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Introduction

»Die Mathematik ist die K6nigin
der Wissenschaften und die
Zahlentheorie ist die Konigin der
Mathematik.“

Carl Friedrich Gaufl

Number systems have an important role in our life. As ancient as the
mankind itself this concept has changed and evolved. Choosing 10 as base
number for radix representation of the integers is just one of the infinitely many
possibilities. Choosing non-negative numbers as digits is also just a convention.
B. Pascal in 1658 first stated in print that any integer greater than 1 could
serve as radix. A.-L. Cauchy in 1840 pointed out that negative numbers as dig-
its make it unnecessary for a person to memorize the multiplication table past
oTd.

V. Griinwald [35] introduced the radix representation with respect to nega-
tive bases in 1885 on the following way. Let g < —2 be an integer. Then every
n € Z can be represented in the form

l

> nig, 0 < ni < gl 1)
1=0

He investigated how to perform the four basic operations in such number sys-
tems. In this concept there is no distinguish between positive and negative el-
ements, thus it allows far reaching generalizations. It’s started by D. E. Knuth
[47] in 1960. His number system is known as quarter-imaginary numeral system
which uses 2i as its base and 0, 1,2, 3 as its digits. All of the Gaussian integers
a + bi (a,b € Z) can be represented in this number system. Another similar
number system was analyzed by W. Penney [69] in 1965. He used the number



—1+4 as basis and 0,1 as digits. I. Katai and J. Szabé [44] in 1975 generalized
W. Penney’s result. They proved that the only numbers which are suitable
bases for all Gaussian integers, using 0,1,..., N — 1 as digits, are —n 4 ¢, where
n is a positive integer and N = n? + 1, the norm of —n +i. W. J. Gilbert
[34] in 1981 generalized I. Katai and J. Szabo’s result to find all the bases for
quadratic number fields using 0,1,..., N — 1 as digits. 1. Katai and J. Szabo
also stated that if {a, N'} is a canonical number system (CNS for short, « is
the base number, N is the digit set) in the ring of Gaussian integers, then any
complex number v can be written in the form (canonical in a sense that digits
are in ascending order): v = apa® +ap_1aF¥ 1+ tagta_ja ... a; €N
This is called aN-expansion of v which has been studied by I. Katai and B.
Kovacs [43], B. Kovacs [50], B. Kovacs and Gy. Maksa [57], I. Katai and L.
Kornyei [41], B. Kovacs and 1. Kornyei [56] and by A. Pethd [73]. S. Ito [38]
in 1989 investigated Katai and Szab6’s number systems and showed that the
boundary curve is a fractal curve. Later in 2001, W. Miiller, J. M. Thuswaldner
and R. F. Tichy [62] generalized the investigation of the boundary fractal curve
for number systems over n-dimensional real vector space. M.-A. Jacob and J.-P.
Reveilles [39] in 1995 defined an integer division for Gaussian Integers, which
linked two different objects: discrete affine applications and Gaussian numera-
tion systems. A. Kovacs [51] in 1999 analyzed the structure of the expansions in
the ring of Gaussian integers with canonical digits. In 2001 he extended this re-
sult to the integers in imaginary quadratic fields [53]. Another generalization of
CNS, namely for polynomials over imaginary quadratic Euclidean domains was
studied by A. Pethd and P. Varga in [76], and these results are also presented
in this dissertation in Chapter 1.

For a given positive integer base b, A. M. Odlyzko [68] in 1978 gave necessary
and sufficient conditions for a set S of positive real numbers to have the property
that every real number can be represented in the form

o
+ Z sib~ % s € S.
i=—N

The integers’ unique representation was investigated by D. W. Matula [67] in
1982.

D. E. Knuth [48] in 1981 described numerous reference to alternative num-
ber systems, and he gave results about radix representation of integers with
negative bases. He also analyzed the —1 + ¢ based number system, which is
related to the ,twin dragon® fractal. The connection between fractals and CNS
has been investigated by S. Akiyama and J. M. Thuswaldner [15], [16], [17],



K. H. Indlekofer, I. Katai and P. Racsko [37] and by K. Scheicher and J. M.
Thuswaldner [79]. J. M. Thuswaldner [81] calculated fractal dimensions of sets
generated by CNS over imaginary quadratic fields in 1998.

B. Kovacs and A. Pethd [58] in 1983 proved that for a given rational integer
basis there exists infinitely many finite digit sets. They proved in 1991 [59]
that if g(t) is irreducible then it is decidable whether the pair {g(¢t),N} is a
number system in the ring Z[t]/g(t)Z[t]. Later, in 2006, H. Brunotte, A. Huszti
and A. Pethd used this result in [23] to compute canonical number systems
of some quartic fields. Also, A. Pethé [72] in 1991 generalized this result for
arbitrary polynomials, and he defined CNS as follows. Let P(x) = 2"*! +
P+ pp_12" L+ 4 po € Z[z] and D = {0,1,...,|po| — 1}. The polynomial
P(z) is called CNS polynomial if for every 0 # A(z) € Z|[x] there exist h > 0
and aq,...,ap € D such that

Ax) = ape" + ap_12" 4+ + a1z + a9 (mod P(z)). (2)

If P(x) is irreducible one gets the concept of canonical number systems in alge-
braic number fields, which was introduced and studied by I. Katai and J. Szabo
(see [44]). This result was generalized to quadratic integers by I. Katai and B.
Kovacs [42], [43], [49] and independently in W. J. Gilbert [34]. S. Kormendi
[40] in 1986 established all CNS bases in a class of pure cubic number fields. B.
Kovacs and A. Pethd [59] presented a general algorithm for the computation of
all CNS bases in an algebraic number field and used their method in some cases
in 1991. S. Akiyama, H. Brunotte and A. Peth& [4], [5] disproved a conjecture
of W. J. Gilbert about the structure of the set of cubic CNS polynomial. H.
Brunotte [20] investigated the totally real cubic CNS polynomials. Families of
quartic CNS polynomials were studied by H. Brunotte, A. Huszti and A. Peths
[23] and by A. Pethd [71].

By changing appropriately the bases 1,z,...,2" ! of the Q-vector space of
polynomials of degree at most n — 1, H. Brunotte [18] found a very efficient
algorithm for the decision of the CNS property. He used it in [22] for the
characterization all CNS whose bases are roots of trinomials.

In 1993 B. Kovacs and A. Pethé [60] gave an asymptotic estimate for the
number (L(3)) of required digits for a given 3 to be represented in a number
system. In 2001 A. Kovécs analyzed binary number systems and number systems
with small digit set over algebraic number fields. The characterization of CNS
polynomials is complicated already for degree three, as indicated in [7]. It is
still unsolved. A. Kovécs [54] dealt with binary number systems in 2001, also G.
Farkas and A. Kovécs [31] analyzed the expansion Q(+/2) in 2003. A necessary

n



condition for a polynomial to be a CNS-polynomial is to be expanding, which has
been investigated by P. Burcsi and A. Kovacs [26] in 2005. Additive functions for
CNS polynomials has been studied by M. G. Madritsch and J. M. Thuswaldner
[66], M. G. Madritsch [63] and by M. G. Madritsch and A. Pethd [64].

Rational based number systems has been studied by S. Akiyama, C. Frougny
and J. Sakarovitch [10] in 2008.

P. Burcsi and A. Kovacs [27] called P(z) a semi-CNS polynomial if the fi-
nite expansions (2) form an additive semigroup. This is a generalization of the
usual radix representations of natural numbers. They were able to prove some
sufficient properties for P(x) being a semi-CNS polynomial. Moreover they gen-
eralized Brunotte’s algorithm for semi-CNS polynomials. I have conducted an
enquiry into cubic semi-CNS polynomials (see [83]), I was able to fully charac-
terize them. H. Brunotte generalized this result for semi-CNS polynomials with
any degree in [22].

An interesting alternative concept of CNS polynomials are symmetric-CNS
polynomials, where the digit set is balanced on the way that it contains negative
and positive elements as well. This concept can also generalized to symmetric
SRSes. This topic has been studied by H. Brunotte [19], [21], S. Akiyama and K.
Scheicher [14], and by A. Huszti, K. Scheicher, P. Surer and J. M. Thuswaldner
[36].

K. H. Indlekofer, I. Katai and P. Racsko [37] initiated simultaneous number
systems in 1993. A. Kovacs [55] analyzed this concept of simultaneous number
systems over Eisenstein integers in 2013.

Inspired by [76], A. Peth$ and J. M. Thuswaldner [75] generalized the CNS
concept to number systems over number field orders.

The shift radix systems, SRS, for real vectors were introduced by S. Akiyama,
T. Borbély, H. Brunotte, A. Peths and J. M. Thuswaldner [2] in 2005. Gen-
eralizing SRS, H. Brunotte, P. Kirschenhofer and J. Thuswaldner [24] defined
Gaussian shift radix systems (GSRS) for Hermitian vector spaces as follows.
Let » € C" be given (n € N). Let the mapping v, : Z[i]? — Z[i]? be defined by

x=(21,2Z2,...,2n) — (T2, T3, ..., 20, —|12]), (3)

where rz is the inner product of r and z, and |z] := |Re(z)] +i|Im(z)], z € C.
For r € R™ the mapping 7 : Z™ — Z", defined as

m((a1,...,a,)) = (az,...,an, —|ral), (4)

where ra denotes the inner product, is called shift radixz system, shortly SRS. In
[2] it is also proved that SRS is a common generalization of canonical number



systems (CNS) and the S-expansions, defined by A. Rényi [78]. This concept
has been studied in many articles by S. Akiyama and J. M. Thuswaldner [16],
S. Akiyama, T. Borbély, H. Brunotte, A. Peth$ and J. Thuswaldner [1], [3],
S. Akiyama and K. Scheicher [13], S. Akiyama and J. M. Thuswaldner [17],
S. Akiyama, H. Brunotte, A. Pethé and J. M. Thuswaldner [7], [8], [9], P
Surer [80], P. Kirschenhofer, A. Pethd, P. Surer and J. M. Thuswaldner [46], H.
Brunotte, P. Kirschenhofer and J. M. Thuswaldner [24], [25], M. G. Madritsch
and A. Peths [65], S. Akiyama, H. Brunotte, A. Peths, W. Steiner and J.
M. Thuswaldner [6], P. Kirschenhofer and J. M. Thuswaldner [82], M. Weitzer
[86], [85] and by A. Pethd [74]. Another generalization of SRS for Hermitian
vector spaces, namely for vectors over imaginary quadratic Euclidean domains
was studied by A. Peths, P. Varga and M. Weitzer in [77], and these results
are also presented in this dissertation in Chapter 2. It is well known that
there are exactly five imaginary quadratic Euclidean domains, which are the
ring of integers of the imaginary quadratic fields Q(v/d),d = 1,2,3,7,11. The
Euclidean norm function allows not only the division by remainder, but also to
define a floor function for complex numbers. This generalization, which I call
ESRS, is uniform for the five imaginary quadratic Euclidean domains. This has
the consequence that in case of the Gaussian integers the floor function differs
from that used in [24].

The SRS 7, is said to have the finiteness property if and only if for all a € Z™
there exists a k > 1 such that 7F(a) = 0. Denote by D the set of r € R"
such that 7, has the finiteness property. From numeration point of view these
real vectors are most important. It turned out that the structure of D;O) is very
complicated already for n = 2, see [7], [80] and [86].

The analogue of the two dimensional SRS is the one dimensional GSRS and
ESRS. H. Brunotte, P. Kirschenhofer and J. M. Thuswaldner [24] studied first
the set of one dimensional GSRS with finiteness property, which I denote by
GSRS®, Tt turned out that its structure is quite complicated as well. Recently
a more precise investigation of M. Weitzer [85] showed that the structure of
GSRS© is much simpler as that of ’Déo). Based on extensive computer inves-
tigations he conjectures a finite description of GSRS().

Analogously to D one can define D(O) for d = 1,2,3,7,11 in a straight-

forward way. I present how a good approximations of D! 31 can be computed.

Performing the computation it turned out that the shape of these objects are
quite different. The subjective impression can be misleading, but Theorem
2.2.12 shows that 'D( ) has no critical points in the cases d = 2, 11. More specif-
ically this theorem shows that the circle of radius 0.99 around the origin contains



Dflozl. In the other cases this is probably not true. It is certainly not true for

D) and GSRS©.

In this dissertation I will define and analyze a number system over norm-
Euclidean domains (ENS), and I will generalize the shift radix systems to finite
dimensional Hermitian vector spaces (ESRS) using a similar structure. One of
the main features of this construction is that the remainder set is the subset of
the opened unit disc, which gives us the property that |r| < 1 for every reminder
.

The first section describes the basic concepts, while the second section de-
fines a number system over norm-Euclidean domains (ENS), and examines some
of its properties. One of the most important properties is that the ENS property
is always algorithmically decidable, this is the result of Theorem 1.2.13. The
third section presents the properties which are specific to the number systems
over imaginary quadratic Euclidean domains. The fourth section is to charac-
terize the linear ENS polynomials over imaginary quadratic Euclidean domains.
The main result can be found in Theorem 1.4.6. The fifth section is about
the quadratic case and its properties. The sixth section investigates a kind of
infinite sequences of ENS polynomials, and shows an interesting result about
the connection between the CNS and symmetric-CNS polynomials over rational
integers and the ENS polynomials over imaginary quadratic Euclidean domains
in Theorem 1.6.1.

The last three sections are about the ESRS concept. In this concept even
the one dimensional case is a hard problem, its characterization is still an open
question. The last section shows that Brunotte’s algorithm [18] can be gener-
alized to the ESRS concept, but with some restrictions (Theorem 2.3.5). The
proof of this generalization borrows ideas from S. Akiyama’s proof in [12].



Chapter 1

ENS

In this chapter a number system concept over Euclidean domains will be defined.
I will investigate some properties on norm-Euclidean domains, then specifically
for imaginary quadratic Euclidean domains.

1.1 Basic concepts

Definition 1.1.1. Let E be an integral domain. The function N : E — N with
the following properties:

1. N(a) =0 for an a € E, if and only if a =0,

2. ifa € E and b € E\ {0}, then there are q,r € E such that a = bqg+ r and
N(r) < N(b)

is called Euclidean function.

Remark 1.1.2. In 2. above, we say that q is the quotient and r is the remainder
part of the Euclidean division of a by b.

Definition 1.1.3. The integral domain E is called Euclidean domain if it is
endowed with a Fuclidean function.

Definition 1.1.4. The Euclidean domain E is called norm-Euclidean if its
Euclidean function is derived from the corresponding field’s absolute value func-
tion.
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Remark 1.1.5. In this dissertation the following notations will be used:

Q field of rational numbers,

Z ring of integers,

C field of complex numbers,

i the imaginary unit,

2| complex absolute value: |z| := /2% + 22,

where z € C, 21,20 € R, 2 = 21 + 291,
K[xz] the set of polynomials with coefficients belonging to K.

Definition 1.1.6. Let K denote the quotient field of E. Then all elements
a € K can be written in the form a = § with a,b € E; b # 0. Let q be the
quotient and r be the remainder of the FEuclidean division of a by b. Then q is
called the integer part of o and is denoted by |a| = L%J and r is called the
remainder part of a and is denoted by {a} = {$}. The function o — |a] is
called the floor function, and the integer part |a] is also called the floor of

Q.

1.2 ENS over Euclidean domains

This section is devoted to definitions and theorems about the ENS (Euclidean
number system) concept which needs only a Euclidean domain and a digit set.
The digit set is sufficient for an unambiguous definition of a number system over
the Euclidean domain.

Definition 1.2.1. Let E be an Euclidean domain with a Euclidean function
N. Let P(z) = 2" + ppa™ 4+ pp_12™ L + -+ + p1x + po € E[z](n € N) be
a monic irreducible polynomial over E such that N(po) > 2, and let D,, C E
be a so called digit set with |Dp,| = N(po). The elements of the factor ring
E[z]/P(z)E[z] can be represented by polynomials over E of degree at most n.
This set is denoted by E™[z].

If for an A(z) € E"[z] there exists a(x) € Dy [z] such that

A(z) = a(z) (mod P(x)),
then A(x) has an expansion. If all A(x) € E™[x] have an ezpansion, then the

pair (P,Dy,) is called ENS and the polynomial P(x) € E[z] is called an ENS
polynomaal.
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Let K denote the quotient field of E. Using irreducible ENS polynomials
numeration systems can be defined in E and in some of its extensions. Indeed,
let P(x) be an ENS polynomial over E and let v denote one of its roots. Then
K[z]/P(z)K[z] is isomorphic to the field K(vy). Moreover E[z]/P(z)E[z] is iso-
morphic to the ring E[y]. Thus every element 0 # 8 € E[y] can be written
uniquely in the form

h
ﬁzzbj7j7 bJ'EDpoﬂbh#Q

Jj=0

From this point E denotes a norm-Euclidean domain, absolute value of its ele-
ments is defined by the complex absolute value function, and Ve € E : N(e) =
lel”.

Definition 1.2.2. Let P(x) € C[z] be a monic complex polynomial. P(x) is
called expanding if all of its roots lie outside the closed unit circle, i.e.

P(y)=0=|y/>1
Theorem 1.2.3 is a consequence of A. Vince’s result [84].
Theorem 1.2.3. If P(z) € E[z] is an ENS polynomial then it is expanding.

Proof. (This proof only covers the case, when |y| < 1. For the case of |y| = 1,
see [84]. For polynomials over Z this has been proved by A. Pethd in [72] in the
proof of Theorem 6.1.) E[x]/P(x)E[z] is isomorphic to the ring E[y], P(y) = 0.
This is true for all roots 7; of the polynomial P(x). If the absolute value of
one of these is less then or equal to 1, then the representation of the elements
0 # B € E[] is bounded, so this cannot represent all elements S:

h h h
1Bl =D b7 | <Y || =D Ibl |4] <
iz j=0 =0
h ‘ h ) h )
<Y Ipol Y] = 1ol D ] = Il D I0F <
=0 =0 =0

< lpol lim Z I = [pol 7 (if [+ < 1).

1
1=yl
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Lemma 1.2.4. If pg is the constant term of the expanding monic polynomial
P(z) € E[z], then
N(po) 2 27

Proof. P(z) is an expanding monic polynomial, so for all its roots |v;| > 1. po
is the product of the roots and N(pg) € N. O

Definition 1.2.5. Let P(z) = 2" +p 2" +p,_12" 1+ +prz+po € EH[x]
be such that N(pg) > 2. Let the mapping Tp : E"[x] — E"[x] be defined as
follows: for A(x) = ana™ + ap_12" 1+ +ag € E"[z] let

A—qP—r

Tp(A) = — Y

where q = L‘;—gJ and r = ag — qpo € Dp,,. The mapping Tp is called Backward
division.
The mapping backward division can be iterated, which means

A if k=0;
k _ ) )
Tp(4) _{ Tp(Tg~'(A)), if k> 0.

Let g, € E and 7, € D, be defined by the equation

E(A) — P —
TII§+1(A):TP(A) kaP Tk

(®)
where a(()k) = T1’§(141)|:,c:0,q;c = VO J and r, = aék) — qxpo, k € N. Let A :=

Po
TE(A).
The orbit of Tp starting from A will be denoted as follows:

A (q1,71) A, (g2,72) A, (g3,73) As. ..,
J P P
if it is not necessary to know the multipliers, it will simply be denoted by:
A AL =2 Ay 2 Ay
P P P
or if it is not necessary to know even the remainders, it will simply be denoted

by:
A?AlﬁAQ?Ag
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If for A, B € E"[z] there exists k € N such that T5(A) = B then I write:
A= B.
P

Plainly the orbits of T are either ultimately periodic or consist of infinitely
many pairwise different elements and both cases may occur. Moreover in the
first case the orbit is ultimately 0 or not. One of the most important aim of the
investigations on ENS polynomials is the distinction between these possibilities.
Theorem 1.2.6 is my result (see [76]). It is a direct consequence of the previous
definitions and it states that investigating the orbits of Tp can decide the ENS
property of a polynomial P(z) € E[z].

Theorem 1.2.6. P(z) € E"*'[z] is an ENS polynomial if and only if for all
A(x) € E"[z]

A=0.
P

Proof. This theorem is a direct consequence of Definitions 1.2.1 and 1.2.5. O

Theorem 1.2.7 is my result (see [76]). It can be used to find sets of polyno-
mials which are not ENS polynomials.

Theorem 1.2.7. Let P(x) := 2" + p,a™ + pp_12” 1+ - + p1z +po €
En*1[z] be such that N(py) > 2. Assume that the orbit of Tp starting from
A(z) i= apa™ + apn_12" "1 + - + a1 + ap € E"[z] is periodic and let | > n be
a multiple of the period length, as follows:

A=A, (g0,70) A (g1,71) A, (q2,72) A ... (q1—2,m1-2) Ay (qi—1,m1-1) A
P P P P P

Then
n+1

- Z Qi+ h—mPm € Dpo

m=0
holds for h=10,1,...,1—1.
Proof. Let Ap(z) = 3372, ag-h)xj, where a;h) =0 forall h > 0and j > n.
Similarly P(x) = 77, pja’ with p,11 = 1 and p; = 0 for j > n + 1. With
these notations

h—1
h 0
ag- ) — a§£h — g qkPj+h—k- (1.1)
k=0
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Indeed, the claim is true for h = 0 because the empty sum is 0. Assume that it
is true for a A > 0. Then

Ap —qnP — 1y

App1 =Tp(An) = -

Comparing the coefficients and using the induction hypothesis one can get

h+1 h
"V = o) -
h—1
0
= a§.+)h+1 - Z AkPj+14+h—k — 4hPj+1
k=0

h
_ L0 ,
- j+h+1 qkPj+14+h—k;
k=0

which proves the claim.
Consider equation (1.1) for j =0 and h =1,...,2l — 1. By the assumption

Ap(z) = Apy(x),h = 0,...,1 — 1, especially aéhH) = aéh),h =0,...,1—1.

Thus
qh+1 = =|— | = 4n-
Po Po

Asl>n, al(i)h =0 for h > 0. Summarizing (1.1) leads to

I+h—1
h I+h

a(() ) :a(()+ )= Z QPivh—k, h=0,...,1—1.

k=0
. (14h) _
By the construction ay — Qi+nPo = Ti+n € Dy, , hence
I+h
*quwh—k €Dy, h=0,...,0 -1

k=0

Replacing the summation variable k£ by m =+ h — k and taking into account
that p,, = 0 for m > n + 1 one can obtain

n+1
- Zth—um € Dy,, h=0,....,0—1,

m=0

as it was stated. O
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Remark 1.2.8. Applying Theorem 1.2.7 with length 1, one can get the following
restriction for the coefficients of an ENS polynomial:

n+1

—q me gDpoa

m=0

where ¢ = %, for all a € E\ {0}.

po’

Remark 1.2.9. The polynomial P(x) = x + po,0 # po € E is obviously irre-
ducible. This implies that (x + po,Dp,) s a numeration system (ENS) in E if
and only if 4+ po is an ENS polynomial.

The next definition and two lemmata are necessary to prove the result of
Theorem 1.2.13.

Definition 1.2.10. Let Z = {z1,29,23,...,2,} C C be a set of different com-
plex numbers (if i # j, then z; # z;). Let

Sk = Z ZisZip 2, (if k#1, then iy #4;)
01,82, 40k

be the kth Viéte sum of the set Z. For the case k =0, let s = 1 by definition.

The next lemma’s proof is trivial.
Lemma 1.2.11. Let Z = {z1,22,25,...,2n} C C be a set of different complex
numbers (if i # j, then z; # z;). Then the following equation is true for all z;:

Z(*Zj)isn—i =0.

=0

Lemma 1.2.12 describes the Lacunary Vandermonde determinant, which is
a classical, well known result.

Lemma 1.2.12. (generalization of Vandermonde determinant)
Let Z = {z1,22,23,...,2n} C C be a set of different complex numbers (if i # j,
then z; # z;), let 0 < i <n, and let

i—1 i+1
1 21 Z% e 271’ Z7l’+ PN Z{L
i—1 41
1 29 25 -0 2 2t 2y
Vn,z = .
1 Zn Z% “en 2’17:7,_1 z:::"l e Z,Z
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be called Lacunary Vandermonde determinant. Then

Vi = Sn—i H (2 — 21).

1<k<I<n

Proof. If i = n, then it is the well known Vandermonde determinant (sg = 1).
Let’s assume that the equation is true for V,, ;. We will see that V,, 1 =

Sn—k+1
ank Vo k-
2 k=1 _k+1
Zl zl PR Z}C 1 Z]k 1 PR Z{L
2 - + n
Sn—k+1 Snokt1 |1 22 22 % %2 A2
—Vak=—""7|. . . . ) . ) =
Sn—k Sn—k : : .
1 z, 2727 2F-1 z’é*l zy
2 k-2 k-1 k+1
1 2z 27 -+ 2 21 Sp—k4+1 2 s 27
2 k-2 _k-1 E+1
1 |1 2 25 - 2z 2y Sn—k+l %9 cee 2z
2 k-2 k-1 k+1
1 2, 22 -+ 2F 2 sy g1 2R n
Let cg,c1,¢2,...,Ck—1,Ck+1,- - -, Cn, be the column vectors of this matrix respec-

tively. Let’s add to the column c;_; the linear combination of the other columns

n

Z (=D s, s,

this way cx_1’s values are

n

Z(fl)kflﬂz;sn_i, (the value of the jth row).

i=0,
ik

Due to the Lemma 1.2.11, this value is equal to z}'s, _, so

1 2z 22 - zf_Q XSt zf“ cee 2P

1 1 29 22 .- 2572 2Esn Z§+1 e 2y
Sn—k : : . : : : . B

1 oz, 22 -0 2F72 ks g gkFL Lo gn
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-2
1 2z 23 zf 2F 27
1 2o 22 z§_2 2k zy
= 1. . . A . . X . = Vn,k—1-
1 oz, 22 2k=2 ok zy

O

The following result is a common result with A. Pethd (see [76]). It states
that ENS property of a polynomial P(z) € E[z] is algorithmically decidable.
The set of A(x) polynomials which is sufficient to be investigated is finite.

Theorem 1.2.13. Let P(x) € E""1[z] be an expanding polynomial, i.e. all of
its roots lie outside the closed unit circle. There exists a constant ¢ depending
only on P(X) such that this is an ENS polynomial if and only if for every
A(x) = Apz™ + Ap_qx™ M 4 4+ Ag € E"[z] with |Aj| < ¢,j =0,...,n there
exists a(x) € Dy, [x] such that

A(z) = a(z) (mod P(x)).

Proof. (This proof is valid only for the case of simple roots. The general case
is treated by A. Kovacs in [52]!) Let « be one of the roots of the polynomial P
(P(y) =0). B € E[v], and A(z) € E[z] is the representative polynomial of 5.

Then
-1

B=AM)=> my"+Th(B)1, vl > 1.
h=0

Let’s express Th(3).

This is true for all of the roots 7;,7 € {0,1,2,...,n}, P(v;) = 0. If all of them
is simple root, then one can have n + 1 different equation. Let

n

Th(B) = A'(v) = > Ayl i €{0,1,2,...,n}.

Jj=0

Then

0 Yi

n l

j A(%‘) Th
Y Apl==7"->
=0 i h=1
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Using Cramer’s rule:

i—1 A Th j+1
hIZI/YO
i—1 A Th j+1
L v o - A (Jf)*Z*h "o
N
! T
] — A(vn h j
1 o A2 - -1 E/;/L)_ZT P
/ h=t n
Al = 5 . 7
1 v 7% 70
1 w7 o
1 v 2 o

where 7 € {0,1,2,...,n}.

The denominator is the Vandermonde determinant. Let’s use Laplace expansion
of the counter matrix along the (j + 1)th column. Let’s use the result of the
Lemma 1.2.12 and Minkowski’s inequality:

5o (2-52)

4] = T

<
II (e-w a

0<k<i<n
>> <

(i is missing from the set of V, ;.)

< i=0
H e — wl
0<k<i<n
- |l
i=0 0<k<l§n:k,l7éi i

< =

IT =l

0<k<i<n
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n
S )
| n z| (1+|p0| hz| 1)
=\ I bw—nil il =
0<k<n

(v; is missing from the Viéte sum s, _;.)
O

Remark 1.2.14. Theorem 1.2.13 shows that the ENS property is algorithmi-
cally decidable, because only finitely many polynomials have to be tested. Lemma
1.2.16 gives a more practical bound for the coefficients.

Definition 1.2.15. The length of a polynomial A(x Zazm € E"[z] is
defined by (A Z |a;].

Lemma 1.2.16. Let P(x) € E"*l[x]. Let

i—1 n+1 |al|+ |p0|2—1
RZES NS 3B B B LA T
Jj=i 7=0k=i—j3 =0

be the parameterized approzimate length of polynomial A € E™[z], where f;(P) =

Z il e Py, fo(P) =1, () = .

[po
ATp(A)) < Xip(A)
for alli e {0,1,...,n}.

Proof.
)\(TJZ?(A)) =|a; — ¢i—1P1 — Gi—2P2 — qi—3P3 — - — qops| +
+|@it1 — ¢i—1P2 — Gi—2P3 — Gi—3D4 — -+ — QoPit1| + -+
+ |an — qi—1Pn—i+1 — Gi—2Pn—i42 — " — lIOPn| +
+ | —Gi—1Pn—it2 — Gi—2DPn—i+3 — ** — QoPn+1| +

+ =i 1Pn—i+3 — Gi—2Pn—ita — - — QPny1| + -+
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+|—Gi—1Pn — Gi—2Pn+1| + |—Gi—1Pnt1] <

i—1 n+1
<Z|a3|—|—z Z lg;| |px|, where
=0 k=i—j
;] = aj — qj—1P1 — @j—2D2 — @j—3P3 — -+ — QoPj — Tj
’ Po -
|aj|+\/\p07 |p y I Jaa| + /lpof? — 1
= g fi—i(P).
= |p0| Z| | 0| ; |p0‘ J ( )

O

Remark 1.2.17. Lemma 1.2.16 and Theorem 1.2.6 can be used to give an upper
bound for the terms of polynomial A. Those polynomials A where the length of
the polynomial is strictly decreasing by applying the backward division mapping
is not necessary to be investigated in order to determine the ENS property, so
one can use the following inequality to get bounds of the coefficients of A:

n+1
VOAA) < A p(A).

Lemma 1.2.18. If A\(P) < 2|po|, then

7 n+1
S b
j =0 1=0 k=i+1—j

Al < Z_
‘ | = |p0| 2p0 o )\(P)

,foralli=0,1,2,....n

Proof. Let’s investigate the (i + 1)th inequality of Remark 1.2.17, which will be
used to give an upper bound of the ith coefficient A;:

7 n+1 A +
AA) ) = 3 ey S oy AEVIRE St

j=it1 §=0 k=it1—j =0 [pol

|po\Z|A Y Y Y (1 VimP = 1) 5Py )

=0 k=i4+1—75 I=0
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n+1 i—1 % n+1
| A <|p0| -y |pk|> < A = Ipol + D Py >0 ekl | | +
k=1 1=0 j=l k=it1—j
i J n+1
2
ol =1 > (P bkl
§=01=0 k=i+1—j
7 n+1
Since A(P) < 2 |po|, the expression | — [po| + ij_l(P) Z lpe] | <0, s0
j=l k=it1—j

. ,
|Ail < 4/Ipo|” =1

O

Remark 1.2.19. Algorithmically a better bound can be obtained via the method
of A. Kovdcs in [52] and P. Burcsi, A. Kovdcs, Zs. Papp-Varga in [28].

1.3 Imaginary quadratic Euclidean domains

This section describes the results of Section 2 and 3 in [76]. It was proved by L.
E. Dickson [30] and O. Perron [70], see also H. Davenport [29] and H. L. Keng
[45] (Theorem 15.3), that the ring of integers of an imaginary quadratic number
field Q[v/—d] is Euclidean if and only if d € {1,2,3,7,11}. These will be called
imaginary quadratic Euclidean domains and will be denoted by E;. Here
the Euclidean function is the absolute value function:

N(z1 + 290) := |21 + 222'|2 = 22 + 22, where 2,2 € R.

Definition 1.3.1. Let E; be an imaginary quadratic Euclidean domain. Its
canonical integer basis is: {1,w,}, where wy € Eq and

v=d ifde{l1,2},
Wy =
¢ H'T\/Td , otherwise (d € {3,7,11}).

(In the case of d =1 wy; = /-1, so that the imaginary unit i is used.)
(For wq during these investigations simply w is used.)
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For fized d, the complex numbers 1 and w form a basis of C, as a two dimensional
vector space over R. Thus all z € C can be uniquely written in the form z =
e1+eaw with e1,ex € R. This representation will be denoted by (eq,e2),. Plainly
z € Eqif and only if e1, e € Z. Let the functions Req : C— R and Img : C— R
be defined as:

Regq(z) :==e1, Img(z) := ea.

Rey(z) and Imgy(z) are called the Euclidean real and Euclidean imaginary
part of z.

Remark 1.3.2. For all z € C (and d € {1,2,3,7,11}),

_ Im(z)
Ima(2) = Im(w)’
B Re(w)
Req(z) = Re(z) —Im(z) (@)
For all z1,29 € C,
Img(z1 £22) = Img(z1) £ Img(z2),
Req(z1 £20) = Req(z1) £ Req(z2).
For all z € C andn € 7Z,
Img(nz) = nlmg(z),
Reg(nz) = nReq(z).

Remark 1.3.3. Let E; be a Fuclidean domain. The norm of the elements
z € By is calculated as follows:

Ifd € {1,2}, N(2) = N(e; + eav/—d) = €2 + de3, in the other cases N(z) =
N(es + egHT‘/jd) = e +erex + “Le3. Thus one can get

e? + e ,ifd=1,
e? + 262 ,ifd=2,
N(z)=<{ el+eeat+e3 ,ifd=3,

e? +ejex +2e2 L ifd=1,
e? +erex+3e3 , ifd=11.
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Table 1.1. Elements of E; with specific norm.

21

N 1 2 3 7 11
0 0 0 0 0 0
1 I1 1 1 +w, ] T1
+i (1 - w)
2 Y To 5 Yo, 5
14+ +(1-w)
1+w, +(1 4 w), +w,
3 - “ltw | £(2-w), - +(1-w)
+(1 - 2w)
4 12, ) 12, 12w, | £2,£(2 - w), )
+2i +2(1 —w) +(1 +w)
2%,
5 —2 44, . . . +(1+w),
1+ 2i, £(2 - w)
—1+£2
6 5 2% w, 5 5 5
—2+w
+(2+4w),
+(1 + 2w),
7 - - +(1 — 3w), +(1 — 2w) -
+(2 — 3w),
+(3 - 2w),
13 —w)
+2w, -
8 242, | +2w : (2 + w), :
249 (2 - 2w),
+(3 —w)
13 13, 13, 13,
9 +3i | 1420, +30, +3 £(24w),
142w | £3(1 - w) (3 - w)
311,
10 344, ; ; ; ;
14+ 3i,
—-1+£3
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Figure 1.1. Graphical representation of w, when d = 3,7, 11.

V3,

-,

V11

Remark 1.3.4. Assume that a,b € Eq,b0 # 0. Let E be the set of units in Eq
(e € E}, if and only if N(¢) = 1). Let q,r € Eq be such that a = bg + r and
N(r) < N(b). Thena=0b(qg+¢e)+(r—be) and a = b(qg+cw)+ (r —bew) hold for
any € € E}. It means, in some cases the remainder r is not uniquely defined,
i-e., not only N(r) < N(b), but also N(r —be) < N(b) or N(r — bew) < N(b)
holds for some ¢ € E}. This problem has already arisen in the case of rational
integers, where the uniqueness of the remainder is ensured by the assumption
that the remainder is non-negative. In order to make the floor function uniquely
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defined, the solution is to define a special set of reminders which is a complete
residue system modulo b.

In the next definition I propose specific digit sets for each d. The definition
and its properties has been published in [76], in Section 3.

Definition 1.3.5. Let E; be an imaginary quadratic Fuclidean domain and
0#be€Ey. The set

1 1
|z| < |b] and |z +b] > |b| and — B < Imy (E) < }

]Dd,b = {Z € Ey b 5

be called the (Sail) digit set for b and b € Ey the base number.

Remark 1.3.6. In Definition 1.3.5 there are three conditions. The first is
to make sure the norm of the digits are smaller than the norm of the base
number. The second is to rule out the numbers which are "negative” in a sense
(generalization of the assumption that the remainder should be non-negative).
The last one is to reach a complete residue system (uniqueness).

Remark 1.3.7. The assumptions in Definition 1.3.5 ensure that if b € Z C Eq
then {sgn(d)j | 7=0,...,|b| =1} C Dgyp.

Remark 1.3.8. The equation Img (%) = s defines a line on the complex plane
with the direction arg(b) and offset s - Im(w) -i (s € R,b € C). The equation
|z — a| = r defines a circle on the complex plane with the center a € C and
radius r € R.

Definition 1.3.9. For 0 £ b € E; the set

-3 <ima(}) <3

Vd,b = {Z c Ey

is called the real band.

Theorem 1.3.10 is a common result with A. Pethé (see [76]). It states that
the sail digit set Dg is a complete residue system modulo b.

Theorem 1.3.10. Let 0 # b € Ey. Then the set Dgy is a complete residue
system modulo b containing 0. Moreover for any a € By there exist q,r € Eq4
such that a = bq+r and r € Dgyp, in particular N(r) < N(b).
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Proof. As a/b € C there exist uj,uz € R such that § = u; + upw. Write

= ¢q; + 15,0 = 1,2 such that g;,¢q2 € Z and —% <r < % and put ¢ =
g1 + qaw, ™ = r1 +row and " = br’. Then a = bq¢’ + r"" and q’ € Eg4, thus
r"" € Eq. Further Imy (%”) = Img(r'). Thus —2 < Imd( ) < s

Further N(r") = N(b)N(+'), and by Remark 133 N(r) < 3, 1f d < 3 and
N(r') < 2 in the remaining two cases. If N(r') < 1, then we have also the
inequality N(r”) < N(b). Assume that N(r') > 1, Wthh can happen only if

)
d = 7,11 and ry1r2 > 0. Then redefine " = b(r’ + (—1) 1 ‘T |) Plainly we have
" € Eq such that N(r”) < N(b) and —% < I'my (%) < % hold.

Finally consider the sequence v/ +mb,m = 0,1,.... As the function f(z) =
N(" + zb) tends to infinity with £ — oo and f(0) < N(b) there exists an
xo > 0 such that f(zg) = N(b). Taking m = |zo| we get f(r"” +mb) < b
and f(r"” + (m + 1)b) > b. Putting r = " + mb and ¢ = (a — r)/b we get
a=>bg+rqrcEqandreDgy Asa was arbitrary Dy, includes a complete
residue system modulo b.

It remains to prove that the elements of Dg; are incongruent modulo b.
Assume that a € Dg, and e := (eq,e2), € Eq\ {0} such that a+eb € Dy holds
too. Then both inequalities

a 1 1 a+eb 1

1
- <TImge <=, —=<1I
2_mdb<2, 2_md

b <2

hold. On the other hand Imy ‘”Zeb = Imgj + ez, where eg is an integer. Thus
both inequalities can hold only if e5 = 0.

If e = 0 then eb = e1b with an integer e;. Assume that e; # 0. If |eq| > 2
then using |a| < |b| we obtain |a + e1b| > |e1b| — |a| > 2|b] — [b] > |b|, which
contradicts a 4+ e1b € Dgp. Hence e; = £1.

If e = —1 then as a — b € Dy we get |a| = |(a — b) + b] > |b], which
contradicts a € Dgp. Finally if e; = 1 then as a+ b € Dy, we have |a+b| < |b],
which again contradicts a € Dg . The proof is completed.

O

Let a,b € E; with b # 0. There exist by Theorem 1.3.10 uniquely defined
g € Eq and r € Dy such that a = bg + r, so the sail digit set can be used as a
complete residue system for the floor function defined in Definition 1.1.6.

Definition 1.3.11. Let Dy} be a sail digit set.
Let’s define the following notations for this digit set:
line distance: | := Im(w)|b|.
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corner offset: o := |b| —\/|b2 — (é)2
maximum distance between digits: m = \/|b]? + 2.

Figure 1.2. Digit set measures in E3, when the base of the digit set is (6,3),
(large dot). ’0’: corner offset, I’: line distance, m’: maximum distance between
digits
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Remark 1.3.12. Let Ey4 be a Euclidean domain, and let b € E, be the base of
the digit set Dy p.

d | Corner offset (o) | Line distance (1) | Mazimum distance between digits (m)
L p(1-%) o bIv2
2 | |y (1 - %) 1blv/2 b]v/3
3 | bI(1-42) [pY b1
7| Jblk bl B
| el (1-2F) g s

Im(
Lemma 1.3.13. Let a,b € Eq,b # 0. If o] < =5

Proof. The assumption |a| <
[Im(a/b)|

get

Lemma 1.3.14. Let a,b € Eq with N(b) > 2. If |a| < L

Im(w)

g € {0;—1}.

Proof. Let a =bq + r with ¢ € Eg and r € Dy ;. Then

Imq(q) = Imq (g) + Img (b) :

Im(w)[b] -
2

1 .
< 3, 1.e. a € Vg,

a

WDl then a € Va,p-

implies |¢| < ) As |2] > [Im(z)] we

O

and q = L%J then

T

By the assumption on a and as r € Dg; we get

i.e. ¢ € Z. Further we have

1 1
[Ima(q)| < 3ts~ 1,
Im(w) b
al < Jal + | < 22Oy

Dividing by [b| we obtain |g| < ¥ +1 < 2, thus g € {0,+1}. If ¢ = 1 then
a = b+r. The assumption r € Dy, implies |a| = |b+r| > |b|, which contradicts
the assumption on a.

O

Lemma 1.3.15. Ifz€ V,, anda € Z, then z+a-b € Vg,
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Proof. We have

Imy (zt)ab) =1Img (%) +Img(a) = Img (%) )

which proves the assertion. O

Figure 1.3. Floor function results in E3 when b = (16, —5); and a = (17,18),.
a = 1.41 + 1.61¢ which is approximately a = 0.48 + 1.86w. The floor function
will return ¢ = (0,2), and r = (7, —4),.
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1.4 Linear ENS over imaginary quadratic
Euclidean domains

This section describes the results of Section 5 in [76]. Investigating the linear
case, Theorem 1.4.6 below shows that the ENS property of linear polynomials
is easily decidable over imaginary quadratic Euclidean domains. In this section
I will often refer to the real band V ;,, which will be called, for simplicity, band.

Lemma 1.4.1. Let P(z) := x + p be a polynomial over E4 with N(p) > 2 and
let Dy, be the sail digit set. If the Line distance | = Im(w)|p| is greater than 2,
a necessary condition for the ENS property is 1 € Dg .

Proof. Assume that 1 ¢ Dy .
The assumption [ > 2 and Lemma 1.3.13 mean that Vg4 ,, includes the closed unit

disc, thus 1 € V4 ,,. Lemma 1.3.14, |p| > 1 and 1 ¢ D4, mean that GJ =1,s0
1=1,
P
which is a cycle, thus P cannot be an ENS polynomial with its sail digit set. [

Remark 1.4.2. It is easy to check that 1 € Dy, is equivalent to Re(p) > —1/2
except when

1—i,-2 : d=1
B /=2 : d=2
P=Y +v/=3,1-v=3 : d=3
:|:1—\/—77 . d:7
HoyoT . .

Lemma 1.4.3. Let P(z) := x + p be a polynomial over Ey with N(p) > 2 and
let Dg,p be the sail digit set. To decide the ENS property those and only those
polynomials have to be investigated, where

A(z) := awitha € Eg and

| < pl +1
B lpl -1

Proof. Let A € E4[z]. Consider the orbit of Tp, which starts from A. If
ATp(A)) < M(A) then iterate Tp. As A(A) is a non-negative number we have
to reach an element B of the orbit such that A(Tp(B)) > A(B). We may assume
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without loss of generality that this happens already at the beginning, i.e. with
A. The length of Tp(A) is

a—r la] + ||
)\ Tp A =1q| = S .
(Tp(A)) = lql ’ o
Thus A(A) < A(Tp(A)) implies
la] + ||
la] < :
Pl
which leads to
la] < pl +1
Vel -1
since N (r) < N(p), that is |r|* < |p|* — 1. O

Remark 1.4.4. Lemma 1.4.3 is a special case of Lemma 1.2.18.
The following theorem is my result (see [76]).

Theorem 1.4.5. Let P(x) := z+p be a linear polynomial over Eq with N(p) > 2

and let Dg ), be the sail digit set. If Im(w)|p| =1 > 2 ;giﬂ, a sufficient and

necessary condition for the ENS property is 1 € Dy .

Proof. From Lemma 1.4.3, those and only those constant polynomials a have
to be investigated for the ENS property, where |a| < \/l‘MT

pl-1°

Since é > }Zt} we have ¢ = {%J € {0,—1} by Lemma 1.3.14, thus all orbits

of Tp reach either 0 or —1. If 1 € Dy, then P is an ENS polynomial, and since
[ > 2 is also satisfied, from Lemma 1.4.1, this is not just sufficient but necessary
condition as well. O

Theorem 1.4.6 is my result (see [76]). It gives a sufficient and necessary
condition for linear ENS polynomials with the sail digit set.

Theorem 1.4.6. Let P(x) := x+p be a linear polynomial over E; and N(p) > 2
and let Dg, be the sail digit set. P(x) is an ENS polynomial with Dy, if and
only if 1 € Dg or

e {1_i,_zi,_\/?z,ﬁ,_¢?3,1_\/?3,1‘2ﬁ,‘1‘2ﬁ}.
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Proof. By Lemma 1.4.3 it is enough to check the representability only those
constant polynomials A(z) = a with

1
a] < lp| + ,
lp| — 1
which implies
1 2 2
N(a) < bl + =1+ ———=14+—.
lp| —1 Ip| —1 N(p) —1

Table 1.2 presents the possible values of N(a) for each N(p).

N0 | 1+ s [ N |

2 ~ 5.8284 €1{0,1,2,3,4,5}
3 ~ 3.7321 € {0,1,2,3}
1 = 3.0000 €{0,1,2,3}
5 ~ 2.6180 € {0, 1,2}
6 ~ 2.3798 € {0,1,2}
7 ~ 2.2153 € {0,1,2}
8 ~ 2.0938 € {0,1,2}
9 = 2.0000 € {0,1,2}
>10 | <2 € {0,1}
Table 1.2

The necessary constant polynomials for the case 2 < N(p) will be investi-

gated. By Theorem 1.4.5 if % > }g }i, a sufficient and necessary condition for

the ENS property is 1 € Dy ,. Thus it is enough to check the case é < [pl+1

[p|-1"
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Then
B2
4 - lp| =1’
-4l -1) < 8
1?2+4
<
Pl <
bl < Um@lp)? 44
= Im@)lp)?— 4
Im(w)?Ipl® — Im(w)*Ipl* — 4lp =4 < 0,
Im(w)*VN(p) — Im(w)*/N(p) —4/Np) -4 < o.

The cubic polynomial in /N (p) staying on the left hand side of the last inequal-
ity has exactly one positive real root. The possible values of N(p) lie between
zero and this root. Let’s present these in Table 1.3.

[d [N(p) <] N e \
T | 8.2664 | {2,3,4,5,6,7,8)
51508 | {2,3,4,5]

10.1968 | {2.3,4,5,6,7,8,9,10}
7 56206 | {2,3,4,5]

11| 42163 | {2,3,4)

W N

Table 1.3

For each triplets (d,p,a) with d € {1,2,3,7,11}, p,a € E4 such that N(p)
and N (a) satisfy the conditions of Table 1.3 and Table 1.2 respectively I checked
the representability of a. The investigation of all possible triplets (d,p,a) can
be found in the Appendix.

To summarize, if 1 € Dg ;, then x4 p is an ENS polynomial. If 1 & Dy, then
x + p is an ENS polynomial, if and only if

pe {1—2',—21',—\/?2,\ﬁ,_\/?3,1—\/T3,1_2ﬁ,_1_2ﬁ}.



32 1. CHAPTER. ENS

1.5 Quadratic ENS over imaginary quadratic
Euclidean domains

This section describes the results of Section 6 in [76]. The characterization
of quadratic ENS polynomials with the sail digit set seems to be much more
difficult than the characterization of the linear ones. In the present section this
problem will be investigated.

The first theorem is my result (see [76]). It determines the set of possible
quadratic ENS polynomials to a finite set for a fixed constant term pg using the
sail digit set Dy, p,-

Theorem 1.5.1. Let P(x) := 2% +piz +po be a quadratic polynomial over Eq,
N(po) > 2. It is expanding, if
|p1 — pop1]

<1
|100|2—1

)

where T is the complex conjugate of x.

Proof. This result comes from the Lehmer-Schur [61] algorithm. Let
P*(z) = pox® + prx + 1, and

g9(z) = poP(z) — P*(x) = (pop1 — p1)z + Popo — 1.
The root of g(x) is:
1 —popo
ro=——"——-
bop1 —P1
Thus P(z) is expanding if and only if |zo| > 1, i.e.
_ llpol? =11 Ipo? -1
Ip1 —pop1|  |p1 — popi]

1 — popo
Pop1 — P1

1<|£Uo‘:

Remark 1.5.2.
For a fized py the inequality of Theorem 1.5.1 determines a finite set of p;. We

have o
|p1 — pop1] < lpol Ip1] — [p1]  Ipal

|P0|2—1 N |;D0|2—1 o lpol + 17
Hence if |p1] < |po| + 1, then the inequality of Theorem 1.5.1 follows.
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Remark 1.5.3. In order to investigate the ENS property for a given quadratic
polynomial P using the sail digit set, Lemma 1.2.18 gives bounds for the coeffi-
cients of the polynomial A in case of |po| > |p1| + 1, as follows:

1
Ao] < /pol? — 12l
Ipo| — |p1] — 1
A< o1 1%<|pl|+1>+|pl|+2
1l = Po| — .
|p0|—\p1\—1

The next theorem is my result (see [76]). It determines a set of quadratic
ENS polynomials with the sail digit set Dy p, .

Theorem 1.5.4. Let P(x) := 2%+ p1x + po be a quadratic polynomial over Eg4,
N(po) > 2 and let Dy p, be the sail digit set. If

1
Ip1| < (1 - ﬁ) Ipo| — 1,

then the orbits of Tp are periodic for all A € Eylz]. Moreover there are only
four possible periods, the trivial {0} cycle and the following ones:

—1,r
z+ (p1+1) (:f%er(Pl +1), 70 € Dap,,

_1, 0,
1(21:0)>l‘+pl(:1:1)>1, To,Tle]Dd,pO,

1 (7;7‘0)>x+p1(’:%,2>$+(p1+1)%17 T07T17r2€Dd7p0-

Proof. Assume that A(z) = a1z +ag € Eq[z] with Tp leads to a period of length
n > 2. Then by Theorem 1.2.7 the inclusions

—@j—2 — P1gi—1 — Pogq; € Dy p,

hold for j = 0,1,...,n — 1, where I used ¢_2 = ¢,—2 and ¢_; = g,_1. For a
fixed pg these conditions can be transformed to a restriction for the linear term
p1. In fact if g; # 0 then

c Da,p, + Pogr + ¢
—q;

D1

)
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and this is a conformal mapping of the digit set. If ¢g; = 0, then

qr = »
Po

which is a restriction for the position of py.

.. . . . D ’
Let’s check p;’s minimal absolute value in the intersection of the sets Dd.potPogktd;

If the cycle does not contain 0 multiplier, let & be the index of the multipliér

which has maximal absolute value: |qn| > |g;|,i € {0,1,...,n—1}.
D ,
min |p1| = min{|t| i te ﬂ d.po +p0qk+qz}
—q;
D _
—qh—1
t _
- min{| - potn + a2 :teDd,pU}
|Qh—1|
— lgn_o| — It
> min{Ipollth |an—2| = It] teDd,po}
|Qh—1|
> Ipollan| — |an—2| — |po
|Qh—1|
Ipollgn| — lgn| — Ipol

|qn|

1
|qn|

This value increases, if |gj| increases. If the period does not contain 0 and
contains at least one element with absolute value greater than one then the
smallest value of |gp| is v/2, which implies

1
lp1] > (1 - \/5> lpo| — 1.

If the period contains a 0 multiplier, the above inequality holds, except when
qn—1 = 0. In such a case we have

{—Qh—zJ

qh = | —— | >

Po

thus |gx|[po] = | — gh—2 — 7| < |gn—2| + |Po|- As |gn—2| < |qn| we get

|qn|
lgn| — 1

> |pol-
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The expression ‘ql}qlhl 7 decreases if |g;| increases. The lowest possible value of it

is |gn| = V2, whence

V2
V12> > |pol-
V21
If |po| < V12, then the disc |p1| < (1 - i) lpo] — 1 < ( %) 11-1=~
—0.02858 has no element. With our assumption the expression ‘ 7 > |po| has

no solution, so there is no period with ¢g;,_; = 0.
So the periods in this region can contain elements only with absolute value
Oor 1.

Let’s check the conditions p; € %ﬁ;%w and g, = {;‘;J (¢; = 0) again. If

lg;| = 1, then ¢;, € {0, —1}, because in every other cases the minimum absolute
value of p; will be outside the examined region:

(If |gx| = 1, but g # —1)

From Theorem 1.3.14 elements of the set Dg ,, +pogr have absolute value greater

than %, and in every Euclidean domain % >(1- %) |pol-

D
min|p1|:min{t| : teﬂ d,po +p0%+ql} >

—dm
D ; t j
Zmin{|t| tte d’p0+p0qk+ql}—min{‘+mqk+% : tEDd,po}Z
—qj —4;
> min {|t + pogr| — gi| : t € Dap,} > min{|t + poge| —1 : t € Dayp, } >

o

If |¢;| = 0, then gy = —1, because ¢, = L

2o J q; is a unit or Zero, So in every

Euclidean domain, for every sail digit set L_sz € {—1,0} (Theorem 1.3.14),

but zero is not possible, because then two 0-s are there next to each other, which
means poqr € Dy, and this is impossible.

If three equal values are next to each other in a cycle, then the whole period
is constructed, because every multiplier is uniquely determined by the previous
two values. So the periods with multipliers (—1),(0,—1),(0,—1,—1) are the
only possible periods in the examined region, these will be the witnesses for the
ENS property. O
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1.6 Infinite sequences of ENS over
imaginary quadratic Euclidean domains

This section describes the results of Section 7 in [76].

Polynomials with rational integer coefficients can be considered also elements
of E4[x]. In this section I prove a necessary and sufficient condition under which
such a polynomial is ENS with its sail digit set. The second aim is to prove a
simple sufficient condition in terms of the coefficient. The later result implies
that there exist for any degree infinitely many ENS polynomials.

To formulate the results I need some preparation. Let P(z) € Z[z] with
P(0) =pg and I = [f {%J Jpol —1 — {%H NZ. S. Akiyama and K.
Scheicher [14] called P(z) symmetric-CNS if for any A(x) € Z[z] there exists
a(x) € I[z] such that A(x) = a(x) (mod P). Theorem 1.6.1 is a common

result with A. Pethé (see [76]). It gives an interesting connection between CNS,
symmetric-CNS and ENS polynomials with the sail digit set.

Theorem 1.6.1. Let P(z) € Z[x] with po > 0. If P(x) is a CNS and symmetric-
CNS in Z[x] then it is ENS in Eq[x] with the sail digit set Dy, . The conversion
is true if d =1,2.

Proof. Assume first that P(x) is a CNS and symmetric-CNS in Z[z]. Let A(x) €
Eqlz]. There exist Aj(x), A2(xz) € Z[z] such that A(x) = Ai(z) + whs(z).
As P(x) is a symmetric-CNS there exist az(z) € I[z], g2(z) € Z[z] such that
As(z) = az(x) + g2(z) P(z). Let

ms
as(x) = Z ag;x’.
§=0

Assume that the first j > —1 coefficients of A;(x) + was(x) belong to Dy .
This is obviously true for j = —1 because the coefficient of our polynomial
with index —1 is zero, which belongs to Dy p,. Let its j 4+ 1-th coefficient be
8 = Aj j+1 +wag jy1. There exists by Theorem 1.3.5 a 81 € Dg,, such that
B1 = B (mod py). We have 81 — 8 € Z because as j+1 € I and py € Z. Thus
(B1 — B)/po € Z. Denote it by ¢q and set A(x) < A(z) + qP(z)x’Tt. This
transformation does not affect as(z), but the first j + 1 coefficients of A(x)
belong to Dy p, .

Performing the transformation of the last paragraph ms 4 1-times we obtain

a polynomial agl)(m) + ag2)(x)xm2+1 + wag(z) = A(x) (mod P(x)) such that
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agl)(aﬁ) +wag(z) € Dy p, [z] and a:(LQ)(x) € Z[z]. As P(x) is a CNS polynomial in

Z[z] there exists a§3)(x) with coefficients in {0,1,...,pg — 1}, which is a subset
of Dy p,, such that a§2) (x) = agg)(m) (mod P(x)). Setting ay(z) = agl)(m) +
agz)’)(x):cm?*l and a(x) = a1(z) + waz(x) we have that A(z) = a(z) (mod P(z))
and the coefficients of a(z) belong to Dy ,,. Thus the conditions are sufficient.

Assume that P(z) is ENS in E4[z]. Then for any A(x) € Eg4[x] there
exists a(x) € Dgp,[z] such that A(z) = a(z) (mod P(x)). Write a(z) =
a1(z) + was(x). Then the coefficients of ay belong obviously to I. If d = 1,2
then the coefficients of a(z) have the form e; + eav/—d, which absolute value is
\e? +de3 < po. Thus |e1| < pg and e; > 0 because |(e1+po)+e2v/—d| > po. O

To characterize the CNS polynomials in Z[z] is a hard problem, see [2].
However there is a simple sufficient criterion proved by B. Kovacs [49], which I
cite now.

Theorem 1.6.2. Let P(z) = po + p1z + -+ + pp12" L + 2" € Z[x] be a
polynomial. If po > 2 and p; > pit1,i = 0,...,n — 1, then P(x) is a CNS
polynomial.

L. Germén and A. Kovécs in [33] investigated the case of symmetric-CNS.
Let P(z) = po + p1x + -+ + pp_12™ L + 2™ € Z[z] be a polynomial. If
lpo| > 237" |pi|, then P(z) is a symmetric-CNS. Indeed, the polynomials
2+ ar +a,3 < a € Z are CNS by Theorem 1.6.2, but they are not symmetric-
CNS, however the polynomials 22 + ax + 3a,3 < a € Z are CNS, symmetric-
CNS and ENS polynomials as well with the sail digit set. In the next lemma
I prove a condition, which depends only on the coefficients of P(z). In its
proof I borrowed ideas from [11]. In the sequel set M = |2-t| and I =

25w (22 ]

Lemma 1.6.3. Let P(z) = po + p1& + -+ + pp_12" L + ppa™ € Z[x] be a
polynomial such that M >py >py > -+ >p, =1 and

j=2

Then P(x) is a symmetric-CNS.

Proof. By Theorem 1.6.2 we may assume that a; € [0,po —1],7 =0,...,k. Let
J = [—po,po + M — 1] N Z. For polynomials a(z) € Z[z] with constant term aq
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define the mapping U(a) = Up(a) : Zlz] — Z[z] as

U(a) = a—sP—(aofepo)’

xT

where ¢ denotes the unique integer with
epo < ap+ M < (e + 1)pg.
Notice that if the coefficients of a belong to J then
a=r+zU(a)+ P, (1.2)

where r = ag — epg and ¢ € {0,£1} is the coefficient of P in the definition of
U(a). Further it is clear that if ag € J then r € I. Thus the lemma will be
proved when we are able to show that for all a € J[z] there exists m > 0 such
that U™(a) =0 (mod P).

We claim that if the coefficients of a(z) € Z[z] belong to [0,po — 1] then
Uf(a) € J[x] hold for £ > 0. To prove the claim we have to examine the
coefficients of U(a) carefully.

Let U'(a) = 3272, age):cz. (Of course the number of non-zero coefficients of
U'(a) is finite, thus there exists jo = jo()¢ such that ay) =0 for all j > jo. We
use the same convention for U%(a) = a and for P too, i.e. we set p; = 0 for

j > n. Then we have

14
aﬁl’ = ey — Ze(h)peﬂ—wu 7t =0, (1.3)
h=1

where £(®) =0, if s < 0 and for s > 0 it is defined by the equation
U D(a) =1y +2U + &P,

with ry € 1.
Equation (1.3) is obviously true for £ = 0. Assume that it is true for all
s < (. Set e*t1) according to the size of a(()e). Then we have

U9(a) — a” — etV (P — po)

Ua) =

M2

T
o0

0 i .

ag- )gi=1 _ g+t ijxj 1
j=1

<
I
—

’ ,
(agll _ 5(“1);0]-“)953.

M2

<.
Il
=)
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Comparing coefficients and using (1.3) we obtain

¢

G (0+1)

] = Q4541 — Z€(h)pe+j+2—h —€ Pj+1
h=1
£0+1
= a. _ Zg(h) o
GHl+1 Pe+j+2—h,
h=1

which is (1.3) for £+ 1, i.e. (1.3) is true for all ¢, > 0.

Now we are in the position to prove the claim. Assume that the coeflicients
of a(z) € Z[z] belong to [0,pp — 1], i.e. 0 < a; = aé-o) < pp. Thus the claim
is true for £ = 0 and €™ € {0,+1}. Let £ > 1 and assume that the claim and

eU) € {0,41} hold for 1 < j < £. Then
-1
o _ | —po/2
bo 7
which belongs to he set {0,4+1} because by the induction hypothesis —pg <
aézfl) <po+ M — 1. By (1.3) we have

‘

© _ h

G;° = Opyj — Z el )pf+j7h+1~
h=1

Plainly the sum of the right hand side is at least

0= ph=—(p1+ Y pn) = —2M > —pq.
h=1 h=2

To finish the induction we have to prove the upper bound for a;@_ Assume that

(M) = —1 for some m < £. Then a(()mfl) < M. We have
m—1
a(()m_l) = am-1— Z S(h)pm—h
h—1
> 0—emYp, — th
h=2
> —em=Up — M.
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Thus a{™ " < —M can hold only if £™~1 = 1. Applying again (1.3) and using
the induction hypothesis and this observation we get

L
ag.) <po—1+ E ()" 'pp =po—1+p1—(p2—p3)—+ < po+M—1. (14)
h=1

Here we used the monotonicity of the coefficients as well. The claim is proved
completely.
If U1 (a) = 0 then the Lemma is proved. Assume in the sequel U**1) (a) #
0. Then the inequality in (1.4) can be considerably improved. Indeed as
ar =0, >k we get
ag-e) <M

for all j > 0. The degree of the polynomial U(k‘H)(a is at most n and its
coefficients belong to [-2M, M]. Thus U"t*+2(q) € I[z] and the lemma is
proved. O

The following theorem is a common result with A. Pethd (see [76]). It gives
infinite sequences of ENS polynomials over Z with the sail digit set.

Theorem 1.6.4. Let P(z) := Zpiaci € Z[x] be a monic polynomial of degree
i=0
n. Put M = L%J and assume pg > M >py > ps > -+ >p, =1 and
n

ij <M.

j=2
Then P(x) is an ENS polynomial with the sail digit set Dy, .

Proof. By Lemma 1.6.3, starting from a general polynomial one can deter-
mine a polynomial which is equivalent to the original modulo P(z), and the
imaginary part of the coefficients of the new polynomial belong to the interval
] —[2* |, po — 1 — | 2% |] (coefficients on the real band property).

For the real part an iteration can be started using the following transforma-

tion. In every step the investigated polynomial A(z) will be changed, such that

A—q-P—r
A:=Tp(A) := 7(1% ,

where ¢ := Lg—g . It is easy to see that ¢ € Z, because of the coefficients

on the real band property, this means that if one wants to move a coefficient
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to the digit set an integer times py has to be added. After some iteration
of this transformation all of the original coefficients of the polynomial A(x)
will be moved into the digit set, in every step the newly created coefficients
are rational integers. So after finitely many steps A(x) becomes a polynomial
with rational integer coefficients. Polynomial P(x) satisfies the assumptions of
Theorem 1.6.2, thus it is CNS. From this point on we can use Theorem 1.6.2
to get an A(z) € Dy p,[z] because the integer canonical digit set of the integer
CNS polynomial P(z) is a subset of Dy, (see Remark 1.3.7).

O

Remark 1.6.5. Theorem 1.6.4 is a consequence of Theorem 1.6.1, Theorem
1.6.2 and [33].
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Chapter 2

ESRS

The results of this chapter are essentially the same as those of [77]. The con-
cept shift radiz system (SRS) was introduced by S. Akiyama, T. Borbély, H.
Brunotte, A. Peth6 and J. M. Thuswaldner [2] for real numbers as follows. For
r € R™ the mapping 7 : Z™ +— Z", defined as

((a1,...,a,)) = (az,...,an,—|ral),

where ra denotes the inner product, is called SRS. This chapter generalizes this
concept for hermitian vector spaces.

2.1 Basic concepts

In order to establish a shift radix system over the complex numbers, an imagi-
nary quadratic Euclidean domain will be used as the set of integers, and a floor
function is needed which can be determined by making its Euclidean function
unique, so choosing the set of fractional numbers from the possible values.

In order to define a floor function, a set of fractional numbers has to be
defined. Regarding generalization purposes the absolute value of a fractional
number should be less than 1, a fractional number should not be negative in a
sense, it is a superset of the fractional numbers for the reals, and the floor func-
tion should be unambiguous. From these considerations the following definition
will be used to specify the floor function with the set of fractional numbers
which will be called fundamental sail tile.

43
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Definition 2.1.1. Let d € {1,2,3,7,11}. Let the set
1 1
Dyg:=4qceC |c|<1and|c+1|21and—igfmd(c)<§

be defined as the fundamental sail tile (the set of fractional numbers).
Let p € E;. The set

Da(p) = {p +c

1 1
ceCand|c]<1land|c+1]>1and —2§Imd(c)<2}

is called p-sail tile and p is called its representative integer.

4 §§<j§JHMH
EEEE })j}ﬁ TTTTT
‘ ‘ I |
A T T
L Rk WA B W \\ Y WD S I S I O
| ) ) ) ) } />/>/>/>/>A

IIT 900

)\)\)‘)‘3)‘3) \>\>\>\>\>w

Figure 2.1. Tilings of C given by the sets Dy(p), d € {1,2,3,7,11}.

By using Theorem 1.3.10 one can show that the sets Dy(p), where p runs
through E; do not overlap and cover the complex plain C. This justifies the
following definition:

Definition 2.1.2. Let the function | |4 : C — E4 be defined as the floor
function. The floor of e is the representative integer p of the unique p-sail tile
that contains e.
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The next lemma shows that the above defined floor function can be described
with the well-known floor function over the real numbers.

Lemma 2.1.3.

|Re(e) — [Ima(e) + | Re(w)| +w [Ima(e) + %], if
(Re(e) — [Re(e) = |Imale) + 4] Re(w)| -

lea = — [Ima(e) + 3] Re(w)>2+

+ (Im(e) — [Ima(e) + 3| Im(w))2 <1,

| Re(e) — [Ima(e) + 3| Re(w)| +w [Img(e) + 5 + 1|, otherwise.

Proof. This lemma is a trivial consequence of the Definition 2.1.1 and the Def-
inition 2.1.2. O

Equipped with the appropriate floor functions let’s define shift radix systems
for Hermitian vectors. The notion depends on the imaginary Euclidean domain.

Definition 2.1.4. Let C := (c1,...,¢,) € C™ be a complex vector. Let d €
{1,2,3,7,11} and let |z |4 denote the floor function defined above.
For all vectors A := (a1,a2,...,a,) € EY let

Tq,0(A) = (az,...,an, —q)

where ¢ = |c1a1 + c2a2 + -+ + cpan]a. The mapping Ty o : Ey — Ef is called
FEuclidean shift radixz system with parameter d or ESRS; respectively,
ESRS for short. If B := Ty c(A), this mapping will be denoted by

A= B.
d,C
If for A,B € E} there exists k € N, such that T;C(A) = B then this will be

indicated by:
A== B.
d,C

Ta,c is called ESRS with finiteness property if and only if for all vectors
AcEy
A==0,
d,C

where 0 denotes the zero vector.
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Definition 2.1.5. The following sets form a generalization of the corresponding
sets defined in [2]:

PO . {c ecr
’ d,C

VAeEg;Aé,»o},

Dn,d = {C eCn

k
VA € Ej the sequence {Td C(A)}
’ k>0

is ultimately periodic} .

Ta,c is ESRS with finiteness property if and only if C' € DSL)i.

Remark 2.1.6. The construction defined in this section can be generalized by
using a complex number for d.

2.2 Basic properties of the one dimensional
Euclidean shift radix systems

This section and the following ones will consider C' as a one dimensional vector,
i.e. a complex number, which will be denoted by ¢. In this section I will
investigate some properties of the one dimensional case.

The following theorem is my result (see [77]). Theorem 2.2.1 can be consid-
ered as the generalization of the cutout polyhedra defined in [2]. These are areas
defined by a closed curve (arcs and lines). Let this area be denoted by P. Let’s
consider this as cutout area.

Theorem 2.2.1. Let ¢ € C and let’s say that applying the mapping Ty . by |
times on the number ag € Ey, it admits a period as follows:

ag = a1 = as = as... = a;_1 = ag, if and only if
d,c d,c d,c d,c d,c

Dy — Dy — Dy —a;_ Dy —
cE( d al)ﬁ( d a2>ﬂ~--ﬂ< d — aj 1>ﬂ< d a0>'
ag a aj—2 ar—1

The number | will be called the length of the period.

Proof. Let’s investigate a; d:> a; for an4,j € {0;1;...;1—1}. Let’s see what are
,C

the conditions for ¢ in order to get a; by applying the mapping T, . on a;.

Tdcla;) == (=lea;]) = —(ca; — d) = —ca; +,
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for an r € Dy. This means that a; = —ca; + 7, so

r—aj
c=—2
a;

which proves the theorem. O

Theorem 2.2.2 is my result (see [77]). It shows that if the ESRS associated
to ¢ has the finiteness property then it must lie in the closed unit circle.

Theorem 2.2.2. Let |c| > 1, d € {1,2,3,7,11} then T, . doesn’t have the
finiteness property.

Proof. The basic idea is that we ignore those values of a where the length
decreases after applying Ty ., since after finitely many steps it will end in 0 or
another value a’ the absolute value of which increases by applying the mapping.
Investigating the length of a vector after applying the shift radix mapping;:

a = ac—r.
d,c

For the length
la| > |ac — 7| = |allc| = |r| > |al|c] - 1,

jal < -

al < ——.

e[ =1

If this inequality holds the length decreases. This is a finite open disk around
the origin. For any other a the length will increase, so starting from a applying
the shift radix mapping leads to a divergent sequence. O

Plainly 7 1 doesn’t have the finiteness property for any d. For finding ESRS
with finiteness property, one has to use a well chosen complex number ¢. Based
on Theorem 2.2.2, let’s start from the closed unit disc around the origin, and
let’s ignore these cutout areas in order to reach those points which are good to
define ESRS with finiteness property:

Remark 2.2.3. The set DY 4 can be defined in the following way. Let S :
{c € C| || <1} and let’s consider the areas defined by Theorem 2.2.1 as P
Then

nd—S\UP
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Since there can be infinitely many cutout areas, they can be disjoint, over-
lapped by each other or superset and subset of each other, finding the union
area of all is a hard problem. The following definition helps to estimate how
many cutout areas are around some point in D,, 4.

Definition 2.2.4. Let c € D,, 4.

e If there exists an open neighborhood of ¢ which contains only finitely many
cutout areas then I call ¢ a regular point.

e If each open neighborhood of ¢ has nonempty intersection with infinitely
many cutout areas then I call c a weak critical point for D,, 4.

o If for each open neighborhood U of c the set U\'D?hd cannot be covered by
finitely many cutout areas then c is called a critical point.

Let’s check what are the conditions to reach a cutout area in the one dimen-
sional case.

Remark 2.2.5. Theorem 2.2.1°s result for one dimensional case can be used to
define cutout areas with periods of any length. Ty . admits a period ag d:> a; =
N

d,c

as = ... = a, = ag if and only if
d,c d,c d,c

Dy — D, — Dy — Dy —
CG(d al)m<d a2>mmm(d an)m<d &0).
ao ai an—1 ap

The one-step and the two-step cases are really important, since the one-step
periods define large sets around —1, and the two-step cases appear most likely
around 1. The following two lemmata speak about these special cases.

Lemma 2.2.6. Let c € C be with |¢| < 1. Ty . admits a one-step period, if and
only if c € (2¢) —1 for an a € E4\ {0}.

a

Proof. The shift radix mapping leads to the following:

a= —ac—+r,

d,c
a € Eq\ {0}. This can be a one-step period, if and only if c = L — 1. 7is a
general element of the fundamental sail tile, so ¢ € (%) -1 O
Lemma 2.2.7. Let ¢ € C be with |c| < 1. Ty . admits a two-step period, if and
only if c € (J%T—a’> N (BL22), where a,a’ € B4\ {0}

a
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Proof. The shift radix mapping leads to the following:

a= —ac+r,
d,c
a € Eg\ {0}. Let o/ :== —ac+r € Eg\ {0}, @ = —a’c+ r. This can be a
,C
two-step period, if and only if @ = —a’c + r. This means that c has to be in the

set

_/ J—
CE(]D)d a>m<ID)d/a>.
a a

Theorem 2.2.8 is my result (see [77]). It shows that only finitely many a € E4
have to be investigated to decide the finiteness property of a specific value of c.

O

Theorem 2.2.8. Let c € C be with |c| < 1. Ty is an ESRS with finiteness

property, if and only if for all a € B4 where |a| < %M

a=0.
d,c

Proof.

a = —ac + r, where
d,c
r € Dg. To decide the finiteness property one has to check only those numbers
where the absolute value does not decrease.

lal <[ —ac+r| <lalle]+ |r| <lalle] + 1, so

Now, let’s see how the sets DY ; (d € {1,2,3,7,11}) look like.

Algorithm 1 is a common result with A. Peth6 and M. Weitzer (see [77]).
It defines a searching method, which will approximate the mentioned set using
the results of Remark 2.2.3 and Theorem 2.2.8. The input parameters are
d e {1,2,3,7,11} and rs, which sets how many points in the unit circle will be
tested, the result is a superset of ’D%d.
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Algorithm 1 Approximation algorithm for the set D(i d

1: d€{1,2,3,7,11} (input parameter)

2: rs := 1000000 (input parameter)

3: res = \/1;

4: S:={ceC| | <1}

5: Seyrr =S

6: for rad € {0,res,2res...,1} do

7: for ang € {0,res,2res...,2n} do

8: Courr = Tad - 49

9: if ceyrr € Seyrr then

10: Acyrr :=A{d|d' € Eq and |d'| < m}
11: for acyrr € Acyrr do

12: if Tyc.,,, admits a period P’ starting from acy, then
13: Securr = Scurr \ P’

14: break operation 11

15: end if

16: end for

17: end if

18: end for

19: end for

20: return Sg,..,
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Figure 2.2. Using Algorithm 1, these are the generated approximations of
Dl ., DY 25 DY 3 DY e Dl 11 respectlvely (black area).

¥I
3

The next theorem is my result (see [77]). The area close to the origin is the
easiest part of the disc to decide the finiteness property, so let’s consider the
case |c| < 3.

Theorem 2.2.9. Let ¢ € C be with |¢| < 1 — \/%I = . The function T, is an
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ESRS with finiteness property, if ¢ € Dy. Additionally, if d = 11 then

cé {z eC ‘ [(—w)z+w—1|>1and — g < Im((w)erw)}, and

cé {zE(C ‘ [(—l+w)z—w|>1and Im((-l14+w)z+1—-w) < \Zﬁ}

Proof. The proof of this theorem only uses basic considerations and the results
of this article. O

The following Lemma implies that D(f, 4 and Dy 4 reflected at the real axis
coincide almost everywhere. Parts where the two sets might not coincide are
contained in the union of their respective boundaries.

Lemma 2.2.10. Let ¢ € C, a,b € E4, and ¢ = (a1,a2,...,a;) € EZ. Then
2Img(ca) is not an odd integer < (T.a = b < Tea = b),

2Imgy(ca) is an odd integer = (Tpa =b = Tea —b € {(0,—1)4, (1,—1)4}).

In particular, if ¢ is contained in the interior of the cutout area corresponding
to ¢ then

(a1,aq,...,ax) period of T, < (a1,az,...,ax) period of Ts.

Proof. The proof can be done the same way as the proof of Lemma 3.6 in
[24]. O

Definition 2.2.11. Let

(((z2,1,92,1) (a2,1,021)), - - -, (T2,45, Y2,45), (a2,45, b2,45)) =
((1’0)5250( :6267 O))’ (( - 4502293 ’1516%53*11?%?50)22 (0 1)) (( 33982622;23766322%)’ (0’ 1))’
(( - 3gg§’ 2%820’97((?71))’ ((3642772&8 )1 ( )) (( ~ 139318 8879 i’%)’ (0’ 1))’
((;1532514425%?91501)’ (O’ 1))’ ££367808592 ) (0 1)), 445832’4149488)’ (0’ 1))7
Eg%%%%?%g%)’((o, ;)))f ((1266909’ 3445) (0 4)) ((51256’ 14348 /)7 (0,2)),
T 0,4
1137704 260/ 7 \» ’
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(B 02), (G ), 1), (. 0)
(( 42426543977 3%%217 (071))7 (( - 4901;;?;2%6615;%)2;7(0’ 1))’ ((1435291)%(;41734;;%)7 (0?1)
(( :41%513%&42109469)’ (071))7 ((1_08%505)770104894)’ (071)26 1(6(247677’ @)7 2(9?32
((111068’ 1299%%)’5£072))’ (( - M}&T?)HG(O’ 1))7 ((?ﬂ %)773(3%’ 222;7 ((ﬁ’ 37
(0’129)72)’ 496S(ﬁ’%)7 (0’2))’ 157(910039877%)’ 072))7 ((%98({0782309090)7 (072)
((200?857@297 (O’ 1))7 (( - 2{)502070’ @g (O’ 1 )7 (( - ggg(lw 160401030)7 (07 1)
((3_95000%151000) (0’ 1))7 ((738(1)07 é%JQO)’ (072))’ ((5;)401097 1%88)’ (0’2)
((M7 10000)7 (0’2))’ ((10000’ 10q00)7 (0>2))7 ((10000’ 2000)7 (072>
(556 3006) (0:2)),  ((— 2506+ 5000)- (0:1)), (= 3600+ T0006)» (0:1)
((= 3600 000)> (0:1)).((55:555)- (0.1)), ((555 (50 + V1534), — =EvEa
(0,1)), (35 5%): (0.1))),

(((111 1, Y11, 1), (a11 1,b11, 1)) ((I11,47ay11,47)a (011,477 b11,47)) = (
(0.0, C20) (S8 ) 01D (. o)
((192089’ 12399)7 (07 1)) ((23994’ 28738)’ (0’9))7 572137 20941)7 (0’ 1))7

3099 442047 39923 22371 4038 4722
((%’W ’ (071))7 (_1517566549%126896)7 (071))7 ((%g 1%%3)7 (0’ 1))7
(oe gaar) Sooddy ) el 0D () 001
((1_498491602945637 743591) ( ))’ (( 8£§557 67882)’ (074))7 (( - 435;gg’ %), (O’ 1))7
((503{5483 45132:?91 (( 295)’975;23%56 11) (0’1))7 ( @53@272(3%6(15()))’
(( 32584 5%16252%%%)’6423 1))7 (( - 80135673326’1 13%52682(07 1))7 (( - 904172294961111288[1)%8)’
(o (- s g )> (06 g ) (04N~ niacs ).
(07 1))7 (1( _2W’ @)7 (01’31)29’ " 20597 19664758):’))4(0’ 1))7 (( - 100%131 20%28)7
(0.1 ((38:2). OD)(3:39), Q1)) ((=323). (0.1))(( 58350,
(071)1)0’7(5( 7433,0748’ 10024 ’ (Ov 1) ’(10g9 2o§§3’ 2048)’ 0, 1))’(( 2503418’ % ’ (0’ 1))’
((* 2502498’58172)’ (0’1))’ ((* 2%87185411)’ (071))’ ((*@’%)’ (0’ 1)),
(( ;1310236110204) (Ov 1))’ 1§5( 2061887’ 1024)’ (0’ 1))’ 12910%1’4%)’ (0’ 1)),
(( 20487 1024)’ (0 1)) ((5@’ 1024)’ (07 1))’ ((516339’22198431)’ (0’ 1)),

_es0_~/A9130 V11(—25+2v42130
(g3 (— 140+ V573 >7 L), (0.3)) ((F20mG2, 5 ), (0,1)),
(s =33+ VO9), 4 VIT(3+VO3), (0.1), (Mg, s,
(0,1))),

1
and let C( (k) denote the ultimate period of the orbit of (agk,ba k)2 under
To( ) for allk € {1,...45} and Céll)(k) the ultimate period of the orbit

(T2, k5Y2,1)
of (a11,k,b11,%)11 under T11, (211 py11 ) JOT all k€ {1,...47}. Furthermore let
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forallk € Z:
k) = ((=k)a, (k,—1)q)
(k) = ((=k,1)a, (k+1,—1)q).

The next theorem is a common result with M. Weitzer (see [77]). It shows
the critical points of the sets Dg and D§,1)1-

Figure 2.3. Cutout areas of D; o which covers the annulus with radii 99/100
and 1. The green area represents the first cutout area, the blue ones are the
two infinite sequences.

Theorem 2.2.12. The sets Dg and Dg?l)l do not contain any weakly critical

points (and thus no critical points) r satisfying r € ’Dg?% and r € Dg?{l respec-

tively. More precisely the circle of radius 0.99 around the origin contains the
sets D\°) and D\°)
1,2 1,11°
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Proof. For any cycle m of complex numbers let 7T denote the cycle one gets if
all elements of 7 are replaced by their complex conjugates. The cutout sets of

the cycles C\2 (k),C{? (k), k € z, ¢ (1),...,cP45), P (1),...,Cl? (45),

and C\'V(k), SV (k), k € z, SV ),...,c{™Man, S, .., el ar)

respectively, completely cover the ring centered at the origin in the complex
plane with inner radius % and outer radius 1. Figures 2.3 and 2.4 show the

cutout sets for the cases d = 2 and d = 11 respectively. The list has been found
by a combination of a variant of Algorithm 1 with manual search. O

Figure 2.4. Cutout areas of D 17 which covers the annulus with radii 99,/100
and 1. The green area represents the first cutout area, the blue ones are the
two infinite sequences.
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2.3 Generalization of Brunotte’s algorithm

This section describes a possible generalization of Brunotte’s algorithm to one
dimensional ESRS (see Theorem 2.3.5). Proving this theorem requires the fol-
lowing three lemmas. First, let’s recall, how w has been defined.

Definition 2.3.1. Let E; be an imaginary quadratic Euclidean domain. Its
canonical integer basis is: {1,wy}, where wy € Ey and

e V=d ,ifde{1,2},
d-= Hﬁ\/j‘i , otherwise (d € {3,7,11}).

(In the case of d =1 wy = v/—1, so that the imaginary unit i is used.)

(For wy during these investigations simply w is used.)

Lemma 2.3.2. Let ¢ € C" be a complex vector, |c| < 1, a € Z. If —ca € R and
the remainder part of —ca is greater than 0, then T.(a) = —T.(—a) + 1.

Proof. T.(a) = —ca+r,r€0,1). If r >0, then T.(—a) =ca+1—r. O

Lemma 2.3.3. Let ¢ € C be a complex number, |c| < 1, a € Z. If —ca € R
then T.(aw) = +T.(+a)w. If the remainder part of —ca is less than %, then
To(aw) = Ty(a)w.

Proof. T (aw) = —caw + rw,r € [—3,3). If 7 > 0, then T,.(a) = —ca +r, so
Te(aw) = To(a)w. If r < 0, then T.(—a) = ca — 71, s0 T (aw) = =T (—a)w. O

Lemma 2.3.4. Let ¢ € C be a complex number, |c| < 1, a € Z. If —ca € R
then T.(aw) = £T,(+a)w Fw. If the remainder part of —ca is less than %, then
Telaw) = —Te(—a)w + w.

Proof. T.(aw) = —caw + rw,r € [—3,%). If r >0, then T, (—a) = ca+1—r,
50 Te(aw) = (—Te(—a) + Dw. If r <0, then T (a) = —ca+ 1+, so T (aw) =
(Te(a) = Dw. O

The next Theorem is my result and it is not published previously. It aims to
generalize Brunotte’s algorithm for ESRS. This theorem and its proof is inspired
by S. Akiyama and H. Rao’s result in [12].

Theorem 2.3.5. Let d € {1,2,3,7,11}, ¢ € C be a complex number, |c| < 1,
let cp € Eq be a number from the Euclidean domain, arg(cg) = arg(c). Ty is
an ESRS with finiteness property, if the set £ exists for ¢ and has finitely many
elements:
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L4 _CEvﬁe g;

o a+bw €&, where a+bw € Dy e, (the sail digit set of the corresponding
ENS),

o if z€ & then Ty (2),—Ty.(—2) €E,
e for any z € £ there exists n € ZT such that T;C(z) =0.

Proof. Let z € Eg and b € Z. Let’s assume that z has finiteness property and
bcg € £, and

Td,c(z) = —cz+r,,

Td7c(b@w) = —cbCgw + rpw,
11
Ty S Dd, Ty S |:272> .

It will be proven that z + bcgw also has a finiteness property.
Td,c(z + bCgw) = —cz — cbegw + 7.
1. If Im(r,) 4+ € [f%, 1), then r, + rw = r,
Td,c(z + bepw) = Td,c(z) + Td,c(b@w>-
2. I Im(r,)+mp € [f%, %) + 1, then r, + rpw —w =17 and r, > 0.
Td,c(z+bcgw) = Tg c(2) + Tge(bwep) —w = Tgc(2) = Tg,c(-bcp)w.
3. I Im(r,)+mp € [—%, %) —1, then r, + rpw 4+ w =r and r, < 0.
Td,c(z +bcgw) = Tg c(2) + Tg e(bepw) + w = Tqc(2) + Ty c(bCE)w.
Since bcg € £, —Tq,.(—bcg) € € and Ty (bcg) € £. It means that
Ty o2+ b05w) = Ty o(2) + b (Re(b*) = 0),

for all n € Z", where b* € £. If this n is large enough, both T;C(z) and b* will
be zero, so z + bcgw has a finiteness property.
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In the second part of this proof let’s turn to the other dimension. Let z € E
and a € Z. Let’s assume that z has finiteness property and acg € £, and

Tdc(z) =—cz+r2,
Td c(atE) = —caty + 1,

r, €Dy, T4 €10,1).

It will be proven that z + acg also has a finiteness property.
Td,c(z + acg) = —cz — cacg + 7.

It’s easy to see that Im(r) = Im(r,).
e If Re(r,) + 7, €[0,1), then Re(r,) + r, = Re(r),

Td,c(z +acg) = Td,c(z) + Td’c(a@).

o If Re(r,) + 7, €10,1) + 1, then Re(r,) + 7, —1 = Re(r) and r, > 0.
Td,c(z+acg) = Tqe(2) + Tgelacy) = 1= Tqe(2) = Td,c(-acr).
Since acg € £, —T4.(—acg) € € and Ty (acg) € €. It means that
n n
Td7c(’z +acg) = Td,c(z) +a”,

for all n € Z*, where a* € €. If this n is large enough, both T;C(z) and
a* will be zero, so z + acg has a finiteness property.

O
Example 2.3.6. Let
d=1,
3424
c= —Z Z, (| = 0.9014, arg(c) = arctan? ~ 0.588rad)

then
cg = 3+ 2i.
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Figure 2.5. ¢ and cg on the complex number field

3+2i

Dy =1{0,1,2,3,1+4,—-1—14¢,—i,1 —4,2—14,3 —14,—2i,1 —2¢,2 — 2i}.
It means the initial set of € is:
& ={-3+2¢,3-2,0,1,2,3,14+¢,—1—4,—i,1—4,2—4,3—1,—2i,1—2i,2— 2},
Te(Eo)\E=1{4,-3,-2—2i,1,-2,-2 —¢,—1 + i},
—Te(=E)\E& ={-4,-1,-2—4,-3—4,i,—2,—1 + 2i, —3 + i},

so the new elements are
& ={4,-4,-3,-2—2i,4,-2,—2—i,—1+4,—1,—2—4,—3—i,—1+ 24, —3+1},

TN\ (E1U&E) ={-3—2i,34+2{,3+i,1+2i,2+ 1,2+ 2i,3+ i},
—T(=E)\ (E1U&) = {3+ 2i,—3 — 2i,2 + 24, —1 — 24,1 4 2,2 + i},



60 2. CHAPTER. ESRS

thus
Eo={-3-2,3+20,3+4,1+20,2+4,2+2i,3+1,—1—2i},
Te(E)\ (E2U & UE) ={2+ 3i,—1 — 3i, —3i, 23},
—Te(=E)\ (E2U&E UE) = {1+ 3i,—-2 —3i,—2 — 2i},
consequently

E3=1{2+3i,—1—3i,—34,2i,1 + 3i, —2 — 3i, -2 — 2i},

Te(Es)\ (EsUE UE U&) = {3i,1 —3i},
—To(—E3)\(E3UEUENUEY) = {—1+43i, —2+2i,3i}, &4 = {30, 1—3i, — 143, —2+2i},
Te(E)\ (E4UEUEUE UE) = {1,
~Te(—E)\ (E4UEUEUE UE) = {},

the iterative step finished. These are all the elements which needs to be investi-
gated in order to decide the finiteness property. There is an orbit, namely

-1 =1 = — = 1 = 1—1 = -1,
3421 3+21 3427 3421 3421
1,== 1,== 1=~  1,=5= 1,=5=

thus T, is not an ESRS with finiteness property.



Chapter 3

Summary, conclusion

To sum up, I have initiated a new approach how to define the digit set for number
systems over imaginary quadratic Euclidean domains. This, so called ,sail digit
set’ is well defined on all of the five possible domains. I was able to prove several
interesting properties of this set. The result is a number system with this digit
set, which can be considered as generalization of canonical number systems over
integers with some useful properties. I showed that there are infinitely many
ENS polynomials. There is an interesting connection between CNS, symmetric
CNS and ENS polynomials, which is described in Theorem 1.6.1. For a given
polynomial the ENS property is always algorithmically decidable, this is the
result of Theorem 1.2.13. I fully characterized the linear case (Theorem 1.4.6),
however it turned out that the quadratic case is hard, and its characterization is
still an open problem. I generalized the shift radix systems to finite dimensional
Hermitian vector spaces using this structure. One of the main features of this
construction is that the remainder set is the subset of the opened unit disc,
thus for every remainder r we have the property |r| < 1. Theorem 2.2.1 can
be considered as the generalization of the cutout polyhedra defined in [2]. I
generalized and use Brunotte’s algorithm [18] for the case of linear ESRS with
some restrictions (Theorem 2.3.5). This can be continued to define Brunotte’s
algorithm for any number of dimensions, and it can be used to further investigate
Euclidean shift radix systems.
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3. CHAPTER. SUMMARY, CONCLUSION



Chapter 4
Appendix

In this chapter I've investigated all possible triplets (d, p, @), which is essential for
the proof of the Theorem 1.4.6. d determines the imaginary quadratic Euclidean
domain, p is the constant term of the linear polynomial P(z) = z + p, and
A(z) = a is a constant polynomial whose representability needs to be checked.
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e p=1—1i, N(p) =2,
Dd,l’ = {0; _i}a
a€{+l,+i, 144, -1+, +£2,+24,2+4,—2+4,1+2¢, -1+ 2i}.

—2+41 —142¢
| |
2 2—1
N/
—1—3 —-1-—-2;
241 14 2¢ \z/ 21
! ! L
—2¢ 1—2¢ 1—1
N N
-1+ -1 -2

z +1—1is an ENS polynomial with the sail digit set Dy .

e p=1+i, N(p)=2,
de:{o;l}a



a€ {1, +i 140, —1+i +2 42,244, -2+, 142i, —1 + 2i}.

-2+ -1+
| |
1—-2¢ -2
N/
1414 241

~ 1/ 2
bV
i 1—i

/

1 2

—-1—-2: —2—1
y J
2 2 —
N N\

—1+i
NS
\1/

|

0

1 1+2:
N/

—1—1

x + 1+ is an ENS polynomial with the sail digit set Dy .

Dy = {0; -1},
—i = —t and this is a cycle(1 ¢ Dy ).

Dap = {05 i}v
1 73 1 and this is a cycle.

There are no elements in [£; with norm 3.

p=2, N(p) =4,
Dy, = {0;1; —i;1 — 4},

65



66 4. CHAPTER. APPENDIX

a € {£1,+i,14+4,-1+i}.

-1 —1—1 144 i 1414
1 1—14 —1
\g/

x4 2 is an ENS polynomial with the sail digit set Dy j,.
e p=—2i N(p) =4,

Dgp = {0; =1; —i; =1 — i},

a€ {1, +i 144, —1+i}.

1+ -1+ 1

NN S

1—14 1

3 \_i/
\\\\*¢*///’

0

—1—i

x — 2i is an ENS polynomial with the sail digit set Dy .
e p=2i, N(p) =4,

Dy, ={0;1;4;1 + 4},

a € {£1,+i,144,-1+i}.

1 14 1
N\ N
1—i i
NS
14 1 i

\\\\*ﬁk/////

x + 2¢ is an ENS polynomial with the sail digit set Dy ;.
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d p:_27 N(p):47
Dy, = {0;-1;4; -1+ i},
1 ? 1 and this is a cycle.

i p:2_ia N(p)ZSa
Da,p = {0:1;2; —i5 1 — 4},
a€{£1,+i,1+i,—1+i}.

KRN
+1 -1+ - i
¢z lz\f/
\l/

x + 2 — i is an ENS polynomial with the sail digit set Dy .

e p=2+1i, N(p) =5,
Dap = {0;152;4; 1 + i},
a€ {£1,+i,14+i,—1+i}.

—1+4i
1¢i —1—3 -1 i
A P

x4+ 2+ 14 is an ENS polynomial with the sail digit set Dy .

o p=1-2i, N(p) =5,
Dap = {0;1; —i; 1 — 45 -2},
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a € {£1,+i,14+4,-1+i}.
—1—¢

1+ -1+

' \l/
\i/

x4 1 —2¢ is an ENS polynomial with the sail digit set Dy j,.

e p=1+2i, N(p) =5,

Dy, = {0;1;4;1 4 ¢; 24},
@€ {£l,+i, 144, —1+4}.
-1+

i

1—14 —1—1

¢ \l/

1+:2

\i/

z + 14 2¢ is an ENS polynomial with the sail digit set Dy .
p:_2_i7 N(p):5=

]D)d,p = {Oa 717 72; 71.; -1- Z}:
1 ? 1 and this is a cycle.
p=—-2+1, N(p) =5,

Dap = {0; —1; =254, —1 + 4},

1 ? 1 and this is a cycle.
p=-1-2i, N(p) =5,

Dap = {05 —1; —i; =1 — 4; —2i},
1 = 1 and this is a cycle.
p=-1+2i, N(p) =5,

Dy, = {0;—1;4; —1 + ¢; 2},

1 7; 1 and this is a cycle.



e There are no elements in E; with norm 6 or 7.
e p=2—2i, N(p) =8,
Dap = {0;1; =1 — 45 —i; 1 — 452 — i5 245 1 — 24},
a€{xl,+i,1+4,—1+1i}.

\J/_Hi/_l_:
\\: i//

x + 2 — 2i is an ENS polynomial with the sail digit set Dy .

o p=2+2i, N(p) =S8,
Dayp = {05121 — i1+ 4,2 +14; 1 + 23},
a€{xl,+i,1+4,—1+1i}.

-1+

y
\J/_H
\\: i//

x + 2+ 2i is an ENS polynomial with the sail digit set Dy .

o p=-2-2i N(p) =8,
Dgp={0;—1;—2; -1+ 4;—4; —1 — 4, —2 — i; —1 — 2¢},
1 ? 1 and this is a cycle.

o p=-2+2i, N(p) =8,
Dy, ={0;—1;1 4459, —1 +4; —2 4 45 24; —1 + 24},
1 7; 1 and this is a cycle.

o If N(p) > 9, then § > /{211

od=2,
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®p=—Ww, N(p):27
Dayp = {O; _1}v
a € {£],4w,1+w,—1+w,+2}.

-2
|
w 14w 1+w
N !
1 2 1l—w
NS _1_/
N 1;/
|
0

z —w is an ENS polynomial with the sail digit set Dy .

e p=w, N(p) =2,
ID)dap = {01 1}7
a€{£l,w,1 tw,—1+w,£2}.

2
|
1+w 14w

N/ o
NS
\1/
|

0

x + w is an ENS polynomial with the sail digit set Dy .



cp=1-w Np) =3
Dgp = {0;1; —w},
a€{+l,tw,1 +tw,—1+w}.

_w\f‘/
\0/

z + 1 —w is an ENS polynomial with the sail digit set Ds .

e p=1+w, N(p)=3,
Dap = {0;1;w},
a€{+l,tw,1 +w,—1+w}.

1—w

'
1+w 14w

| |

-1 —w —-1-w

x + 14w is an ENS polynomial with the sail digit set Dy .

hd p:_l_waN(p):Sa
Dqp = {0; —1; —w},
1 73 1 and this is a cycle.

e p=-1+w, N(p) =3,
Dyp = {0; -1 w},
1 ? 1 and this is a cycle.
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e p=2, N(p) =4,
Dy, ={0;1; —w; 1 — w},
a€{+l,tw,1 +tw,—-1+w}.

—1—-w -1 —1+w w 1+w
\ 1 \i —w —w
0
xz + 14 w is an ENS polynomial with the sail digit set D5 .
L4 p:_2aN(p):4a
Dgp={0;—1;w; —1+w}, 1 75 1 and this is a cycle.
e There are no elements in E, with norm 5.

[p[+1
[p|—1"

e If N(p) > 6, then £ >

od=3,
e There are no elements in E3 with norm 2.

e p=2-w, N(p) =3,
Dy, ={0;1;1 —w},
a€{+l,tw,+(1 —w), £+(1 + w), +(2 — w), (1 — 2w)}.

14w
|
-1 —-w —w 2—w 1—2w
N | |
—14 2w w 24w 14w

N N
\0/

z + 2 —w is an ENS polynomial with the sail digit set D3 .



e p=1+w, N(p) =3,
Dgp = {0; L;w},
a€{tl,tw,+(1 —w), (1 + w), £(2 — w), =(1 — 2w)}.

2—w

|

—24w 14w 1+w -1+ 2w

NS | |

12w\‘w‘/1w 1w\f1/—w
\O/

xz + 1+ w is an ENS polynomial with the sail digit set D3 .

o p=1—2, N(p)=3,
Dd,p = {07 —Ww; 1- w}a
ae{tl,tw,+(1 —w),£(1 +w), £(2 — w), £(1 — 2w)}.

1—2w

v
24w

N/

—14 2w 14w
—1—w\f/l+w 2—-w

1—w —w

N,

z + 1 — 2w is an ENS polynomial with the sail digit set D3 .

e p=—1+2w, N(p) =3,
Dy,p = {0;w; —1 + w},
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a€{+l,tw,+(1 —w), +(1 + w), £(2 — w), £(1 — 2w)}.

—1+ 2w
V
-1-w -1 24w
1-2 \i / —/
1+w\i/2—
\jl—&— \w/

\O/

z — 14 2w is an ENS polynomial with the sail digit set D3 .
e p=—1—w N(p) =3,

Ddap = {O’ _17 _W},

1 ? 1 and this is a cycle.

e p=-2+w, N(p) =3,
Dy, ={0;-1; -1 + w},
1 ? 1 and this is a cycle.

e p=2,N(p) =4,

Dap =1{0;1;1 —w;2 —w},
a€{£l,tw,+(1 —w), (1 + w), £(2 —w), (1 — 2w)}.

14w 24w 1—-2w
—1—-w —iw -1 —1+w i -1+ 2w
\%/ . \li /

x + 2 is an ENS polynomial with the sail digit set Ds ,,.



« p=2-2, N(p) =4,
Dyp ={0;1 —w; —w; 1 — 2w},
a€{tl,tw,+(1 —w), (1 + w), £(2 — w), =(1 — 2w)}.

—14 2w 14w 24w —-1-w
o \{/ —
\ \Al‘L A/12

x + 2 — 2w is an ENS polynomial with the sail digit set D3 .
* p= 2w, N(p):4

Dap = {0; Lw; 1 +w},

a€{fl,tw,+(1 —w),£(1 +w), £(2 —w), £(1 — 2w)}.

-1 —-w 14w —24w -1+ 2w

J \i//

2—w 1—2w 1—w

S \i/
\i/

x + 2w is an ENS polynomial with the sail digit set D3 ;.
b4 p:_27 N(p):47

Dgp={0;—1; -1+ w; -2+ w},

1 ? 1 and this is a cycle.

+w

e p=—-2+2w, N(p) =4,
Dy, = {0; -1 + w;w; —1 + 2w},
1 ? 1 and this is a cycle.

«p— 2, N(p) =4

Dy, ={0;—1; —w; -1 — w},
1—w ? 1 —w and this is a cycle (1 € D3 _q,,).
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e There are no elements in E3 with norm 5 or 6.
e p=3-uw, N(p):7a

Dap ={0;1;2;w; —w; 1 —w; 2 — w},

a€ {£l, 2w, £(1 - w)}.

14w -1

i \ Alw/ :
0
z + 3 —w is an ENS polynomial with the sail digit set D3 .
e p=3—2w, N(p)=T,

Dgp ={0;1;w; —w;1 —w;2 —w; 2 — 2w},
a€ {£l, 2w, £(1 - w)}.

w

14w -1

N
W\\OA‘/W/—w

z + 3 — 2w is an ENS polynomial with the sail digit set D3 .

e p=2+w, N(p) =T,
Dgp ={0;1;2; —w; —1 4+ w;w; 1 + w},
a€{+l,tw,+(1 —w)}.

—w -1

i \ >
0 /
z + 2+ w is an ENS polynomial with the sail digit set D3 .

e p=1+2w, N(p)=T1,
Dy, ={0;1;1 —w;—1+w;w; 1+ w; 2w},

14w



a€{£l,tw,+(1 —w)}.

x + 14 2w is an ENS polynomial with the sail digit set D3 .

o p=—1+4 3w, N(p) =1,
Dyp ={-1;0;1; -1 + w;w; —1 + 2w; 2w},
a € {xl,tw,+(1 —w)}.

1—w —w

14w

N
w\l\:o//

x — 14 3w is an ENS polynomial with the sail digit set D3 .

o p=—2—|—3w, N(p) :7,
Dap = {—1;0;1; =1 + w;w; —2 + 2w; —1 + 2w},
a€{£l,tw,£(1 —w)}.

1l—w —w

14w

N
w\l\o‘//_

x — 2+ 3w is an ENS polynomial with the sail digit set D3 .

*p=2-3w, N(p):7,
Dap = {-1;0;1; —w; 1 —w; 1 — 2w; 2 — 2w},

7
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a€ {£l, 2w, £(1 —w)}.

—1+< /w
N \\OA‘/_“’/

z + 2 — 3w is an ENS polynomial with the sail digit set D3 .

e p=1-3uw, Np)=T,

Dgp={-1;0;1; —w; 1 — w; —2w; 1 — 2w},
a€ {£l, 2w, £(1 - w)}.

—1+4+w w

- \ Al_w/ N
0
z +1— 3w is an ENS polynomial with the sail digit set D3 .
p=—1-2w, N(p) =T,

Dgp ={0;—1; -1+ w; —1 —w; —w; 1 — w; —2w},
1 ? 1 and this is a cycle.

p:_Z_wa N(p):77
Dy, ={0;-1;-2; -1+ w;1 —w; —w; —1 — w},
1 ? 1 and this is a cycle.

Dy, = {0;—1; =2 —w;w; —1 + w; —2 + w},
1 ? 1 and this is a cycle.

p=-3+2w, N(p) =17,
Dyp ={0;—1; —w;w; —1 + w; =2 + w; —2 + 2w},
1 ? 1 and this is a cycle.

There are no elements in E3 with norm 8.



e p=3,N(p) =9,
Dyp={0;1;2;w; 1 +w;2+w;1 —w; 2 —w; 3 —w},
a € {+l,tw,+(1 —w)}.

x 4 3 is an ENS polynomial with the sail digit set D3 ,,.

e p=3-3w, N(p) =9,
Dgp={0;1;—w;1 —w;2 —w;1 —2w; 2 — 2w; 3 — 2w; 2 — 3w},
a€{£l,tw,+(1 —w)}.

14w -1 w

x + 3 — 3w is an ENS polynomial with the sail digit set D3 .
e p=23w, N(p)=9,

Dyp ={0;1; -1 + wiw; 1 +w; —1 + 2w; 2w; 1 + 2w; —1 + 3w},

a € {+l,tw,+(1 —w)}.

1-w —1 —w
\l 1

w 1 —1+w
\g/

x + 3w is an ENS polynomial with the sail digit set D3 ;.

L4 p:—Sw, N(p):97
Dyp={0;-1;—-1 —w;—w;1 —w;—1 — 2w; —2w; 1 — 2w; 1 — 3w},
1 ? 1 and this is a cycle.

79



80 4. CHAPTER. APPENDIX

b p:_37 N(p):97
Dy, ={0;-1;-2; —w; -1 —w; =2 —w; =1 + w; —2 + w; —3 + w},
1 ? 1 and this is a cycle.

« p=—3+3w, N(p) =9,
Dgp = {0; —1;w; —14w; —2+w; —142w; =2+ 2w; —342w; —2+ 3w},
1 ? 1 and this is a cycle.

e There are no elements in [E3 with norm 10.

e If N(p) > 11, then £ > ‘Igm_

od=T,

ep=1-w, N(p)=2,
Da,p = {0; -1},
a€{+l,tw,+(1 —w),£2,£(2 —w), £(1 + w)}.

z + 1 —w is an ENS polynomial with the sail digit set D7 .

e p=w, N(p) =2,
]D)d,P = {0; 1}7
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a€{+l,tw,+(1 —w), £2,+(2 —w), (1 + w)}.

-1 —-w
|
2-w
!
1+w 2
N / /
14w 24w
\ / N /

1—w

. /
l

0

x +w is an ENS polynomial with the sail digit set D7 .
e p=-1+uw, N(p):

Dd,p = {07 ]-}7

a€{fl,tw,+(1 —w),£2,£(2 —w), (1 + w)}.

1+w 2
| !
—1+w
N /
—2+w
\51_ \ /
. \ /
\ /
l

0
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z — 14w is an ENS polynomial with the sail digit set D7 .

®D=—W, N(p>:27
Da,p = {0; -1},
a€{£l,tw,+(1 —w),+2,+(2 —w), (1 + w)}.

—24w -2

| |

1+ OJ\‘l‘; w2
N N

2—w 1l—w
N
—1—-w —w

\_1/
|

0

z — w is an ENS polynomial with the sail digit set D7 ,.
e There are no elements in [E; with norm 3.

e p=2,N(p) =4,
Dgp ={0;1; —w; 1 — w},
a€{+l,tw,+(1 —w)}.

14w w
} | |
1

1—w —w

x4 2 is an ENS polynomial with the sail digit set D7 ,,.

e p=1+w, N@p) =4,
Dy, ={0;1;w;1 —w},



a€{£l,tw,+(1 —w)}.

14w

-1 —iw
NS
~.
;
x + 14w is an ENS polynomial with the sail digit set Dz .
p=2-w, N(p) =4,

Dy, ={0;1; —w; 1 — w},
a € {+l,tw,+(1 —w)}.

1

w 14w

-1
Ew —w \ 1 /
~._t
ﬁ
x + 2 —w is an ENS polynomial with the sail digit set D7 .

p:_2a N(p):47
Dap = {0;—1; -1 + w;w},
1 ? 1 and this is a cycle.

1

Dap = {0;—1; -1 + w;w},
1 ? 1 and this is a cycle.

p=-—-1—w, N(p) =4,
Dap = {0;—1; —w; =1 + w},
1 ? 1 and this is a cycle.

There are no elements in 7 with norm 5.

If N(p) > 6, then § > /{245
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od=11,

e There are no elements in E1; with norm 2.

* p=w, N(p) =3,
Dap = {=1;0;1},
a€{+l,tw,+(1 —w)}.

w —1+4+w w

I N
\0/

x + w is an ENS polynomial with the sail digit set D1y .

®p=—Ww, N(p):?):
Dap = {-1;0;1},
a € {+l,tw,+(1 —w)}.

1—w —14+w w

RN N

_1\0/1

z —w is an ENS polynomial with the sail digit set D1y .

e p=—1+w, N(p) =3,
Dap = {-1;0;1},
a€{+l,tw,+(1 —w)}.

w —14+w w

NN s
\0/

z — 14w is an ENS polynomial with the sail digit set D11 .
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e p=1-w, N(p) =3,
Dgp = {-1;0;1},
a € {+l,tw,+(1 —w)}.

1—w 14w w

N N4

_1\0/1

z 41 —w is an ENS polynomial with the sail digit set Dy p.
e p=2,N(p) =4,

Dy, ={0;1; —w; 1 — w},

a€{£l,tw,+(1 —w)}.

—1 w 14w

1 \_W 1-—
0
x + 2 is an ENS polynomial with the sail digit set D11 p,.

o p:_27 N(p):47
Dap = {0; —L;w; =1 + w},
1 ?; 1 and this is a cycle.

w

e If N(p) > 5, then £ > ‘Ig‘lﬂ
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