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Zusammenfassung

Die Analyse von GroBenunterschieden kann die Koexistenzmechanismen beleuchten
und helfen, Muster von Ansammlungen zu interpretieren. Wir untersuchten
verschiedene Parameter auf ihr Potenzial die Veranderungen der KorpergroBe bei
Carabiden entlang eines Urbanisationsgradienten (Stadtpark-Vorstadtgebiet-land-
lich) zu erklaren, der eine abnehmende Intensitat der anthropogenen Storung
reprasentierte. Die Carabiden wurden in Bodenfallen Uber zwei vollstandige aktive
Perioden in Tieflandeichenwaldern und in der Nahe der Stadt Debrecen im ostlichen
Ungarn gesammelt.

Der durchschnittliche Wert der Schiefe war in den stadtischen Gebieten im
Vergleich zu den vorstadtischen und landlichen am groBten und wies darauf hin, dass
kleine Individuen in den stadtischen Gebieten mehr hervortraten. Der Gini-
Koeffizient verringerte sich ebenfalls von den stadtischen zu den landlichen
Gebieten und laBt vermuten, dass die Unterschiede in der KorpergroBe in den
Carabiden-Ansammlungen entlang des Gradienten abnahmen. Keiner dieser Trends
war jedoch signifikant. Der Lorenz-Asymmetrie-Koeffizient war in den landlichen
Gebieten im Vergleich zu den vorstadtischen und stadtischen Gebieten signifikant
groBer und wies darauf hin, dass es einen signifikanten Unterschied in den
KorpergroBeunterschieden und/oder in der Asymmetrie der KorpergroBe entlang
des Gradienten gab. Dieser Unterschied war vor allem darauf zuriickzufiihren, dass
es in den landlichen Bereichen mehr Individuen mit einer groBeren KorpergroBe gab.
Wir vermuten, dass die beobachtete Variation in der KorpergroBe der Carabiden
entlang des Gradienten mit der durch die Urbanisation verursachten Veranderung

der Habitate verbunden ist.
© 2005 Published by Elsevier GmbH on behalf of Gesellschaft fiir Okologie.

Introduction

Relationships between body size and the struc-
ture of animal assemblages have been the focus of
much attention in ecological studies. Body size is
correlated with many aspects of life history
(reproduction rate, dispersal, development time,
etc.) (Peters, 1983). Body size also has a significant
impact on ecological interactions, resource use,
and more indirectly, the period of activity, habitat
suitability, and numerous other parameters (Peters,
1983). A change in body size, either in individual
species, or in the size distribution of the species
present in a habitat is also a parameter potentially
indicating different types of environmental stress
(McGeoch, 1998).

A number of anthropogenic activities, including
farming, forestry and urbanisation, have a signifi-
cant impact on the environment and create patch-
works of modified land types that exhibit similar
patterns throughout the world (Poschlod, Bakker, &
Kahmen, 2005; Ulrich & Buszko, 2004). Global
urbanisation has caused the loss of vast amounts
of habitat and caused major modifications of the
environmental conditions (Tarvainen, Markkola, &
Strommer, 2003). However, little is known on
whether or not these changes affect biodiversity
in similar ways across the globe (Niemela et al.,
2000). In 1998, an international collaborative effort

to search for generalisations in urbanisation im-
pacts on biodiversity was initiated. The project,
called Globenet (Niemela et al., 2000), examines
urban-suburban-rural gradients, using a common
methodology and target invertebrate taxon (ground
beetles; Fam. Carabidae) (Niemela et al., 2000).
This taxon was selected, because carabids are
especially useful ecological indicators to study
environmental impacts, being sensitive to habitat
modifications and environmental changes, abun-
dant and sufficiently variable both taxonomically
and ecologically (Lovei & Sunderland, 1996). The
results published so far focussed mainly on the
changes of carabid assemblage composition along
the gradient (Niemela et al., 2002), with some
consideration of the effects of urbanisation on body
size (Ishitani, Kotze, & Niemela, 2003; Magura,
Tothmérész, & Molnar, 2004).

Variation in body size has traditionally been
described and analysed using the skewness of the
size distribution, or other statistics derived from
the statistical moments of the distribution (Sokal &
Rohlf, 1995). Recently, the focus has shifted toward
an emphasis on inequality in size. Several measures
of inequality, developed for use in economics (Sen,
1973), have been used to analyse variation in size
within assemblages. These measures use the Lorenz
curve (Lorenz, 1905), where individuals are ranked
by size, and the cumulative proportion of study
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Body size inequality

objects is plotted against the cumulative propor-
tion of their total size on the y-axis. If all
individuals are equal in size, the Lorenz curve is a
diagonal line, called the “line of equality” (Fig. 1).
Inequality causes the line to run below this line,
and the greater the inequality among the study
objects, the lower the curve runs below the line of
equality. One approach to quantify this is the Gini
coefficient (Dixon, Weiner, Mitchell-Olds, & Wood-
ley, 1987; Gini, 1912; Sen, 1973). However, the Gini
coefficient is only related to the size (area) and not
the shape of the curve. Thus, the Gini coefficient
does not contain all the information in the Lorenz
curve. Different Lorenz curves can have the same
Gini coefficient (Damgaard & Weiner, 2000; Shum-
way & Koide, 1995; Weiner & Solbrig, 1984).
Therefore, Damgaard and Weiner (2000), to char-
acterise the shape of the Lorenz curve, proposed a
so-called ‘‘Lorenz asymmetry coefficient”. This
coefficient characterises an important aspect of
the shape of a Lorenz curve: it shows which size
classes contribute most to the total inequality of
the assemblage (Damgaard & Weiner, 2000).

The new index was illustrated by an example
from plant ecology, but we seek to extend its use to
the analysis of size relationships in animal assem-
blages. In this study, we used pitfall data, collected
across an urban-suburban-rural gradient over 2
years, to analyse the body size inequality of ground
beetle (Carabidae) assemblages. Using measures
describing asymmetry and/or inequality of body
size pattern in carabid assemblages, a hypothesis,
suggested by Szyszko (1983), Gray (1989) and
Blake, Foster, Eyre, and Luff (1994) was tested.
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Figure 1. Lorenz curves of three hypothetical popula-
tions. All populations have the same Gini coefficient, but
different Lorenz asymmetry coefficients. In the case of
the population A, the Lorenz asymmetry coefficient (S) is
larger than one (5> 1), in the case of population B, S<1,
while size distribution in population C is symmetric,
leading to S =1.

According to this ““decreasing body size hypoth-
esis’’, smaller carabids should be found in habitats
with higher disturbance levels than in those with
lower disturbance. In our case, the hypothesis
predicts that the mean carabid body size should
decrease from the rural to the urban area. We
found that the Lorenz asymmetry index was the
most powerful method to detect trends in size
along the gradient.

Material and methods

Characterising the body size distributions

The following measures were used to describe
the asymmetry and/or inequality of body size
pattern in carabid assemblages.

(1) Skewness. The asymmetry of a univariate
continuous distribution is commonly measured
by the classical skewness coefficient (Sokal &
Rohlf, 1995), which is defined as

=L (% — %)
ns3

where n is the number of individuals, x; is the
body size of individuals i, X is the mean body
size and s is the standard deviation of body size.
A symmetric distribution has zero skewness, i.e.
g = 0. An asymmetric distribution with a longer
left tail has negative skewness (in our case:
large individuals are dominant), while a positive
¢ indicates skewness to the right (smaller
individuals are dominant).

(2) Medcouple. Since the skewness estimator is

based on the first three moments of the data
set, it is strongly influenced by the presence of
outliers; thus, a robust measure of skewness,
the medcouple (Brys, Hubert, & Struyf, 2004)
was also used. It has a 25% breakdown value and
a bounded influence function. The possible
values of medcouple range from —1 to 1.
For notational convenience, the elements of the
data set are sorted such that
X[SX21< -0 SX[py- Let med(X,) denote the
median of the data set X,,, defined as

g:

)

(Xin/2) + Xnj2141)/2  if nis even,

med(Xp) = { if nisodd.

X[n+1]/2
The medcouple is defined as
MC,, = med{h(x;: xp); X <med(X,)<xp},

where the kernel function h is defined by
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(X — med(Xp)) — (med(Xp) — xp;)
Xii) — Xy

h(xi; xp) =

for all xj; #xp;. Brys et al. (2004) also described
a fast algorithm to compute the value of the
medcouple.

(3) Gini coefficient. A traditional graphical ap-
proach to measure inequality in size distribution
is the Lorenz curve (Sen, 1973; Weiner &
Solbrig, 1984). Individuals are ranked by size
and the cumulative proportion of individuals is
plotted against the corresponding cumulative
proportion of their total size. When all indivi-
duals are of the same size, the Lorenz curve is a
straight diagonal line, called the line of equal-
ity. If there is any inequality in size, the Lorenz
curve runs below the line of equality (Fig. 1).
The total amount of size inequality can be
quantified by the Gini coefficient (Gini, 1912),
which is the ratio between the area enclosed by
the line of equality and the Lorenz curve, and
the total triangular area under the line of
equality. The Gini index of aggregation is based
on ordered data by increasing body size as
follows (Dixon et al., 1987):

G— Z?=1(21 —n— 1)X[,‘]

n2x ’
where n is the number of individuals, x; is the
ordered body size of individuals i and X is the
mean body size. The Gini coefficient calculated
by the above equation should be multiplied with
n/(n — 1) to obtain an unbiased estimate (Glas-
ser, 1962).
The Gini coefficient ranges from a minimum
value of zero, if all individuals have the same
body size, to a maximum of one in a hypothe-
tical assemblage in which every individual
except one has a size of zero. However, it has
been demonstrated (Damgaard & Weiner, 2000;
Shumway & Koide, 1995; Weiner & Solbrig,
1984) that different Lorenz curves (assemblages
with different inequality in size) can have the
same Gini coefficient (example on Fig. 1).

(4) Lorenz asymmetry coefficient. To complement
the above-mentioned Gini coefficient, Dam-
gaard and Weiner (2000) proposed the Lorenz
asymmetry coefficient, to quantify the asym-
metry of the Lorenz curve. The coefficient (S)
can be calculated from the ordered body size
data using the following equations (Damgaard &
Weiner, 2000):

S=F() + LK) = i ,

where

5— X—Xm
X/m+1 - x/m

and X is the mean body size, m is the number of
individuals with a body size less than X, L,, is the
cumulative body size of individuals with a body
size less than X, and L, is the cumulative body
size of all individuals.

When S = 1, the Lorenz curve of the assemblage
is symmetric, while other S values represent
asymmetric Lorenz curves. When $>1, most of
the inequality within the assemblage is due to the
largest individuals, which disproportionately con-
tributes to the cumulative body size (mass) of the
assemblage. When S<1, the inequality demon-
strated in the assemblage is due primarily to the
relatively large number of small individuals (Fig. 1;
Damgaard & Weiner, 2000).

Study area and sampling methods

Ground beetles were studied along an urban-su-
burban-rural gradient in Debrecen (Eastern Hun-
gary), the second largest city of the country
(Magura et al., 2004). The urban, suburban and
rural sampling areas were all part of a once-
continuous forest (Nagyerdo Forest Reserve) bor-
dering the city. All areas were situated in contin-
uous patches of old forest (> 100 years) dominated
by English oak (Quercus robur). The typical, native
forest association of the sampling sites was
Convallario-Quercetum. The criterion for distin-
guishing sampling areas (urban, suburban, rural)
was the ratio of the built-up area to the natural
habitats. The area of the built-up environment and
the natural habitats was measured by the ArcView
GIS program using an aerial photograph. In the
urban area the built-up area exceeded 60%, in the
suburban area it was approximately 30%, while in
the rural area the built-up area was 0%. The forest
fragments in the urban area were parks, where
several paths with asphalt surfaces had been
created and the shrub layer was strongly thinned.
In the suburban area fallen trees were removed.
There were occasional, low-intensity forestry man-
agement operations in the rural site. Distance
between the sampling areas (urban, suburban,
rural) was at least 1km, as prescribed by the
general methodology of the Globenet project
(Niemela et al., 2000).

Four sites, at least 50 m from each other (in order
to achieve independence, see Digweed, Currie,
Carcamo, & Spence, 1995), were selected within
each sampling area. Carabids were collected at
each of the four sites of the three sampling areas
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using pitfall traps over two full activity periods in
2001 and 2002. Ten traps were placed randomly at
least 10m apart at each site. This resulted in a
total of 120 traps scattered along the urban-rural
gradient (3 area x 4 sites x 10 traps). Each pitfall
trap was at least 50 m from the nearest forest edge,
in order to avoid edge effects (Molnar, Magura,
Tothmérész, & Elek, 2001). Further information on
trap design, placement, mode of operation as well
as the general description of the collected assem-
blages are given by Magura et al. (2004). For the
present paper, we only used body size, collected
from the literature (Hdrka, 1996), and the number
of individuals in the catch. For species where
minimum and maximum sizes were given, we used
the mid-range value (see Table 1).

To test for differences in the measures describing
asymmetry and/or inequality of body size pattern
in carabid assemblages among the three sampling
areas, repeated measures analyses of variance
(ANOVA) were performed (Sokal & Rohlf, 1995).
When the ANOVA revealed a significant difference
between the means, LSD (least significant differ-
ence) tests were performed for multiple compar-
isons among means. The analyses were carried out
using the R package (R Development Core Team,
2004) and the SPSS-PC program.

Results

In both years, values of skewness were largest in
the urban areas and smallest in the suburban ones
indicating that more small individuals were present
in the urban areas than in either of the other two
(Fig. 2A). The differences, however, were not
statistically significant (Table 2). Similar results
were obtained with the robust measure of skew-
ness, the medcouple. The values were highest in
the urban areas and lowest in the suburban ones
(Fig. 2B). These differences were considered
significant (Table 2). The Gini coefficient was
highest in the urban areas, and decreased towards
the rural areas, suggesting that body size inequality
of carabid assemblages was largest in the urban
parks, and decreased along the urbanisation gra-
dient (Fig. 2C). Here the year x treatment interac-
tion was significant, but neither of the component
factors was (Table 2). The Lorenz coefficients had
values S>1 for all situations, indicating the
importance of large individuals for the shape of
the Lorenz curve. In urban areas, the value was
very close to S=1 in both years. This is a
characteristic of a nearly symmetric Lorenz curve.
In both years, the rural areas had the highest S

values, and the suburban areas had intermediate
ones (Fig. 2D). The differences in the Lorenz
asymmetry coefficients among the studied areas
were significant (Table 2). The value of this
coefficient was significantly higher in the rural
areas compared to the suburban and urban areas
(differences between these two last areas were not
statistically significant). Therefore, the significant
difference in the shape of the Lorenz curves was
caused primarily by a higher number of individuals
with larger body size in the rural area vs. the other
two areas under higher degree of urbanisation.

Discussion

Analysing inequality has a longer history in plant
than animal studies. To describe inequality in plant
size, several studies (Creed, Kain, & Norton, 1998;
Ditommaso & Watson, 1997; Zammit & Zedler,
1993) used skewness derived from the statistical
moments of the size distribution. Several other
papers used the Gini coefficient to measure
inequality in plant size or biomass (Hanley &
Groves, 2002; He, Ma, Brown, & Lynch, 2005; Leiss
& Muller-Scharer, 2001; Ramstad & Hestmark, 2001;
Shumway & Koide, 1995; Wilson & Gurevitch,
1995). For plants, Damgaard and Weiner (2000)
calculated the Lorenz asymmetry coefficient for
data from Shumway and Koide (1995) to interpret
the effect of mycorrhizae and plant density on the
number of capsules produced by Abutilon theo-
phrasti (Fam. Malvaceae) individuals. They were
able to show that the reported inequality in the
number of capsules when the plants contained
mycorrhizae was caused by the increased impor-
tance of individuals with high capsule production
(Damgaard & Weiner, 2000). This, however, remains
the only example of using the proposed index.

Skewness is the only method used to evaluate
inequality and/or asymmetry in size distribution of
animal populations or assemblages (Gomez &
Espadaler, 2000; Gregory, 2000; Knouft, 2004;
Kozlowski & Gawelczyk, 2002; Novotny & Kindl-
mann, 1996; Poulin & Morand, 1997). In the present
paper, we extended the range of methods applied
to analyse the inequality of animal body size
distribution using two other parameters (the Gini
coefficient and the Lorenz asymmetry coefficient)
and showed that the Lorenz asymmetry coefficient,
S, is a powerful method for studies describing and
interpreting variations in body size.

Published studies in the international Globenet
project characterised changes in the carabid body
size distribution along the urban-suburban-rural
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Table 1. A list of the carabid species, their body size, and the number of individuals collected in the urban, suburban

and rural sampling areas during the two study years near Debrecen, Eastern Hungary

Species Body size (mm)  Urban Suburban Rural
Agonum lugens 9.0 2 0 0
Amara anthobia 6.2 10 0 0
Amara communis 6.5 9 0 0
Amara consularis 8.3 0 1 2
Amara convexior 7.7 113 26 47
Amara familiaris 6.3 16 5 4
Amara lucida 5.6 1 0 0
Amara ovata 8.6 10 0 0
Amara saphyrea 8.8 10 16 39
Amara similata 8.6 2 2 2
Anchomenus dorsalis 6.6 1 0 0
Anisodactylus nemorivagus 8.9 52 0 0
Anisodactylus signatus 11.8 1 1 0
Asaphidion flavipes 4.3 2 0 0
Badister bullatus 5.2 11 1 0
Badister lacertosus 6.3 5 15 1
Badister meridionalis 6.7 8 2 0
Bembidion lampros 3.4 38 0 3
Calathus erratus 9.5 2 0 1
Calathus fuscipes 1.1 26 0 3
Calathus melanocephalus 7.1 1 0 0
Calosoma inquisitor 20.0 0 0 10
Carabus convexus 17.0 1 107 124
Carabus granulatus 19.0 6 1 6
Carabus ullrichi 27.0 1 0 0
Carabus violaceus 28.0 75 78 237
Clivina fossor 5.9 3 0 0
Diachromus germanus 8.4 1 0 0
Harpalus distinguendus 9.5 0 1 0
Harpalus latus 9.1 14 1 24
Harpalus luteicornis 71 5 20 1
Harpalus tardus 9.4 104 86 69
Harpalus xanthopus winkleri 7.1 21 10 3
Leistus ferrugineus 6.8 0 0 1
Licinus depressus 10.4 7 5 1
Notiophilus biguttatus 4.9 2 0 0
Notiophilus palustris 5.1 5 2 6
Notiophilus rufipes 5.3 38 14 7
Ophonus nitidulus 9.6 1 2 42
Ophonus schaubergerianus 8.8 0 0 1
Oxypselaphus obscurus 5.5 0 1 1
Panagaeus bipustulatus 7.2 7 5 0
Platyderus rufus 6.3 76 41 79
Poecilus cupreus 11.8 3 0 0
Poecilus versicolor 10.5 1 0 0
Pseudoophonus griseus 10.1 2 0 1
Pseudoophonus rufipes 13.1 10 26 19
Pterostichus anthracinus 11.2 5 3 0
Pterostichus macer 12.9 1 0 0
Pterostichus melanarius 15.7 58 3 1
Pterostichus melas 14.9 2 0 3
Pterostichus minor 7.6 0 1 0
Pterostichus niger 18.4 22 15 23
Pterostichus oblongopunctatus 11.5 117 454 1505
Pterostichus ovoideus 71 1 0 0
Pterostichus strenuus 6.0 27 52 11

IBAAE : 50051]

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

1

43

45

47

49

51

53

55

Body size inequality

Table 1. (continued)

Species Body size (mm)  Urban Suburban Rural
Stomis pumicatus 7.5 1 15 27
Synuchus vivalis 7.2 7 6 146
Trechus quadristriatus 3.5 0 1 1
Species sequence is alphabetical.
(A) (B)
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Figure 2. Average values (+S.E.) of the skewness (A), the robust skewness (B), the Gini coefficient (C) and the Lorenz
asymmetry coefficient (D) for the urban, suburban and rural carabid assemblages in the two study years.

gradient using either the distribution among differ-
ent, arbitrary size classes (Alaruikka, Kotze, Mat-
veinen, & Niemela, 2002; Ishitani et al., 2003) or
the mean body size of the species weighted by their
respective abundance (Gaublomme, Dhuyvetter,
Verdyck, & Desender, 2005; Magura et al., 2004;
Niemela et al., 2002). In Finland, Alaruikka et al.
(2002) investigating the changes of carabid body
size across an urbanisation gradient concluded that
medium- to large-sized carabid individuals were
more likely to be collected in the rural sites than in
urban forest fragments. In Japan, there are no
large and only few medium-sized specialist species
in the urban environment, while many specimens of
medium-sized and some large-sized specialist spe-
cies occur in the suburban and rural sites (Ishitani
et al., 2003). Mean carabid body size changed
significantly from small values in the urban area to
larger ones in both suburban and rural areas in
Bulgaria (Niemela et al., 2002), Hungary (Magura et

al., 2004) and Belgium (Gaublomme et al., 2005).
There was a marginally significant change in the
same direction along the same gradient in Finland,
but none in Canada (Niemela et al., 2002).
However, not only body size of the carabid
assemblages may change across an urbanisation
gradient; there could be changes among different
populations of the same species. The body size of
Carabus nemoralis decreased significantly from the
rural surroundings of Hamburg, Germany, towards
the city centre (Weller & Ganzhorn, 2004).

The present study, using a more sophisticated
method (the Lorenz asymmetry coefficient), not
only proved the existence of a significant change in
inequality of carabid body size across the urban—-
suburban-rural gradient, but indicated that this
difference was primarily due to an increase in the
contribution of individuals with larger body size in
the rural area. The mean body size of ground
beetles also increased (Magura et al., 2004), but
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Table 2. The results of repeated-measures ANOVA for the values describing asymmetry and/or inequality of body size
pattern in carabid assemblages

Source SS df MS F p LSD test
Skewness

Tests of within-subjects contrasts

Year 0.001 1 0.001 0.008 0.931

Year x Area 0.306 2 0.153 0.890 0.444

Error 1.547 9 0.172

Tests of between-subjects effects

Area 2.473 2 1.237 1.235 0.336

Error 9.011 9 1.001

Robust skewness

Tests of within-subjects contrasts

Year 0.058 1 0.058 1.099 0.322

Year x Area 0.020 2 0.010 0.192 0.828

Error 0.479 9 0.053

Tests of between-subjects effects

Area 0.424 2 0.212 3.868 0.061 U>Ss
Error 0.493 9 0.055

Gini coefficient

Tests of within-subjects contrasts

Year 0.0001 1 0.0001 0.142 0.715

Year x Area 0.008 2 0.004 5.073 0.033

Error 0.007 9 0.0007

Tests of between-subjects effects

Area 0.014 2 0.007 1.974 0.195

Error 0.031 9 0.003

Lorenz asymmetry coefficient

Tests of within-subjects contrasts

Year 0.003 1 0.003 0.044 0.839

Year x Area 0.058 2 0.029 0.469 0.640

Error 0.558 9 0.062

Tests of between-subjects effects

Area 0.932 2 0.466 7.315 0.013 U=S<R
Error 0.573 9 0.064

Year = the effect of study year (2001 and 2002), Area = the urban, suburban and rural sampling areas. Results of the LSD test indicate
which area(s) differ(s) significantly (p<0.05) from the others; for example U = S<R indicates that the measured value was
significantly higher in the rural area than in the urban and suburban area (these two areas, however, were not different).

this change can result from a decrease in the
importance of small species, from the increase in
medium-sized or large species, or a combination of
these. By evaluating the mean body size, we cannot
distinguish among these possibilities. The Lorenz
asymmetry coefficient allowed us to demonstrate
which of these theoretical possibilities was respon-
sible for the observed effect. The larger carabid
body size in the less disturbed area (rural area) and
the smaller body size in the moderately or highly
disturbed areas (suburban and urban areas) could
be explained by the hypothesis postulated by
Szyszko (1983), Gray (1989) and Blake et al. (1994).

Szyszko (1983), studying the regeneration of pine
plantations after clear-cutting in Poland, suggested

and used the mean individual biomass (MIB) index.
This index is simply calculated as the ratio of the
total fresh body mass of the catch in a trap, divided
by the number of carabid individuals caught.
Szyszko (1983) showed that as regeneration in the
plantation proceeds, the average value of the MIB
index also increases. Mean body size is positively
related to body mass, and thus the conclusion is
that the mean body size in carabid assemblages will
also increase. Gray (1989) hypothesised that the
mean body size of species should decrease from
undisturbed towards disturbed habitats. Carabid
assemblages of differently managed grasslands
gave support to this hypothesis (Blake et al.,
1994). Highly disturbed areas support carabid
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assemblages with species of smaller average body
size than do less disturbed sites (Blake et al., 1994;
Grandchamp, Niemela, & Kotze, 2000; Holliday,
1991; Magura, Elek, & Tothmérész, 2002; Ribera,
Dolédec, Downie, & Foster, 2001; Sustek, 1987).
The causes of this can be manifold. Carabids have
ground-living larvae that are weakly chitinised,
limited in mobility, and thus more sensitive to
changing conditions than adults (Lovei & Sunder-
land, 1996). Disturbance will frequently create
unfavourable conditions for ground beetle adults as
well as larvae, when their densities decrease
(Thorbek & Bilde, 2004) and species may become
locally extinct. Small-sized carabid species may
suffer less mortality during such disturbance
events. Their densities are also usually higher than
that of large-sized species (Luff, 2002), so they
have a lower probability of local extinction. Small
species are more often winged than are large-sized
species (Ribera et al., 2001). Consequently, small
species are more vagile than large species and can
colonise disturbed and unstable areas more easily
(Thiele, 1977). Smaller species may also need
fewer resources and/or may develop faster than
large species (Peters, 1983). In carabids, large
species have longer larval periods, making them
more vulnerable to disturbance events (Kotze &
O’Hara, 2003). Small species can use the small
““windows of suitability’’ to survive in the disturbed
habitat. Lovei and Sunderland (1996) also call
attention to the importance of larvae to explain
trends in adults.

Along the studied urbanisation gradient, the
degree of disturbance is higher in the urban (paved
paths, thinned shrub layer, intensive landscape
management) and in the suburban area (manage-
ment of moderate intensity, e.g. fallen trees are
removed) than in the rural area (rare occasions of
intervention, low intensity management). Distur-
bance caused by urbanisation appears to eliminate
favourable microsites for forest species with larger
body size and create altered, relatively homoge-
neous micro-habitats invaded by small-sized spe-
cies capable of flying. All these habitat alterations
accompanied by urbanisation contributed to the
observed variation in carabid body size across the
urban-suburban-rural gradient.

Using the Lorenz asymmetry coefficient (Dam-
gaard & Weiner, 2000), we were able to more
completely analyse the size distributions of the
ground beetle assemblages along the urbanisation
gradient. This index has proven to be more power-
ful than more traditional methods such as skew-
ness, robust skewness (medcouple), or the Gini
coefficient. The biological interpretation of the
index is not problematic, and we suggest that it is a

useful tool for future studies of size/biomass
distribution in animal assemblages.
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