4. Let the demand curve take the form of D(p) = 1 − p. The following

capacity and unit cost levels lead to the weak private firm case: k1 = 0.9, k2 = 0.02,

c = 0.01. From these exogenously given values we can determine pc = 0.08 and

p̃2 = 0.102. In this case we have several Nash equilibrium profiles, which are not

payoff equivalent. For all p̂ ∈ [0.08, 0.102] and any p1 ∈ [0, p̂],

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, 0.98− p̂, p̂, 0.02)

defines the family of Nash equilibrium profiles. In particular, if p̂ = pc, then

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, 0.9, 0.08, 0.02)

and the social welfare associated to the market clearing equilibrium is π1 = 0.4876,

while the private firm’s profit is π2 = 0.0014.

As another equilibrium example, where the firms do not choose the market clear-

ing price, let p̂ = 0.102 (see Figure 8 below). Then the equilibrium profile is

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, 0.878, 0.102, 0.02),

the corresponding payoffs are π1 = 0.4858 (the sum of dark and light gray areas)

and π2 = 0.0018 (the light gray area indicated by π2).
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Figure 8: Equilibrium - Example 5.4 (both firms have positive output)

Clearly, for this equilibrium family π2(·) is increasing in p̂, while π1(·) is de-

creasing in p̂. The payoff intervals can also be calculated, in particular, π1 ∈

[0.4858, 0.4876], π2 ∈ [0.0014, 0.0018]

5.3.2 Public firm moves first

The case of public leadership is somewhat simpler. Namely, the firms clear the market

in the only equilibrium family41. The results of public leadership are collected in the

following proposition.

Proposition 5.5 (Public leadership). Assume that p1(k2) > pc ≥ p2(k1) > c and

Assumptions 5.1-5.3 hold. Then the prices and quantities associated with the pure

strategy SPNE are

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, k1, p

c, k2)

where p∗ ∈ [0, P (k1)].

41We speak about family, because the p∗1 can vary within a given range

74



Proof. We determine the reaction function BR2 = (p∗2(·, ·), q∗2(·, ·)) of the private

firm. Like in the strong private firm case, the private firm’s best response corre-

spondence can be obtained from the proof of Proposition 5.4, the corresponding

simultaneous case.

BR2(p1, q1) =

 (p1,min {k2, Dr
2(p1, q1)}) if pm2 (q1) ≤ p1;

(pm2 (q1), q
m
2 (q1)) if pm2 (q1) > p1.

(28)

The reaction function dictates that the public firm maximizes social welfare in

the first period by choosing any price level p∗1 ≤ pc and quantity k1.

Example 5.5. We recall the example outcome from the simultaneous case that

matches the actions associated to the only Nash-equilibrium in public leadership.

Let the demand curve take the form of D(p) = 1 − p. The capacities and the unit

cost are fixed at k1 = 0.9, k2 = 0.02 and c = 0.01. Then pc = 0.08. We fix the share

of the state in the mixed firm at α = 0.5. The public firm will sell its entire capacity

at a p∗1 ∈ [0, pc] market clearing price. The private firm will react with the market

clearing price, and will also sell its entire capacity. This ensures the highest possible

social welfare in this setting. Thus, for all p1 ∈ [0, 0.08] the actions associated with

the only SPNE are

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, 0.9, 0.08, 0.02),

where the corresponding payoffs are π1 = 0.4876 and π2 = 0.0014.

5.3.3 Private firm moves first

Finally, we consider the case of private leadership. The only pure-strategy equilib-

rium family of this case also appears in the simultaneous-moves subcase of the weak

private firm case. Namely, the private firm produces on the original demand curve

at the highest possible price level for which it is still of the public firm’s interest

to allow the private firm to do so. The equilibrium family is given formally in the

following proposition.
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Proposition 5.6 (Private leadership). Assume that p1(k2) > pc ≥ p2(k1) > c and

Assumptions 5.1-5.3 hold. Then the prices and quantities associated with the pure

strategy SPNE are

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, Dr

1(p̂,min {k2, D(p̂)}), p̂,min {k2, D(p̂)})

where p∗ ∈ [0, p̂], if and only if p̂ ≥ pc and p∗2 = p̂ is the highest price level for which

π1(p
c, k1, p̂,min {k2, D(p̂)}) ≤ π1(p

∗, Dr
1(p̂,min {k2, D(p̂)}), p̂,min {k2, D(p̂)}) (29)

Proof. We determine the reaction function BR1 = (p∗1(·, ·), q∗1(·, ·)) of the public

firm. The public firm’s best response correspondence can also be obtained from the

proof of Proposition 5.4, the corresponding simultaneous-move case.

BR1(p2, q2) =

 (p∗, k1) if Condition (29) does not hold;

(p2, D
r
1(p2, q2)) if Condition (29) holds.

(30)

where p∗ ∈ [0, p̂].

The reaction function prescribes that the private firm maximizes its profit in the

first period by choosing the highest possible price level, where the public firm is

still better off (i.e. the social surplus is higher) by reacting with the same price and

serving residual demand, than by undercutting p2.
42 A highest price level p̂ exists

for every demand function, because if both firms choose price level pc and sell their

entire capacities (i.e. they clear the market), then Condition (29) always holds.

Example 5.6. We recall an example outcome from the simultaneous-move case. Let

the demand curve take the form of D(p) = 1 − p. the capacities and the unit cost

are fixed at k1 = 0.9, k2 = 0.02 and c = 0.01. Then p̃2 = 0.102. The private firm

will choose p∗2 = p̃2 and sells its entire capacity. The public firm will serve residual

demand as it is not worth undercutting the private firm’s price which would cause

superfluous production. Thus, for all p1 ∈ [0, 0.102] the actions associated with the

only SPNE are

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, 0.878, 0.102, 0.02),

42Depending on the parameters, it can also occur that the public firm has zero output on the

residual demand curve.
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where the corresponding payoffs are π1 = 0.4858 and π2 = 0.0018.

5.4 The high unit cost case

The main assumption of this case is c ≥ P (k1). For the proof of this case being

disjoint from the previous two cases, we refer the reader to Section 5.1.

5.4.1 Simultaneous moves

In this subcase we have three types of pure-strategy Nash equilibria. The first type

consists of profiles where the private firm produces on the original demand curve at

the highest possible price level. In the second type, the public firm produces at its

capacity limit, while the private firm does not enter the market. Finally, in the third

type, the private firm acts as a monopolist on the residual demand curve.

Proposition 5.7 (Simultaneous moves). Assume that c ≥ P (k1) and Assumptions

5.1-5.3 hold. A strategy profile NE1

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, Dr

1(p̂,min {k2, D(p̂)}) , p̂,min {k2, D(p̂)})

where p∗ ∈ [0, p̂], defines a Nash equilibrium family in pure strategies if and only if

all of the following conditions hold:

p̂ > c (31)

max{pM , P (k2)} ≥ p̂ (32)

p̂ ≥ pm2 (q∗1) 43 (33)

π1(0, k1, p̂,min {k2, D(p̂)}) ≤ π1(p
∗, Dr

1(p̂,min {k2, D(p̂)}), p̂,min {k2, D(p̂)}) (34)

A strategy profile NE2

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, k1, p

∗
2, 0)

43Such a p̂ exists because max{pM , P (k2)} = pm2 (0) > c, and thus, there exist an r for which

pm2 (r) = c. In particular, if q∗1 ∈ [0, r], Conditions 32 and 33 are satisfied.
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where p∗ ∈ [0, P (k1)], and p∗2 can be any nonnegative amount, also defines a Nash

equilibrium family. Moreover, a strategy profile NE3

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗1, q

∗
1, p

m
2 (q∗1) , qm2 (q∗1))

is for a quantity q∗1 ∈ [0, k1] and for any price p∗1 ∈
[
0, pd2 (q∗1)

]
a Nash-equilibrium

in pure strategies if and only if all of the following conditions hold:

P (q∗1) > c (35)

π1(0, k1, p
m
2 (q∗1) , qm2 (q∗1)) ≤ π1(p

∗
1, q
∗
1, p

m
2 (q∗1) , qm2 (q∗1)) (36)

Finally, no other equilibrium exists in pure strategies.

Proof. Assume that (p∗1, q
∗
1, p
∗
2, q
∗
2) is an arbitrary equilibrium profile. We divide our

analysis again into two subcases. In the first case (Case A) we have p∗1 ≥ p∗2, while

in the second case we have p∗1 < p∗2 (Case C). Separated from the two cases, we show

that no other equilibrium profiles exist in pure strategies.

Case A:

Trivially, the private firm will not set its price below the unit cost, unless its

output is zero. For q∗2 = 0 the only possible equilibrium is characterized in NE2.

For any other case, p∗1 ≥ p∗2 ≥ c holds in Case A. Together with quantities q∗2 =

min {k2, D(p̂)} and q∗1 = Dr
1(p̂,min {k2, D(p̂)}) this is a Nash-equilibrium profile

for any p̂ ≥ c, if Conditions (31) - (34) hold. By Condition (33), the private firm

has no incentive to increase its price. If D(p̂) ≥ k2, then decreasing p2 is trivially

irrational for the private firm that sells its entire capacity in this setting. In case

k2 > D(p̂), we obtain a particular equilibrium (p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, 0, p̂, D(p̂)), which

means that the public firm is not present on the market. As far as the public firm’s

actions are concerned, if and only if condition (34) holds, then by reducing p1 or

increasing q1 the public firm causes less gain in social welfare, than the loss caused by

the superfluous production of the private firm. Turning to the case where condition

(33) does not hold, the private firm will increase its price until pm2 (q1) to become

a monopolist on the residual demand curve, where we are not in Case A in our
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analysis any more. Note that any p∗1 ∈ [0, p̂] results in the same outcome, but if

p∗1 < p∗2, we are again in Case B. Turning to the second equilibrium family, we

remain in Case A if p∗1 ≥ p∗2 and (p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗1, k1, p

∗
2, 0). It is easy to see

that the private firm has no incentive to enter the market and the public firm

has no incentive to reduce its production. As far as the third equilibrium type is

concerned, if (p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗1, q

∗
1, p

m
2 (q∗1) , qm2 (q∗1)), we cannot have p∗1 > p∗2. If

p∗1 = pm2 (q∗1) > c, then it is of the private firm’s interest to undercut the public firm’s

price. If p∗1 < pm2 (q∗1), we are in Case B.

Case B:

Now we have p∗2 > p∗1. This case may emerge in equilibrium if (p∗1, q
∗
1, p
∗
2, q
∗
2) =

(p∗, Dr
1(p̂,min {k2, D(p̂)}) , p̂,min {k2, D(p̂)}), that is, we have the first Nash equilib-

rium family (NE1) mentioned in the statement, and p∗1 < p̂. Besides, if p1 ∈ [0, P (k1)]

and q1 = k1, together with p2 > p1 and q2 = 0 we also obtain a Nash equilibrium pro-

file (NE2), where the private firm is not present on the market. Here, the private firm

cannot realize a positive profit by entering the market. Turning to the case where the

private firm is a profit-maximizer on the residual demand curve, if Conditions (35)

- (36) are satisfied, and p∗1 < pm2 (q∗1), then (p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗1, q

∗
1, p

m
2 (q∗1) , qm2 (q∗1))

is an equilibrium profile (NE3), where p∗1 < p∗2.

Now we show that no other equilibrium exists in pure strategies. Firstly, given

p∗1 = p∗2, assume that q∗2 < min {k2, D(p̂)}. In such cases the private firm gets better

off by slightly undercutting p1 and selling q∗2 = min {k2, D(p̂)}. Now assume that

q∗1 6= Dr
1(p̂,min {k2, D(p̂)}. If the left hand side is larger, then there is superfluous

production that results in welfare loss; if the left hand side is smaller, then there

is a loss in consumer surplus. Thus, there are no more equilibria, if p∗1 = p∗2. Given

p∗1 > p∗2, the public firm can increase social welfare by decreasing its price, unless the

public firm has zero output, which is a particular case of the equilibrium family NE1.

It remains to show that there is no other possible equilibrium in case p∗2 > p∗1. Here,

we may arrive at three possible equilibria mentioned in the statement. Provided that

the private firm’s output is zero (q∗2 = 0), we can only arrive at Nash equilibrium

family NE2, since in this case q∗1 = k1 must hold, otherwise the private firm could
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raise its profit by entering the market. If q∗2 6= 0, then the private firm produces either

on the residual demand curve at a residual profit-maximizing price (i.e. p∗2 = pm2 (q∗1),

that is equilibrium family NE3),
44, or the private firm determines the highest price

level at which it still remains on the original demand curve45 (that is, p∗2 = p̂). Here,

we can only have an NE1 type equilibrium, since the private firm - producing on

the original demand curve - will not produce less than min {k2, D(p̂)}. Thus, there

are no more equilibria given p∗2 > p∗1.

Example 5.7. Let the demand curve take the form of D(p) = 1 − p. The following

capacity and unit cost levels lead to the high unit cost case: k1 = 0.5, k2 = 0.1,

c = 0.6.

We give examples to the equilibria in the order they are listed in the statement.

Firstly, from these exogenously given values we can calculate the interval where

p̂ can be taken from, leading to Nash equilibria which are not payoff equivalent:

p̂ ∈ [0.6, 0.8]. We can choose p̂ = 0.8 (see Figure 9). This leads to the following

values: p∗1 ∈ [0, 0.8]; q∗1 = 0.1; p∗2 = 0.8; q∗2 = 0.1. In this case π1 = 0.06 (sum of dark

and light gray areas); π2 = 0.04 (light gray area indicated by π2).

44Given p∗2 = pm2 (q∗1) and q∗2 = Dr
2(p∗2, q

∗
1) = qm2 (q∗1) must hold, since otherwise the private firm’s

payoff would be strictly lower. In particular, if the private firm sets a price not greater than p∗1, we

are not anymore in Case B; if q∗2 > Dr
2(p∗2, q

∗
1), then the private firm produces a superfluous amount;

if q∗2 < Dr
2(p∗2, q

∗
1), then the private firm could still sell more than q∗2 ; and if q∗2 = Dr

2(p∗2, q
∗
1), then

the private firm will chooses a price-quantity pair maximizing profits with respect to its residual

demand curve Dr
2(·, q∗1).

45i.e. the public firm has no interest in generating superfluous production at p̂ price level
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Figure 9: Equilibrium - Example 5.7 (both firms have positive output - case 1)

Depending on p̂, profit levels can vary in the following intervals: π1 ∈ [0.06, 0.08]

and π2 ∈ [0, 0.04].

Turning to the second equilibrium type, where the private firm is not present on

the market, we obtain p∗1 ∈ [0, 0.5]; q∗1 = 0.5; p∗2 ∈ R; q∗2 = 0. Profit levels are as

follows: π1 = 0.08; π2 = 0.

Finally, for the illustration of the third equilibrium we have that any q1 ∈ [0, k1]

leads to a NEP. Let us fix q1 = 0.3. Now pm2 (0.3) = 0.65 an pd2(0.3) = 0.325.

Thus, p∗1 ∈ [0, 0.325]; q∗1 = 0.3; p∗2 = 0.65; q∗2 = 0.05. In this case, π1 = 0.0787

and π2 = 0.0013. Depending on q1, profit levels can vary in the following intervals:

π1 ∈ [0.06, 0.08] and π2 ∈ [0, 0.04] (see Figure 10). 46

46We note that here p∗1 < c, still, it is of the public firms interest to produce a positive amount,

as this action leads to a positive change in consumer surplus. This is the reason why there is no

producer surplus indicated on the left-hand-side of Figure 10.
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Figure 10: Equilibrium - Example 5.7 (both firms have positive output - case 2)

5.4.2 Public firm moves first

In the high unit cost case with public leadership we obtain that the private firm

does not enter the market, while the public firm’s output equals its capacity. This

result is formalized in the following proposition.

Proposition 5.8 (Public leadership). Assume that c > P (k1) and Assumptions

5.1-5.3 hold. Then the prices and quantities associated with the pure strategy SPNE

are

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, k1, p

∗
2, 0)

where p∗ ∈ [0, P (k1)] and p∗2 can be any nonnegative amount.

Proof. We determine the reaction function BR2 = (p∗2(·, ·), q∗2(·, ·)) of the private

firm. The private firm’s best response correspondence can be obtained from the

proof of Proposition 5.7, the corresponding simultaneous case.

BR2(p1, q1) =


(p, 0) if q1 = k1;

(p1,min {k2, Dr
2(p1, q1)}) if q1 < k1 and pm2 (q1) ≤ p1.

(pm2 (q1), q
m
2 (q1)) if q1 < k1 and pm2 (q1) > p1.

(37)

The reaction function dictates that the public firm maximizes social welfare in the

first period by choosing any price level p∗ ∈ [0, P (k1)] and quantity k1.
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Example 5.8. Let the demand curve take the form of D(p) = 1 − p. We recall an

outcome from the simultaneous case with the exogenous values k1 = 0.5; k2 = 0.1;

c = 0.6. The private firm is not present on the market, we obtain p∗1 ∈ [0, 0.5];

q∗1 = 0.5; p∗2 ∈ R; q∗2 = 0. Profit levels are as follows: π1 = 0.08; π2 = 0.

5.4.3 Private firm moves first

Finally, we consider the case of private leadership. Here, in equilibrium, the private

firm chooses the highest price level at which it can still produce on the original

demand curve. However, it can occur that no such price level exists. In the latter

case, the private firm does not enter the market and the public firm produces its

capacity.

Proposition 5.9 (Private leadership). Assume that c ≥ P (k1) and Assumptions

5.1-5.3 hold. Then the prices and quantities associated with the pure strategy SPNE

are

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, Dr

1(p̂,min {k2, D(p̂)}), p̂,min {k2, D(p̂)})

where p∗ ∈ [0, p̂], if and only if max{pM ;P (k2)} > c and p∗2 = p̂ is the highest price

level, where

π1(0, k1, p2,min{k2, D(p2)}) ≤ π1(p
∗, Dr

1(p2,min{k2, D(p2)}), p2,min {k2, D(p2)})

(38)

In the case no p̂ price level exists that satisfies condition (38), then the prices and

quantities associated with the pure strategy SPNE are

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗, k1, p

∗
2, 0)

where p∗ ∈ [0, P (k1)] and p∗2 can be any nonnegative amount.

Proof. We determine the reaction function BR1 = (p∗1(·, ·), q∗1(·, ·)) of the public

firm. The public firm’s best response correspondence can also be obtained from the
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proof of Proposition 5.7, the corresponding simultaneous case.

BR1(p2, q2) =

 (p∗, k1) if Condition (38) does not hold;

(p2, D
r
1(p2, q2)) if Condition (38) holds.

(39)

where p∗ ∈ [0, p̂].

The reaction function dictates that the private firm maximizes its profit in the

first period by choosing the highest possible price level, where the public firm is

still better off (i.e. the social welfare is higher) by reacting with the same or lower

price and serving residual demand, than by undercutting p2 and selling its entire

capacity. A highest price level p̂, however, may not exist for every demand function

and cost level. In case no such p̂ exists, the private firm does not enter the market,

because otherwise the public firm would undercut the private firm’s price, resulting

in a negative private profit.

Example 5.9. Let the demand curve remain D(p) = 1− p, while the capacities and

the unit costs are fixed again at k1 = 0.5, k2 = 0.1, c = 0.6.

It can be calculated that p̂ = 0.8. This leads us to the following values: p∗1 ∈

[0, 0.8]; q∗1 = 0.1; p∗2 = 0.8; q∗2 = 0.1. In this case π1 = 0.06; π2 = 0.04.

5.5 Solution of the timing game

When the ordering of moves is not exogenously given, we arrive at the timing game.

The payoffs of the timing game are the equilibrium payoffs of the firms in each

ordering of moves. The equilibrium of the timing game for all the three main cases

can be derived from Propositions 5.1-5.9, by comparing the payoffs of both firms for

different orderings of moves.

Before we give the solution of the timing game, we provide a summary of the

payoffs that were calculated in the numerical examples after Propositions 5.1-5.9,

respectively. Table 6 provides numerical evidence of the solution of the timing game

for the particular demand function D(p) = 1− p, with exogenously given capacities

and cost levels.
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Table 6: Example payoff levels for the demand function D(p) = 1− p

Cases Strong private firm Weak private firm High unit cost

k1 0.5 0.9 0.5

k2 0.4 0.02 0.1

c 0.1 0.01 0.6

π1: Public firm’s equilibrium payoff (social welfare)

sim. moves ∈ [0.28, 0.435] ∈ [0.4858, 0.4876] ∈ [0.06, 0.08]

as leader 0.435 0.4876 0.08

as follower 0.28 0.4858 0.06

π2: Private firm’s equilibrium payoff (profit)

sim. moves ∈ [0.04, 0.2] ∈ [0.0014, 0.0018] ∈ [0, 0.04]

as leader 0.2 0.0018 0.04

as follower 0.04 0.0014 0

It is easy to see from Table 6 that in all the three main cases any firm has

the highest payoff with certainty in the case when it is the first mover. Thus, as

every firm wants to become the leader and there cannot be two leaders at the same

time, the outcome of the timing game is simultaneous moves. The equilibrium of

the timing game for any concave, twice continuously differentiable demand function

is precisely stated in the following proposition.

Proposition 5.10. Assume that Assumptions 5.1-5.3 hold. For any cost and ca-

pacity levels, the equilibrium of the timing game lies at simultaneous moves.

Proof. The result comes directly from Propositions 5.1-5.9.

5.6 Corollaries and concluding remarks of the section

Our main results are collected in the following corollaries. We focus on the differ-

ences between the production-to-order case - which was investigated in earlier work
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- and the production-in-advance case from the point of view of equilibrium strate-

gies, social welfare effects and equilibrium analysis of the timing game. The first

corollary determines the endogenous order of moves in a two-period timing game

of the production-in-advance framework, where both firms can choose between two

periods for setting their prices and quantities.

Corollary 5.1. In the production-in-advance framework both firms want to move

first, therefore the equilibrium of the timing game lies at simultaneous moves.

We turn to the problem of the public firm’s influence on social welfare. One can

make a comparison with the results for the production-to-order case presented in

Balogh and Tasnádi [2012]. In the PIA case the social welfare becomes lower - no

matter what pure-strategy Nash equilibria are played - than that of the PTO case.

This result is stated in the next corollary.

Corollary 5.2. When playing the production-in-advance type of the Bertrand-

Edgeworth game, the equilibrium strategies lead to a decrease in social welfare com-

pared to the PTO case.

The third main result of the section is implicitly given: independently from the

parameters and the orderings of firms’ decisions, the production-in-advance type

mixed Bertrand-Edgeworth duopoly always has at least one pure-strategy Nash

equilibrium. This result remained the same as that in the mixed PTO case. However,

we emphasize that in the case of standard Bertrand-Edgeworth duopolies, there is a

lack of pure-strategy equilibria (see e.g. Deneckere and Kovenock [1992]). We state

the existence of a pure-strategy equilibrium in the third corollary.

Corollary 5.3. We have at least one pure-strategy (subgame-perfect) Nash equilib-

rium in all three analyzed cases and for all three orderings of moves.

We note that it follows directly from the proofs of the present section that the

pure strategy equilibria are not interchangeable, thus, theoretically it is possible that

the firms do not navigate to an equilibrium point even if they try to do so.
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The results concerning pure-strategy Nash equilibria and the timing game are

summarized in the following Table 7.

Table 7: Comparison of the PTO and PIA cases

Production-to-order Production-in-advance

Equilibrium in pure strategies Yes Yes

Timing game equlibrium All possible orderings Simultaneous moves

As far as the public firm’s social welfare effect is concerned, one can make a di-

rect comparison either between the standard and mixed production-to-order cases,

or between the mixed PTO and PIA cases. in both comparisons, it turns out that

the mixed PTO case results in higher social welfare in equilibrium. However, un-

fortunately, we cannot make a direct comparison between the standard and mixed

PIA models, as the mixed equilibrium of the standard model has not yet been char-

acterized and is out of our scope.

The results suggest that it really matters whether a public firm has some influence

in an oligopoly market. Further research directions may include the application of

our model to markets with asymmetric information, partial public ownership, and

oligopolies with more than two firms. One can notice that our assumptions are quite

general in the present section, as well as throughout the dissertation. However, in

order to obtain plausible results in the mentioned topics, more strict assumptions

may be needed.
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6 Semi-mixed Bertrand-Edgeworth duopolies

This section aims at investigating two further models within the field of mixed

Bertrand-Edgeworth duopolies. While in Sections 4 and 5 the share of the state

in the public firm was fixed at 100 % - that is, the public firm had pure public

ownership -, in this section we will allow for mixed public and private ownership

within one firm.

Such oligopolies, where one firm has partial public ownership emerge frequently

on the producer side of real-life markets. We provided several examples in the intro-

ductory section of the dissertation.

Now we focus on the equilibrium analysis of the semi-mixed Bertrand-Edgeworth

duopoly. We will assume that one of the firms is purely private, i.e. it is a profit-

maximizer, while in the other one we allow for a certain share of the state. This will

modify the mixed-ownership firm’s payoff function compared to that of Sections 4

and 5. We aim at finding pure-strategy Nash-equilibrium profiles, solving the timing

game, and analyzing the mixed-ownership47 firm’s impact on social welfare compared

to the cases of Sections 4 and 5.

We will show later on that for these models the pure-strategy equilibrium analysis

becomes simpler, however, the existence of pure-strategy (subgame-perfect) Nash

equilibria cannot be guaranteed.

Both the production-to-order (PTO) case and the production-in-advance (PIA)

framework are discussed in this section, within separate subsections (6.2 and 6.3,

respectively). For the PTO case we wish to emphasize that the results to be presented

in detail were introduced in Tasnádi [2013]. However, as the referred contribution

fits directly into the scope of the present thesis, we will present its results in detail.

As far as the PIA case is concerned, the results are published in Balogh [2014].

As the model assumptions remain the same in Sections 6.2 and 6.3 - apart from

the difference that lies in the PTO and PIA frameworks -, we present the assump-

47From now on, we will refer to the mixed-ownership firm as mixed firm or firm 1, while the

purely private firm remains firm 2.
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tions in Section 6.1, separately from the PTO and PIA cases. The assumptions

to be presented can be simplified for the PTO case, we will indicate the possible

simplifications in Section 6.2.

6.1 Model specification

The demand is given by function D on which we impose the same restrictions as in

the previous sections:

Assumption 6.1. The demand function D intersects the horizontal axis at quantity

a (where a > 0) and the vertical axis at price b. D is strictly decreasing, concave

and twice continuously differentiable on (0, b); moreover, D is right-continuous at 0,

left-continuous at b and D(p) = 0 for all p ≥ b.

We denote by P the inverse demand function. Thus, P (q) = D−1 (q) for 0 < q ≤

a, P (0) = b, and P (q) = 0 for q > a.

On the producer side we now have a mixed firm and a private firm. As mentioned

earlier, we label the public firm with 1 and the private firm with 2. Just like before,

we will also label the two firms by i and j, where i, j ∈ {1, 2} and i 6= j. Let us

denote the public share in the mixed firm by α. We will focus on the cases where

α ∈ (0; 1). Trivially, if α = 1, then we arrive at a pure public firm, while for α = 0

we have a standard duopoly.

Our usual assumptions imposed on the firms’ cost functions are as follows:

Assumption 6.2. The two firms have identical c ∈ (0, b) unit costs up to the

positive capacity constraints k1, k2 respectively.

We shall again denote by pc the market clearing price and by pM the price

set by a monopolist without capacity constraints, i.e. pc = P (k1 + k2) and pM =

arg maxp∈[0,b](p − c)D (p). In what follows p1, p2 ∈ [0, b] and q1, q2 ∈ [0, a] stand for

the prices and quantities set by the firms.

For any firm i and for any quantity qj set by its opponent j we shall denote by

pi(qj) the profit maximizing price on the firms’ residual demand curves Dr
i (p, qj) =
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(D(p)− qj)+, i.e. pi(qj) = arg maxp∈[0,b](p − c)Dr
i (p, qj), where in the definition of

pi(qj) we do not include the capacity constraint of firm i. For notational convenience

we also introduce pmi (qj) as the price level that maximizes profits with respect to the

residual demand curve subject to the capacity constraint of firm i (i.e. the high-price

firm produces the quantity given by its residual demand curve). Clearly, pc, pi and

pmi are well defined whenever c < P (qj) and Assumptions 6.1-6.2 are satisfied. If

c ≥ P (qj), then pi(qj) and pmi (qj) are not unique, as any price pi > P (qj) together

with quantity qi = 0 results in πi = 0 and πi cannot be positive. In other words, any

price pi > P (qj) is profit-maximizing on the residual demand curve. For notational

convenience we define pi(qj) and pmi (qj) by b in case of c ≥ P (qj).

For a given quantity qj we shall denote the inverse residual demand curve of

firm i by Ri(·, qj). It can be checked that Ri(qi, qj) = P (qi + qj) and pmi (qj) =

max{pi(qj), Ri(ki, qj)}. Let qi(qj) = arg maxqi∈[0,a] (Ri (qi, qj)− c) qi and qmi (qj) =

min{qi(qj), ki}. Clearly, qi(qj) = Dr
i (pi(qj), qj) and qmi (qj) = Dr

i (pmi (qj), qj).

Let us denote by pdi (qj) the smallest price for which

(pdi (qj)− c) min
{
ki, D

(
pdi (qj)

)}
= (pmi (qj)− c)qmi (qj),

whenever this equation has a solution. Provided that the private firm has ‘sufficient’

capacity, that is max{pc, c} < pm2 (k1), then if it is a profit-maximizer, it is indifferent

whether serving residual demand at price level pm2 (q1) or selling min{k2, D
(
pd2(q1)

)
}

at the lower price level pd2(q1). Note that if Ri(ki, qj) ≥ pi(qj), then pdi (qj) = pmi (qj).

We have presented in the previous sections that pdi (·) is strictly decreasing over the

region it is defined on and pi(·), qi(·), and pmi (·) are also strictly decreasing over

the region in which the profit maximization problem with respect to the residual

demand curve has an interior solution (i.e. not lying on one of the axes). Moreover,

qmi (·) is strictly decreasing on the region where qmi (qj) < ki, otherwise constant.

We assume again efficient rationing on the market, and thus, the firms’ demands
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equal

∆i (D, p1, q1, p2, q2) =


D (pi) if pi < pj,

Ti(p, q1, q2), if p = pi = pj

(D (pi)− qj)+ if pi > pj,

for all i ∈ {1, 2}, where Ti stands for a tie-breaking rule. We will consider two

sequential-move games (one with the public firm as the first mover and one with the

private firm as the first-mover) and a simultaneous-move game.

Assumption 6.3. If the two firms set the same price, then we assume for the

sequential-move games that the demand is allocated first to the second mover and

for the simultaneous-move game that the demand is allocated in proportion of the

firms’ capacities.

Now we specify the firms’ payoff functions. This is the point where the main

difference lies between mixed and semi-mixed models. We will assume that the

mixed firm’s profit function consists of a weighted sum of total surplus and own

profit, where the weights are given by the share of the state in the firm.

The private firm remains a profit-maximizer, and therefore,

π2(p1, q1, p2, q2) = p2 min {k2,∆2 (D, p1, q1, p2, q2)} − cq2. (40)

The mixed firm aims at maximizing a weighted sum of total surplus and its own

profit, that is,

π1(p1, q1, p2, q2) =(1− α)p1 min{k1,∆1(D, p1, k1, p2, k2)}+

+ α

∫ min{(D(pj)−qi)+,qj}

0

Rj(q, qi)dq+

+ α

∫ min{a,qi}

0

P (q)dq − αc(q1 + q2),

(41)

where 0 ≤ pi ≤ pj ≤ b.

Finally, we introduce the notion ps1(q2) as the payoff maximizing price of the

mixed firm given it serves residual demand48, where the residual demand curve is

48We note that ps1(q2) 6= pm1 (q2), since pm1 (q2) is a pure producer-surplus-maximizing price on

the residual demand curve.
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nothing else but the original demand curve shifted to the left-hand-side by q2 units.

Formally,

ps1(q2) = arg max
p∈[0,b]

(1− α)p1D
r
1(p1) + α

∫ D(p1)

0

P (q)dq. (42)

Now we turn to presenting the results of the PTO case, where the above model

assumptions can be simplified slightly.

6.2 Production-to-order framework

As we have already pointed out in Section 4, the game reduces to a price-setting

game in the PTO case. Therefore some of the definitions presented in Section 6.1

can be simplified: pmi (·), pdi (·) and psi (·) have only one single value, because the firm

producing at the lower price level automatically sells its entire capacity.49 Therefore

pmi (·), pdi (·) and psi (·) can be replaced by pmi (kj), p
d
i (kj) and psi (kj), or simply pmi , pdi

and psi .
50

6.2.1 Characterization of pure-strategy equilibria

In this subsection we present the results of Tasnádi [2013]. We specify the tie-

breaking rule: if the firms set the same price, they share the demand in proportion

of their capacities, that is

∆i (D, p1, q1, p2, q2) =
ki

k1 + k2
D (p) if p = pi = pj (43)

Another important feature of the PTO case is that the unit cost can be nor-

malized to 0, because there are no unsold items. We now state the proposition

concerning the existence and the characterization of pure-strategy Nash-equilibria.

It is established that a pure-strategy Nash equilibrium exists only if both residual

payoff-maximizing price levels are lower than the market clearing price - indepen-

dently from the orderings of moves.

49Except for the extreme case where kj > b, which would mean that the lower-price firm is in

fact not restricted by its capacity.
50We note that the same distinction can be noticed between Sections 4 and 5.
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Proposition 6.1 (Tasnádi, 2013). Under Assumptions 6.1-6.3, the necessary

and sufficient condition for the existence of a pure-strategy Nash equilibrium

in the production-to-order type semi-mixed Bertrand-Edgeworth duopoly is that

max{ps1; pm2 } ≤ pc. Provided that this condition is satisfied, the only pure Nash equi-

librium is

p∗1 = p∗2 = pc. (44)

Proof. First, we show that if a pure equilibrium exists, it cannot be anything else,

but (44). Assume first that p∗1 < p∗2. We consider first the D(p∗1) > k1 case. If

Dr
2(p
∗
2) > 0, then the mixed firm could raise its producer surplus without altering

social welfare, that is, it could increase its payoff. If Dr
2(p
∗
2) ≤ 0, then the private

firm could increase its payoff by setting a lower price level. Now let us consider the

D(p∗1) ≤ k1 case. Then the private firm could realize a positive profit by altering

its price to the lower p∗1, because D(0) = b > k1. Therefore, there is no equilibrium

satisfying p∗1 < p∗2.

We turn to the case of p∗1 > p∗2. First, we note that p∗2 6= 0, because the private

firm has an incentive to set a positive price level. If D(p∗2) > k2, then the private

firm could sell its entire capacity at a higher price level, resulting in a higher profit.

If D(p∗2) ≤ k2, then it is of the mixed firm’s interest to decrease its price below p∗2,

which would result in a higher producer surplus, but no change in social welfare.

Observing the case of p∗1 = p∗2, if p∗1 = p∗2 > pc, then both firms will decrease their

price levels. Price levels below pc are trivially irrational. Given p∗1 = p∗2 = pc, it is

of neither of the firms’ interest to unilaterally raise its price, due to the facts that

max{ps1; pm2 } ≤ pc and that the payoff functions given residual demand are strictly

concave.

On the contrary, if max{ps1; pm2 } > pc, at least one of the firms would unilaterally

raise its price to the residual payoff-maximizing level. This is why there is no pure

equilibrium provided that max{ps1; pm2 } > pc.

This result is rather negative. As we argued in the introduction, the lack of

pure Nash equilibrium makes the applicability of the observed model questionable.
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However, in this case the lack arises only for certain parameter settings.

Tasnádi [2013] extents the analysis to the existence of mixed-strategy Nash equi-

libria and shows - without characterization - that a mixed equilibrium always exists.

The solution of the timing game for the parameter setting where a pure-strategy

equilibrium exists, lies at simultaneous moves, as every ordering of moves results in

the same outcome.

6.2.2 A numerical example

In this subsection we present a numerical example, then we turn to the production-

in-advance framework.

Example 6.1. Let the demand curve take the form of D(p) = 1− p. The capacities

and the unit cost are fixed at k1 = 0.4, k2 = 0.2 and c = 0. We obtain that pc = 0.4.

We fix the share of the state in the mixed firm at α = 0.5. Let us check whether

a pure Nash equilibrium exists. It is easy to calculate that ps1 = 0.4 51, while

pm2 = 0.3. Neither of these two values exceeds pc, the existence condition is therefore

satisfied.

Thus, the firms’ actions associated with the only pure Nash equilibrium are

(p∗1, p
∗
2) = (0.4, 0.4),

where the both firms sell their entire capacities. The calculated payoffs are π1 =

0.5x0.16 + 0.5x0.42 = 0.29 and π2 = 0.08.

The equilibrium price and quantities are illustrated in the following Figure 11.

51The value of ps1 is unique, since the mixed firm’s own producer surplus is included in its payoff

function. Therefore, decreasing the mixed firm’s price would result in less producer surplus, and

although the social welfare would remain the same, the overall payoff would turn lower. We note

that ps1 would equal pm1 provided that firm 1 is also purely private.
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Figure 11: Equilibrium price and quantities - Example 6.1

6.3 Production-in-advance framework

The solution of this case is published in Balogh [2014]. The assumptions of Sec-

tion 6.1 remain valid and cannot be simplified in the production-in-advance case.

There might also be superfluous production, therefore the unit cost level cannot be

normalized to 0.

6.3.1 Characterization of pure-strategy equilibria

When observing the PIA case, the main difference is that the game does not reduce

to a price-setting game. Therefore, both price and production decisions have to be

considered when verifying an equilibrium profile.

We will state in the following proposition that there is only one possible pure-

strategy Nash equilibrium for this case, namely, clearing the market. A necessary

and sufficient condition for the existence is that max{ps1(k2); pm2 (k1)} ≤ pc. The

result matches the one pointed out for the PTO case. In the proof of the proposition

we follow the logic of the PTO case, however, it is somewhat different for the PIA
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case, due to the fact that production decisions are not implicit.

Proposition 6.2. Under Assumptions 6.1-6.3, the necessary and sufficient con-

dition for the existence of a pure-strategy Nash equilibrium in the production-in-

advance type semi-mixed Bertrand-Edgeworth duopoly is that max{ps1(k2); pm2 (k1)} ≤

pc. Provided that this condition is satisfied, the only pure Nash equilibrium is

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (pc, k1, p

c, k2). (45)

Proof. We consider a price profile and a quantity profile for the two firms. An in-

centive for any firm to unilaterally alter either its price or quantity level means

the considered profile is not a pure Nash equilibrium. First, we show that if a pure

equilibrium exists, it cannot be anything else, but 45.

Assume that p∗1 < p∗2. We consider first the D(p∗1) > k1 case. Here, any q1 < k1

is irrational for the mixed firm, as a lower-than-k1 production leads to both less

social welfare and less production surplus. If Dr
2(p
∗
2) > 0, then by setting a slightly

higher price, the mixed firm could raise its producer surplus without altering social

welfare, that is, it could increase its payoff. If Dr
2(p
∗
2) ≤ 0, then the private firm

could increase its payoff by setting a lower price level and entering the market. Now

let us consider the D(p∗1) ≤ k1 case. Then the private firm could realize a positive

profit by altering its price to the lower p∗1, because D(0) = b > k1. Therefore, there

is no equilibrium satisfying p∗1 < p∗2.

We turn to the case of p∗1 > p∗2. First, we note that p∗2 6= 0, because the private firm

has an incentive to set a positive price level to have a positive profit. If D(p∗2) > k2,

then the private firm could sell its entire capacity at a higher price level, resulting

in a higher profit. If D(p∗2) ≤ k2, then it is of the mixed firm’s interest to decrease

its price below p∗2, which would result in a higher (positive) producer surplus, but

no change in social welfare.

Observing the case of p∗1 = p∗2, if p∗1 = p∗2 = p∗ > pc, then D(p∗) < k1 + k2,

therefore, by applying the tie-breaking rule, for any i, q∗i < ki. Thus, both firms will

undercut the other firm’s price level and sell its entire capacity at a slightly lower

price. In firm 1’s case this step would increase both its producer surplus and social
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welfare. Turning to price levels below pc, these are trivially irrational for both firms,

as they could sell their entire capacities at a higher price level, namely pc. Given

p∗1 = p∗2 = pc, it is of neither of the firms’ interest to unilaterally raise its price,

due to the facts that max{ps1(k2); pm2 (k1)} ≤ pc and that the payoff functions given

residual demand are strictly concave. As far as the quantities are concerned, selling

the entire capacities results in the highest possible payoffs for both firms, therefore

q∗1 = k1 and q∗2 = k2 must hold.

Contrary to the existence condition, if max{ps1(k2); pm2 (k1)} > pc, at least one of

the firms would unilaterally raise its price to the residual payoff-maximizing level

and set its quantity as dictated by the residual demand function. This is why there

is no pure equilibrium provided that max{ps1(k2); pm2 (k1)} > pc.

We obtained a similar result to that of the PTO case. Considering the timing

game, the equilibrium lies again at simultaneous moves.

6.3.2 A numerical example

To illustrate the result, we present a numerical example, where the unit cost is

strictly positive.

Example 6.2. We will calculate with the following values and demand function:

D(p) = 1 − p, k1 = 0.3, k2 = 0.2, c = 0.1. We obtain that pc = 0.5. We fix the

share of the state in the mixed firm at α = 0.5. Let us check whether a pure Nash

equilibrium exists. It is easy to calculate that ps1(k2) = 0.5, while pm2 (k1) = 0.4.

Determining ps1(k2) is illustrated below in Figure 12.
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Figure 12: Determining ps1(k2)

Clearly, as the pure producer surplus of the mixed firm has a weight of 0.5 in its

payoff function, ps1(k2) will be the highest price level at which firm 1 can still sell its

entire capacity.

Neither of ps1(k2) and pm2 (k1) exceeds pc, the existence condition is therefore

satisfied.

Thus, the firms’ actions associated with the only pure Nash equilibrium are

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (0.5, 0.3, 0.5, 0.2),

where both firms sell their entire capacities at the market clearing price. The calcu-

lated payoffs are π1 = 0.22 and π2 = 0.08.

We also present a counter-example, where there is a lack of pure-strategy Nash

equilibria. It can easily be verified that if ceteris paribus k1 > 0.7, then the example

does not have a pure Nash equilibrium point any more.

The equilibrium price and quantities are illustrated below in Figure 13.
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Figure 13: Equilibrium price and quantities - Example 6.2

6.4 Corollaries and concluding remarks of the section

We investigated the semi-mixed Bertrand-Edgeworth duopolies with capacity con-

straints. One of the firms was purely private, therefore profit-maximizer, while the

other one was partially owned by the state - we called it the mixed firm. The mixed

ownership structure of the mixed firm was captured in its payoff function, which

was a weighted sum of total welfare and its own profit.

There are several markets in practical life where the state has some interest -

but not entire ownership - in one of the competing firms, providing motivation for

the investigation of semi-mixed models. The model framework used in this section

can be embedded into the framework we have used throughout the thesis.

Our results for the semi-mixed versions are weaker than what we presented in

Sections 4 and 5 where we assumed that one of the competing firms is under pure

public ownership. We investigated both the production-to-order and the production-

in-advance cases. It has turned out that the different frameworks result in similar

outcomes. The results concerning pure equilibria and the timing game are summa-
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rized in corollaries. However, due to the lack of pure equilibria for certain parameter

settings, we cannot state a general result for the social welfare effect of the appear-

ance of a mixed firm.

As the reader might have noticed, the semi-mixed frameworks provided less com-

plicated results concerning pure-strategy Nash equilibria than the mixed frameworks

presented in Sections 4 and 5. A factor lying in the background is as follows. A useful

feature of a purely public firm is that given certain conditions, its price can vary

within a given range, resulting in the same payoff level. Assume that D(p1) = k1.

Then, by setting a lower p′1 < p1 price level, the consumer surplus generated by

firm 1 increases while its producer surplus decreases by the same magnitude. The

aggregate effect results in no change in social welfare. This argument has been used

several times in the proofs of Sections 4 and 5. However, this technique is not valid

for the semi-mixed frameworks, allowing for less pure-strategy equilibria and less

complicated analysis at the same time.

The first corollary of the section considers the existence of pure-strategy Nash

equilibria. The result we obtained is similar to what one can find in Deneckere

and Kovenock [1992], where the purely private firm case is investigated: for certain

parameter settings there exists no pure equilibrium.

Corollary 6.1. The necessary and sufficient condition for the existence of a pure

(subgame-perfect) Nash equilibrium point is that max{ps1(k2); pm2 (k1)} < pc. When-

ever the assumption is satisfied, the only pure equilibrium is clearing the market.

Our second corollary considers the timing game. Assuming endogenous timing,

i.e. endogenous decision of the ordering of moves, we have obtained that for the

parameter settings where we have a pure (SP)NE, it is all the same whether a firm

becomes a leader or a follower.

Corollary 6.2. If the price- (and quantity-) setting game has an equilibrium in pure

strategies, then the equilibria of the timing game lie at all three possible orderings of

moves.
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Further research directions in the field of semi-mixed duopolies might include

extending the results to the more-than-two-firm case. Assuming that any of the

competing firms may have partial public ownership could also be helpful to induce

practical applications. However, it is likely that for certain parameter settings, one

has to face the lack of pure-strategy Nash equilibria.
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7 Conclusion

The dissertation aimed at analyzing firm behavior in the mixed and semi-mixed

Bertrand-Edgeworth duopolies by means of game theory. The main concept we used

throughout the thesis was the most frequently used equilibrium concept, the Nash

equilibrium.

Assuming partial public ownership on the market, we provided a thorough anal-

ysis concerning equilibrium prices and quantities, endogenous timing and social wel-

fare effects. The contribution of the thesis to knowledge is broadening the theory of

Bertrand-Edgeworth models for a better understanding of duopolistic markets with

public ownership.

A mixed duopoly model considers a market situation, where one of the two

competing firms is under pure or partial state ownership. Thus, the state does not

act as an outside regulator on such markets, but as a market participant, it aims

at driving the market to a socially better equilibrium. Therefore, when modelling

mixed duopolies by means of game theory, social welfare appears in the public firm’s

payoff function.

There are several duopoly and oligopoly models with different strengths and fo-

cuses. The first duopol models - the Cournot- and Bertrand-duopolies - were born in

the 19th century, and since then, many directions in improving them have been in-

vestigated in the literature concerning both price-setting and quantity-setting frame-

works. A model that tackles several critics that have been addressed to Cournot-

and Bertrand-type models is Bertrand-Edgeworth duopoly. The main advantage of

this model family is that it can handle the problem of unlimited capacities. On the

other hand, if two private firms compete on the market, we have to face a lack of

pure-strategy Nash equilibria for certain parameter settings, which makes practical

applicability rather difficult.

The theory of duopolies with public ownership was analyzed first by Merrill

and Schneider [1966]. Endogenizing the timing of decisions began later. Endoge-

nous timing in mixed Bertrand-Edgeworth duopolies with capacity constraints was
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investigated in the present dissertation.

We analyzed all together four variants of the mixed Bertrand-Edgeworth model.

The common features of the presented models are as follows:

• There are two firms competing on the market of a homogenous good.

• The decision variables of the firms are both price and quantity.

• The consumer side is given by a market demand function, which is monotone,

strictly deceasing and twice continuously differentiable.

• The two firms cannot produce a higher amount than their respective capacity

constraints.

• Both firms have constant and identical unit costs.

• One of the competing firms has pure private ownership, while there is a certain

share of the state in the other one.

• All the parameters are common knowledge.

The four models can be differentiated either according to the share of the state

in the public firm, or according to the timing of demand satisfaction. We consider

on the one hand, mixed and semi-mixed models, while, on the other hand, we

assume both production-to-order (PTO) and production-in-advance (PIA) frame-

works. PTO means that production takes place only after sales are realized, while

in the PIA framework items are produced before they are sold. In the latter case

there might emerge supplies that cannot be sold (think of the markets of perishable

goods), while the PTO framework lets the game reduce to a price-setting game, as

quantities are obtained by substituting the firms’ price levels into the demand curve.

As far as the timing of decisions is concerned, the two decisions can be made

simultaneously, or sequentially, where the latter variant consists of public leadership

and private leadership. We always took into consideration all three possible orderings

of moves.
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The following Table 8 can be helpful in positioning the four models.

Table 8: Model variants

Models Pure public ownership Limited public ownership

PTO mixed PTO semi-mixed PTO

PIA mixed PIA semi-mixed PIA

Now we provide an overview of the contents of each section, afterwards we sum-

marize the results based on the research questions we stated.

The introductory section stated the overall aim of the thesis as well as its con-

tribution to knowledge. The game-theoretic methodology is clarified and we pro-

vided motivation by recalling real-life oligopolistic markets where public ownership

is present. The key research questions were also presented in Section 1.

Section 2 provided an introduction to the most simple duopolistic models, the

Cournot- and the Bertrand-duopolies. With the aim of reducing the shortcomings

of these classical models, we introduced the Bertrand-Edgeworth competition. By

recalling contributions from the relating literature, we discussed the question of

rationing rules and the existence of pure-strategy Nash equilibria.

Section 3 offered a survey on mixed oligopolies. We introduced the production-

to-order and production-in-advance frameworks and put down the main assumptions

of the four models we discussed.

The formal discussion began in Section 4, where we carried out the analysis of

the mixed PTO model. We gave the formal assumptions of the model and charac-

terized pure-strategy Nash equilibria for the so-called strong-private-firm and weak-

private-firm cases, making a distinction in the private firm’s capability of influencing

equilibrial outcome. We also provided a numerical example to illustrate the results.

The implicit solution of the timing game and the public firm’s social welfare effect

are also discussed. The results of Section 4 are published in Balogh and Tasnádi

[2012].
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Section 5 considered the mixed PIA framework. In this more complicated case

we analyzed separately the strong-private-firm case, the weak-private-firm case and

the high-unit-cost case for all three possible orderings of moves. Numerical examples

are attached to each case. We also presented the solution of the timing game and

analyzed the public firm’s social welfare effect. The results of Section 5 can be found

in Balogh and Tasnádi [2014].

Section 6 observed the two semi-mixed frameworks. The main distinction of this

section compared to the previous ones is that we have not allowed for purely public

ownership in the public firm. On the contrary, we considered a purely private firm

and a so-called mixed firm with an exogenously given (less-than-one) ratio of public

ownership. We recalled the results on equilibrial firm behavior for the PTO case

and presented similar results for the PIA framework. The analyses in Section 6 have

proved to be less complicated than those of Sections 4 and 5, however, the results

were rather negative concerning the existence of pure-strategy Nash equilibrium

profiles. Some results of Section 6 can also be found in Balogh [2014].

We turn to giving our answers to the research questions and stating the main

results of the dissertation.

The first question referred to the existence of pure-strategy Nash equilibria: Un-

der what conditions does a pure-strategy Nash equilbrium in a Bertrand-Edgeworth

duopoly with public ownership exist?

Answering this question is quite straightforward. In Sections 4 and 5 we showed

that at least one pure-strategy Nash equilibrium exists even in the regions, where

the standard version of the game does not have any. In other words: we proved that

replacing one of the private firms to a purely public firm results in the appearance of

at least one pure Nash equilibrium. For the semi-mixed variants the result is not so

positive. We obtained that if the residual payoff-maximizing price levels (which can

be directly calculated from the firms’ capacity constraints and the market demand

function) of any of the firms exceeds the unit cost level, then the game does not

have any pure Nash equilibrium. This result matches that of the standard Bertrand-

Edgeworth duopoly (with purely private firms), therefore the appearance of partial
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public ownership gives no remedy for the lack of pure equilibria.

Based on these arguments, we can state the first main result.

Main result 1. Under quite general conditions for the demand function, there ex-

ists at least one pure-strategy Nash equilibrium in the mixed Bertrand-Edgeworth

duopoly, given any parameter setting. The semi-mixed Bertrand-Edgeworth duopoly

has a pure-strategy Nash equilibrium if and only if an extra condition (see pages 93

and 96) is satisfied for the firms’ capacities.

The solutions of the existence problem were constructive throughout the disser-

tation, which means that we also characterized the pure-strategy Nash equilibrium

points whenever they existed, and thus, answered the following second research

question: Given entire or partial public ownership in one of the competitors in a

Bertrand-Edgeworth duopoly and provided that a pure Nash equilibrium exists,

what are the equilibrium prices and quantities of both firms for the simultaneous

and the sequential versions of the game?

We have had several types of pure Nash equilibria in the previous sections. It

is desirable to provide a brief and transparent summary of the pure equilibria of

the observed models. As there are several model versions and there exist three

timing variants to each setting, we present here only the simultaneous-moves-case

equilibria. The sequential-moves equilibria can be derived from the simultaneous

equilibria in most of the cases. Whenever we obtained multiple equilibria, these

were not interchangeable. All the equilibria are given in the propositions of Sections

4, 5 and 6. In the following list, when necessary, we recall the notations having been

used throughout the dissertation.

1. Mixed PTO. In the strong-private-firm case, the price levels p∗1 ≤ p∗2 = pd2

and p∗1 ≤ pd2, p
∗
2 = pm2 lead to pure equilibria. This means that the private

firm becomes either a monopolist on the residual demand curve, or stays on

the original demand curve and sells its entire capacity. Additionally, under

certain conditions (see page 42) , the private firm can become a monopolist in

equilibrium up to its capacity limit.
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In the weak-private-firm case, firms set the market clearing price in equilib-

rium.

2. Mixed PIA. In the strong-private-firm case, the price and quantity levels

p∗1 ≤ pd2(q
∗
1), q∗1 ∈ [0, k1], p

∗
2 = pm2 (q∗1), q∗2 = qm2 (q∗1) lead to a pure equilibrium

under certain conditions, i.e. the private firm is a monopolist, but only on the

residual demand curve. Additionally, also under certain extra conditions, the

private firm can become a monopolist in equilibrium up to its capacity limit.

In the weak-private-firm case, the private firm will choose in equilibrium the

highest price level at which it can sell its entire capacity provided that the

public firm has no incentive to undercut the private firm’s price. A particular

case of this equilibrium is clearing the market. Besides, under certain condi-

tions, the private firm might become a monopolist up to its capacity limit.

In the high-unit-cost-case, all kinds of equilibria mentioned in the previous two

cases are possible under certain conditions.

3. Semi-mixed PTO. A pure (SP)NE exists if and only if max{ps1; pm2 } ≤ pc.

Provided that the condition is satisfied, the only pure equilibrium is clearing

the market, i.e. p∗1 = p∗2 = pc.

4. Semi-mixed PIA. A pure (SP)NE exists if and only if max{ps1(k2); pm2 (k1)} ≤

pc. Provided that the condition is satisfied, the only pure equilibrium is clearing

the market, i.e. p∗1 = p∗2 = pc; q∗1 = k1; q
∗
2 = k2.

The results on the characterization of pure-strategy Nash equilibria are stated

in the second main conclusion.

Main result 2. The characterization of pure-strategy Nash equilibria depend

strongly on the model assumptions. The five main types of Nash equilibria in the

mixed PTO, mixed PIA, semi-mixed PTO and semi-mixed PIA Bertrand-Edgeworth

duopolies are as follows: (1) the firms clear the market; (2) the private firm is a mo-

nopolist on the residual demand curve; (3) the private firm sells its entire capacity

and earns as much as if it were a monopolist on the residual demand curve; (4) the
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private firm is a monopolist on the market demand curve up to its capacity limit;

(5) the private firm sells its entire capacity at the highest price level, where it is still

not worth for the public firm to undercut the private firm’s price.

Timing of decisions is often endogenized in the recent literature. This means

that the firms play in fact a two-stage game. In the first stage they decide when

to announce their price and production decisions (before the other firm, after the

other firm, or at the same time). In the second stage, firms announce their price and

production levels. The following, third research question focused on the problem of

endogenous timing. Which ordering of decisions emerges if a private and a purely

or partially public firm compete on the market in a Bertrand-Edgeworth duopoly

provided that timing is endogenous?

We obtained different results in the observed models concerning endogenous tim-

ing. In the mixed PTO case all three orderings of moves were timing game equilibria.

Considering the mixed PIA case, both firms were better off if they become the leader,

therefore, the timing game equilibrium lies at simultaneous moves. Finally, in the

semi-mixed cases, we could determine the equilibrium of the timing game only for

parameter settings, where the price- and quantity-setting game had a pure equilib-

rium. For this case all three possible orderings were equilibria of the timing game,

as the ordering of price and quantity decisions did not matter concerning payoffs.

The results on endogenous timing are presented in the third main conclusion.

Main result 3. Timing of decisions does not matter, i.e. the timing game has mul-

tiple equilibria in the production-to-order mixed Bertrand-Edgeworth duopoly. The

same is true for both the production-to-order and the production-in-advance cases

of the semi-mixed Bertrand-Edgeworth duopoly for the parameter settings, where

a pure-strategy Nash equilibrium exists in the price- and production-setting game.

Finally, the timing game equilibrium of the production-in-advance mixed Bertrand-

Edgeworth duopoly lies at simultaneous moves.

When the state enters a duopoly market by acquiring partial or entire ownership

in one of the competing firms, the level of social welfare generated on the market may
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not remain the same, as there is a modification in one firm’s objective function. Our

last research question referred to the change in social welfare the presence of a public

firm may cause: What is the direction and magnitude of social welfare change the

appearance of a purely or partially public firm generates in a Bertrand-Edgeworth

duopoly framework?

Based on the most plausible pure-strategy Nash equilibria of the observed model,

we could derive the public firm’s social welfare effect for the parameter settings,

where we had at least one pure Nash equilibrium. We pointed out that the mixed

PTO case resulted in higher social welfare than the pure PTO case, i.e. the appear-

ance of the public firm made the outcome more competitive, providing a surprising

result. For the mixed PIA case we concluded that the result is less competitive than

that of the mixed PTO case, i.e. the social welfare becomes lower in equilibrium.

As far as the semi-mixed models are concerned, we could conclude for the favorable

parameter-settings, where a pure strategy exists, that the social welfare remains

the same as that of the standard (purely private) case. Consequently, socializing a

certain proportion of a firm does not result in welfare growth, unless the firm gets

under pure public ownership.

The following table provides a summary of the social welfare effects experienced

in the different models wherever a direct comparison could be made.

Table 9: Social welfare effects of public ownership

Public (or mixed) firm’s social welfare effect

Mixed PTO Positive (compared to standard PTO)

Mixed PIA Negative (compared to mixed PTO)

Semi-mixed PTO No effect (compared to standard PTO)

Semi-mixed PIA No effect (compared to standard PIA)

The results concerning social welfare effects are stated in our last main conclu-

sion.
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Main result 4. The production-to-order mixed Bertrand-Edgeworth duopoly envi-

ronment leads to a higher social welfare in equilibrium than the standard version

of the game. In the production-in-advance mixed Bertrand-Edgeworth duopoly the

social welfare becomes lower than that of the production-to-order mixed duopoly. Fi-

nally, the appearance of a partially public firm generates no change in social welfare

in equilibrium provided that there is a pure-strategy Nash equilibrium of the price-

and quantity-setting game.

To sum up the results, the dissertation contributed to the understanding of

duopolies, where public ownership is present on the supplier side of the market.
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- elektronikus jegyzet. Corvinus University of Budapest.

Fraja, G. D., and F. Delbono (1989): “Alternative Strategies of a Public En-

terprise in Oligopoly,” Oxford Economic Papers, 41, 302–311.

Friedman, J. (1983): Oligopoly Theory. Cambridge University Press.

Fudenberg, D., and J. Tirole (1991): Game Theory. MIT Press.

Fujiwara, K. (2007): “Partial Privatization in a Differentiated Mixed Oligopoly,”

Journal of Economics (Zeitschrift für Nationalökonomie), 92, 51–65.

114



Gal-Or, E. (1985): “First Mover and Second Mover Advantages,” International

Economic Review, 26, 649–653.

Gertner, R. H. (1986): Essays in theoretical industrial organization. Mas-

sachusetts Institute of Technology, Ph.D. thesis.

Hamilton, J., and S. Slutsky (1990): “Endogenous Timing in Duopoly Games:

Stackelberg or Cournot Equilibria,” Games and Economic Behavior, 2, 29–46.

Harris, R. G., and E. G. Wiens (1980): “Government enterprise: an instrument

for the internal regulation of industry,” Canadian Journal of Economics, 13, 125–

132.

Hehenkamp, B. (2002): “Sluggish Consumers: An Evolutionary Solution to the

Bertrand Paradox,” Games and Economic Behavior, 40, 44–76.

Hirata, D. (2009): “Asymmetric Bertrand-Edgeworth Oligopoly and Mergers,”

B.E. Journal of Theoretical Economics, 9, ”Article 22”.

Huck, S., W. Müller, and H.-T. Norman (2002): “To Commit or not to

Commit: Endogenous Timing in Experimental Duopoly Markets,” Games and

Economic Behavior, 38, 240–264.

Ino, H., and T. Matsumura (2010): “What role should public enterprises play in

free-entry markets?,” Journal of Economics (Zeitschrift für Nationalökonomie),

101, 213–230.

Jacques, A. (2004): “Endogenous timing in a mixed oligopoly: a forgotten equi-

librium,” Economics Letters, 83, 147–148.

Kreps, D. M., and J. A. Scheinkman (1983): “Quantity Precommitment and

Bertrand Competition Yield Cournot Outcomes,” Bell Journal of Economics, 14,

326–337.

Lepore, J. (2008): “Cournot and BertrandEdgeworth competition when rivals’

costs are unknown,” Economics Letters, 101, 237–240.

115



Levitan, R., and M. Shubik (1972): “Price Duopoly and Capacity Constraints,”

International Economic Review, 13, 111–122.

(1978): “Duopoly with Price and Quantity as Strategic Variables,” Inter-

national Journal of Game Theory, 7, 1–11.

Lu, Y. (2007): “Endogenous timing in a mixed oligopoly: Another forgotten equi-

librium,” Economics Letters, 94, 226–227.

Lu, Y., and S. Poddar (2009): “Endogenous Timing in a Mixed Duopoly and

Private Duopoly - ‘Capacity-then-Quantity’ Game: The Linear Demand Case,”

Australian Economic Papers, 48, 138–150.

Matsumura, T. (1995): “Endogenous Timing in Multi-Stage Duopoly Games,”

Japanese Economic Review, 46, 257–265.

(1998): “Partial privatization in mixed duopoly,” Journal of Public Eco-

nomics, 70, 473–483.

(2002): “Market Instability in a Stackelberg Duopoly,” Journal of Eco-

nomics (Zeitschrift für Nationalökonomie), 75, 199–210.

(2003): “Endogenous role in mixed markets: a two production period

model,” Southern Economic Journal, 70, 403–413.

Matsumura, T., and A. Ogawa (2009): “Payoff Dominance and Risk Dominance

in the Observable Delay Game: A Note,” Journal of Economics (Zeitschrift für

Nationalökonomie), 97, 265–272.

Merrill, W., and N. Schneider (1966): “Government Firms in Oligopoly In-

dustries: A Short-run Analysis,” Quarterly Journal of Economics, 80, 400–412.

Mestelman, S., D. Welland, and D. Welland (1987): “Advance Production

in Posted Offer Markets,” Journal of Economic Behavior and Organization, 8,

249–264.

116



Nash, J. F. (1950): “Equilibrium points in n-person games,” Proceedings of the

National Academy of Sciences of the United States of America, 36.

Novshek, W. (1980): “Cournot Equilibrium with Free Entry,” Review of Economic

Studies, 47, 473–486.

Ogawa, A., and K. Kato (2006): “Price Competition in a Mixed Duopoly,” Eco-

nomics Bulletin, 12, 1–5.

Okuguchi, K., and F. Szidarovszky (1990): The Theory of Oligopoly with Mul-

tiproduct Firms. Springer.

Osborne, M. J., and C. Pitchik (1986): “Price Competition in a Capacity-

Constrained Duopoly,” Journal of Economic Theory, 38, 238–260.

Pal, D. (1996): “Endogenous Stackelberg Equilibria with Identical Firms,” Games

and Economic Behavior, 12, 81–94.

(1998): “Endogenous timing in a mixed oligopoly,” Economics Letters, 61,

181–185.

Phillips, O., D. Menkhaus, and J. Krogmeier (2001): “Production-to-order

or production-to-stock: the Endogenous Choice of Institution in Experimental

Auction Markets,” Journal of Economic Behavior and Organization, 44, 333–345.

Reny, P. (1999): “On the Existence of Pure and Mixed Strategy Nash Equilibria

in Discontinuous Games,” Econometrica, 67, 1029–1056.

Reynolds, S., and B. Wilson (2000): “Bertrand-Edgeworth competition, de-

mand uncertainty, and asymmetric outcomes,” Journal of Economic Theory, 92,

122–141.

Robson, A. (1990): “Duopoly with Endogenous Strategic Timing: Stackelberg Re-

gained,” International Economic Review, 31, 263–274.

117



Sandmo, A. (2011): Economics Evolving: A History of Economic Thought. Prince-

ton University Press, Princeton.

Shubik, M. (1955): “A Comparison of Treatments of a Duopoly Problem, Part II,”

Econometrica, 23, 417–431.

Simon, L. (1987): “Games with Discontinous Payoffs,” Review of Economic Studies,

54, 569–597.

Stackelberg, H. (1934): Marktform und Gleichgewicht. Springer, Wien.
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