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ASYMPTOTIC BEHAVIOR OF MULTI-TYPE NEARLY CRITICAL

GALTON–WATSON PROCESSES WITH IMMIGRATION

Изучается многотипный неоднородный процесс Гальтона–
Ватсона с иммиграцией, где матрица средних числа потомков мед-
ленно сходится к критической матрице средних. Для этого про-
цесса при общих предположениях мы получаем предельное распре-
деление, где координаты предельного вектора не обязательно неза-
висимы.

Ключевые слова и фразы: многотипный процесс Гальтона–
Ватсона с иммиграцией, целочисленная авторегрессионная модель,
близкая к критической модель, многомерное пуассоновское распре-
деление, тёплицева матрица, неоднородная модель.

1. Introduction. A zero start single-type inhomogeneous Galton–
Watson branching process with immigration (GWI process) (Xn)n∈Z+ is de-
fined by

Xn =
Xn−1∑

j=1

ξn,j + εn, n ∈ N, X0 = 0,

where {ξn,j , εn: n, j ∈ N} are independent random variables with non-
negative integer values such that for each n ∈ N, {ξn,j : j ∈ N} are iden-
tically distributed. We can interpret Xn as the number of individuals in the
n-th generation of a population, ξn,j is the number of offsprings produced
by the j-th individual belonging to the (n− 1)-th generation, and εn is the
number of immigrants in the n-th generation. A zero start one-dimensional
inhomogeneous integer-valued autoregressive (INAR) time series is a special
single-type GWI process, such that the offspring distributions are Bernoulli.
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Assume that %n := E ξn,1 <∞ and mn := E εn <∞. A one-dimensional
inhomogeneous GWI process (Xn)n∈Z+ is called nearly critical if %n → 1 as
n → ∞. Györfi et al. [11] investigated the asymptotic behavior of nearly
critical one-dimensional INAR processes with %n < 1, under the assumption∑∞
n=1(1 − %n) = ∞, i.e., the convergence %n → 1, n → ∞, is not too fast.
In what follows any nonspecified limit relation is meant as n→∞. It turns
out in Theorem 1 [11] that in case of Bernoulli immigration the process Xn
converges in distribution to a Poisson distribution with parameter λ, when
mn/(1−%n)→ λ. That is, if there is a balance between the immigration mn
and the extinction effect 1 − %n, then a nontrivial limit distribution exists.
Moreover, in [11] general immigration distributions are investigated: if the
factorial moments of the immigration at generation n is of order 1−%n, then
compound Poisson limit appears. These investigations were extended by
Kevei [15] for general GWI processes, that is, the Bernoulli assumption on
the offsprings was relaxed. In the present paper we investigate the multi-type
version of the previous problem.

In a multi-type homogeneous Galton–Watson process (without immigra-
tion) the main data of the process is the spectral radius %(B) of the mean
matrix B, where %(B) := max{|λ|: λ is an eigenvalue of B}. By classical
results, a positively regular, nonsingular multi-type Galton–Watson process
dies out almost surely if and only if %(B) 6 1. The process is called sub-
critical, critical or supercritical if % < 1, = 1 or > 1, respectively. In the
multi-type setup we also consider nearly critical processes, that is, we as-
sume that the sequence of offspring mean matrices converges to a critical
limit matrix. However, contrary to the one-dimensional case, there are a lot
of critical matrices, and thus a lot of nearly critical processes. The formal
definition comes below.

An inhomogeneous multi-type GWI process with d types

Xn = (Xn,1, . . . , Xn,d), n ∈ Z+,

defined by

Xn =

Xn−1,1∑

j=1

ξn,j,1 + ∙ ∙ ∙+
Xn−1,d∑

j=1

ξn,j,d + εn, n ∈ N, X0 = 0,

where {ξn,j,i, εn: n, j ∈ N, i ∈ {1, . . . , d}} are independent d-dimensional
random vectors with nonnegative integer coordinates such that for each n ∈
N and i ∈ {1, . . . , d}, {ξn,j,i: j ∈ N} are identically distributed, and 0 is
the zero vector. Then Xn,i is the number of type i individuals in the n-th
generation of a population, ξn,j,i is the number of offsprings produced by
the j-th individual of type i belonging to the (n− 1)-th generation, and εn
is the number of immigrants. When the offsprings are Bernoulli distributed
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(see Section 2 for the definition of multidimensional Bernoulli distribution)
we obtain the d-dimensional inhomogeneous INAR time series.
Suppose that the offspring and immigration means are finite. Let us

denote the offspring mean matrix and the immigration mean vector in the
n-th generation by

Bn =






E ξn,1,1
...

E ξn,1,d




 ∈ Rd×d+ , E εn =mn ∈ R

d
+,

where the elements of Rd+ are d-dimensional row vectors with nonnegative
coordinates. Then (Bn)i,j is the expected number of type j offsprings of a
single type i particle in generation n. We have the recursion

EXn = (EXn−1)Bn +mn, n ∈ N, (1.1)

since

E (Xn | Xn−1) = E
(Xn−1,1∑

j=1

ξn,j,1 + ∙ ∙ ∙+
Xn−1,d∑

j=1

ξn,j,d + εn

∣
∣
∣
∣Xn−1

)

=

Xn−1,1∑

j=1

E ξn,j,1 + ∙ ∙ ∙+
Xn−1,d∑

j=1

E ξn,j,d + E εn

= Xn−1,1 E ξn,1,1 + ∙ ∙ ∙+Xn−1,d E ξn,1,d + E εn
= Xn−1Bn +mn.

The sequence (Bn)n∈N of the offspring mean matrices plays a crucial role
in the asymptotic behavior of the sequence (Xn)n∈Z+ as n → ∞. A
d-dimensional inhomogeneous Galton–Watson process (Xn)n∈Z+ is called
nearly critical if Bn → B and %(B) = 1. We will investigate the asymp-
totic behavior of nearly critical GWI processes.
Homogeneous multi-type GWI processes have been introduced and stud-

ied by Quine [21], [22]. In [21] necessary and sufficient condition is given for
the existence of stationary distribution in the subcritical case. A complete
answer is given by Kaplan [14]. Also Mode [20] gives a sufficient condition
for the existence of a stationary distribution, and in a special case he shows
that the limiting distribution is a multivariate Poisson with independent
components.
Branching process models are extensively used in various parts of nat-

ural sciences, among others in biology, epidemiology, physics, computer sci-
ences. In particular, multi-type GWI processes were used to determine the
asymptotic mean and covariance matrix of deleterious genes and mutant
genes in a stationary population by Gladstien and Lange [9], and in nonsta-
tionary population by Lange and Fan [18]. Another rapidly developing area,
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where multi-type GWI processes can be applied, is the theory of polling
systems. Resing [23] pointed out that a large variety of polling models can
be described as a multi-type GWI process. Resing [23], van der Mei [19],
Boon [2], Boon, Adan, and Boxma [3], and Altman and Fiems [1] investi-
gated several communication protocols applied in info-communication net-
works with differentiated services. There are different quality of services, for
example, some of them are delay sensitive (telephone, on-line video, etc.),
while others tolerate some delay (e-mail, internet, downloading files, etc.).
Thus, the services are grouped into service classes such that each class has an
own transmission protocol like priority queueing. In the papers mentioned
above the d-type Galton–Watson process has been used, where the process
was defined either by the sizes of the active user populations of the d service
classes, or by the length of the d priority queues. For the general theory and
applications of multi-type Galton–Watson processes we refer to Mode [20]
and Haccou, Jagers, and Vatutin [13].

The INAR time series as a particular case of GWI processes with
Bernoulli offspring distribution have been investigated by several authors,
see, e.g., the survey of Weiß [24]. Heterogeneous INAR(1) models have been
considered by Böckenholt [4] for understanding and predicting consumers’
buying behavior, and Gourieroux and Jasiak [10] for modeling the premium
in bonus-malus scheme of car insurance. Note that the higher order INAR (p)
times series introduced by Du and Li [6] has state space representation by
a multivariate INAR (1) model which is a particular case of the multi-type
GWI process, see Franke and Subba Rao [7].

The paper is organized as follows. In Section 2 general sufficient condi-
tions are given for the mean matrices Bn to get a nontrivial limit distribution
for the sequence Xn. In Section 3 we spell out the general theorems for some
special cases of the mean matrices. We investigate here the case when the
limit matrix B equals I, and when Bn = %nB. The proofs are gathered in
Section 4.

2. General results. First we introduce some notation. Boldface lower
case letters x,y, k, `,m,λ stand for d-dimensional (row) vectors, boldface
upper case letters A,B stand for d×d real matrices, (x)i is the i-th element
of x, (A)i,j is the element of A in the i-th row and j-th column. For the
usual basis in Rd we use the notation

e1 = (1, 0, . . . , 0), . . . , ed = (0, 0, . . . , 1),

and for the constant zero and constant one vector we put

0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1).

Inequalities between vectors, and between matrices are meant elementwise.
For a vector x ∈ Rd its norm is denoted by ‖x‖, where the norm is an
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arbitrary norm on the linear space Rd. As an abuse of notation ‖A‖ is the
operator-norm of the matrix A, induced by the norm ‖∙‖ on the linear space
Rd, i.e., ‖A‖ = supx: ‖x‖61 ‖xA‖. Therefore, all the following statements
are meant as: If there exist a norm ‖ ∙ ‖ such that the conditions of the
statement hold with that norm, then the conclusion holds. See the example
after Proposition 1 (Section 3).

The distribution of a random vector ξ will be denoted by L (ξ). For
p = (p1, . . . , pd) ∈ [0, 1]d with p1 + ∙ ∙ ∙ + pd 6 1, let Be(p) denote the d-
dimensional Bernoulli distribution with means p1, . . . , pd defined by

Be(p)({e1}) = p1, . . . , Be(p)({ed}) = pd, Be(p)({0}) = 1−p1−∙ ∙ ∙−pd.

If ξ = (ξ1, . . . , ξd) is a random vector with L (ξ) = Be(p), then ξ1, . . . , ξd are
random variables with L (ξi) = Be(pi), i ∈ {1, . . . , d} (thus E ξ = p), but
ξ1, . . . , ξd are not independent, hence Be(p) 6= Be(p1)× ∙ ∙ ∙ × Be(pd).
When the offspring distributions are Bernoulli, each particle has at most

one offspring. In this case (Xn)n∈Z+ is an inhomogeneous INAR process such
thatL (ξn,1,i) = Be(eiBn). Note that in this caseBn is substochastic matrix.
For λ = (λ1, . . . , λd) ∈ [0,∞)d, the d-dimensional Poisson distribu-

tion with parameter λ is defined by Po(λ) := Po(λ1) × ∙ ∙ ∙ × Po(λd). In
other words, ξ = (ξ1, . . . , ξd) is a random vector with L (ξ) = Po(λ)
whenever ξ1, . . . , ξd are independent random variables with L (ξi) = Po(λi),
i ∈ {1, . . . , d}. Note that E ξ = λ.

Introduce the generating functions

Fn(x) = Ex
Xn , Gn,i(x) = Ex

ξn,1,i ,

Gn(x) = (Gn,1(x), . . . , Gn,d(x)),

Hn(x) = Ex
εn , x ∈ [0, 1]d,

(2.1)

where x k = xk11 ∙ ∙ ∙x
kd
d . Conditioning argument shows the recursion Fn(x) =

Fn−1(Gn(x))Hn(x), n > 2. Denote Gn+1,n(x) = x, and if Gj+1,n is defined
thenGj,n(x) = Gj(Gj+1,n(x)). With this notation Quine [21] proved (simple
induction argument shows) that we have

Fn(x) =
n∏

j=1

Hj(Gj+1,n(x)). (2.2)

It turns out that due to the near-criticality under general conditions
Hj(Gj+1,n(x)) ≈ 1, for each j, thus

Hj(Gj+1,n(x)) ≈ exp
{
Hj(Gj+1,n(x))− 1

}
,

therefore it is reasonable to define the accompanying compound Poisson
probability generating function

F̃n(x) = exp

{ n∑

j=1

[
Hj(Gj+1,n(x))− 1

]}

. (2.3)
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We prove in Lemma 3 that under some conditions limn→∞(Fn(x)− F̃n(x)) =
0. Therefore to determine the asymptotic properties of Xn we have to in-
vestigate the sum

n∑

j=1

[
Hj(Gj+1,n(x))− 1

]
.

We can compute explicitly the generating function when both the im-
migration and the offsprings have Bernoulli distribution. Indeed, when
L (εn) = Be(mn), the immigration generating function is

Hn(x) = Ex
εn = mn,1x1+∙ ∙ ∙+mn,dxd+1−(mn,1+∙ ∙ ∙+mn,d) = 1+(x−1)m

>
n ;

if the offspring distributions are also Bernoulli, then Gn(x) = 1+(x−1)B
>
n ,

and so Gj+1,n(x) = 1+ (x− 1)B
>
[j,n], where

B[j,n] :=

{
Bj+1 . . .Bn, for 0 6 j 6 n− 1;
I, for j = n.

Note that in this paper the multivariate Bernoulli distribution is defined in
such a way that its generating function is a first order polynomial which is
a particular case of a more general definition of the multivariate Bernoulli
distribution, see [17, Definition 1]. Thus (2.3) reads as

F̃n(x) = exp

{ n∑

j=1

[
(x− 1)B>[j,n]m

>
j

]}

.

Observe that the recursion (1.1) implies

EXn =
n∑

j=1

mjB[j,n]. (2.4)

This can be obtained also by differentiating Fn in (2.2). Putting

Aj,n = (B−Bj)B[j,n], n ∈ N, j ∈ {1, . . . , n}, (2.5)

we may rewrite (2.4) as

EXn =
n∑

j=1

mj(B−Bj)
−1Aj,n,

whenever the inverse (B−Bj)−1 exists for each j = 1, . . . , n.
These computations show the necessity for a summability method de-

fined by the offspring mean matrices. We will make use of the following
matrix version of the Toeplitz theorem (see, e.g., [8]).



Asymptotic behavior of a Galton–Watson process 7

Lemma 1. Let Aj,n ∈ Rd×d, n ∈ N, j = 1, 2, . . . , n, be matrices such
that

lim
n→∞

max
16j6n

‖Aj,n‖ = 0, (2.6)

lim
n→∞

n∑

j=1

Aj,n = A, (2.7)

sup
n∈N

n∑

j=1

‖Aj,n‖ <∞. (2.8)

Then for any convergent sequence of vectors xn → x

n∑

j=1

xjAj,n → xA.

In fact, the lemma holds with the weaker assumption ‖Aj,n‖ → 0, for
all j ∈ N, instead of (2.6). However, for the proof of Lemma 3 the stronger
version is needed.

Lemma 2. Assume that the sequence of mean matrices (Bn)n∈N satis-
fies the following conditions :

(B1) limn→∞Bn = B, for some matrix B;
(B2) ‖Bn‖ 6 1 and B−Bn is invertible whenever n > n0 for some n0;
(B3) limn→∞ ‖B[j,n]‖ = 0 for any fixed j;
(B4) limn→∞

∑n
j=1(B−Bj)B[j,n] = A for some limit matrix A;

(B5) supn
∑n
j=1 ‖(B−Bj)B[j,n]‖ <∞.

Then the triangular matrix array (Aj,n = (B−Bj)B[j,n])j,n satisfies the
conditions of Lemma 1.

The following two general theorems give sufficient condition for the con-
vergence of Xn. It turns out that in case of Bernoulli offspring and immigra-
tion only conditions (2.6)–(2.8) have to be assured. Note that if the offspring
distribution is Bernoulli, then the limit matrix B in (B1) is necessarily sub-
stochastic.

Theorem 1. Let (Xn)n∈Z+ be an inhomogeneous GWI process such
that both the offspring and the immigration have Bernoulli distribution
and (B1)–(B5) hold. If

(M) limn→∞mn(B−Bn)−1 = λ,
then

Xn
D−→ Po(λA),

where A is given in (B4).

The Bernoulli distribution of the offsprings and the immigration is a
very restrictive condition. In the following theorems we weaken these as-
sumptions.
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The interesting new feature in the following theorem is that the compo-
nents of the limit are dependent in general. We need some further notation.
For a multi-index j = (j1, . . . , jd) ∈ Zd+ denote by mn,j the j-th factorial

moment of the immigration εn = (εn,1, . . . , εn,d), that is,

mn,j = E

( d∏

i=1

εn,i(εn,i − 1) ∙ ∙ ∙ (εn,i − ji + 1)
)

= DjHn(1),

where for a multi-index j

DjHn(1) =
∂|j|

∂j1x1 ∙ ∙ ∙ ∂jdxd
Hn(1),

|j| = j1 + ∙ ∙ ∙+ jd, and the derivatives are meant as the left derivatives.
We cannot circumvent the fairly inconvenient notation below and in

Lemma 4, because formulas (2.10) and (2.11) are not easily translated to
the multi-index notation.

Theorem 2. Let (Xn)n∈Z+ be an inhomogeneous GWI process with
Bernoulli offspring distributions, such that (B1)–(B5) hold. Moreover, as-
sume that for some k > 2

lim
n→∞

‖(B−Bn)
−1‖ max

|j|=k
DjHn(1) = 0, (2.9)

and for each i = 1, 2, . . . , k − 1, for each 1 6 `i+1, . . . , `2i 6 d, the limit

lim
n→∞

n∑

j=1

1

i!

d∑

`1,...,`i=1

∂iHj(1)

∂x`1 ∙ ∙ ∙ ∂x`i

(
B[j,n]

)
`1,`i+1

∙ ∙ ∙
(
B[j,n]

)
`i,`2i

=: Λi;`i+1,...,`2i

(2.10)
exists. Then

Xn
D−→ Y,

where

ExY = exp

{ k−1∑

i=1

d∑

`i+1,...,`2i=1

Λi;`i+1,...,`2i(x`i+1 − 1) ∙ ∙ ∙ (x`2i − 1)
}

. (2.11)

Note that if (2.10) holds, then necessarily Λi;∙ is symmetric in the sense
that for any permutation π we have Λi;`1,`2,...,`i = Λi;`π1,`π2,...,`πi . In particu-
lar, Λ2;j,k = Λ2;k,j , we use this in Example 1.

A simple sufficient condition which guarantees (2.9) is that there are
at most k − 1 immigrants in any generation. The other condition is more
difficult to check, however for i = 1, 2 we can write it in a simpler form.

For i = 1 condition (2.10) is just the convergence

n∑

j=1

mjB[j,n] → λ = (λ1, . . . , λd),
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with Λ1;` = λ`. Since the matrix array (Aj,n) satisfies the conditions of
Lemma 1 we see that the convergence above follows from condition (M). As
a consequence we obtain the following corollary.

Corollary 1. Let (Xn)n∈Z+ be an inhomogeneous GWI process with
Bernoulli offspring distributions such that (B1)–(B5) hold. Moreover, as-
sume (M) and

lim
n→∞

E ‖εn‖
2 ‖(B−Bn)

−1‖ = 0. (2.12)

Then
Xn

D−→ Po(λA).

For i = 2 condition (2.10) takes the form

1

2

n∑

j=1

B>[j,n]ΔjB[j,n] → Λ2,

with Λ2;k,` = (Λ2)k,`, where Δj = ΔHj(1) is the Hesse matrix of the immi-
gration generating function at 1; i.e.

(ΔHj(1))k,` =
∂2

∂xk∂x`
Hj(1).

E x a m p l e 1. The following simple example shows that the limit
may have dependent components even in a simple case. Let d = 2,
L (ξn,1,i) = Be((1 − n−1)ei), i = 1, 2, and P(εn = 0) = 1 − n−1,
P(εn = 1) = n

−1 for all n ∈ N, that is in the n-th generation each par-
ticle survives with probability 1 − n−1, and with probability n−1 a type 1
and a type 2 particle immigrate together. Then we have

Bn =

(

1−
1

n

)

I, and Hn(x1, x2) = 1−
1

n
+
x1x2

n
.

Clearly condition (2.9) holds with k = 3. The relevant quantities are
B = I, mn = n

−1(1, 1),

Δn =
1

n

[
0 1
1 0

]

, mn(B−Bn)
−1 =

1

n
(1, 1)nI = (1, 1),

and
n∑

j=1

B>[j,n]ΔjB[j,n] =
n∑

j=1

j

n2

[
0 1
1 0

]

→
1

2

[
0 1
1 0

]

.

We see that Λ1;1 = Λ1;2 = 1 and Λ2;1,2 = Λ2;2,1 = 1/4, Λ2;1,1 = Λ2;2,2 = 0.
Thus

Xn
D−→ Y, where ExY = exp

{

x1 − 1 + x2 − 1 +
(x1 − 1)(x2 − 1)

2

}

.
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Let U, V,W be independent Poisson random variables with parameters
λ1, λ2, μ, respectively. The generating function of (U +W,V +W ) is given
by

ExU+W1 xV+W2 = ExU1 Ex
V
2 E (x1x2)

W

= exp {λ1(x1 − 1) + λ2(x2 − 1) + μ(x1x2 − 1)} ,

therefore the distribution of the limit Y is the distribution of the vector
(U +W,V +W ), where U, V,W are i.i.d. Poisson(1/2). The distribution is
called bivariate Poisson distribution, with parameters λ1, λ2, and μ, see [12,
p. 124], or [16].

In general, if in the exponent in (2.11) none of the terms are divisible
with x2i for any i (e.g., at most one particle immigrates for any given type),
then the components of the limit Y in Theorem 2 can be represented as the
sum of independent Poisson random variables. Assume that the conditions
of Theorem 2 hold, with k = 3 in (2.9), and for the limits in (2.10) Λ2;i,i = 0
for all i. Then the limit random vector Y = (Y1, . . . , Yd) can be represented
as

Yi = Ui +
∑

j 6=i

Ui,j , i = 1, . . . , d,

where (Ui)
d
i=1 and (Ui,j)16i<j6d are independent Poisson random variables,

with parameters ai and ai,j respectively, given by

ai = Λ1;i − 2
d∑

j=1

Λ2;i,j , i = 1, . . . , d, ai,j = 2Λ2;i,j , 1 6 i < j 6 d,

and Ui,j := Uj,i for i > j. It is not difficult to show that (2.9) with k = 3
and (2.10) imply that the coefficients above are nonnegative. Simple com-
putation shows that the generating function of Y agrees with the one given
in Theorem 2. Clearly, this construction extends for k > 3. The appearing
limiting distributions are the so-called multivariate Poisson distributions; for
further properties see [12, p. 139]. Note that this multivariate Poisson dis-
tribution appears as a limit in the multivariate version of the law of small
numbers, see [17, Theorem 1]. Hence, Theorem 2 can be interpreted as a
general law of small numbers for inhomogeneous GWI processes. Also note
the difference between the multivariate Poisson distribution introduced here
and the d-dimensional Poisson distribution defined before (2.1).

In the next theorem the condition on the offspring distribution is re-
laxed, though (2.14) means that the offspring distribution has to be very
close to a Bernoulli distribution. Note that in this case we assume that the
limit matrix is the unit matrix I, in which case condition (B4) automatically
holds, with limit matrix A = I. We return to this question in Subsection 3.1.
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To state the theorem we introduce the notation

m2(n) = max
16i,j,l6d

∂2

∂xj ∂xl
Gn,i(1). (2.13)

Theorem 3. Let (Xn)n∈Z+ be an inhomogeneous GWI process with
Bernoulli immigration such that B = I and (B1)–(B5) hold. Moreover,
assume (M) and

lim
n→∞

m2(n)‖(I−Bn)
−1‖ = 0. (2.14)

Then

Xn
D−→ Po(λ).

In the single-type case general immigration distribution is investigated
and convergence to a compound Poisson distribution is proved in [11, Theo-
rem 4], and in [15, Theorem 3]. In case of more general offspring distribution
existence of negative binomial limit is showed in [15, Theorem 5]. However,
in our multi-type scenario the computations with general immigration or
(and) with general offspring distribution become intractably complicated.

Finally, we note that if
∏∞
n=1Bn exists and is not the zero matrix, then

the process Xn converges when
∑∞
n=1mn is finite. This case can be handled

similarly as in the single-type scenario in [15].

3. Special cases and examples. In what follows we investigate some
special cases for the sequence of mean matrices, and we give sufficient condi-
tions for the existence of the distributional limit, which are easier to handle
than the ones given in Theorem 1.

3.1. The case B = I. When the critical limit matrix is the identity
matrix then one of the most complicated assumption, (B4) in Theorem 1,
holds automatically. In this case Aj,n = B[j,n] −B[j−1,n], and so

∑n
j=1Aj,n

is a telescopic sum.

Proposition 1. Suppose that

(I1) limn→∞Bn = I;

(I2) there is an n0 such that ‖Bn‖ < 1 for all n > n0;
(I3) limn→∞ ‖B[j,n]‖ = 0 for all j ∈ N;
(I4) there is an n0 such that supn>n0 ‖I−Bn‖/(1− ‖Bn‖) < ∞ or

Aj,n ∈ R
d×d
+ for all n > n0 and all j ∈ {1, . . . , n}.

Then the triangular matrix array (Aj,n)j,n satisfies the conditions of
Lemma 1.

Note that condition (I2) guarantees the existence of the inverse (I −
Bn)

−1 in (M) for n > n0.

As we mentioned, the norm can be arbitrary operator norm. It is easy
to construct examples, such that some conditions hold in one operator norm,
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and fail in another. For instance, let d = 2 and

Bn =

[
1− n−1 n−1

0 1− 2n−1

]

.

Then in column sum norm (induced by the `∞-norm on Rd) condition (I2)
and (I4) hold, while in the row sum norm (induced by the `1-norm on Rd)
even condition (I2) fails.

For jointly diagonalizable offspring mean matrices a better result is
available, namely, condition (I4) above can be omitted.

Proposition 2. Suppose that conditions (I1)–(I3) of Proposition 1
hold, and the offspring mean matrices are of the form

Bn = U diag (%n,1, . . . , %n,d)U
>, n ∈ N,

where U ∈ Rd×d is an orthogonal matrix. Then the triangular matrix array
(Aj,n)j,n satisfies the conditions of Lemma 1.

As a consequence we obtain that the corresponding versions of Theo-
rems 1 and 2 can be stated. For example, the following holds.

Theorem 4. Let (Xn)n∈Z+ be an inhomogeneous GWI process with
Bernoulli offspring and immigration distributions. Assume that either con-
ditions of Proposition 1 or conditions of Proposition 2 are satisfied, and for
the immigration (M) holds. Then

Xn
D−→ Po(λ).

R e m a r k 1. The statement of Proposition 2 for the special case
Bn = %nI, n ∈ N, with %n ∈ [0, 1], n ∈ N, also follows from Proposition 1;
in this case Theorem 4 imply the appropriate results for one-dimensional
inhomogeneous INAR processes due to Györfi et al. [11].

Note that under the assumption of Proposition 2 conditions (I1)–(I3) of
Proposition 1 are equivalent to
(I1′) limn→∞ %n,i = 1 for all i ∈ {1, . . . , d};
(I2′) max16i6d %n,i < 1 for all n > n0;
(I3’)

∏∞
n=j %n,i = 0 for all j ∈ N and all i ∈ {1, . . . , d},

respectively. Remark that conditions (I3) and (I3′) are also equivalent to
(I3′′)

∑∞
n=1(1− %n,i) = +∞ for all i ∈ {1, . . . , d}.

The following example shows that Proposition 2 can really perform bet-
ter for jointly diagonalizable offspring mean matrices than Proposition 1.
E x a m p l e 2. Let d = 2, %n,1 = 1− 1/n, %n,2 = 1− 1/

√
n,

U =
1
√
2

[
1 −1
1 1

]

, hence Bn =








1−
√
n+ 1

2n

√
n− 1
2n

√
n− 1
2n

1−
√
n+ 1

2n







.
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Then conditions (I1)–(I3) of Proposition 1 are trivially satisfied, but condi-
tion (I4) of Proposition 1 fails to hold. Indeed,

An,n = I−Bn =








√
n+ 1

2n
−
√
n− 1
2n

−
√
n− 1
2n

√
n+ 1

2n







/∈ R2×2+ ,

‖Bn‖ =
∥
∥
∥
∥diag

(

1−
1

n
, 1−

1
√
n

)∥∥
∥
∥ = 1−

1

n
,

and

‖I−Bn‖ =
∥
∥
∥
∥U

(

I− diag
(

1−
1

n
, 1−

1
√
n

))

U>
∥
∥
∥
∥

=

∥
∥
∥
∥I− diag

(

1−
1

n
, 1−

1
√
n

)∥∥
∥
∥

=

∥
∥
∥
∥diag

(
1

n
,
1
√
n

)∥∥
∥
∥ =

1
√
n

imply supn>n0 ‖I−Bn‖/(1− ‖Bn‖) =∞. Here we used the simple fact that
the norm of a normal element in a C∗-algebra is equal to its spectral radius.

3.2. The case Bn = %nB. In this subsection we assume that Bn =
%nB, for all n ∈ N, where B is a substochastic matrix, and %n < 1, %n → 1,
and

∑∞
n=1(1− %n) =∞. In this special case B[j,n] = %[j,n]B

n−j , with %[j,n] =
%j+1 ∙ ∙ ∙ %n. Put aj,n = %[j,n](1−%j), thenAj,n = B[j,n](B−Bj) = aj,nB

n−j+1.

To apply Theorem 1 or Theorem 2 in this case, we only have to verify
condition (B4). In the following statement we give a rather general condition
for the existence of the limit matrix. The key point is a slight modification
of the proof of Theorem 5.2.1 in [5].

Proposition 3. Let (%n)n∈N be a sequence such that %n < 1, %n → 1,∑∞
n=1(1 − %n) = ∞, and (1 − %n)/(1 − %n+1) → 1. Then for any matrix B
such that ‖B‖ 6 1 the limit

lim
n→∞

n∑

k=1

%[k,n](1− %k)B
n−k = A

exists, and BA = AB = A = A2.

It will be clear from the proof that whenever B is stochastic the limit A
is stochastic too.

Note that in the single-type case no additional assumption is needed on
the sequence (%n)n∈N, see [11] or [15]. Indeed, the condition

∑∞
n=1(1− %n) =

∞ implies that the numerical triangular array (aj,n = %[j,n](1− %j)) satisfies
the following conditions, which are the one-dimensional analog of (2.6), (2.7),
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and (2.8):

lim
n→∞

max
16j6n

aj,n = 0, lim
n→∞

n∑

j=1

aj,n = 1, sup
n>1

n∑

j=1

|aj,n| <∞. (3.1)

The following example shows that when dealing with matrices the ad-
ditional assumption is in fact necessary.
E x a m p l e 3. Let

%n =

{
1, if n is odd,
1− 2n−1, if n is even,

B =

[
0 1
1 0

]

.

Then %[k,n] = [k/2]/[n/2], where [ ∙ ] stands for the (lower) integer part, and
so

%[k,n](1− %k) =

{
0, if k is odd,

[n/2]
−1
, if k is even.

Thus we obtain

2n∑

k=1

Ak,2n =
2n∑

k=1

B2n−k+1%[k,2n](1− %k)→

[
0 1
1 0

]

,

while
2n+1∑

k=1

Ak,2n+1 =
2n+1∑

k=1

B2n−k+2%[k,2n+1](1− %k)→

[
1 0
0 1

]

,

thus the limit does not exist.
Using Proposition 3 and Theorem 2 we obtain the following theorem.

Theorem 5. Assume that the mean matrix of the Bernoulli offspring
distribution has the form

Bn = %nB,

where B is an invertible substochastic matrix, and %n < 1, %n → 1,
∑∞
k=1(1−

%n) =∞ and (1−%n)/(1−%n+1)→ 1. Moreover, assume that for some k > 2

lim
n→∞

max|j|=kD
jHn(1)

1− %n
= 0, lim

n→∞

mn
1− %n

= λ,

and for each i = 2, . . . , k − 1, for each 1 6 `i+1, . . . , `2i 6 d the limit

lim
n→∞

n∑

j=1

(%[j,n])
i

i!

d∑

`1,...,`i=1

∂iHj(1)

∂x`1 ∙ ∙ ∙ ∂x`i

(
Bn−j

)

`1,`i+1
∙ ∙ ∙
(
Bn−j

)

`i,`2i

=: Λi;`i+1,...,`2i

exists. Then
Xn

D−→ Y,
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where

ExY = exp

{

(x−1)(λA)>+
k−1∑

i=2

d∑

`i+1,...,`2i=1

Λi;`i+1,...,`2i(x`i+1−1) ∙ ∙ ∙ (x`2i−1)
}

,

where the matrix A is given by Proposition 3.

The next theorem gives more freedom on the mean matrix Bn, however
stronger assumption on the limit matrix B is needed. The inequality for the
matrices are meant elementwise.

Theorem 6. Assume that for the mean matrix of the Bernoulli off-
spring distribution

ϑnB 6 Bn 6 %nB,

where ϑn 6 %n < 1, ϑn → 1, %n → 1,
∑∞
n=1(1− %n) =∞, and (%n− ϑn)/(1−

%n)→ 0, and for the immigration

mn(B−Bn)
−1 → λ.

If either (a) Bn → A for some matrix A or (b) ‖B‖ 6 1 and (1−%n+1)/(1−
%n)→ 1, then

Xn
D−→ Po(λA),

where in case (b) the matrix A is given in Proposition 3.

4. Proofs. Before the proofs, we gather some simple inequalities,
which we use frequently without further reference. If ak, bk ∈ [−1, 1],
k = 1, . . . , n, then

∣
∣
∣
∣

n∏

k=1

ak −
n∏

k=1

bk

∣
∣
∣
∣ 6

n∑

k=1

|ak − bk|.

For x ∈ (−1, 1) we have |ex − 1− x| 6 x2.
For a vector-vector function H: Rd → Rd the symbol ∇H denotes










∂

∂x1
H1 . . .

∂

∂xd
H1

...
. . .

...
∂

∂x1
Hd . . .

∂

∂xd
Hd









.

By the multivariate mean-value theorem, and the monotonicity of the deriva-
tives, for a vector of generating functions G = (G1, . . . ,Gd), for x ∈ [0, 1]d

1−G(x) 6 (1− x)∇G(1)>. (4.1)
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4.1. Proofs for Section 2. Since ‖B[j,n]‖ → 0 for any j, we may and
do assume that n0 = 1 in conditions (B2), (I2), and (I4).
P r o o f o f L e m m a 2. Condition (2.6) simply follows from (B1),

(B2), and (B3). Conditions (2.7) and (2.8) are the same as (B4), and (B5),
respectively. Lemma 2 is proved.
R e m a r k 2. It is worth noting that after rearranging the sum in

(B4) and using (B3) we obtain that (B4) is equivalent to the convergence

lim
n→∞

n∑

j=1

B[j,n] = B̃,

where the relation between A and B̃ is given by (B− I)B̃+ I = A.
Recall the definitions (2.2) and (2.3).

Lemma 3. Assume conditions (B1)–(B5), (M). Then for any x ∈
[0, 1]d we have

lim
n→∞

|Fn(x)− F̃n(x)| = 0.

P r o o f. Since Bn = ∇Gn(1), we have

∇Gj+1,n(1) = ∇Gj+1(1)∇Gj+2(1) ∙ ∙ ∙∇Gn(1) = B[j,n].

Using the scalar version of (4.1) yields

|Fn(x)− F̃n(x)| 6
n∑

j=1

∣
∣
∣eHj(Gj+1,n(x))−1 − 1− (Hj(Gj+1,n(x))− 1)

∣
∣
∣

6

n∑

j=1

(
Hj(Gj+1,n(x))− 1

)2

6

n∑

j=1

(
(1−G[j+1,n](x))m

>
j

)2

6

n∑

j=1

(
(1− x)B>[j,n]m

>
j

)2
. (4.2)

Since |(1 − x)B>[j,n]m
>
j | 6 ‖1‖ ∙ ‖Aj,n‖maxk>1 ‖mk(B − Bk)

−1‖, by (2.6),
(2.8), and (M) the sum on the right-hand side of (4.2) converges to 0, as
stated. Lemma 3 is proved.

P r o o f o f T h e o r e m 1. Since the generating function of Po(λ) =
Po(λ1)× ∙ ∙ ∙ × Po(λd) has the form

eλ1(x1−1) ∙ ∙ ∙ eλd(xd−1) = e(x−1)λ
>

, x ∈ [0, 1]d,

by Lemma 3 we only have to show that
∑n
j=1mjB[j,n] → λA, for all x ∈

[0, 1]d. This holds according to Lemma 1 and our assumption. Theorem 1 is
proved.
Since DjHn(1) = mn,j, the multivariate Taylor expansion gives the

following.
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Lemma 4. If E ‖εn‖k <∞ for some k ∈ N, then for all x ∈ [0, 1]d

Hn(x) =
∑

`̀̀∈Zd
+
, |`̀̀|<k

mn,`̀̀
`!
(x− 1)`̀̀ +Rn,k(x)

= 1 +
k−1∑

i=1

1

i!

d∑

`1,...,`i=1

∂iHn(1)

∂x`1 ∙ ∙ ∙ ∂x`i
(x`1 − 1) ∙ ∙ ∙ (x`i − 1) +Rn,k(x),

where `! := `1! ∙ ∙ ∙ `d! for ` = (`1, . . . , `d) ∈ Zd+, and

|Rn,k(x)| 6
∑

`̀̀∈Zd
+
, |`̀̀|=k

mn,`̀̀
`!
(1− x)`̀̀ 6 dk‖1− x‖kmax

|`̀̀|=k
D`̀̀Hn(1).

P r o o f o f T h e o r e m 2. Since the offsprings are Bernoulli dis-
tributed,

Gj+1,n(x) = 1+ (x− 1)B
>
[j,n],

by Lemma 3 it is enough to show that the convergence

n∑

j=1

[
Hj(Gj+1,n(x))− 1

]
→
k−1∑

i=1

d∑

`i+1,...,`2i=1

Λi;`i+1,...,`2i(x`i+1 − 1) ∙ ∙ ∙ (x`2i − 1)

holds. Using Lemma 4 we may write

n∑

j=1

[
Hj(Gj+1,n(x))− 1

]

=
n∑

j=1

k−1∑

i=1

1

i!

d∑

`1,...,`i=1

∂iHj(1)

∂x`1 . . . ∂x`i
((x− 1)B>[j,n])`1 ∙ ∙ ∙ ((x− 1)B

>
[j,n])`i

+
n∑

j=1

Rj,k(1+ (x− 1)B
>
[j,n]). (4.3)

Since for m ∈ {1, . . . , i}

(
(x− 1)B>[j,n]

)

`m
=

d∑

`i+m=1

(
B[j,n]

)
`m,`i+m

(x`i+m − 1),

by (2.10) the first term on the right-hand side of (4.3) converges for any
i ∈ {1, . . . , k − 1}:

lim
n→∞

1

i!

n∑

j=1

d∑

`1,...,`i=1

∂iHj(1)

∂x`1 ∙ ∙ ∙ ∂x`i
((x− 1)B>[j,n])`1 ∙ ∙ ∙ ((x− 1)B

>
[j,n])`i

=
d∑

`i+1,...,`2i=1

Λi;`i+1,...,`2i(x`i+1 − 1) ∙ ∙ ∙ (x`2i − 1).
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Using Lemma 4 for the second term yields

n∑

j=1

|Rj,k(1+ (x− 1)B
>
[j,n])| 6

n∑

j=1

dkmax
|`̀̀|=k
D`̀̀Hj(1)‖B[j,n]‖

k

6 dk
n∑

j=1

max
|`̀̀|=k
D`̀̀Hj(1)‖(B−Bj)

−1‖ ∙ ‖Aj,n‖,

which goes to 0, due to (2.9). Theorem 2 is proved.

P r o o f o f T h e o r e m 3. By Lemma 3 we need to check that

n∑

j=1

(Gj+1,n(x)− 1)m
>
j → (x− 1)λ

>.

By (4.1) we have

1−Gj+1,n(x) 6 (1− x)∇Gj+1,n(1)
> = (1− x)B>[j,n], (4.4)

therefore

n∑

j=1

(Gj+1,n(x)− 1)m
>
j >

n∑

j=1

(x− 1)B>[j,n]m
>
j → (x− 1)λ

>,

where the last convergence holds under the assumptions of the theorem.

According to (4.4) Gj+1,n(x) ∈ [1− 1B
>
[j,n],1], for all x ∈ [0, 1]

d. Again
by the mean value theorem and by the monotonicity of the derivatives

1−Gj(y) > (1− y)∇Gj(1− 1B
>
[j,n])

> =: (1− y)Θ>j,n,

for y ∈ [1−1B>[j,n],1], in particular 1−Gj(Gj+1,n(x)) > (1−Gj+1,n(x))Θ
>
j,n,

and so induction gives

1−Gj+1,n(x) > (1− x)Θ
>
n,nΘ

>
n−1,n ∙ ∙ ∙Θ

>
j+1,n =: (1− x)Θ

>
[j,n],

thus
n∑

j=1

(Gj+1,n(x)− 1)m
>
j 6

n∑

j=1

(x− 1)Θ>[j,n]m
>
j .

We have to check under what conditions

n∑

j=1

mjΘ[j,n] → λ.

Clearly Θj,n ↑ Bj as n → ∞. Introduce Cj,n = (I − Bj)Θ[j,n]. We want
to apply Lemma 1 to the sequence (Cj,n)j,n with I being the limit matrix.
Since by definition the elements of Cj,n are less than or equal to the elements
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of Aj,n, the only assumption we have to check in order to guarantee the
convergence above is

n∑

j=1

Cj,n → I.

We have

n∑

j=1

Cj,n = (I−B1)Θ[1,n] + (I−B2)Θ[2,n] + ∙ ∙ ∙

+(I−Bn−1)Θ[n−1,n] + I−Bn

= I−
[
(Bn −Θn,n) + (Bn−1 −Θn−1,n)Θ[n−1,n] + ∙ ∙ ∙

+(B2 −Θ2,n)Θ[2,n] +B1Θ[1,n]
]
.

We show that the sum in the brackets (note that every term is nonnegative)
converges to the zero matrix. Let us estimate the (i, k)-th element of Bj −
Θj,n. The mean value theorem and the monotonicity of the derivatives imply

(Bj −Θj,n)i,k =
∂

∂xk
Gj,i(1)−

∂

∂xk
Gj,i(1− 1B

>
[j,n])

6 (1B>[j,n])

(
∂2

∂xk ∂x1
Gj,i(1), . . . ,

∂2

∂xk ∂xd
Gj,i(1)

)>
,

thus (Bj −Θj,n)i,k 6 d ‖1‖m2(j). So finally we obtain

n∑

j=1

(Bj −Θj,n)Θ[j,n] 6 d ‖1‖
n∑

j=1

m2(j)






1 . . . 1
...
. . .
...

1 . . . 1




B[j,n],

which goes to the zero matrix, whenever ‖(I−Bn)−1‖m2(n)→ 0. Theorem 3
is proved.

4.2. Proofs for Section 3. We start with the case when the limit
matrix is the identity matrix.

Lemma 5. For any d > 1 there exists a positive constant Cd such that

n∑

j=1

‖Aj‖ 6 Cd

∥
∥
∥
∥

n∑

j=1

Aj

∥
∥
∥
∥

for all n ∈ N and for all matrices Aj ∈ R
d×d
+ , j ∈ {1, . . . , n}.

P r o o f. The norms of a finite dimensional vector space are equivalent,
hence there are positive constants cd, c̃d such that

cd

d∑

i=1

d∑

k=1

|ai,k| 6 ‖A‖ 6 c̃d
d∑

i=1

d∑

k=1

|ai,k|
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for all matrices A = (ai,k)i,k∈{1,...,d} ∈ Rd×d. Put (Aj)i,k = aj;i,k. Conse-
quently,

n∑

j=1

‖Aj‖ 6 c̃d
n∑

j=1

d∑

i=1

d∑

k=1

|aj;i,k| = c̃d
n∑

j=1

d∑

i=1

d∑

k=1

aj;i,k

= c̃d

d∑

i=1

d∑

k=1

n∑

j=1

aj;i,k = c̃d

d∑

i=1

d∑

k=1

∣
∣
∣
∣

n∑

j=1

aj;i,k

∣
∣
∣
∣

6
c̃d
cd

∥
∥
∥
∥

n∑

j=1

Aj

∥
∥
∥
∥.

Lemma 5 is proved.

P r o o f o f P r o p o s i t i o n 1. Condition (2.6) follows from (I1),
(I2), and (I3), as in the general case. As we already mentioned, (2.7) is
automatic, since

n∑

j=1

Aj,n =
n∑

j=1

(
B[j,n] −B[j−1,n]

)
= I−B[0,n] → I as n→∞

by condition (I3).

If C := supj>1 ‖I−Bj‖/(1− ‖Bj‖) <∞, then for all n > j > 1,

‖Aj,n‖ 6 ‖I−Bj‖ ∙ ‖B[j,n]‖ 6 C(1− ‖Bj‖) ‖B[j,n]‖.

Since B[n,n] = I, we have ‖B[n,n]‖ = 1, and ‖B[j,n]‖ 6
∏n
k=j+1 ‖Bk‖ for all

n > j, thus

n∑

j=1

‖Aj,n‖ 6 C(1− ‖Bn‖) + C
n−1∑

j=1

(1− ‖Bj‖)
n∏

k=j+1

‖Bk‖

= C

(

1−
n∏

k=1

‖Bk‖
)

6 C,

and we deduce (2.8).

Otherwise, if Aj,n ∈ R
d×d
+ for all n > 1 and all j ∈ {1, . . . , n}, then by

Lemma 5
n∑

j=1

‖Aj,n‖ 6 Cd

∥
∥
∥
∥

n∑

j=1

Aj,n

∥
∥
∥
∥,

and (2.7) implies (2.8). Proposition 1 is proved.

P r o o f o f P r o p o s i t i o n 2. We have to check only (2.8),
since (2.6) and (2.7) follow from conditions (I1)–(I3). In this case

B[j,n] = Bj+1 ∙ ∙ ∙Bn = U diag
(
%[j,n],1, . . . , %[j,n],d

)
U>,
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where %[j,n],i = %j+1,i ∙ ∙ ∙ %n,i. Using again that the norm of a normal element
in a C∗-algebra equals its spectral radius, we have

‖Aj,n‖ =
∥
∥
∥U(diag (%[j,n],1, . . . , %[j,n],d)− diag (%[j−1,n],1, . . . , %[j−1,n],d))U

>
∥
∥
∥

=
∥
∥diag ((1− %j,1)%[j,n],1, . . . , (1− %j,d)%[j,n],d)

∥
∥

= max
16i6d

(1− %j,i)%[j,n],i.

Thus (2.8) follows from
∑n
j=1(1 − %j,i)%[j,n],i = 1 − %1,i ∙ ∙ ∙ %n,i 6 1, i ∈

{1, . . . , d}. Proposition 2 is proved.
Next we turn to the proofs when Bn = %nB. A slight modification of

the proof of Theorem 5.2.1 in [5] gives the following lemma.

Lemma 6. Assume that (aj,n) satisfies (3.1),
∑n−1
j=1 |aj+1,n − aj,n| → 0,

and let B be a matrix such that ‖B‖ 6 1. Then there exists a matrix A,
such that

lim
n→∞

n∑

j=1

aj,nB
j = A.

Moreover, AB = BA = A = A2.

P r o o f. Since for every j we have ‖Bj‖ 6 1, the sequence
∑n
j=1 aj,nB

j

is bounded, so there are a subsequence nk and a limit A such that

nk∑

j=1

aj,nkB
j → A as k →∞.

Multiplying by B we obtain

nk∑

j=1

aj,nkB
j+1 → BA = AB as k →∞.

Writing n instead of nk, the difference between the two limits is

n∑

j=1

aj,nB
j+1 −

n∑

j=1

aj,nB
j = an,nB

n+1 − a1,nB+
n∑

j=2

(aj−1,n − aj,n)B
j .

Using that Bj is bounded, a1,n → 0, an,n → 0 and that
∑n−1
j=1 |aj+1,n−aj,n| →

0 we obtain that AB = BA = A. And so the equality

( n∑

j=1

aj,nB
j

)

A =
n∑

j=1

aj,nA

gives that for any other subsequential limit C, AC = CA = A. Since
the roles are interchangeable, we obtain that there is only one limit matrix,
which is idempotent. Lemma 6 is proved.

Using the lemma above it is easy to prove Proposition 3.
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P r o o f o f P r o p o s i t i o n 3. We only have to check that for
aj,n = %[j,n](1 − %j) the condition

∑n−1
j=1 |aj+1,n − aj,n| → 0 is satisfied. We

have
aj+1,n − aj,n = %[j+1,n] [(1− %j+1)− %j+1(1− %j)] ,

thus

n−1∑

j=1

|aj+1,n − aj,n| =
n−1∑

j=1

|(1− %j+1)− %j+1(1− %j)|
1− %j+1

%[j+1,n](1− %j+1),

which goes to 0, since

|(1− %n+1)− %n+1(1− %n)|
1− %n+1

=

∣
∣
∣
∣1− %n+1

1− %n
1− %n+1

∣
∣
∣
∣→ 0.

Proposition 3 is proved.
P r o o f o f T h e o r e m 6. To prove the theorem we only have to

show that condition (2.7) holds for Aj,n = (B−Bj)B[j,n].
By the monotonicity assumptions,

B[j,n] = Bj+1 ∙ ∙ ∙Bn 6 %j+1B ∙ ∙ ∙ %nB = %[j,n]B
n−j

and similarly
B[j,n] > ϑ[j,n]B

n−j .

Keeping in mind that each element of B−Bj is nonnegative, we have

(1− %j)ϑ[j,n]B
n−j+1 6 Aj,n 6 (1− ϑj)%[j,n]B

n−j+1.

After summation

n∑

j=1

Bn−j+1ϑ[j,n](1− %j) 6
n∑

j=1

Aj,n 6
n∑

j=1

Bn−j+1%[j,n](1− ϑj). (4.5)

First we show that the sequences (ϑ[j,n](1 − %j)) and (%[j,n](1 − ϑj))
satisfy conditions (3.1). According to the assumptions,

n∑

j=1

ϑ[j,n](1− ϑj)→ 1 and
n∑

j=1

%[j,n](1− %j)→ 1. (4.6)

Since %n > ϑn, we have

0 6
n∑

j=1

ϑ[j,n](%j − ϑj) =
n∑

j=1

%j − ϑj
1− ϑj

(1− ϑj)ϑ[j,n] → 0, (4.7)

as
%j − ϑj
1− ϑj

6
%j − ϑj
1− %j

→ 0.
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Similarly

0 6
n∑

j=1

%[j,n](%j − ϑj) =
n∑

j=1

%j − ϑj
1− %j

(1− %j)%[j,n] → 0. (4.8)

Noting that ϑ[j,n](1 − %j) = ϑ[j,n][(1 − ϑj) − (%j − ϑj)] and %[j,n](1 − ϑj) =
%[j,n][(1 − %j) + (%j − ϑj)], (4.6) combined with (4.7) and with (4.8) shows
that conditions (3.1) indeed hold.

When the convergence Bn → A holds, both the upper and the lower
estimations in (4.5) tend to A, and the statement follows.
In case (b) the extra condition assures the convergence of the bounds

in (4.5) by Lemma 6, and the equality of the limits readily follows. Theorem 6
is proved.
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