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Abstract 

The information encoded in genomes supports the differentiation and function of the 

more than 200 unique cell types, which exist in various mammalian species. The 

major mechanism driving cellular differentiation and specification is differential gene 

expression regulation. Cis-acting enhancers and silencers appear to have key roles 

in regulating the expression of mammalian genes. However these cis-acting 

elements are often located very far away from the regulated gene. Therefore it is 

hard to find all of them and link them to the regulated gene. An intriguing and 

unresolved issue of the field is to identify all of the enhancers of a particular gene and 

link these short regulatory sequences to the genes they regulate and thus reliably 

identify gene regulatory enhancer networks. Recent advances in molecular biological 

methods coupled to Next-Generation Sequencing (NGS) technologies have opened 

up new possibilities in this area of genomics. In this review we summarize the 

technological advances, bioinformatics challenges and the potential molecular 

mechanisms allowing the construction of enhancer networks operating in specific cell 

types and/or activated by various signals. 
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Why mammalian gene regulation is so hard to study? 

Gene expression is the result of a very complex process achieved by the coordinated 

action of multiple layers of regulators. In prokaryotes, genes are organized into 

operons and using a single promoter the entire stretch of DNA is transcribed into 

RNA (Figure 1A). These so-called “polycistronic” RNAs often encode functionally 

related members of an enzyme cascade regulating a particular metabolic process. 

Thus, in most of the cases prokaryotes utilize one promoter-proximal, restricted cis-

element to initiate transcription. However, eukaryotic organisms have evolved to 

utilize much more complex mechanisms to regulate gene expression. In fact, one of 

the driving forces of eukaryotic evolution is believed to be the introduction of 

elaborate gene regulatory circuits. This is, in part, manifested in the concept of C 

value enigma, which is the observation that genome size does not correlate with 

organismal complexity [1]. The number of protein coding genes also does not show 

correlation with complexity. 

Unlike prokaryote genes, eukaryotic ones are “monocistronic” and their regulation is 

usually much more complex. The fact that genes can have multiple promoters with 

unique promoter elements makes the picture even more crowded and complicated. In 

addition, probably most if not all eukaryotic genes possess intergenic as well as 

intragenic cis-regulatory elements (enhancers/silencers) to fine-tune their expression 

in a cell type and/or biological context dependent manner (Figure 1B, 2B). To clearly 

understand the detailed molecular mechanisms controlling gene expression, one 

needs to identify the factors responsible for gene regulation and their precise action 

on one or multiple well-defined cis-regulatory element(s). Before the genomic era, 

investigations were limited methodologically and gene regulation was studied with 

methods restricted to the analysis of the expression of a few genes and/or 

biased/restricted to the immediate vicinity of a given gene. The classical way of 

studying gene expression used a set of so-called “promoter bashing approaches” 

evaluating the genomic regions in the close proximity of the transcription start site 

(TSS) to identify the core sequence driving the expression of the given gene [2]. 

These approaches were based on transient transfections and deletion and insertion 

mutagenesis and are still used to date. The discovery of enhancers predicted the 

complex regulation of a gene, because these cis-regulatory elements can be located, 

at least in principle, far away and either upstream 5’ or downstream 3’ of the 
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regulated gene [3]. The inherent pitfalls of the first studies were recognized soon, but 

without the technical advances no one could easily go beyond the technical 

limitations to dissect the regulation of gene networks, not even just a particular gene. 

Therefore most studies identified promoter proximal elements usually restricted to 10-

20 kb upstream of the designated promoter. Using these typical “promoter bashing” 

technologies researchers were not able to consider and/or evaluate the contribution 

of multiple and/or far way enhancers or intra- or interchromosomal interactions. This 

represented bias and created a roadblock in understanding complex gene regulation. 

An additional important aspect of gene expression regulation research is that one 

would need methods to assess the expression of several dozens of genes at the 

same time in order to determine the impact of a particular signal on what is now 

called global gene expression. 

The first attempt to provide information regarding global gene expression was 

reported in 1982, when the first gene array was constructed to assay 378 transcripts 

in normal and tumor tissues [4]. Until 1995 several studies were published using this 

filter paper spotted technology to document the gene expression pattern of 

cancerous versus normal cells and also the anti-proliferative action of interferons [5], 

[6]. The usage of miniaturized microarray technology was first applied to measure the 

differential expression of 45 Arabidopsis genes [7]. These initial efforts launched the 

nowadays’ well-known microarray technology which transformed the field of 

transcription regulation.  

New NGS-driven enabling technologies have emerged 

As the result of the genome programs and the technological revolution coming with it, 

major breakthroughs helped scientists working on the field of mammalian gene 

expression regulation. 

As a key example the profiling of transcription factor binding sites (TFBSs) and 

histone modification patterns along with nucleosome positions have been determined 

by linking Chromatin Immunoprecipitation (ChIP) to microarray technology for a 

review see [8]. This allowed the identification of histone modification and /or TFBSs in 

a quasi genome-wide fashion and showed how old molecular biology techniques (i.e. 

immunprecipitation) can be effectively coupled to genome-based approaches (i.e. 
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microarrays of genomic DNA fragments). During the last several years, sequencing 

technologies have emerged and almost fully replaced the microarray-based methods 

though. With the ability to sequence tens of millions of short DNA sequences in a 

parallel fashion, more applications, which could be only imagined before, became 

reality. This rapid evolution of sequencing, now termed Next-Generation Sequencing 

(NGS), entirely transformed the field of gene expression research, along with other 

areas of research. The combination of NGS with simple molecular biology 

approaches proved to be very effective and led to the rapid generation of genome-

wide data in a number of areas including whole genome sequencing, mRNA 

sequencing and revealing MNase and DNase I hypersensitive sites as well as 

reviewed in [8] (Table 1). For high throughput TSS sequencing, similar methods were 

developed simultaneously for different sequencing platforms based on the CAGE 

(Cap Analysis of Gene Expression), 5’ SAGE (Serial Analysis of Gene Expression) 

and 5’ RACE (Rapid Amplification of cDNA Ends) methods [9]. ChIP has been one of 

the earliest applications linked to NGS and led to the determination of histone 

modification patterns, co-factor and transcription factor binding sites throughout the 

genome [8]. These results supplied the first set of evidence that cis-acting elements 

are likely to be widespread in the mammalian genomes and are mostly located in 

intergenic regions also at large distances from the TSSs of the putative targeted 

gene. 

Our ability to detect intra- and interchromosomal interactions has also changed quite 

a bit. The development of technologies such as 3C greatly increased one’s options to 

reveal the interaction map of cis-elements beyond their interactions with the 

regulated genes [10]. The 3C method is based on the fixation of chromatin loops 

mediated by protein complexes bound to DNA. After stabilizing the interactions a 

restriction enzyme is used to cut the genome into smaller pieces containing the 

compatible sticky ends. Then the chromatin is subjected to ligation in a highly diluted 

fashion. This reaction favors intramolecular ligation events, thus capable of 

connecting those genomic regions residing in the proximity of each other.  

Over the last decade 3C has been linked to NGS and also combined with ChIP 

resulted in the following technologies (3C-Seq, 4C-Seq, 5C, ChIA-PET, Hi-C) (Table 

2). Depending on the biological question, one can choose these methods to reveal 

the physical conformation of the genome or a particular locus. The 4C assay can be 

http://en.wikipedia.org/wiki/Rapid_amplification_of_cDNA_ends
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very useful if one genomic element and its interactions are examined. Initially, 

libraries obtained from 4C experiments were hybridized to microarrays to get insights 

into chromatin interactions [11]. 3C-sequencing basically holds the same advantage 

as the 4C experiments and it can be used for detecting one to all interactions [12]. 5C 

overcomes the disadvantage of 4C and 3C-sequencing and offers the opportunity to 

map all the interactions in a large chromosomal territory [13]. 4C [14] and 5C [15] has 

been linked to NGS now providing genome-wide information. However Hi-C (Table 2) 

has been the most powerful among these by having the ability to map all the 

interactions genome-wide in an unbiased way [16]. ChIA-PET [17] is the genome-

wide version of the method called ChIP-loop [18] in which the combination of ChIP 

and 3C is utilized to map the interactions between any two loci bound by the 

investigated protein (Table 2). 

These technological developments apparently produced the possibility to reveal 

interaction maps about the identified cis-acting elements and their promoters. In 

addition, these can inform one about the organization of higher-order chromatin 

structure in the nucleus. These technologies are quite robust, provide a lot of data, 

prone to artifacts and require significant bioinformatics efforts to analyze and interpret 

the data. 

 

The need for bioinformatics 

The necessity of bioinformatics became apparent with the delivery of sequencing 

data to the molecular biology laboratory. Post-genomic bioinformatics has been 

evolving in concert with the emergence of NGS methods, but such evolution is not 

without difficulties and dead ends especially considering the fact that two different 

fields, molecular biology and informatics needed to merge. It is safe to say that as of 

today there are still no standardized algorithms, or even consensus quality control 

metrics to qualify and interpret NGS data. The fact that the data sets need to be 

deposited in central repositories is a necessary step and allows re-analyses by 

independent groups and/or independent methods. The largest such source is the 

NCBI Sequence Read Archive, which contains the raw sequence reads of several 

tens of thousands of NGS samples. These sequences can be freely downloaded and 

reanalyzed, mapped to the appropriate reference genome. Alignment of spliced 
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reads for RNA-Seq was a unique challenge which had been overcome e.g. with the 

TopHat software [19], which finally led to a now widely used RNA-Seq analysis 

pipeline. 

Determination of cistromic and epigenomic enrichments are accomplished with 

several distinct algorithms specialized for shorter or broader regions with different, 

e.g. peak-like, column-like, extended or valley-like shapes. Differences in read 

distributions of a sample lead to slightly or sometimes not so slightly different results 

in terms of number of the predicted binding sites overlaps between occupied genomic 

regions, etc. There is also no real consensus in the way the results are plotted and 

presented in publications. These can lead to confusions and disagreements 

regarding the cistromes of transcription factors or the effects of various signals. 

Genomic ChIP-ed fragments of transcription factors ideally show a Gaussian 

distribution near the TFBSs forming peaks after the alignment. The initial studies 

used SOAP, Bowtie and BWA, but there are other sequence read mapper tools as 

well for the alignment. There are additional peak caller programs have been 

developed using different algorithms: CSAR searches for read enrichments following 

Poisson distribution. MACS and Homer work based on the local density of the reads 

with Poisson distribution. CisGenome uses negative binomial, and ZINBA uses zero-

inflated negative binomial distribution. There are more sophisticated methods for 

peak calling such as the BayesPeak using the Hidden Markov Model, see review 

about peak caller tools [20]. This list of approaches testifies that there is still a lack of 

consensus on what to call a peak and how to count it. 

It appears though that peak caller tools work relatively well depending on the quality 

of the sample libraries and give a quality score, the edges and the summit of the 

peaks. Peak width is usually a technical issue but the summit has a biological 

relevance as it is very close to the putative TFBS(s). The first widely used package, 

which was able to search for motif enrichments and to map the found matrices (back) 

to sequences thus designating the TFBSs was the MEME-MAST toolkit [21]. Based 

on the validated TFBSs more motif matrix databases were established: TRANSFAC 

[22], MEME and JASPAR [23] have databases with their own similarity weight matrix 

formats, which are used in several other databases as well. Homer also developed a 

motif enrichment and TFBS searching system, which includes others’ matrices as 

well as the ones with Homer’s own format enriched from different ChIP-Seq samples 
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[24]. There is a special ChIP-Seq method called ChIP-exo, developed directly for the 

detection of TFBSs at a single nucleotide resolution. Fragments are shortened by an 

exonuclease from the 5’ up to the TFBS, thus resulting in a column-like shape after 

alignment marking the exact place of the DNA binding [25]. Application of this method 

might result in a much better resolution in determining TFBSs. 

Histone modifications usually cover broader regions of the genome, which calls for 

different kinds of algorithms. SICER [26] and ZINBA were developed for this purpose 

but certain peak callers are also able to find these kinds of regions by using different 

parameters, such as MACS2 and Homer. DNA binding of transcription factors 

disrupts histone continuity establishing the so-called nucleosome-free (or more 

precisely nucleosome-depleted) regions (NFRs) with valley-like shapes in the histone 

(modification) landscapes. There were several methods allowing the detection of 

nucleosome occupied and depleted regions. The first one is based on ChIP-chip [27], 

[28], whilst others are based on MNase or ChIP-Seq data [29]. Homer includes an 

NFR prediction function for ChIP-Seq data as well, and we have also developed a 

method to find putative regulatory regions based on active histone mark landscapes 

[30]. Special NGS methods emerged in order to determine the regulatory regions and 

as FAIRE- (Formaldehyde-Assisted Isolation of Regulatory Elements) [31] and Sono-

Seq [32] give peak-like enrichments, peak callers are also suitable in these cases to 

determine these NFRs as well. Sono-Seq is a simple method to find accessible 

chromatin regions using a size selection following the sonication of the cross-linked 

chromatin. More recently, predictors of broader regions (SICER, ZINBA) and NFRs 

are becoming suitable for the processing of DNase I, MNase-Seq or other kinds of 

NGS data. 

 

How to link the regulator to the regulated? 

The combined usage of molecular, NGS and bioinformatics methods and approaches 

continue to provide useful and a very large amount of information about the location 

of cis-acting elements and the gene expression profile of a given cell type. However, 

aligning the regulatory elements to the affected genes remained very cumbersome if 

not impossible. Linking TFBSs simply to the closest regulated gene is not so reliable 

in case of larger distances between the proposed enhancers and the regulated 

genes, without evidence for these interactions unless these are validated by methods 

such as Chromosome Conformation Capture (3C) [10]. 3C, if done quantitatively, is 
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suitable for measuring the interaction frequency between any two loci in the genome, 

however prior information (e.g. TFBSs or histone modification patterns) of the given 

loci are critical for the experimental design. The development of Hi-C overcomes this 

problem [16]. This method is based on 3C, of which ligation products are sequenced 

on an NGS platform documenting all genome-wide interactions. However its 

resolution is far from ideal to map enhancer-promoter interactions. Fullwood et al. 

reported a new technology called chromatin interaction analysis by paired-end tag 

sequencing (ChIA-PET) in 2009 (Table 2). The method itself is the combination of 

ChIP and 3C, and first applied to map the chromatin interactions influenced by the 

estrogen receptor alpha in the human genome [17]. The usage of this technology 

provided a tool to understand how a transcription factor can act from long distances, 

and implied that chromatin interactions are one of the driving molecular mechanisms 

for regulating gene expression in the mammalian genomes. 

Development of Global Run-On sequencing (GRO-Seq) was an additional 

breakthrough. The procedure is based on the classical nuclear run-on transcription 

assay, which has been used in molecular biology for decades, providing a snapshot 

about the level of in vivo (at least in an intact nucleus) synthesized nascent RNAs 

[33]. If done as a time course, the dynamics of the induced/changing transcription 

can be assessed and even quantitated. GRO-Seq was first applied to primary human 

lung fibroblasts in order to map the amount, position and orientation of the 

transcriptionally engaged RNA polymerases [34]. The obtained results were very 

striking, showing that about 30% of the human genes are occupied by active 

polymerases, genes are transcribed beyond the 3’ end of the annotated regions, and 

surprisingly, most promoters possess engaged polymerases in the opposite 

orientation to the annotated gene. This divergent transcription is associated with 

active genes but usually is not elongated efficiently to the upstream regions relative 

to the TSS [34]. 

The technical advance made it possible to go forward using these approaches (Table 

1.) to reveal the complex regulation of the genes in a genome-wide manner, however 

the combination of the approaches is necessary to understand and to be able to 

explain the most exciting findings. In the following part of this review we make an 

attempt to summarize the recent developments in the field of data integration based 

genomics, regarding cistromic, transcriptomic and chromatin structure related 

studies, which are based on molecular biology of NGS coupled technologies. 
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Enhancers, the main drivers of gene expression 

In complex genomes cis-acting elements are dispersed and can be located over 

several hundred kilobases far from their targeted genes [35]. Developments 

regarding NGS rapidly expanded our view about the putative location of regulatory 

elements and shed light on the problematic nature of assigning enhancers to genes. 

However it has been shown in one of the earliest studies that their proper action is 

indispensable and mutation occurring within the core enhancer sequence may result 

in congenital disease [36]. Based on these, the proper annotation of enhancers has 

become an important and widely studied issue in the field of transcriptional regulation 

and an absolute requirement for proper annotation of genome function. Enhancers 

are DNA sequences with the ability to recruit various types of transcription factors for 

the interaction with the mediator complex as well as with the members of the (pre)-

initiation complex. By looping mechanisms the complexes assembled on the DNA 

can facilitate RNA-polymerase II (RNAPII) binding to the promoter, thus the initiation 

of gene transcription [37]. It has been also shown that transcription factors bound to 

enhancers are able to recruit ATP-dependent chromatin remodeling enzyme 

complexes affecting the chromatin structure to establish NFRs, thus facilitating 

transcription factor binding, transcription initiation and elongation [38]. 

The appearance of MNase-, DNase I-, and ChIP-Seq (Table 2) as main tools to 

interrogate open chromatin, transcription factor binding and epigenetically marked 

histone landscapes has greatly improved our understanding about the main features 

of enhancers. Results from genome-wide studies mapping nucleosome occupancy 

indicate that at cis-regulatory elements, histone replacement is more enhanced than 

at other genomic locations not harboring such enhancer-like properties [39]. Active 

promoters/TSSs are hardly occupied by nucleosomes as well, thus these form also 

NFRs. These results suggested that nucleosome stability contributes to gene 

regulation [40]. Later it has been shown that the two alternative, minor histone 

variants, H3.3 and H2A.Z are enriched near NFRs [41]. 

High-resolution co-activator: CREB-binding protein (CBP) and p300, ChIP-Seq 

enrichments provided further insights into the chromatin signatures of enhancers. 

These proteins interact with various transcription factors and possess histone acetyl-

transferase activity, which makes them capable to modify histones [42]. Several 

studies showed that these factors are good predictors of enhancer function in a 
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tissue specific manner as reviewed in [43]. These results suggest that CBP/p300 co-

factors are key functional components of the enhancer binding complexes. 

Certain histone modifications also participate in cis-element function and it has been 

shown that the main characteristic features of active promoters are defined by the 

residence of RNAPII and TBP-associated factor 1 (TAF1), marked by NFRs flanking 

with trimethylated histone H3 at lysine 4 (H3K4me3), acetylated H3 (H3ac) and TFIID 

[44]. On the other hand, as previously mentioned p300 is one of the most well-

documented active enhancer marks along with the enriched H3K4me1, H3K4me2 

and H3K27ac for a review see [45]. These observations were confirmed in different 

cellular model systems leading to the identification of enhancer repertoires of a given 

cell type [46], [47]. Based on these studies, the identification of enhancers and their 

characteristic features are relatively straightforward, however the annotation process 

to the affected genes remained largely elusive. 

Utilizing the features of RNA-Seq and GRO-Seq, another useful feature has been 

described, namely that transcription can be detected at active enhancers [48] [49]. 

The observation added another layer to enhancer features and it turned out that this 

might be the most reliable indicator that the enhancer actively participates in gene 

regulation [50]. We will elaborate on this later. 

 

Linking enhancers to regulated genes 

As far as the genomic features of enhancers are recognized, their identification has 

been more efficient using enhancer prediction methods based on both evolutionary 

conservation [51], and ChIP-Seq results [52]. Based on factor occupancy and histone 

marks the enhancers can be identified, but their targeted genes are harder to find. In 

the absence of a better method, most studies in the field used simply proximity based 

predictive approaches to assign enhancers to the regulated genes [53], [54]. Over 

the past 12 years the development of 3C methodology and its combination with NGS 

technology rapidly changed our view about genome structure though [55]. 

Traditionally, nuclear organization was evaluated by microscopy based methods. 

Since then, different 3C related methods have been evolved leading to the 3D 

determination of chromatin structure at various gene loci [55]. The advantage of 

these 3C methods is their higher resolution compared to microscopy and allowing to 

analyze a single gene and its interaction profile. Importantly, 3C-based approaches 
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will always need a helping hand from the side of microscopy to fully uncover the 

shape of the genome and to obtain the most reliable interactions [55] (see also later). 

The simplest example is the comparison of gene expression in active and inactive 

chromatin regions. Chromatin segregation into active and inactive regions raised the 

question whether positioning into these regions affects gene expression. This was 

clearly documented using fluorescent in situ hybridization (FISH) that certain regions 

change their nuclear position upon the activating stimulus [56]. Probably some of 

these changes at the level of gene expression are attributable to cis-acting elements 

such as enhancers. The correlation between nuclear position and gene expression 

has been shown in several studies, for a review see [55]. Silent genes are localized 

closer to nuclear lamina than their active counterparts and supported the basis of the 

so-called „position effect”, which describes the behavior and action of cis-regulatory 

elements in the context of higher-order chromatin structure [55]. Another emerging 

concept is the existence of subnuclear compartments enriched in transcription, so 

called transcriptional factories [56]. These would be highly relevant for enhancer 

activity and might even suggest that enhancers and promoters co-localize in such 

subnuclear regions.  

 

ENCODEing the functional elements 

Humans are estimated to have about 20,000 protein-coding genes, but this covers 

only 1.5% of the entire genome. The other 98% accounts for intronic and intergenic 

regions, non-coding RNAs and short or long interspersed elements [57]. ENCODE is 

a project launched in 2003 aimed at identifying all the cis-acting elements in the 

human genome via the collaboration of several research groups as part of this 

specialized consortium [58]. This initiative is the continuation of the Human Genome 

Project, but in this particular case the final aim was the identification of functional 

DNA sequences that act at the protein and RNA levels in a given cell type [59]. The 

functional DNA sequences defined as distinct genomic sections encoding a specified 

output for instance, protein product or non-coding RNA. Another characteristic 

feature of these elements is the reproducible biochemical trademark exemplified as 

protein binding or specific chromatin structure. Using 1640 data sets from 147 

different cell types complemented with all ENCODE data regarding candidate regions 
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from genome-wide association studies (GWAS) and evolutionarily constrained 

territories revealed important components about the function and organization of the 

human genome. The main conclusions drawn by the ENCODE consortium were the 

following: “1, More than 80% of the human genome is associated with at least one 

biochemical signature in one particular cell type. 2, Classification of the genome into 

functionally different chromatin states implies an initial set of approximately 400,000 

enhancer-like regions and more than 70,000 promoter-like elements. 3, Quantitative 

correlation of RNA production versus chromatin marks and transcription factor 

binding on the promoter regions indicate that RNA expression is mostly dependent 

on the functionality of the promoter. 4, ENCODE annotated at least as much 

functional non-coding DNA sequences as the protein-coding genes. 5, Single 

nucleotide polymorphisms (SNPs) associated with disease phenotypes determined 

by GWAS enriched in non-coding functional elements annotated by the consortium” 

[60]. Based on these considerations it is obvious that the non-coding part of the 

genome is full of functional and disease associated regulatory elements. The basis to 

connect these to the distal target genes remained unexplored. Gene promoters and 

their cis-acting elements can participate in looping that is involved in gene regulation 

[17]. In order to link genes and their putative regulatory regions, chromosome 

conformation capture carbon copy (5C) is carried out [13]. 5C interaction maps are 

generated from three cell lines and these results were integrated with the ENCODE 

data. Merging these datasets revealed more than 1000 interactions between 

enhancers, CCCTC-binding factor (CTCF) bound sites and promoters in each cell 

lines. Significant correlations are observed between gene expression and the 

existence of promoter-enhancer interaction and the presence of transcripts 

originating from enhancers (enhancer RNAs, eRNAs). Interestingly, unlike the 

reported functions of CTCF as an insulator, long-range interactions are not blocked 

by CTCF-cohesin co-bound sites demonstrating that many of these sites are not 

demarcated physically insulated gene domains. The fact that only 7% of the loops 

are detected with the closest gene, suggests that genomic proximity is not 

necessarily a good predictor for long-range interactions [61]. This study clearly 

demonstrates that cis-acting elements communicate with their targeted promoters via 

looping, nevertheless if one would like to reveal the entire interaction map between 

these elements, one needs a more robust method capable of detecting all co-

operations. Although 5C is a very powerful method to map the interactions, it is 
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limited to a single locus. The usage of ChIA-PET solved this issue. In order to link the 

regulatory elements to their targets, DNase I hypersensitive sites (DHS) are resolved 

leading to the determination of open chromatin landscape of several cell lines 

representing the human genome. These regions were then aligned with RNAPII 

ChIA-PET results gathering all the participants of RNAPII dependent open chromatin 

interactions. This large-scale interaction analysis confirmed that cooperation between 

DHS sites and promoters are markedly enriched. Surprisingly, this kind of integration 

revealed that approximately half of the DHS sites are detectable in the close 

proximity of more than one promoter. These results suggest that the human cis-

acting element network is more complex than anticipated [62]. 

Taken together, ENCODE identified an enormous amount of functional elements in 

the human genome and provides a beneficial resource for the field. On the other 

hand the data presented is greatly enlarged our understanding about the functionality 

of the human genome directing us toward new challenges regarding cis-acting 

element annotation and how these act genome-wide. The functional significance of 

such detected interactions is not known at all.  

 

Pioneering, bookmarking and higher order chromatin structure 

In the previous sections we summarized the knowledge regarding the features of cis-

acting elements and how one can recognize them in the very complex mammalian 

genome. Each of the genes encoded in the human or mammalian genetic material is 

likely to have many distinct cis-acting elements spread across tens to hundreds of 

kilobases. These regulatory sequences act in concert to fine-tune gene expression in 

a highly tissue and signal specific manner. What kind of factors dictate the 

functionality of such elements in the genome leading to differential gene expression 

patterns in various cell types? Next we focus on the pioneering and bookmarking 

factor concept and on the mechanistic determinants of higher order chromatin 

structure contributing to cell specific transcription. From a functional point of view 

there are at least three categories of enhancers: 1. Potential enhancers not binding 

its cognate transcription factor. 2. Non-active enhancers, binding a particular 

transcrtiption factor, but not participating in enhancement of transcription and 3. 

Active enhancers, binding the required transcription factor and activating 
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transcription. Molecularly, the diversity is likely to be greater. These need to be sorted 

out, linked to regulated gene(s) and functionally validated.  

From a mechanistic point of view enhancer elements must be prepared before 

activation. It has been shown that the forkhead transcription factor A (FoxA) binds to 

inactive genomic regions and by remodeling the nucleosome pattern, it is able to 

recruit other transcription factors leading to enhancer activation. The first two pioneer 

factors (FoxA, GATA) have been described in the liver differentiation program. By 

definition pioneer factors hold the property to bind nucleosomal DNA and compact 

chromatin, and remain bound during mitosis. FoxA is a typical pioneer factor, which is 

capable of transform the actual enhancer to a state called „poised” for activation [63]. 

This state of the enhancers renders them for rapid activation once the specific signal 

or its downstream effector appears. Other transcription factors have been also 

described with pioneer properties as reviewed in [64]. According to pioneer factors, 

the prevalent view is that during differentiation these factors shape the active cis-

regulatory element network, thus contributes to the acquisition of cell identity. More 

precisely, this concept describes that the regulatory landscape evolved through the 

differentiation program determines the sites where transcriptional regulation occurs. 

Interestingly, in 2013 Ostuni et al. reported the existence of the so-called latent 

enhancers. These cis-elements are not bound by the lineage-specific transcription 

factor PU.1 in terminally differentiated macrophages and do not show the 

characteristic histone profiles of enhancers. Importantly, upon stimulation by an 

activating signal (IL4, INFg, TGFb), their histone profile can suddenly change due to 

the binding of the downstream effectors and leads to the subsequent binding of PU.1. 

After stimulation, in the absence of the activating signal most of them do not return to 

the latent state, instead remained marked by H3K4me1 and upon exposure they 

mediate a faster and stronger response, thus provides an epigenetic memory to the 

cell [65]. It remains to be seen how wide spread is this mechanism among different 

cell types and cell types. 

Taken together, the picture seems quite complex. Cell type specific pioneer factors 

exist and at least in part shape the cis-acting element landscape across cell types. 

Other factors affecting the architecture of the genome have been also shown to be 

important in establishing the functional regulatory elements as reviewed in [66]. At 

the same time it is also known that not all lineage specific transcription factors have 
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chromatin remodeling activities associated with. Therefore these are more 

appropriate to be called as bookmarking factors. It remains to be discovered how 

these factors i.e. PU.1 establish cellular memory mechanistically. 

It has been shown that each chromosome has its own physical location in the 

nucleus as reviewed [55]. Chromosomal territories are functionally different and 

spatially separated, but what are the determinants of this higher-order chromatin 

structure, which is implicated in the regulation of gene expression and also 

responsible for cell autonomous transcriptomes? 

This line of investigations started when insulators were first recognized in vertebrates 

[67]. Insulators were first described because of their ability to block enhancer 

function. Later on it has been shown that CTCF allows these insulator sequences to 

function as separating enhancer/promoter interactions and also active/passive gene 

domains [68]. CTCF is a transcription factor possessing elven zinc-fingers and is 

ubiquitously expressed in higher eukaryotes. The function of CTCF was further 

clarified showing that it functions with the multiprotein cohesin complex containing the 

following subunits: SMC1, SMC3, RAD21, SA1, SA2 [69]. Cohesin has a ring-like 

shape with a diameter of approximately 40 nm. This important feature of cohesin 

makes it suitable to handle the chromatin fiber as shown in sister chromatid cohesion 

[70]. According to the described features of these proteins it is conceivable that they 

are crucial components of shaping the higher-order chromatin structure. 

CTCF had long been thought to contribute to the structural organization of the 

genome, but its long-range interaction mediating effect has remained elusive until it 

has been linked to cohesin on the mouse Infg locus [71]. This study was the very first 

to show that both CTCF and cohesin are indispensable for genomic interactions. 

Others also reported that cohesin depletion leads to diminished promoter-enhancer 

interactions in embryonic stem cells [72] and in thymocites [73]. A series of genome-

wide studies show that CTCF and cohesin co-occupy regions in the genome [74], 

[75]. The extensive interaction between these factors may explain how CTCF 

separates functionally different domains. 

Recently, contact mapping of chromosomes determined by NGS based methods 

revealed the topological domain structure of the genome [16], [13]. These domains 

contain multiple genes and possess differential gene expression activity and 
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epigenetic pattern. Presumably, these domains serve as fundamental building blocks 

that support active and passive chromosomal architectures. It has been shown that 

the anchoring points of chromatin loops, organizing the domain structure are 

enriched for CTCF and cohesin binding sites [76]. Other studies have reported that 

CTCF-cohesin co-bound regions mediate the looping events surrounding promoter 

enhancer elements, while those regions occupied only by cohesin are responsible for 

enhancer-promoter interactions [72]. Based on these results, several studies showed 

that CTCF and cohesin are required to maintain topological domain structures, 

interchromosomal interactions and enhancer-promoter interactions [77], [78], [79] 

(Figure 1C, 2B). Perturbation of the cohesin complex has been shown to affect gene 

expression involving not only the cohesin bound genes, but also those that are free 

of cohesin suggesting its function in preserving topological domain structure [78]. 

According to these results CTCF and cohesion is likely to play key roles in proper 

gene regulation, although their genomic binding sites suggest that their effects on 

gene expression are not cell type specific because the CTCF cistrome is largely 

invariant between cell types. As part of the ENCODE project a study compared CTCF 

binding sites from 19 different human primary and immortal cell lines. Surprisingly, 

the result shows that there is plasticity in CTCF binding across cell types indicative of 

strong cell-selective regulation of CTCF binding. Using massively parallel bisulfite 

sequencing the authors showed that approximately 40% of variable CTCF binding is 

due to differential methylation states at two specific points of the binding motif. 

Strikingly they could demonstrate that CTCF binding is dramatically different between 

primary and immortal cell lines. The latter harbors widespread disruption of CTCF 

sites associated with increased methylation [77]. 

Taken together, CTCF-cohesin co-bound sites appear to be responsible, at least in 

part, for the configuration of topological domain structure. By shaping the genome 

architecture these factors significantly contribute to the regulation of gene expression 

also in a cell type specific manner. 

 

Is there a function for enhancer RNAs? 

Recent advances in genomic technologies made the surprising finding that active 

enhancers are transcribed into RNA molecules, called enhancer RNAs (eRNA). The 
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first results describing the existence of eRNAs originated from the locus control 

region (LCR) of the beta-globin gene clusters [80], [81]. The fact that there is 

pervasive transcription on enhancer elements came with the advent of total RNA 

sequencing, showing that in neuronal activity regulated and T-cell specific enhancers 

are transcribed [48], [49]. More studies were published recently in the field using 

GRO-Seq in various cells and species, which have clearly demonstrated that 

enhancers are transcribed to eRNAs and to a given stimuli, the activation dynamics 

of these elements are similar to their targeted genes [50], [82]. 

There is a debate on the field about eRNA function. The question is very simple: Are 

these functionally relevant in gene expression regulation or eRNAs are just merely 

byproducts of gene transcription? Recently, several studies published using novel 

methods to test the functionality of enhancer-derived transcripts. Specific degradation 

of eRNAs using either RNA interference or antisense oligonucleotides demonstrated 

that the expression of the adjacent gene targeted by the enhancer is reduced [83], 

[84], [85], [86]. Two out of the four studies also performed an eRNA tethering assay 

in a reporter system. Interestingly, eRNA connected to either the promoter [85] or the 

enhancer [83] was capable of increasing the expression of the reporter gene. As 

further evidence, Lam et al. showed that by integrating various sizes of genomic 

regions from an enhancer to a reporter vector could differentially affect the activity of 

the reporter gene. If the core sequence was cloned containing the TFBS only, they 

detected increased reporter activity compared to a reporter plasmid carrying random 

DNA sequence. Surprisingly, the reporter encompassing the core and the entire 

eRNA-coding sequence had the highest transcriptional output. Inverting the eRNA-

coding region supported the most striking result because changing the sequence of 

the eRNA diminished its boosting effect, suggesting that the sequence of these short 

RNAs can be very important in the context of gene regulation [84]. According to these 

results, it seems that eRNAs possess regulatory function, but the question is how. 

What is the molecular mechanism through which these small molecules reach the 

heart of transcription? 

It has been demonstrated that enhancers actively participating in looping with their 

targeted promoters acquire higher level of eRNAs [87], [61]. Based on these studies 

the predicted model must be that eRNAs somehow secure the contact between 

enhancers and their corresponding promoters. Nuclear receptors like estrogen 
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receptor alpha (ERa) have been shown to bind enhancer elements and in the 

presence of the agonist in this particular case oestrogen, these cis-acting elements 

are anchored at target gene promoters through long-range chromatin interactions 

determined by ChIA-PET [17]. Recently, a very important finding came to light 

showing that knockdown of eRNAs immediately next to ERa bound enhancers 

reduced enhancer-promoter interactions and resulted in a reduced expression level 

of the corresponding gene. Potentially these ERa-mediated eRNAs are taking part in 

the modulation of looping, which was further supported by the fact that eRNAs could 

pull-down the subunits of the cohesin complex. On the other hand RNA 

immunoprecipitation (RIP) assays performed against RAD21 showing that eRNAs 

could enrich in the cohesin complex [83] which has been shown to control enhancer-

promoter interactions [72]. Furthermore, targeted degradation of eRNAs by RNA 

interference led to the inhibition of oestrogen dependent RAD21 recruitment at 

several ERa bound enhancers. Strikingly, knockdown of RAD21 almost fully 

diminished the interaction on the gene loci NRIP1 and GREB1 between the 

enhancers and their corresponding promoters. In addition, knockdown of SMC1, 

another component of the cohesin complex, almost completely abolished the 

oestrogen mediated gene activation program [83]. Thus eRNAs may participate in the 

process of looping by initiating or stabilizing the interactions of enhancer-promoter 

pairs. 

In an independent study by Hah et al. showed that inhibiting RNAPII elongation (by 

flavopiridol) has no significant effect on the looping examined on the P2RY2 and 

GREB1 loci using 3C [88]. These results put a little bit of contradiction into the field, 

but the difference may be explained by the usage of different experimental systems 

(eRNA silencing vs. Pharmacological inhibition of RNAPII elongation) or these may 

reflect different mechanisms at different gene loci [43]. 

Overall these studies suggest that at least in some cases eRNAs possess regulatory 

function and contributes to gene expression regulation. Clearly, further studies are 

needed to clarify their roles. 

 

Enhancers and disease 
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Previously we summarized the main features of an enhancer element and also 

delineate their annotation to their corresponding genes, than we dealt with eRNA 

function. In this part we sum up those studies, which connect single nucleotide 

polymorphisms (SNPs) with cis-acting elements supporting the notion that SNPs in 

the regulatory regions may cause disease phenotypes and thus contributes to 

evolution. Disruptions in chromosomal regions not harboring coding genes provided 

the first evidence that mutations in the non-coding part of the genome may contribute 

to disease development. 1.8% of the identified point mutations fell in the non-coding 

part of the genome based on the Human Gene Mutation Database. 

Mutations in the cis-acting elements can be easily annotated to a given disease 

phenotype if they fulfill one or more of the following: 1, Genetic evidence is present to 

link the phenotype to a known disease locus. 2, Validated chromosomal anomaly 

(deletion, amplification, rearrangement) can be annotated to a known disease gene. 

3, Resulting phenotype is very similar to the phenotypic change caused by a mutation 

in the coding region of a known disease gene. 4, Disease associated variation 

accounts for all or a significant fraction of disease risk [89]. 

One of the earliest studies mentioned the regulatory element mutations of the PAX6 

locus involved in Aniridia. Aniridia is characterized by the absence of iris and is 

mostly due to mutations occurred in the coding sequence of the PAX6 gene [90]. 

However a fraction of the cases are not caused by mutations in the coding sequence. 

It has been shown that the downstream genomic region is full of rearrangements. 

The most distal point harboring the mutation lies approximately 125kb from the last 

exon of PAX6 and fall in the intronic region of the ubiquitously expressed gene ELP4, 

although haploinsufficiency for ELP4 has been shown not to contribute to the disease 

phenotype. YAC-based transgene experiments in mice revealed an approximately 

80kb long genomic region containing series of DHSs. Later on, it has been described 

that these cis-acting elements are required for PAX6 expression [91]. 

Another striking example has been demonstrated with the POU3F4 gene. Mutations 

occurred in the coding region responsible for X-linked deafness type 3, however a 

smaller group of cases was identified that lack the gene variation. Interestingly, 

approximately 900kb upstream from the gene’s TSS, a very important 2kb element 
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has been described to overlap with an otic vesicle enhancer, likely regulating 

POU3F4 [92]. 

By these experiments it has been shown that regulatory elements function over long 

distances, they can reside in other transcriptional units and their mutations can cause 

disease phenotypes. The listed diseases are typically inherited in a Mendelian 

manner, although mutations present in the non-coding regions of the genome where 

they associated with non-Mendelian diseases. 

The rapid evolution of genotyping technologies has resulted in GWAS data that 

generally imply a powerful role for regulatory variation in common genetic disorders 

[93]. Recently, meta-analysis of approximately 1200 SNPs representing the most 

significant association with disease phenotypes has been done. Surprisingly 40% of 

these falls into the non-coding part of the genome suggesting that disease causing 

mutations may act on enhancer elements [94]. 

Several studies successfully demonstrated roles for non-coding mutations in disease 

risk. One of the earliest was identified in the intronic region of the RET gene 

contributing to Hirschprung disease [95]. Recently, it has been shown that a mutation 

reside in the non-coding region belong to the IRF6 gene is a risk factor of cleft lip 

associated with Van der Woude Syndrome [96]. Similar observations have been 

made in several other cases reviewed in [89]. 

Overall, the vast amount of data unequivocally support the notion that cis-acting 

elements are crucial components of proper gene regulation and their mutations give 

rise to various pathological conditions. Importantly, until now no one could investigate 

the effect of these genetic variations on the functional cis-acting element toolkit in a 

special cell type. 

Recently, Heinz et al. used different mouse strains looking for differential binding of 

transcription factors caused by natural genetic variation. In this study they could 

delineate the strain specific differences in functional enhancer usage in 

macrophages. Most of the cells express hundreds of transcription factors to control 

the non-coding part of the genome, thus shaping the cell specific transcriptome. In 

macrophages, transcription factors responsible for marking regulatory elements are 

PU.1, C/EBPs and the AP-1 family members. They showed that in macrophages 
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these lineage determining transcription factors (LDTF) collaboratively occupy the 

70% of the active enhancer elements. Surprisingly, if an SNP can be detected in the 

PU.1 motif leading to diminished PU.1 binding, it negatively affected the binding of 

the other two LDTFs. Conversely, if the binding motif of C/EBP or AP-1 harbors the 

mutation, PU.1/AP-1 and PU.1/C/EBP binding also diminished. In addition, H3K4me2 

and H3K27ac markers of active enhancers are also abolished, meaning that these 

enhancers were not functional any longer. These results provided a definitive answer 

to the question: How enhancer function and transcription factor binding is lost where 

there are no mutations in its binding motif? Based on these the answer is the 

requirement for collaborative binding. Interestingly, further examination of the strains 

in the context of a signal specific transcription factor, NF-κB led to the observation 

that mutations occurred in the LDTF motifs are approximately three times more likely 

to result in decreased NF-κB binding, than mutations occurred in the NF-κB motif, 

showing the importance of LDTFs in chromatin priming/remodeling as previously 

mentioned [97]. 

The authors claim that this collaborative binding model can be very useful if one 

determines the LDTFs in a given cell type and merge these binding sites with the 

annotated genetic variations to pinpoint the potential disease-causing variants. The 

challenge will be in the future to expand these studies and use them in different 

model systems to understand disease-causing natural genetic variations [97]. 

 

Conclusions and future directions 

Transcriptional control of cell specific gene expression is carried out through complex 

molecular mechanisms. Recent works harnessing the advantage of the integration of 

high-throughput sequencing data led to the identification of active enhancer elements 

in various cell types. Enhancers seems to be highly tissue specific, explained by the 

presence of different pioneering factors establishing the cis-acting element repertoire 

and the higher order chromatin structure shaped partly by CTCF and CTCF/cohesin 

to our best knowledge. Genomic regions are partitioned into functionally distinct gene 

domains in which regulatory elements may act on various genes. The main molecular 

mechanism of gene expression regulation often carried out over long distances 

covered by chromatin loops between the regulator and the regulated gene. 
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Functional enhancers actively engaged in looping and possess the ability to be 

transcribed to eRNAs. These short RNA pieces originated from enhancers seems to 

be important components of those protein complexes taking part in looping. 

Importantly, this process at least in general terms is indispensable for efficient 

assembly of transcription initiation machinery on target gene promoters. Although 

these studies greatly improved our view about gene regulation, still inherently 

descriptive harboring the disadvantage that we could not render a clear biological 

function to these cis-elements unless a clear human disease phenotype is connected 

to them by knowing the enhancer SNP location. In the future probably most of the 

enhancers will be cut out by using genome-editing methods, for instance TALEN [98] 

or CRISPR [99]. Genome editing is expected to fulfill the expectation that the function 

of each element will be identified and by these means create the opportunity to 

selectively target each of them to cure diseases. The results obtained from the 

silencing of eRNAs are also promising, showing that targeting an enhancer transcript 

derived from an active cis-acting element may has an effect on the target gene 

expression, thus serves as a remote control for genes. The problems with these are: 

1. Their specificity is questionable because one enhancer can be responsible for the 

regulation of several genes. 2, Presence of shadow enhancers [100] can 

compensate the effect of the original enhancer. 3, Another challenge can be to hit the 

target specifically under physiological setting. 

All together integration based genomics holds the potential to reveal many-many new 

drug targets and to identify most of the disease causing mutations, which can be 

located in the non-coding part of the genome and so far was very cumbersome to 

seek out. 

 

Figure legends: 

Figure 1. Transcription regulation in prokaryotes and eukaryotes and the complexity 

of gene regulation in eukaryotic cells. 

A, Prokaryotic gene expression is based on operons in which a gene cluster is under 

the control of two genomic (promoter) regions. The first promoter located at the 5’ 

end is responsible for the expression of the regulator protein, which in turn silences 



 24 

the whole operon via binding to the operator region. In the presence of an activating 

stimuli the regulator cannot bind to the operator region, thus the second promoter will 

be active and leads to the efficient expression of the enzyme coding genes producing 

polycistronic RNA molecules encoding more protein products. 

B, Eukaryotic genes are typically regulated by cis-acting elements located in the non-

coding part of the genome. These elemets can be located far away from their target 

genes, even in an other chromosome, thus it is challenging to pair them with their 

genes. RNA synthesized from a eukaryotic gene is monocistromic and undergoes the 

process called splicing, in which the intronic regions are excluded from the nascent 

transcript before translation. 

C, Eukaryotic transcription might be coordinately regulated in the so called 

transcription factories. These subnuclear compartments might be, in part, stabilized 

by the CTCF/Cohesin protein complexes and permit the expression of genes in a 

well-coordinated manner, mechanically connecting genes regulated by the same 

signal, but residing on distinct chromosomes. A hypothetical scenario is depicted in 

which several genomic regions on distinct chromosomes are linked by 

CTCF/Cohesin interactions and co-localize in the nucleus forming a transcription 

factory. Interchromosomal interactions are marked by asterisks. 

 

Figure 2. Schematic representation of enhancer function and the establisment of cell 

type specific gene expression program. 

A, Enhancer-gene pairs are located within a topological domain bordered by 

CTCF/Cohesin protein complexes. Enhancers may be located long distances away 

relative to the TSS of the regulated gene. Upon signal-specific enhancer activation 

transcription factor binding and chromatin remodeling occurs leading to the 

deposition of enhancer marks for instance H3K27ac by the coactivator complex. 

Enhancers activated by the stimuli then get in to the close proximity of the promoter 

region potentially by an eRNA-dependent mechanism which also relies on the 

cohesin complex. After these steps the enhancers can initiate or boost the 

expression of the target by supporting the assembly of the general transcription 
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factors and the mediator complex along with the deposition of the active TSS mark 

H3K4me3. 

B, Cell type specific gene expression program is established by the existence of 

various cell type specific transcription factors (pioneering/bookmarking factors) which 

can shape the functional cis-acting element landscape of the genome. Though the 

higher order chromatin structure is also implicated in the designation of active gene 

domains. In cell A, the functional gene domain is demarked by CTCF/cohesin 

cobound regions and the active enhancer element is occupied by the 

pioneering/bookmarking or the lineage determining factor, thus support an entry point 

to the signal dependent transcription factor. In cell B, the same gene domain is 

active, but because of the presence of a different pioneering/bookmarking factor it 

uses a different regulatory element, which in turn lead to a differential gene 

expression output, while in cell C the chromatin conformation of the locus is reshaped 

due to the differential binding of CTCF/Cohesin, hence a new enhancer unit can get 

in to the proximity of Gene A possessing another cell type specific 

pioneering/bookmarking factor with the ability to push the element into a poised for 

activation state. 
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