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Introduction

�Die Mathematik ist die Königin

der Wissenschaften und die

Zahlentheorie ist die Königin der

Mathematik.�

Carl Friedrich Gauÿ

Number systems have an important role in our life. As ancient as the
mankind itself this concept has changed and evolved. Choosing 10 as base
number for radix representation of the integers is just one of the in�nitely many
possibilities. Choosing non-negative numbers as digits is also just a convention.
B. Pascal in 1658 �rst stated in print that any integer greater than 1 could
serve as radix. A.-L. Cauchy in 1840 pointed out that negative numbers as dig-
its make it unnecessary for a person to memorize the multiplication table past
5x5.

V. Grünwald [35] introduced the radix representation with respect to nega-
tive bases in 1885 on the following way. Let g ≤ −2 be an integer. Then every
n ∈ Z can be represented in the form

l∑
i=0

nig
i, 0 ≤ ni < |g|. (1)

He investigated how to perform the four basic operations in such number sys-
tems. In this concept there is no distinguish between positive and negative el-
ements, thus it allows far reaching generalizations. It's started by D. E. Knuth
[47] in 1960. His number system is known as quarter-imaginary numeral system
which uses 2i as its base and 0, 1, 2, 3 as its digits. All of the Gaussian integers
a + bi (a, b ∈ Z) can be represented in this number system. Another similar
number system was analyzed by W. Penney [69] in 1965. He used the number
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−1 + i as basis and 0, 1 as digits. I. Kátai and J. Szabó [44] in 1975 generalized
W. Penney's result. They proved that the only numbers which are suitable
bases for all Gaussian integers, using 0, 1, . . . , N − 1 as digits, are −n± i, where
n is a positive integer and N = n2 + 1, the norm of −n ± i. W. J. Gilbert
[34] in 1981 generalized I. Kátai and J. Szabó's result to �nd all the bases for
quadratic number �elds using 0, 1, . . . , N − 1 as digits. I. Kátai and J. Szabó
also stated that if {α,N} is a canonical number system (CNS for short, α is
the base number, N is the digit set) in the ring of Gaussian integers, then any
complex number γ can be written in the form (canonical in a sense that digits
are in ascending order): γ = akα

k+ak−1α
k−1+ · · ·+a0+a−1α

−1+ . . . , ai ∈ N .
This is called αN -expansion of γ which has been studied by I. Kátai and B.
Kovács [43], B. Kovács [50], B. Kovács and Gy. Maksa [57], I. Kátai and I.
Környei [41], B. Kovács and I. Környei [56] and by A. Peth® [73]. S. Ito [38]
in 1989 investigated Kátai and Szabó's number systems and showed that the
boundary curve is a fractal curve. Later in 2001, W. Müller, J. M. Thuswaldner
and R. F. Tichy [62] generalized the investigation of the boundary fractal curve
for number systems over n-dimensional real vector space. M.-A. Jacob and J.-P.
Reveilles [39] in 1995 de�ned an integer division for Gaussian Integers, which
linked two di�erent objects: discrete a�ne applications and Gaussian numera-
tion systems. A. Kovács [51] in 1999 analyzed the structure of the expansions in
the ring of Gaussian integers with canonical digits. In 2001 he extended this re-
sult to the integers in imaginary quadratic �elds [53]. Another generalization of
CNS, namely for polynomials over imaginary quadratic Euclidean domains was
studied by A. Peth® and P. Varga in [76], and these results are also presented
in this dissertation in Chapter 1.

For a given positive integer base b, A. M. Odlyzko [68] in 1978 gave necessary
and su�cient conditions for a set S of positive real numbers to have the property
that every real number can be represented in the form

±
∞∑

i=−N
sib
−i, si ∈ S.

The integers' unique representation was investigated by D. W. Matula [67] in
1982.

D. E. Knuth [48] in 1981 described numerous reference to alternative num-
ber systems, and he gave results about radix representation of integers with
negative bases. He also analyzed the −1 + i based number system, which is
related to the �twin dragon� fractal. The connection between fractals and CNS
has been investigated by S. Akiyama and J. M. Thuswaldner [15], [16], [17],
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K. H. Indlekofer, I. Kátai and P. Racskó [37] and by K. Scheicher and J. M.
Thuswaldner [79]. J. M. Thuswaldner [81] calculated fractal dimensions of sets
generated by CNS over imaginary quadratic �elds in 1998.

B. Kovács and A. Peth® [58] in 1983 proved that for a given rational integer
basis there exists in�nitely many �nite digit sets. They proved in 1991 [59]
that if g(t) is irreducible then it is decidable whether the pair {g(t),N} is a
number system in the ring Z[t]/g(t)Z[t]. Later, in 2006, H. Brunotte, A. Huszti
and A. Peth® used this result in [23] to compute canonical number systems
of some quartic �elds. Also, A. Peth® [72] in 1991 generalized this result for
arbitrary polynomials, and he de�ned CNS as follows. Let P (x) = xn+1 +
pnx

n + pn−1x
n−1 + · · ·+ p0 ∈ Z[x] and D = {0, 1, . . . , |p0|− 1}. The polynomial

P (x) is called CNS polynomial if for every 0 6= A(x) ∈ Z[x] there exist h ≥ 0
and a0, . . . , ah ∈ D such that

A(x) ≡ ahxh + ah−1x
h−1 + · · ·+ a1x+ a0 (mod P (x)). (2)

If P (x) is irreducible one gets the concept of canonical number systems in alge-
braic number �elds, which was introduced and studied by I. Kátai and J. Szabó
(see [44]). This result was generalized to quadratic integers by I. Kátai and B.
Kovács [42], [43], [49] and independently in W. J. Gilbert [34]. S. Körmendi
[40] in 1986 established all CNS bases in a class of pure cubic number �elds. B.
Kovács and A. Peth® [59] presented a general algorithm for the computation of
all CNS bases in an algebraic number �eld and used their method in some cases
in 1991. S. Akiyama, H. Brunotte and A. Peth® [4], [5] disproved a conjecture
of W. J. Gilbert about the structure of the set of cubic CNS polynomial. H.
Brunotte [20] investigated the totally real cubic CNS polynomials. Families of
quartic CNS polynomials were studied by H. Brunotte, A. Huszti and A. Peth®
[23] and by A. Peth® [71].

By changing appropriately the bases 1, x, . . . , xn−1 of the Q-vector space of
polynomials of degree at most n − 1, H. Brunotte [18] found a very e�cient
algorithm for the decision of the CNS property. He used it in [22] for the
characterization all CNS whose bases are roots of trinomials.

In 1993 B. Kovács and A. Peth® [60] gave an asymptotic estimate for the
number (L(β)) of required digits for a given β to be represented in a number
system. In 2001 A. Kovács analyzed binary number systems and number systems
with small digit set over algebraic number �elds. The characterization of CNS
polynomials is complicated already for degree three, as indicated in [7]. It is
still unsolved. A. Kovács [54] dealt with binary number systems in 2001, also G.
Farkas and A. Kovács [31] analyzed the expansion Q(

√
2) in 2003. A necessary
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condition for a polynomial to be a CNS-polynomial is to be expanding, which has
been investigated by P. Burcsi and A. Kovács [26] in 2005. Additive functions for
CNS polynomials has been studied by M. G. Madritsch and J. M. Thuswaldner
[66], M. G. Madritsch [63] and by M. G. Madritsch and A. Peth® [64].

Rational based number systems has been studied by S. Akiyama, C. Frougny
and J. Sakarovitch [10] in 2008.

P. Burcsi and A. Kovács [27] called P (x) a semi-CNS polynomial if the �-
nite expansions (2) form an additive semigroup. This is a generalization of the
usual radix representations of natural numbers. They were able to prove some
su�cient properties for P (x) being a semi-CNS polynomial. Moreover they gen-
eralized Brunotte's algorithm for semi-CNS polynomials. I have conducted an
enquiry into cubic semi-CNS polynomials (see [83]), I was able to fully charac-
terize them. H. Brunotte generalized this result for semi-CNS polynomials with
any degree in [22].

An interesting alternative concept of CNS polynomials are symmetric-CNS
polynomials, where the digit set is balanced on the way that it contains negative
and positive elements as well. This concept can also generalized to symmetric
SRSes. This topic has been studied by H. Brunotte [19], [21], S. Akiyama and K.
Scheicher [14], and by A. Huszti, K. Scheicher, P. Surer and J. M. Thuswaldner
[36].

K. H. Indlekofer, I. Kátai and P. Racskó [37] initiated simultaneous number
systems in 1993. A. Kovács [55] analyzed this concept of simultaneous number
systems over Eisenstein integers in 2013.

Inspired by [76], A. Peth® and J. M. Thuswaldner [75] generalized the CNS
concept to number systems over number �eld orders.

The shift radix systems, SRS, for real vectors were introduced by S. Akiyama,
T. Borbély, H. Brunotte, A. Peth® and J. M. Thuswaldner [2] in 2005. Gen-
eralizing SRS, H. Brunotte, P. Kirschenhofer and J. Thuswaldner [24] de�ned
Gaussian shift radix systems (GSRS) for Hermitian vector spaces as follows.
Let r ∈ Cn be given (n ∈ N ). Let the mapping γr : Z[i]d → Z[i]d be de�ned by

x = (x1, x2, . . . , xn) 7→ (x2, x3, . . . , xn,−brxc), (3)

where rx is the inner product of r and x, and bzc := bRe(z)c+ ibIm(z)c, z ∈ C.
For r ∈ Rn the mapping τr : Zn 7→ Zn, de�ned as

τr((a1, . . . , an)) = (a2, . . . , an,−brac), (4)

where ra denotes the inner product, is called shift radix system, shortly SRS. In
[2] it is also proved that SRS is a common generalization of canonical number
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systems (CNS) and the β-expansions, de�ned by A. Rényi [78]. This concept
has been studied in many articles by S. Akiyama and J. M. Thuswaldner [16],
S. Akiyama, T. Borbély, H. Brunotte, A. Peth® and J. Thuswaldner [1], [3],
S. Akiyama and K. Scheicher [13], S. Akiyama and J. M. Thuswaldner [17],
S. Akiyama, H. Brunotte, A. Peth® and J. M. Thuswaldner [7], [8], [9], P.
Surer [80], P. Kirschenhofer, A. Peth®, P. Surer and J. M. Thuswaldner [46], H.
Brunotte, P. Kirschenhofer and J. M. Thuswaldner [24], [25], M. G. Madritsch
and A. Peth® [65], S. Akiyama, H. Brunotte, A. Peth®, W. Steiner and J.
M. Thuswaldner [6], P. Kirschenhofer and J. M. Thuswaldner [82], M. Weitzer
[86], [85] and by A. Peth® [74]. Another generalization of SRS for Hermitian
vector spaces, namely for vectors over imaginary quadratic Euclidean domains
was studied by A. Peth®, P. Varga and M. Weitzer in [77], and these results
are also presented in this dissertation in Chapter 2. It is well known that
there are exactly �ve imaginary quadratic Euclidean domains, which are the
ring of integers of the imaginary quadratic �elds Q(

√
d), d = 1, 2, 3, 7, 11. The

Euclidean norm function allows not only the division by remainder, but also to
de�ne a �oor function for complex numbers. This generalization, which I call
ESRS, is uniform for the �ve imaginary quadratic Euclidean domains. This has
the consequence that in case of the Gaussian integers the �oor function di�ers
from that used in [24].

The SRS τr is said to have the �niteness property if and only if for all a ∈ Zn

there exists a k ≥ 1 such that τkr (a) = 0. Denote by D(0)
n the set of r ∈ Rn

such that τr has the �niteness property. From numeration point of view these

real vectors are most important. It turned out that the structure of D(0)
n is very

complicated already for n = 2, see [7], [80] and [86].
The analogue of the two dimensional SRS is the one dimensional GSRS and

ESRS. H. Brunotte, P. Kirschenhofer and J. M. Thuswaldner [24] studied �rst
the set of one dimensional GSRS with �niteness property, which I denote by
GSRS(0). It turned out that its structure is quite complicated as well. Recently
a more precise investigation of M. Weitzer [85] showed that the structure of

GSRS(0) is much simpler as that of D(0)
2 . Based on extensive computer inves-

tigations he conjectures a �nite description of GSRS(0).

Analogously to D(0)
n one can de�ne D(0)

n,d for d = 1, 2, 3, 7, 11 in a straight-

forward way. I present how a good approximations of D(0)
n,d can be computed.

Performing the computation it turned out that the shape of these objects are
quite di�erent. The subjective impression can be misleading, but Theorem

2.2.12 shows that D(0)
n,d has no critical points in the cases d = 2, 11. More specif-

ically this theorem shows that the circle of radius 0.99 around the origin contains
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D(0)
n,d. In the other cases this is probably not true. It is certainly not true for

D(0)
2 and GSRS(0).
In this dissertation I will de�ne and analyze a number system over norm-

Euclidean domains (ENS), and I will generalize the shift radix systems to �nite
dimensional Hermitian vector spaces (ESRS) using a similar structure. One of
the main features of this construction is that the remainder set is the subset of
the opened unit disc, which gives us the property that |r| < 1 for every reminder
r.

The �rst section describes the basic concepts, while the second section de-
�nes a number system over norm-Euclidean domains (ENS), and examines some
of its properties. One of the most important properties is that the ENS property
is always algorithmically decidable, this is the result of Theorem 1.2.13. The
third section presents the properties which are speci�c to the number systems
over imaginary quadratic Euclidean domains. The fourth section is to charac-
terize the linear ENS polynomials over imaginary quadratic Euclidean domains.
The main result can be found in Theorem 1.4.6. The �fth section is about
the quadratic case and its properties. The sixth section investigates a kind of
in�nite sequences of ENS polynomials, and shows an interesting result about
the connection between the CNS and symmetric-CNS polynomials over rational
integers and the ENS polynomials over imaginary quadratic Euclidean domains
in Theorem 1.6.1.

The last three sections are about the ESRS concept. In this concept even
the one dimensional case is a hard problem, its characterization is still an open
question. The last section shows that Brunotte's algorithm [18] can be gener-
alized to the ESRS concept, but with some restrictions (Theorem 2.3.5). The
proof of this generalization borrows ideas from S. Akiyama's proof in [12].



Chapter 1

ENS

In this chapter a number system concept over Euclidean domains will be de�ned.
I will investigate some properties on norm-Euclidean domains, then speci�cally
for imaginary quadratic Euclidean domains.

1.1 Basic concepts

De�nition 1.1.1. Let E be an integral domain. The function N : E 7→ N with
the following properties:

1. N(a) = 0 for an a ∈ E, if and only if a = 0,

2. if a ∈ E and b ∈ E \ {0}, then there are q, r ∈ E such that a = bq + r and
N(r) < N(b)

is called Euclidean function.

Remark 1.1.2. In 2. above, we say that q is the quotient and r is the remainder
part of the Euclidean division of a by b.

De�nition 1.1.3. The integral domain E is called Euclidean domain if it is
endowed with a Euclidean function.

De�nition 1.1.4. The Euclidean domain E is called norm-Euclidean if its
Euclidean function is derived from the corresponding �eld's absolute value func-
tion.

7



8 1. CHAPTER. ENS

Remark 1.1.5. In this dissertation the following notations will be used:

Q �eld of rational numbers,
Z ring of integers,
C �eld of complex numbers,
i the imaginary unit,

|z| complex absolute value: |z| :=
√
z21 + z22 ,

where z ∈ C, z1, z2 ∈ R, z = z1 + z2i,
K[x] the set of polynomials with coe�cients belonging to K.

De�nition 1.1.6. Let K denote the quotient �eld of E. Then all elements
α ∈ K can be written in the form α = a

b with a, b ∈ E; b 6= 0. Let q be the
quotient and r be the remainder of the Euclidean division of a by b. Then q is
called the integer part of α and is denoted by bαc =

⌊
a
b

⌋
and r is called the

remainder part of α and is denoted by {α} =
{
a
b

}
. The function α 7→ bαc is

called the �oor function, and the integer part bαc is also called the �oor of
α.

1.2 ENS over Euclidean domains

This section is devoted to de�nitions and theorems about the ENS (Euclidean
number system) concept which needs only a Euclidean domain and a digit set.
The digit set is su�cient for an unambiguous de�nition of a number system over
the Euclidean domain.

De�nition 1.2.1. Let E be an Euclidean domain with a Euclidean function
N . Let P (x) = xn+1 + pnx

n + pn−1x
n−1 + · · · + p1x + p0 ∈ E[x](n ∈ N) be

a monic irreducible polynomial over E such that N(p0) ≥ 2, and let Dp0 ⊂ E
be a so called digit set with |Dp0 | = N(p0). The elements of the factor ring
E[x]/P (x)E[x] can be represented by polynomials over E of degree at most n.
This set is denoted by En[x].
If for an A(x) ∈ En[x] there exists a(x) ∈ Dp0 [x] such that

A(x) ≡ a(x) (mod P (x)),

then A(x) has an expansion. If all A(x) ∈ En[x] have an expansion, then the
pair (P,Dp0) is called ENS and the polynomial P (x) ∈ E[x] is called an ENS
polynomial.
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Let K denote the quotient �eld of E. Using irreducible ENS polynomials
numeration systems can be de�ned in E and in some of its extensions. Indeed,
let P (x) be an ENS polynomial over E and let γ denote one of its roots. Then
K[x]/P (x)K[x] is isomorphic to the �eld K(γ). Moreover E[x]/P (x)E[x] is iso-
morphic to the ring E[γ]. Thus every element 0 6= β ∈ E[γ] can be written
uniquely in the form

β =

h∑
j=0

bjγ
j , bj ∈ Dp0 , bh 6= 0.

From this point E denotes a norm-Euclidean domain, absolute value of its ele-
ments is de�ned by the complex absolute value function, and ∀e ∈ E : N(e) =

|e|2.

De�nition 1.2.2. Let P (x) ∈ C[x] be a monic complex polynomial. P (x) is
called expanding if all of its roots lie outside the closed unit circle, i.e.

P (γ) = 0⇒ |γ| > 1.

Theorem 1.2.3 is a consequence of A. Vince's result [84].

Theorem 1.2.3. If P (x) ∈ E[x] is an ENS polynomial then it is expanding.

Proof. (This proof only covers the case, when |γ| < 1. For the case of |γ| = 1,
see [84]. For polynomials over Z this has been proved by A. Peth® in [72] in the
proof of Theorem 6.1.) E[x]/P (x)E[x] is isomorphic to the ring E[γ], P (γ) = 0.
This is true for all roots γi of the polynomial P (x). If the absolute value of
one of these is less then or equal to 1, then the representation of the elements
0 6= β ∈ E[γ] is bounded, so this cannot represent all elements β:

|β| =

∣∣∣∣∣∣
h∑
j=0

bjγ
j

∣∣∣∣∣∣ ≤
h∑
j=0

∣∣bjγj∣∣ =

h∑
j=0

|bj |
∣∣γj∣∣ <

<

h∑
j=0

|p0|
∣∣γj∣∣ = |p0|

h∑
j=0

∣∣γj∣∣ = |p0|
h∑
j=0

|γ|j ≤

≤ |p0| lim
h→∞

h∑
j=0

|γ|j = |p0|
1

1− |γ|
(if |γ| < 1).
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Lemma 1.2.4. If p0 is the constant term of the expanding monic polynomial
P (x) ∈ E[x], then

N(p0) ≥ 2,

Proof. P (x) is an expanding monic polynomial, so for all its roots |γi| > 1. p0
is the product of the roots and N(p0) ∈ N .

De�nition 1.2.5. Let P (x) = xn+1+pnx
n+pn−1x

n−1+· · ·+p1x+p0 ∈ En+1[x]
be such that N(p0) ≥ 2. Let the mapping TP : En[x] 7→ En[x] be de�ned as
follows: for A(x) = anx

n + an−1x
n−1 + · · ·+ a0 ∈ En[x] let

TP (A) =
A− qP − r

x
,

where q =
⌊
a0
p0

⌋
and r = a0 − qp0 ∈ Dp0 . The mapping TP is called Backward

division.

The mapping backward division can be iterated, which means

T kP (A) =

{
A, if k = 0;

TP (T k−1P (A)), if k > 0.

Let qk ∈ E and rk ∈ Dp0 be de�ned by the equation

T k+1
P (A) =

T kP (A)− qkP − rk
x

,

where a
(k)
0 = T kP (A)|x=0, qk =

⌊
a
(k)
0

p0

⌋
and rk = a

(k)
0 − qkp0, k ∈ N. Let Ak :=

T kP (A).
The orbit of TP starting from A will be denoted as follows:

A
(q1,r1)
====⇒

P
A1

(q2,r2)
====⇒

P
A2

(q3,r3)
====⇒

P
A3 . . . ,

if it is not necessary to know the multipliers, it will simply be denoted by:

A
r1=⇒
P

A1
r2=⇒
P

A2
r3=⇒
P

A3 . . . ,

or if it is not necessary to know even the remainders, it will simply be denoted
by:

A⇒
P
A1 ⇒

P
A2 ⇒

P
A3 . . . .
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If for A,B ∈ En[x] there exists k ∈ N such that T kP (A) = B then I write:

A
∗

=⇒
P
B.

Plainly the orbits of TP are either ultimately periodic or consist of in�nitely
many pairwise di�erent elements and both cases may occur. Moreover in the
�rst case the orbit is ultimately 0 or not. One of the most important aim of the
investigations on ENS polynomials is the distinction between these possibilities.
Theorem 1.2.6 is my result (see [76]). It is a direct consequence of the previous
de�nitions and it states that investigating the orbits of TP can decide the ENS
property of a polynomial P (x) ∈ E[x].

Theorem 1.2.6. P (x) ∈ En+1[x] is an ENS polynomial if and only if for all
A(x) ∈ En[x]

A
∗

=⇒
P

0.

Proof. This theorem is a direct consequence of De�nitions 1.2.1 and 1.2.5.

Theorem 1.2.7 is my result (see [76]). It can be used to �nd sets of polyno-
mials which are not ENS polynomials.

Theorem 1.2.7. Let P (x) := xn+1 + pnx
n + pn−1x

n−1 + · · · + p1x + p0 ∈
En+1[x] be such that N(p0) ≥ 2. Assume that the orbit of TP starting from
A(x) := anx

n + an−1x
n−1 + · · ·+ a1x+ a0 ∈ En[x] is periodic and let l > n be

a multiple of the period length, as follows:

A = A0
(q0,r0)
====⇒

P
A1

(q1,r1)
====⇒

P
A2

(q2,r2)
====⇒

P
A3 . . .

(ql−2,rl−2)
=======⇒

P
Al−1

(ql−1,rl−1)
=======⇒

P
A.

Then

−
n+1∑
m=0

ql+h−mpm ∈ Dp0

holds for h = 0, 1, . . . , l − 1.

Proof. Let Ah(x) =
∑∞
j=0 a

(h)
j xj , where a

(h)
j = 0 for all h ≥ 0 and j > n.

Similarly P (x) =
∑∞
j=0 pjx

j with pn+1 = 1 and pj = 0 for j > n + 1. With
these notations

a
(h)
j = a

(0)
j+h −

h−1∑
k=0

qkpj+h−k. (1.1)
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Indeed, the claim is true for h = 0 because the empty sum is 0. Assume that it
is true for a h ≥ 0. Then

Ah+1 = TP (Ah) =
Ah − qhP − rh

x
.

Comparing the coe�cients and using the induction hypothesis one can get

a
(h+1)
j = a

(h)
j+1 − qhpj+1

= a
(0)
j+h+1 −

h−1∑
k=0

qkpj+1+h−k − qhpj+1

= a
(0)
j+h+1 −

h∑
k=0

qkpj+1+h−k,

which proves the claim.
Consider equation (1.1) for j = 0 and h = l, . . . , 2l − 1. By the assumption

Ah(x) = Ah+l(x), h = 0, . . . , l − 1, especially a
(h+l)
0 = a

(h)
0 , h = 0, . . . , l − 1.

Thus

qh+l =

⌊
a
(h+l)
0

p0

⌋
=

⌊
a
(h)
0

p0

⌋
= qh.

As l > n, a
(0)
l+h = 0 for h ≥ 0. Summarizing (1.1) leads to

a
(h)
0 = a

(l+h)
0 = −

l+h−1∑
k=0

qkpl+h−k, h = 0, . . . , l − 1.

By the construction a
(l+h)
0 − ql+hp0 = rl+h ∈ Dp0 , hence

−
l+h∑
k=0

qkpl+h−k ∈ Dp0 , h = 0, . . . , l − 1.

Replacing the summation variable k by m = l + h− k and taking into account
that pm = 0 for m > n+ 1 one can obtain

−
n+1∑
m=0

ql+h−mpm ∈ Dp0 , h = 0, . . . , l − 1,

as it was stated.
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Remark 1.2.8. Applying Theorem 1.2.7 with length 1, one can get the following
restriction for the coe�cients of an ENS polynomial:

−q
n+1∑
m=0

pm 6∈ Dp0 ,

where q = a
p0
, for all a ∈ E \ {0}.

Remark 1.2.9. The polynomial P (x) = x + p0, 0 6= p0 ∈ E is obviously irre-
ducible. This implies that (x + p0,Dp0) is a numeration system (ENS) in E if
and only if x+ p0 is an ENS polynomial.

The next de�nition and two lemmata are necessary to prove the result of
Theorem 1.2.13.

De�nition 1.2.10. Let Z = {z1, z2, z3, . . . , zn} ⊂ C be a set of di�erent com-
plex numbers (if i 6= j, then zi 6= zj). Let

sk =
∑

i1,i2,··· ,ik

zi1zi2 · · · zik (if k 6= l, then ik 6= il)

be the kth Viète sum of the set Z. For the case k = 0, let s0 = 1 by de�nition.

The next lemma's proof is trivial.

Lemma 1.2.11. Let Z = {z1, z2, z3, . . . , zn} ⊂ C be a set of di�erent complex
numbers (if i 6= j, then zi 6= zj). Then the following equation is true for all zj:

n∑
i=0

(−zj)isn−i = 0.

Lemma 1.2.12 describes the Lacunary Vandermonde determinant, which is
a classical, well known result.

Lemma 1.2.12. (generalization of Vandermonde determinant)
Let Z = {z1, z2, z3, . . . , zn} ⊂ C be a set of di�erent complex numbers (if i 6= j,
then zi 6= zj), let 0 ≤ i ≤ n, and let

Vn,i :=

∣∣∣∣∣∣∣∣∣
1 z1 z21 · · · zi−11 zi+1

1 · · · zn1
1 z2 z22 · · · zi−12 zi+1

2 · · · zn2
...

...
...

. . .
...

...
. . .

...
1 zn z2n · · · zi−1n zi+1

n · · · znn

∣∣∣∣∣∣∣∣∣
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be called Lacunary Vandermonde determinant. Then

Vn,i = sn−i
∏

1≤k<l≤n

(zk − zl).

Proof. If i = n, then it is the well known Vandermonde determinant (s0 = 1).
Let's assume that the equation is true for Vn,k. We will see that Vn,k−1 =
sn−k+1

sn−k
Vn,k.

sn−k+1

sn−k
Vn,k =

sn−k+1

sn−k

∣∣∣∣∣∣∣∣∣
1 z1 z21 · · · zk−11 zk+1

1 · · · zn1
1 z2 z22 · · · zk−12 zk+1

2 · · · zn2
...

...
...

. . .
...

...
. . .

...
1 zn z2n · · · zk−1n zk+1

n · · · znn

∣∣∣∣∣∣∣∣∣ =

=
1

sn−k

∣∣∣∣∣∣∣∣∣
1 z1 z21 · · · zk−21 zk−11 sn−k+1 zk+1

1 · · · zn1
1 z2 z22 · · · zk−22 zk−12 sn−k+1 zk+1

2 · · · zn2
...

...
...

. . .
...

...
...

. . .
...

1 zn z2n · · · zk−2n zk−1n sn−k+1 zk+1
n · · · znn

∣∣∣∣∣∣∣∣∣
Let c0, c1, c2, . . . , ck−1, ck+1, . . . , cn be the column vectors of this matrix respec-
tively. Let's add to the column ck−1 the linear combination of the other columns

n∑
i=0,

i 6=k−1,
i 6=k

(−1)k−1+icisn−i,

this way ck−1's values are

n∑
i=0,
i 6=k

(−1)k−1+izijsn−i, (the value of the jth row).

Due to the Lemma 1.2.11, this value is equal to zkj sn−k, so

1

sn−k
·

∣∣∣∣∣∣∣∣∣
1 z1 z21 · · · zk−21 zk1sn−k zk+1

1 · · · zn1
1 z2 z22 · · · zk−22 zk2sn−k zk+1

2 · · · zn2
...

...
...

. . .
...

...
...

. . .
...

1 zn z2n · · · zk−2n zknsn−k zk+1
n · · · znn

∣∣∣∣∣∣∣∣∣ =
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=

∣∣∣∣∣∣∣∣∣
1 z1 z21 · · · zk−21 zk1 · · · zn1
1 z2 z22 · · · zk−22 zk2 · · · zn2
...

...
...

. . .
...

...
. . .

...
1 zn z2n · · · zk−2n zkn · · · znn

∣∣∣∣∣∣∣∣∣ = Vn,k−1.

The following result is a common result with A. Peth® (see [76]). It states
that ENS property of a polynomial P (x) ∈ E[x] is algorithmically decidable.
The set of A(x) polynomials which is su�cient to be investigated is �nite.

Theorem 1.2.13. Let P (x) ∈ En+1[x] be an expanding polynomial, i.e. all of
its roots lie outside the closed unit circle. There exists a constant c depending
only on P (X) such that this is an ENS polynomial if and only if for every
A(x) = Anx

n + An−1x
n−1 + · · · + A0 ∈ En[x] with |Aj | < c, j = 0, . . . , n there

exists a(x) ∈ Dp0 [x] such that

A(x) ≡ a(x) (mod P (x)).

Proof. (This proof is valid only for the case of simple roots. The general case
is treated by A. Kovács in [52]!) Let γ be one of the roots of the polynomial P
(P (γ) = 0). β ∈ E[γ], and A(x) ∈ E[x] is the representative polynomial of β.
Then

β = A(γ) =

l−1∑
h=0

rhγ
h + T lP (β)γl, |γ| > 1.

Let's express T lP (β).

T lP (β) =
β

γl
−

l∑
h=1

rh
γh
.

This is true for all of the roots γi, i ∈ {0, 1, 2, . . . , n}, P (γi) = 0. If all of them
is simple root, then one can have n+ 1 di�erent equation. Let

T lP (βi) = A′(γi) =

n∑
j=0

A′jγ
j
i , i ∈ {0, 1, 2, . . . , n}.

Then
n∑
j=0

A′jγ
j
i =

A(γi)

γli
−

l∑
h=1

rh
γhi
.
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Using Cramer's rule:

A′j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 γ0 γ20 · · · γj−10
A(γ0)

γl
0
−

l∑
h=1

rh
γh0

γj+1
0 · · · γn0

1 γ1 γ21 · · · γj−11
A(γ1)

γl
1
−

l∑
h=1

rh
γh1

γj+1
1 · · · γn1

...
...

...
. . .

...
...

...
. . .

...

1 γn γ2n · · · γj−1n
A(γn)
γl
n
−

l∑
h=1

rh
γhn

γj+1
n · · · γnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 γ0 γ20 · · · γn0
1 γ1 γ21 · · · γn1
...

...
...

. . .
...

1 γn γ2n · · · γnn

∣∣∣∣∣∣∣∣∣

,

where j ∈ {0, 1, 2, . . . , n}.
The denominator is the Vandermonde determinant. Let's use Laplace expansion
of the counter matrix along the (j + 1)th column. Let's use the result of the
Lemma 1.2.12 and Minkowski's inequality:

∣∣A′j∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

n∑
i=0

(
(−1)j+iVn,j

(
A(γi)

γli
−

l∑
h=1

rh
γhi

))
∏

0≤k<l≤n

(γk − γl)

∣∣∣∣∣∣∣∣∣∣∣
≤

(γi is missing from the set of Vn,j .)

≤

n∑
i=0

(
|Vn,j |

(
|A(γi)|
|γi|l

+ |p0|
l∑

h=1

1

|γi|h

))
∏

0≤k<l≤n

|γk − γl|
≤

≤

n∑
i=0

|sn−i| ∏
0≤k<l≤n:k,l 6=i

|γk − γl|
(

1 + |p0|
|γi|
|γi| − 1

)
∏

0≤k<l≤n

|γk − γl|
=
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=

n∑
i=0

 |sn−i|∏
0≤k≤n

|γk − γi|

(
1 + |p0|

|γi|
|γi| − 1

) .

(γi is missing from the Viète sum sn−i.)

Remark 1.2.14. Theorem 1.2.13 shows that the ENS property is algorithmi-
cally decidable, because only �nitely many polynomials have to be tested. Lemma
1.2.16 gives a more practical bound for the coe�cients.

De�nition 1.2.15. The length of a polynomial A(x) =

n∑
i=0

aix
i ∈ En[x] is

de�ned by λ(A) :=

n∑
i=0

|ai|.

Lemma 1.2.16. Let P (x) ∈ En+1[x]. Let

λi,P (A) =

n∑
j=i

|aj |+
i−1∑
j=0

n+1∑
k=i−j

j∑
l=0

|al|+
√
|p0|2 − 1

|p0|
fj−l(P ) |pk|

be the parameterized approximate length of polynomial A ∈ En[x], where fi(P ) =
i∑

j=1

|pj |
|p0|

fi−j(P ), f0(P ) = 1, f1(P ) = |p1|
|p0| .

λ(T iP (A)) ≤ λi,P (A)

for all i ∈ {0, 1, . . . , n}.

Proof.

λ(T iP (A)) = |ai − qi−1p1 − qi−2p2 − qi−3p3 − · · · − q0pi|+

+ |ai+1 − qi−1p2 − qi−2p3 − qi−3p4 − · · · − q0pi+1|+ · · ·+

+ |an − qi−1pn−i+1 − qi−2pn−i+2 − · · · − q0pn|+

+ |−qi−1pn−i+2 − qi−2pn−i+3 − · · · − q0pn+1|+

+ |−qi−1pn−i+3 − qi−2pn−i+4 − · · · − q1pn+1|+ · · ·+
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+ |−qi−1pn − qi−2pn+1|+ |−qi−1pn+1| ≤

≤
n∑
j=i

|aj |+
i−1∑
j=0

n+1∑
k=i−j

|qj | |pk| , where

|qj | =
∣∣∣∣aj − qj−1p1 − qj−2p2 − qj−3p3 − · · · − q0pj − rjp0

∣∣∣∣ ≤
≤
|aj |+

√
|p0|2 − 1

|p0|
+

j−1∑
l=0

|ql|
|pj−l|
|p0|

=

j∑
l=0

|al|+
√
|p0|2 − 1

|p0|
fj−l(P ).

Remark 1.2.17. Lemma 1.2.16 and Theorem 1.2.6 can be used to give an upper
bound for the terms of polynomial A. Those polynomials A where the length of
the polynomial is strictly decreasing by applying the backward division mapping
is not necessary to be investigated in order to determine the ENS property, so
one can use the following inequality to get bounds of the coe�cients of A:

n+1

∀
m=1

λ(A) ≤ λm,P (A).

Lemma 1.2.18. If λ(P ) < 2 |p0|, then

|Ai| ≤
√
|p0|2 − 1

i∑
j=0

j∑
l=0

n+1∑
k=i+1−j

fj−l(P ) |pk|

2p0 − λ(P )
, for all i = 0, 1, 2, . . . , n

Proof. Let's investigate the (i+ 1)th inequality of Remark 1.2.17, which will be
used to give an upper bound of the ith coe�cient Ai:

λ(A) ≤ λi+1,P (A) =

n∑
j=i+1

|Aj |+
i∑

j=0

n+1∑
k=i+1−j

j∑
l=0

|Al|+
√
|p0|2 − 1

|p0|
fj−l(P ) |pk| ,

|p0|
i∑

j=0

|Aj | ≤
i∑

j=0

n+1∑
k=i+1−j

j∑
l=0

((
|Al|+

√
|p0|2 − 1

)
fj−l(P ) |pk|

)
,
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|Ai|

(
|p0| −

n+1∑
k=1

|pk|

)
≤

i−1∑
l=0

|Al|
− |p0|+ i∑

j=l

fj−l(P )

n+1∑
k=i+1−j

|pk|

+

+

√
|p0|2 − 1

i∑
j=0

j∑
l=0

n+1∑
k=i+1−j

fj−l(P ) |pk| .

Since λ(P ) < 2 |p0|, the expression

− |p0|+ i∑
j=l

fj−l(P )

n+1∑
k=i+1−j

|pk|

 ≤ 0, so

|Ai| ≤
√
|p0|2 − 1

i∑
j=0

j∑
l=0

n+1∑
k=i+1−j

fj−l(P ) |pk|

2p0 − λ(P )
.

Remark 1.2.19. Algorithmically a better bound can be obtained via the method
of A. Kovács in [52] and P. Burcsi, A. Kovács, Zs. Papp-Varga in [28].

1.3 Imaginary quadratic Euclidean domains

This section describes the results of Section 2 and 3 in [76]. It was proved by L.
E. Dickson [30] and O. Perron [70], see also H. Davenport [29] and H. L. Keng
[45] (Theorem 15.3), that the ring of integers of an imaginary quadratic number
�eld Q[

√
−d] is Euclidean if and only if d ∈ {1, 2, 3, 7, 11}. These will be called

imaginary quadratic Euclidean domains and will be denoted by Ed. Here
the Euclidean function is the absolute value function:

N(z1 + z2i) := |z1 + z2i|2 = z21 + z22 , where z1, z2 ∈ R.

De�nition 1.3.1. Let Ed be an imaginary quadratic Euclidean domain. Its
canonical integer basis is: {1, ωd}, where ωd ∈ Ed and

ωd :=

{ √
−d , if d ∈ {1, 2},

1+
√
−d

2 , otherwise (d ∈ {3, 7, 11}).

(In the case of d = 1 ω1 =
√
−1, so that the imaginary unit i is used.)

(For ωd during these investigations simply ω is used.)
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For �xed d, the complex numbers 1 and ω form a basis of C, as a two dimensional
vector space over R. Thus all z ∈ C can be uniquely written in the form z =
e1+e2ω with e1, e2 ∈ R. This representation will be denoted by (e1, e2)d. Plainly
z ∈ Ed if and only if e1, e2 ∈ Z. Let the functions Red : C 7→ R and Imd : C 7→ R
be de�ned as:

Red(z) := e1, Imd(z) := e2.

Red(z) and Imd(z) are called the Euclidean real and Euclidean imaginary
part of z.

Remark 1.3.2. For all z ∈ C (and d ∈ {1, 2, 3, 7, 11}),

Imd(z) =
Im(z)

Im(ω)
,

Red(z) = Re(z)− Im(z)
Re(ω)

Im(ω)
.

For all z1, z2 ∈ C,

Imd(z1 ± z2) = Imd(z1)± Imd(z2),

Red(z1 ± z2) = Red(z1)±Red(z2).

For all z ∈ C and n ∈ Z,

Imd(nz) = nImd(z),

Red(nz) = nRed(z).

Remark 1.3.3. Let Ed be a Euclidean domain. The norm of the elements
z ∈ Ed is calculated as follows:
If d ∈ {1, 2}, N(z) = N(e1 + e2

√
−d) = e21 + de22, in the other cases N(z) =

N(e1 + e2
1+
√
−d

2 ) = e21 + e1e2 + d+1
4 e22. Thus one can get

N(z) =


e21 + e22 , if d = 1,
e21 + 2e22 , if d = 2,
e21 + e1e2 + e22 , if d = 3,
e21 + e1e2 + 2e22 , if d = 7,
e21 + e1e2 + 3e22 , if d = 11.
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Table 1.1. Elements of Ed with speci�c norm.

HHH
HHN
d

1 2 3 7 11

0 0 0 0 0 0
1 ±1, ±1 ±1,±ω, ±1 ±1

±i ±(1− ω)
2 1± i ±ω - ±ω, -

−1± i ±(1− ω)
1± ω, ±(1 + ω), ±ω,

3 - −1± ω ±(2− ω), - ±(1− ω)
±(1− 2ω)

4 ±2, ±2 ±2,±2ω, ±2,±(2− ω), ±2
±2i ±2(1− ω) ±(1 + ω)

2± i,
5 −2± i, - - - ±(1 + ω),

1± 2i, ±(2− ω)
−1± 2i

6 - 2± ω, - - -
−2± ω

±(2 + ω),
±(1 + 2ω),

7 - - ±(1− 3ω), ±(1− 2ω) -
±(2− 3ω),
±(3− 2ω),
±(3− ω)

±2ω, -
8 2± 2i, ±2ω - ±(2 + ω), -

−2± 2i ±(2− 2ω),
±(3− ω)

±3, ±3, ±3, ±3,
9 ±3i 1± 2ω, ±3ω, ±3 ±(2 + ω),

−1± 2ω ±3(1− ω) ±(3− ω)
3± i,

10 −3± i, - - - -
1± 3i,
−1± 3i
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Figure 1.1. Graphical representation of ω, when d = 3, 7, 11.

Remark 1.3.4. Assume that a, b ∈ Ed, b 6= 0. Let E∗d be the set of units in Ed
(ε ∈ E∗d, if and only if N(ε) = 1). Let q, r ∈ Ed be such that a = bq + r and
N(r) < N(b). Then a = b(q+ε)+(r−bε) and a = b(q+εω)+(r−bεω) hold for
any ε ∈ E∗d. It means, in some cases the remainder r is not uniquely de�ned,
i.e., not only N(r) < N(b), but also N(r − bε) < N(b) or N(r − bεω) < N(b)
holds for some ε ∈ E∗d. This problem has already arisen in the case of rational
integers, where the uniqueness of the remainder is ensured by the assumption
that the remainder is non-negative. In order to make the �oor function uniquely
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de�ned, the solution is to de�ne a special set of reminders which is a complete
residue system modulo b.

In the next de�nition I propose speci�c digit sets for each d. The de�nition
and its properties has been published in [76], in Section 3.

De�nition 1.3.5. Let Ed be an imaginary quadratic Euclidean domain and
0 6= b ∈ Ed. The set

Dd,b :=

{
z ∈ Ed

∣∣∣∣ |z| < |b| and |z + b| ≥ |b| and − 1

2
≤ Imd

(z
b

)
<

1

2

}
be called the (Sail) digit set for b and b ∈ Ed the base number.

Remark 1.3.6. In De�nition 1.3.5 there are three conditions. The �rst is
to make sure the norm of the digits are smaller than the norm of the base
number. The second is to rule out the numbers which are "negative" in a sense
(generalization of the assumption that the remainder should be non-negative).
The last one is to reach a complete residue system (uniqueness).

Remark 1.3.7. The assumptions in De�nition 1.3.5 ensure that if b ∈ Z ⊆ Ed
then {sgn(b)j | j = 0, . . . , |b| − 1} ⊆ Dd,b.

Remark 1.3.8. The equation Imd

(
z
b

)
= s de�nes a line on the complex plane

with the direction arg(b) and o�set s · Im(ω) · i (s ∈ R, b ∈ C). The equation
|z − a| = r de�nes a circle on the complex plane with the center a ∈ C and
radius r ∈ R.

De�nition 1.3.9. For 0 6= b ∈ Ed the set

Vd,b :=

{
z ∈ Ed

∣∣∣∣ −1

2
≤ Imd

(z
b

)
<

1

2

}
is called the real band.

Theorem 1.3.10 is a common result with A. Peth® (see [76]). It states that
the sail digit set Dd,b is a complete residue system modulo b.

Theorem 1.3.10. Let 0 6= b ∈ Ed. Then the set Dd,b is a complete residue
system modulo b containing 0. Moreover for any a ∈ Ed there exist q, r ∈ Ed
such that a = bq + r and r ∈ Dd,b, in particular N(r) < N(b).
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Proof. As a/b ∈ C there exist u1, u2 ∈ R such that a
b = u1 + u2ω. Write

ui = qi + ri, i = 1, 2 such that q1, q2 ∈ Z and − 1
2 ≤ ri <

1
2 and put q′ =

q1 + q2ω, r
′ = r1 + r2ω and r′′ = br′. Then a = bq′ + r′′ and q′ ∈ Ed, thus

r′′ ∈ Ed. Further Imd

(
r′′

b

)
= Imd(r

′). Thus − 1
2 ≤ Imd

(
r′′

b

)
< 1

2 .

Further N(r′′) = N(b)N(r′), and by Remark 1.3.3 N(r′) ≤ 3
4 , if d ≤ 3 and

N(r′) ≤ 5
4 in the remaining two cases. If N(r′) < 1, then we have also the

inequality N(r′′) < N(b). Assume that N(r′) ≥ 1, which can happen only if
d = 7, 11 and r1r2 > 0. Then rede�ne r′′ = b(r′ + (−1) r1

|r1| ). Plainly we have

r′′ ∈ Ed such that N(r′′) < N(b) and − 1
2 ≤ Imd

(
r′′

b

)
< 1

2 hold.

Finally consider the sequence r′′+mb,m = 0, 1, . . . . As the function f(x) =
N(r′′ + xb) tends to in�nity with x → ∞ and f(0) < N(b) there exists an
x0 > 0 such that f(x0) = N(b). Taking m = bx0c we get f(r′′ + mb) < b
and f(r′′ + (m + 1)b) ≥ b. Putting r = r′′ + mb and q = (a − r)/b we get
a = bq + r, q, r ∈ Ed and r ∈ Dd,b. As a was arbitrary Dd,b includes a complete
residue system modulo b.

It remains to prove that the elements of Dd,b are incongruent modulo b.
Assume that a ∈ Dd,b and e := (e1, e2)d ∈ Ed \{0} such that a+ eb ∈ Dd,b holds
too. Then both inequalities

−1

2
≤ Imd

a

b
<

1

2
, −1

2
≤ Imd

a+ eb

b
<

1

2

hold. On the other hand Imd
a+eb
b = Imd

a
b + e2, where e2 is an integer. Thus

both inequalities can hold only if e2 = 0.
If e2 = 0 then eb = e1b with an integer e1. Assume that e1 6= 0. If |e1| ≥ 2

then using |a| < |b| we obtain |a + e1b| ≥ |e1b| − |a| > 2|b| − |b| ≥ |b|, which
contradicts a+ e1b ∈ Dd,b. Hence e1 = ±1.

If e1 = −1 then as a − b ∈ Dd,b we get |a| = |(a − b) + b| ≥ |b|, which
contradicts a ∈ Dd,b. Finally if e1 = 1 then as a+ b ∈ Dd,b we have |a+ b| < |b|,
which again contradicts a ∈ Dd,b. The proof is completed.

Let a, b ∈ Ed with b 6= 0. There exist by Theorem 1.3.10 uniquely de�ned
q ∈ Ed and r ∈ Dd,b such that a = bq + r, so the sail digit set can be used as a
complete residue system for the �oor function de�ned in De�nition 1.1.6.

De�nition 1.3.11. Let Dd,b be a sail digit set.
Let's de�ne the following notations for this digit set:
line distance: l := Im(ω)|b|.
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corner o�set: o := |b| −
√
|b|2 −

(
l
2

)2
.

maximum distance between digits: m :=
√
|b|2 + l2.

Figure 1.2. Digit set measures in E3, when the base of the digit set is (6, 3)3
(large dot). 'o': corner o�set, 'l': line distance, 'm': maximum distance between
digits
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Remark 1.3.12. Let Ed be a Euclidean domain, and let b ∈ Ed be the base of
the digit set Dd,b.

d Corner o�set (o) Line distance (l) Maximum distance between digits (m)

1 |b|
(

1−
√
3
2

)
|b| |b|

√
2

2 |b|
(

1−
√
2
2

)
|b|
√

2 |b|
√

3

3 |b|
(

1−
√
13
4

)
|b|
√
3
2 |b|

√
7
2

7 |b| 14 |b|
√
7
2 |b|

√
11
2

11 |b|
(

1−
√
5
4

)
|b|
√
11
2 |b|

√
15
2

Lemma 1.3.13. Let a, b ∈ Ed, b 6= 0. If |a| < Im(ω)|b|
2 , then a ∈ Vd,b.

Proof. The assumption |a| < Im(ω)|b|
2 implies

∣∣a
b

∣∣ < Im(ω)
2 . As |z| ≥ |Im(z)| we

get |Im(a/b)|
Im(ω) < 1

2 , i.e. a ∈ Vd,b.

Lemma 1.3.14. Let a, b ∈ Ed with N(b) ≥ 2. If |a| < l
2 and q =

⌊
a
b

⌋
then

q ∈ {0;−1}.

Proof. Let a = bq + r with q ∈ Ed and r ∈ Dd,b. Then

Imd(q) = Imd

(a
b

)
+ Imd

(
−r
b

)
.

By the assumption on a and as r ∈ Dd,b we get

|Imd(q)| <
1

2
+

1

2
= 1,

i.e. q ∈ Z. Further we have

|bq| ≤ |a|+ |r| < Im (ω) |b|
2

+ |b|.

Dividing by |b| we obtain |q| <
√
11
4 + 1 < 2, thus q ∈ {0,±1}. If q = 1 then

a = b+ r. The assumption r ∈ Dd,b implies |a| = |b+ r| ≥ |b|, which contradicts
the assumption on a.

Lemma 1.3.15. If z ∈ Vd,b and a ∈ Z, then z + a · b ∈ Vd,b.
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Proof. We have

Imd

(
z + ab

b

)
= Imd

(z
b

)
+ Imd(a) = Imd

(z
b

)
,

which proves the assertion.

Figure 1.3. Floor function results in E3 when b = (16,−5)3 and a = (17, 18)3.
α ≈ 1.41 + 1.61i which is approximately α ≈ 0.48 + 1.86ω. The �oor function
will return q = (0, 2)3 and r = (7,−4)3.
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1.4 Linear ENS over imaginary quadratic

Euclidean domains

This section describes the results of Section 5 in [76]. Investigating the linear
case, Theorem 1.4.6 below shows that the ENS property of linear polynomials
is easily decidable over imaginary quadratic Euclidean domains. In this section
I will often refer to the real band Vd,p, which will be called, for simplicity, band.

Lemma 1.4.1. Let P (x) := x+ p be a polynomial over Ed with N(p) ≥ 2 and
let Dd,p be the sail digit set. If the Line distance l = Im(ω)|p| is greater than 2,
a necessary condition for the ENS property is 1 ∈ Dd,p.

Proof. Assume that 1 6∈ Dd,p.
The assumption l > 2 and Lemma 1.3.13 mean that Vd,p includes the closed unit

disc, thus 1 ∈ Vd,p. Lemma 1.3.14, |p| > 1 and 1 6∈ Dd,p mean that
⌊
1
p

⌋
= 1, so

1⇒
P

1,

which is a cycle, thus P cannot be an ENS polynomial with its sail digit set.

Remark 1.4.2. It is easy to check that 1 ∈ Dd,p is equivalent to Re(p) ≥ −1/2
except when

p =


1− i,−2i : d = 1
−
√
−2 : d = 2

±
√
−3, 1−

√
−3 : d = 3

±1−
√
−7

2 : d = 7.

Lemma 1.4.3. Let P (x) := x+ p be a polynomial over Ed with N(p) ≥ 2 and
let Dd,p be the sail digit set. To decide the ENS property those and only those
polynomials have to be investigated, where

A(x) := a with a ∈ Ed and

|a| ≤

√
|p|+ 1

|p| − 1
.

Proof. Let A ∈ Ed[x]. Consider the orbit of TP , which starts from A. If
λ(TP (A)) < λ(A) then iterate TP . As λ(A) is a non-negative number we have
to reach an element B of the orbit such that λ(TP (B)) ≥ λ(B). We may assume
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without loss of generality that this happens already at the beginning, i.e. with
A. The length of TP (A) is

λ(TP (A)) = |q| =
∣∣∣∣a− rp

∣∣∣∣ ≤ |a|+ |r||p|
.

Thus λ(A) ≤ λ(TP (A)) implies

|a| ≤ |a|+ |r|
|p|

,

which leads to

|a| ≤

√
|p|+ 1

|p| − 1

since N(r) < N(p), that is |r|2 ≤ |p|2 − 1.

Remark 1.4.4. Lemma 1.4.3 is a special case of Lemma 1.2.18.

The following theorem is my result (see [76]).

Theorem 1.4.5. Let P (x) := x+p be a linear polynomial over Ed with N(p) ≥ 2

and let Dd,p be the sail digit set. If Im(ω)|p| = l > 2
√
|p|+1
|p|−1 , a su�cient and

necessary condition for the ENS property is 1 ∈ Dd,p.

Proof. From Lemma 1.4.3, those and only those constant polynomials a have

to be investigated for the ENS property, where |a| ≤
√
|p|+1
|p|−1 .

Since l
2 >

√
|p|+1
|p|−1 we have q =

⌊
a
p

⌋
∈ {0,−1} by Lemma 1.3.14, thus all orbits

of TP reach either 0 or −1. If 1 ∈ Dd,p then P is an ENS polynomial, and since
l > 2 is also satis�ed, from Lemma 1.4.1, this is not just su�cient but necessary
condition as well.

Theorem 1.4.6 is my result (see [76]). It gives a su�cient and necessary
condition for linear ENS polynomials with the sail digit set.

Theorem 1.4.6. Let P (x) := x+p be a linear polynomial over Ed and N(p) ≥ 2
and let Dd,p be the sail digit set. P (x) is an ENS polynomial with Dd,p if and
only if 1 ∈ Dd,p or

p ∈
{

1− i,−2i,−
√
−2,
√
−3,−

√
−3, 1−

√
−3,

1−
√
−7

2
,
−1−

√
−7

2

}
.
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Proof. By Lemma 1.4.3 it is enough to check the representability only those
constant polynomials A(x) = a with

|a| ≤

√
|p|+ 1

|p| − 1
,

which implies

N(a) ≤ |p|+ 1

|p| − 1
= 1 +

2

|p| − 1
= 1 +

2√
N(p)− 1

.

Table 1.2 presents the possible values of N(a) for each N(p).

N(p) 1 + 2√
N(p)−1

N(a)

2 ≈ 5.8284 ∈ {0, 1, 2, 3, 4, 5}
3 ≈ 3.7321 ∈ {0, 1, 2, 3}
4 = 3.0000 ∈ {0, 1, 2, 3}
5 ≈ 2.6180 ∈ {0, 1, 2}
6 ≈ 2.3798 ∈ {0, 1, 2}
7 ≈ 2.2153 ∈ {0, 1, 2}
8 ≈ 2.0938 ∈ {0, 1, 2}
9 = 2.0000 ∈ {0, 1, 2}
≥ 10 < 2 ∈ {0, 1}

Table 1.2

The necessary constant polynomials for the case 2 ≤ N(p) will be investi-

gated. By Theorem 1.4.5 if l2 >
√
|p|+1
|p|−1 , a su�cient and necessary condition for

the ENS property is 1 ∈ Dd,p. Thus it is enough to check the case l
2 ≤

√
|p|+1
|p|−1 .
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Then

l2

4
≤ 1 +

2

|p| − 1
,

(l2 − 4)(|p| − 1) ≤ 8,

|p| ≤ l2 + 4

l2 − 4
,

|p| ≤ (Im(ω)|p|)2 + 4

(Im(ω)|p|)2 − 4
,

Im(ω)2|p|3 − Im(ω)2|p|2 − 4|p| − 4 ≤ 0,

Im(ω)2
√
N(p)

3
− Im(ω)2

√
N(p)

2
− 4
√
N(p)− 4 ≤ 0.

The cubic polynomial in
√
N(p) staying on the left hand side of the last inequal-

ity has exactly one positive real root. The possible values of N(p) lie between
zero and this root. Let's present these in Table 1.3.

d N(p) < N(p) ∈
1 8.2664 {2, 3, 4, 5, 6, 7, 8}
2 5.1508 {2, 3, 4, 5}
3 10.1968 {2, 3, 4, 5, 6, 7, 8, 9, 10}
7 5.6206 {2, 3, 4, 5}
11 4.2163 {2, 3, 4}

Table 1.3

For each triplets (d, p, a) with d ∈ {1, 2, 3, 7, 11}, p, a ∈ Ed such that N(p)
and N(a) satisfy the conditions of Table 1.3 and Table 1.2 respectively I checked
the representability of a. The investigation of all possible triplets (d, p, a) can
be found in the Appendix.

To summarize, if 1 ∈ Dd,p then x+p is an ENS polynomial. If 1 6∈ Dd,p then
x+ p is an ENS polynomial, if and only if

p ∈
{

1− i,−2i,−
√
−2,
√
−3,−

√
−3, 1−

√
−3,

1−
√
−7

2
,
−1−

√
−7

2

}
.
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1.5 Quadratic ENS over imaginary quadratic

Euclidean domains

This section describes the results of Section 6 in [76]. The characterization
of quadratic ENS polynomials with the sail digit set seems to be much more
di�cult than the characterization of the linear ones. In the present section this
problem will be investigated.

The �rst theorem is my result (see [76]). It determines the set of possible
quadratic ENS polynomials to a �nite set for a �xed constant term p0 using the
sail digit set Dd,p0 .

Theorem 1.5.1. Let P (x) := x2 + p1x+ p0 be a quadratic polynomial over Ed,
N(p0) ≥ 2. It is expanding, if

|p̄1 − p̄0p1|
|p0|2 − 1

< 1,

where x̄ is the complex conjugate of x.

Proof. This result comes from the Lehmer-Schur [61] algorithm. Let

P ∗(x) = p̄0x
2 + p̄1x+ 1, and

g(x) = p̄0P (x)− P ∗(x) = (p̄0p1 − p̄1)x+ p̄0p0 − 1.

The root of g(x) is:

x0 =
1− p̄0p0
p̄0p1 − p̄1

.

Thus P (x) is expanding if and only if |x0| > 1, i.e.

1 < |x0| =
∣∣∣∣ 1− p̄0p0
p̄0p1 − p̄1

∣∣∣∣ =
||p0|2 − 1|
|p̄1 − p̄0p1|

=
|p0|2 − 1

|p̄1 − p̄0p1|
.

Remark 1.5.2.

For a �xed p0 the inequality of Theorem 1.5.1 determines a �nite set of p1. We
have

|p̄1 − p̄0p1|
|p0|2 − 1

≥ |p0| |p1| − |p1|
|p0|2 − 1

=
|p1|
|p0|+ 1

.

Hence if |p1| ≤ |p0|+ 1, then the inequality of Theorem 1.5.1 follows.
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Remark 1.5.3. In order to investigate the ENS property for a given quadratic
polynomial P using the sail digit set, Lemma 1.2.18 gives bounds for the coe�-
cients of the polynomial A in case of |p0| ≥ |p1|+ 1, as follows:

|A0| ≤
√
|p0|2 − 1

|p1|+ 1

|p0| − |p1| − 1
,

|A1| ≤
√
|p0|2 − 1

|p1|
|p0| (|p1|+ 1) + |p1|+ 2

|p0| − |p1| − 1
.

The next theorem is my result (see [76]). It determines a set of quadratic
ENS polynomials with the sail digit set Dd,p0 .

Theorem 1.5.4. Let P (x) := x2 + p1x+ p0 be a quadratic polynomial over Ed,
N(p0) ≥ 2 and let Dd,p0 be the sail digit set. If

|p1| ≤
(

1− 1√
2

)
|p0| − 1,

then the orbits of TP are periodic for all A ∈ Ed[x]. Moreover there are only
four possible periods, the trivial {0} cycle and the following ones:

x+ (p1 + 1)
(−1,r0)
=====⇒

P
x+ (p1 + 1), r0 ∈ Dd,p0 ,

1
(−1,r0)
=====⇒

P
x+ p1

(0,r1)
===⇒
P

1, r0, r1 ∈ Dd,p0 ,

1
(−1,r0)
=====⇒

P
x+ p1

(−1,r1)
=====⇒

P
x+ (p1 + 1)

(0,r2)
===⇒
P

1, r0, r1, r2 ∈ Dd,p0 .

Proof. Assume that A(x) = a1x+a0 ∈ Ed[x] with TP leads to a period of length
n ≥ 2. Then by Theorem 1.2.7 the inclusions

−qj−2 − p1qj−1 − p0qj ∈ Dd,p0

hold for j = 0, 1, . . . , n − 1, where I used q−2 = qn−2 and q−1 = qn−1. For a
�xed p0 these conditions can be transformed to a restriction for the linear term
p1. In fact if qj 6= 0 then

p1 ∈
Dd,p0 + p0qk + qi

−qj
,
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and this is a conformal mapping of the digit set. If qj = 0, then

qk =

⌊
−qi
p0

⌋
,

which is a restriction for the position of p0.

Let's check p1's minimal absolute value in the intersection of the sets
Dd,p0

+p0qk+qi
−qj .

If the cycle does not contain 0 multiplier, let h be the index of the multiplier
which has maximal absolute value: |qh| ≥ |qi|, i ∈ {0, 1, . . . , n− 1}.

min |p1| = min

{
|t| : t ∈

⋂ Dd,p0 + p0qk + qi
−qj

}
≥ min

{
|t| : t ∈ Dd,p0 + p0qh + qh−2

−qh−1

}
= min

{
|t+ p0qh + qh−2|

|qh−1|
: t ∈ Dd,p0

}
≥ min

{
|p0||qh| − |qh−2| − |t|

|qh−1|
: t ∈ Dd,p0

}
>
|p0||qh| − |qh−2| − |p0|

|qh−1|

≥ |p0||qh| − |qh| − |p0|
|qh|

=

(
1− 1

|qh|

)
|p0| − 1.

This value increases, if |qh| increases. If the period does not contain 0 and
contains at least one element with absolute value greater than one then the
smallest value of |qh| is

√
2, which implies

|p1| >
(

1− 1√
2

)
|p0| − 1.

If the period contains a 0 multiplier, the above inequality holds, except when
qh−1 = 0. In such a case we have

qh =

⌊
−qh−2
p0

⌋
,

thus |qh||p0| = | − qh−2 − r| < |qh−2|+ |p0|. As |qh−2| ≤ |qh| we get
|qh|
|qh| − 1

> |p0|.
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The expression |qh|
|qh|−1 decreases if |qh| increases. The lowest possible value of it

is |qh| =
√

2, whence
√

12 >

√
2√

2− 1
> |p0|.

If |p0| <
√

12, then the disc |p1| ≤
(

1− 1√
2

)
|p0| − 1 ≤

(
1− 1√

2

)√
11 − 1 ≈

−0.02858 has no element. With our assumption the expression |qh|
|qh|−1 > |p0| has

no solution, so there is no period with qh−1 = 0.
So the periods in this region can contain elements only with absolute value

0 or 1.
Let's check the conditions p1 ∈

Dd,p0
+p0qk+qi
−qj and qk =

⌊
−qi
p0

⌋
(qj = 0) again. If

|qj | = 1, then qk ∈ {0,−1}, because in every other cases the minimum absolute
value of p1 will be outside the examined region:
(If |qk| = 1, but qk 6= −1)
From Theorem 1.3.14 elements of the set Dd,p0 +p0qk have absolute value greater

than l
2 , and in every Euclidean domain l

2 ≥
(

1− 1√
2

)
|p0|.

min |p1| = min

{
|t| : t ∈

⋂ Dd,p0 + p0qn + ql
−qm

}
≥

≥ min

{
|t| : t ∈ Dd,p0 + p0qk + qi

−qj

}
= min

{∣∣∣∣ t+ p0qk + qi
−qj

∣∣∣∣ : t ∈ Dd,p0
}
≥

≥ min {|t+ p0qk| − |qi| : t ∈ Dd,p0} ≥ min {|t+ p0qk| − 1 : t ∈ Dd,p0} ≥

≥
(

1− 1√
2

)
|p0| − 1.

If |qj | = 0, then qk = −1, because qk =
⌊
−qi
p0

⌋
, qi is a unit or zero, so in every

Euclidean domain, for every sail digit set
⌊
−qi
p0

⌋
∈ {−1, 0} (Theorem 1.3.14),

but zero is not possible, because then two 0-s are there next to each other, which
means p0qk ∈ Dd,p0 and this is impossible.

If three equal values are next to each other in a cycle, then the whole period
is constructed, because every multiplier is uniquely determined by the previous
two values. So the periods with multipliers (−1), (0,−1), (0,−1,−1) are the
only possible periods in the examined region, these will be the witnesses for the
ENS property.
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1.6 In�nite sequences of ENS over

imaginary quadratic Euclidean domains

This section describes the results of Section 7 in [76].
Polynomials with rational integer coe�cients can be considered also elements

of Ed[x]. In this section I prove a necessary and su�cient condition under which
such a polynomial is ENS with its sail digit set. The second aim is to prove a
simple su�cient condition in terms of the coe�cient. The later result implies
that there exist for any degree in�nitely many ENS polynomials.

To formulate the results I need some preparation. Let P (x) ∈ Z[x] with

P (0) = p0 and I =
[
−
⌊
|p0|−1

2

⌋
, |p0| − 1−

⌊
|p0|−1

2

⌋]
∩ Z. S. Akiyama and K.

Scheicher [14] called P (x) symmetric-CNS if for any A(x) ∈ Z[x] there exists
a(x) ∈ I[x] such that A(x) ≡ a(x) (mod P ). Theorem 1.6.1 is a common
result with A. Peth® (see [76]). It gives an interesting connection between CNS,
symmetric-CNS and ENS polynomials with the sail digit set.

Theorem 1.6.1. Let P (x) ∈ Z[x] with p0 > 0. If P (x) is a CNS and symmetric-
CNS in Z[x] then it is ENS in Ed[x] with the sail digit set Dd,p0 . The conversion
is true if d = 1, 2.

Proof. Assume �rst that P (x) is a CNS and symmetric-CNS in Z[x]. Let A(x) ∈
Ed[x]. There exist A1(x), A2(x) ∈ Z[x] such that A(x) = A1(x) + ωA2(x).
As P (x) is a symmetric-CNS there exist a2(x) ∈ I[x], q2(x) ∈ Z[x] such that
A2(x) = a2(x) + q2(x)P (x). Let

a2(x) =

m2∑
j=0

a2jx
j .

Assume that the �rst j ≥ −1 coe�cients of A1(x) + ωa2(x) belong to Dd,p0 .
This is obviously true for j = −1 because the coe�cient of our polynomial
with index −1 is zero, which belongs to Dd,p0 . Let its j + 1-th coe�cient be
β = A1,j+1 + ωa2,j+1. There exists by Theorem 1.3.5 a β1 ∈ Dd,p0 such that
β1 ≡ β (mod p0). We have β1 − β ∈ Z because a2,j+1 ∈ I and p0 ∈ Z. Thus
(β1 − β)/p0 ∈ Z. Denote it by q and set A(x) ← A(x) + qP (x)xj+1. This
transformation does not a�ect a2(x), but the �rst j + 1 coe�cients of A(x)
belong to Dd,p0 .

Performing the transformation of the last paragraph m2 +1-times we obtain

a polynomial a
(1)
1 (x) + a

(2)
1 (x)xm2+1 + ωa2(x) ≡ A(x) (mod P (x)) such that
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a
(1)
1 (x) +ωa2(x) ∈ Dd,p0 [x] and a

(2)
1 (x) ∈ Z[x]. As P (x) is a CNS polynomial in

Z[x] there exists a
(3)
1 (x) with coe�cients in {0, 1, . . . , p0 − 1}, which is a subset

of Dd,p0 , such that a
(2)
1 (x) ≡ a

(3)
1 (x) (mod P (x)). Setting a1(x) = a

(1)
1 (x) +

a
(3)
1 (x)xm2+1 and a(x) = a1(x) +ωa2(x) we have that A(x) ≡ a(x) (mod P (x))
and the coe�cients of a(x) belong to Dd,p0 . Thus the conditions are su�cient.

Assume that P (x) is ENS in Ed[x]. Then for any A(x) ∈ Ed[x] there
exists a(x) ∈ Dd,p0 [x] such that A(x) ≡ a(x) (mod P (x)). Write a(x) =
a1(x) + ωa2(x). Then the coe�cients of a2 belong obviously to I. If d = 1, 2
then the coe�cients of a(x) have the form e1 + e2

√
−d, which absolute value is√

e21 + de22 < p0. Thus |e1| < p0 and e1 ≥ 0 because |(e1+p0)+e2
√
−d| > p0.

To characterize the CNS polynomials in Z[x] is a hard problem, see [2].
However there is a simple su�cient criterion proved by B. Kovács [49], which I
cite now.

Theorem 1.6.2. Let P (x) = p0 + p1x + · · · + pn−1x
n−1 + xn ∈ Z[x] be a

polynomial. If p0 ≥ 2 and pi > pi+1, i = 0, . . . , n − 1, then P (x) is a CNS
polynomial.

L. Germán and A. Kovács in [33] investigated the case of symmetric-CNS.
Let P (x) = p0 + p1x + · · · + pn−1x

n−1 + xn ∈ Z[x] be a polynomial. If
|p0| > 2

∑n
i=1 |pi|, then P (x) is a symmetric-CNS. Indeed, the polynomials

x2 + ax+ a, 3 ≤ a ∈ Z are CNS by Theorem 1.6.2, but they are not symmetric-
CNS, however the polynomials x2 + ax + 3a, 3 ≤ a ∈ Z are CNS, symmetric-
CNS and ENS polynomials as well with the sail digit set. In the next lemma
I prove a condition, which depends only on the coe�cients of P (x). In its
proof I borrowed ideas from [11]. In the sequel set M =

⌊
p0−1

2

⌋
and I =[

−
⌊
p0−1

2

⌋
, p0 − 1−

⌊
p0−1

2

⌋]
∩ Z.

Lemma 1.6.3. Let P (x) = p0 + p1x + · · · + pn−1x
n−1 + pnx

n ∈ Z[x] be a
polynomial such that M ≥ p1 ≥ p2 ≥ · · · ≥ pn = 1 and

n∑
j=2

pj ≤M.

Then P (x) is a symmetric-CNS.

Proof. By Theorem 1.6.2 we may assume that aj ∈ [0, p0 − 1], j = 0, . . . , k. Let
J = [−p0, p0 +M − 1] ∩ Z. For polynomials a(x) ∈ Z[x] with constant term a0
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de�ne the mapping U(a) = UP (a) : Z[x] 7→ Z[x] as

U(a) =
a− εP − (a0 − εp0)

x
,

where ε denotes the unique integer with

εp0 ≤ a0 +M < (ε+ 1)p0.

Notice that if the coe�cients of a belong to J then

a = r + xU(a) + εP, (1.2)

where r = a0 − εp0 and ε ∈ {0,±1} is the coe�cient of P in the de�nition of
U(a). Further it is clear that if a0 ∈ J then r ∈ I. Thus the lemma will be
proved when we are able to show that for all a ∈ J [x] there exists m > 0 such
that Um(a) ≡ 0 (mod P ).

We claim that if the coe�cients of a(x) ∈ Z[x] belong to [0, p0 − 1] then
U `(a) ∈ J [x] hold for ` ≥ 0. To prove the claim we have to examine the
coe�cients of U `(a) carefully.

Let U `(a) =
∑∞
j=0 a

(`)
j x`. (Of course the number of non-zero coe�cients of

U `(a) is �nite, thus there exists j0 = j0()` such that a
(`)
j = 0 for all j > j0. We

use the same convention for U0(a) = a and for P too, i.e. we set pj = 0 for
j > n. Then we have

a
(`)
j = a`+j −

∑̀
h=1

ε(h)p`+j−h+1, j, ` ≥ 0, (1.3)

where ε(s) = 0, if s < 0 and for s ≥ 0 it is de�ned by the equation

U (s−1)(a) = rs + xU (s) + ε(s)P,

with rs ∈ I.
Equation (1.3) is obviously true for ` = 0. Assume that it is true for all

s ≤ `. Set ε(`+1) according to the size of a
(`)
0 . Then we have

U (`+1)(a) =
U (`)(a)− a(`)0 − ε(`+1)(P − p0)

x

=

∞∑
j=1

a
(`)
j xj−1 − ε(`+1)

∞∑
j=1

pjx
j−1

=

∞∑
j=0

(a
(`)
j+1 − ε

(`+1)pj+1)xj .
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Comparing coe�cients and using (1.3) we obtain

a
(`+1)
j = a`+j+1 −

∑̀
h=1

ε(h)p`+j+2−h − ε(`+1)pj+1

= aj+`+1 −
`+1∑
h=1

ε(h)p`+j+2−h,

which is (1.3) for `+ 1, i.e. (1.3) is true for all `, j ≥ 0.
Now we are in the position to prove the claim. Assume that the coe�cients

of a(x) ∈ Z[x] belong to [0, p0 − 1], i.e. 0 ≤ aj = a
(0)
j < p0. Thus the claim

is true for ` = 0 and ε(1) ∈ {0,±1}. Let ` ≥ 1 and assume that the claim and
ε(j) ∈ {0,±1} hold for 1 ≤ j < `. Then

ε(`) =

⌊
a
(`−1)
0 − p0/2

p0

⌋
,

which belongs to he set {0,±1} because by the induction hypothesis −p0 ≤
a
(`−1)
0 ≤ p0 +M − 1. By (1.3) we have

a
(`)
j = a`+j −

∑̀
h=1

ε(h)p`+j−h+1.

Plainly the sum of the right hand side is at least

0−
n∑
h=1

ph = −(p1 +

n∑
h=2

ph) ≥ −2M > −p0.

To �nish the induction we have to prove the upper bound for a
(`)
j . Assume that

ε(m) = −1 for some m ≤ `. Then a(m−1)0 < M . We have

a
(m−1)
0 = am−1 −

m−1∑
h=1

ε(h)pm−h

≥ 0− ε(m−1)p1 −
n∑
h=2

ph

≥ −ε(m−1)p1 −M.
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Thus a
(m−1)
0 < −M can hold only if ε(m−1) = 1. Applying again (1.3) and using

the induction hypothesis and this observation we get

a
(`)
j ≤ p0−1+

n∑
h=1

(−1)h+1ph = p0−1+p1− (p2−p3)−· · · ≤ p0 +M −1. (1.4)

Here we used the monotonicity of the coe�cients as well. The claim is proved
completely.

If U (k+1)(a) = 0 then the Lemma is proved. Assume in the sequel U (k+1)(a) 6=
0. Then the inequality in (1.4) can be considerably improved. Indeed as
a` = 0, ` > k we get

a
(`)
j ≤M

for all j ≥ 0. The degree of the polynomial U (k+1)(a) is at most n and its
coe�cients belong to [−2M,M ]. Thus Un+k+2(a) ∈ I[x] and the lemma is
proved.

The following theorem is a common result with A. Peth® (see [76]). It gives
in�nite sequences of ENS polynomials over Z with the sail digit set.

Theorem 1.6.4. Let P (x) :=

n∑
i=0

pix
i ∈ Z[x] be a monic polynomial of degree

n. Put M =
⌊
p0−1

2

⌋
and assume p0 ≥M ≥ p1 ≥ p2 ≥ · · · ≥ pn = 1 and

n∑
j=2

pj ≤M.

Then P (x) is an ENS polynomial with the sail digit set Dd,p0 .

Proof. By Lemma 1.6.3, starting from a general polynomial one can deter-
mine a polynomial which is equivalent to the original modulo P (x), and the
imaginary part of the coe�cients of the new polynomial belong to the interval
]−
⌊
p0−1

2

⌋
, p0 − 1−

⌊
p0−1

2

⌋
] (coe�cients on the real band property).

For the real part an iteration can be started using the following transforma-
tion. In every step the investigated polynomial A(x) will be changed, such that

A := TP (A) :=
A− q · P − r

x
,

where q :=
⌊
a0
p0

⌋
. It is easy to see that q ∈ Z, because of the coe�cients

on the real band property, this means that if one wants to move a coe�cient
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to the digit set an integer times p0 has to be added. After some iteration
of this transformation all of the original coe�cients of the polynomial A(x)
will be moved into the digit set, in every step the newly created coe�cients
are rational integers. So after �nitely many steps A(x) becomes a polynomial
with rational integer coe�cients. Polynomial P (x) satis�es the assumptions of
Theorem 1.6.2, thus it is CNS. From this point on we can use Theorem 1.6.2
to get an A(x) ∈ Dd,p0 [x] because the integer canonical digit set of the integer
CNS polynomial P (x) is a subset of Dd,p0 (see Remark 1.3.7).

Remark 1.6.5. Theorem 1.6.4 is a consequence of Theorem 1.6.1, Theorem
1.6.2 and [33].
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Chapter 2

ESRS

The results of this chapter are essentially the same as those of [77]. The con-
cept shift radix system (SRS) was introduced by S. Akiyama, T. Borbély, H.
Brunotte, A. Peth® and J. M. Thuswaldner [2] for real numbers as follows. For
r ∈ Rn the mapping τr : Zn 7→ Zn, de�ned as

τr((a1, . . . , an)) = (a2, . . . , an,−brac),

where ra denotes the inner product, is called SRS. This chapter generalizes this
concept for hermitian vector spaces.

2.1 Basic concepts

In order to establish a shift radix system over the complex numbers, an imagi-
nary quadratic Euclidean domain will be used as the set of integers, and a �oor
function is needed which can be determined by making its Euclidean function
unique, so choosing the set of fractional numbers from the possible values.

In order to de�ne a �oor function, a set of fractional numbers has to be
de�ned. Regarding generalization purposes the absolute value of a fractional
number should be less than 1, a fractional number should not be negative in a
sense, it is a superset of the fractional numbers for the reals, and the �oor func-
tion should be unambiguous. From these considerations the following de�nition
will be used to specify the �oor function with the set of fractional numbers
which will be called fundamental sail tile.

43
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De�nition 2.1.1. Let d ∈ {1, 2, 3, 7, 11}. Let the set

Dd :=

{
c ∈ C

∣∣∣∣ |c| < 1 and |c+ 1| ≥ 1 and − 1

2
≤ Imd(c) <

1

2

}
be de�ned as the fundamental sail tile (the set of fractional numbers).
Let p ∈ Ed. The set

Dd(p) :=

{
p+ c

∣∣∣∣ c ∈ C and |c| < 1 and |c+ 1| ≥ 1 and − 1

2
≤ Imd(c) <

1

2

}
is called p-sail tile and p is called its representative integer.

Figure 2.1. Tilings of C given by the sets Dd(p), d ∈ {1, 2, 3, 7, 11}.

By using Theorem 1.3.10 one can show that the sets Dd(p), where p runs
through Ed do not overlap and cover the complex plain C. This justi�es the
following de�nition:

De�nition 2.1.2. Let the function b cd : C → Ed be de�ned as the �oor
function. The �oor of e is the representative integer p of the unique p-sail tile
that contains e.
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The next lemma shows that the above de�ned �oor function can be described
with the well-known �oor function over the real numbers.

Lemma 2.1.3.

becd =



⌊
Re(e)−

⌊
Imd(e) + 1

2

⌋
Re(ω)

⌋
+ ω

⌊
Imd(e) + 1

2

⌋
, if(

Re(e)−
⌊
Re(e)−

⌊
Imd(e) + 1

2

⌋
Re(ω)

⌋
−

−
⌊
Imd(e) + 1

2

⌋
Re(ω)

)2
+

+
(
Im(e)−

⌊
Imd(e) + 1

2

⌋
Im(ω)

)2
< 1,⌊

Re(e)−
⌊
Imd(e) + 1

2

⌋
Re(ω)

⌋
+ ω

⌊
Imd(e) + 1

2 + 1
⌋
, otherwise.

Proof. This lemma is a trivial consequence of the De�nition 2.1.1 and the Def-
inition 2.1.2.

Equipped with the appropriate �oor functions let's de�ne shift radix systems
for Hermitian vectors. The notion depends on the imaginary Euclidean domain.

De�nition 2.1.4. Let C := (c1, . . . , cn) ∈ Cn be a complex vector. Let d ∈
{1, 2, 3, 7, 11} and let bxcd denote the �oor function de�ned above.
For all vectors A := (a1, a2, . . . , an) ∈ End let

τd,C (A) := (a2, . . . , an,−q) ,

where q = bc1a1 + c2a2 + · · ·+ cnancd. The mapping τd,C : End 7→ End is called
Euclidean shift radix system with parameter d or ESRSd respectively,
ESRS for short. If B := τd,C(A), this mapping will be denoted by

A ⇒
d,C

B.

If for A,B ∈ End there exists k ∈ N, such that τ k
d,C(A) = B then this will be

indicated by:
A

∗
==⇒
d,C

B.

τd,C is called ESRS with �niteness property if and only if for all vectors
A ∈ End

A
∗

==⇒
d,C

0,

where 0 denotes the zero vector.



46 2. CHAPTER. ESRS

De�nition 2.1.5. The following sets form a generalization of the corresponding
sets de�ned in [2]:

D(0)
n,d :=

{
C ∈ Cn

∣∣∣∣ ∀A ∈ End : A
∗

==⇒
d,C

0

}
,

Dn,d :=

{
C ∈ Cn

∣∣∣∣ ∀A ∈ End the sequence

{
τ kd,C (A)

}
k≥0

is ultimately periodic

}
.

τd,C is ESRS with �niteness property if and only if C ∈ D(0)
n,d.

Remark 2.1.6. The construction de�ned in this section can be generalized by
using a complex number for d.

2.2 Basic properties of the one dimensional

Euclidean shift radix systems

This section and the following ones will consider C as a one dimensional vector,
i.e. a complex number, which will be denoted by c. In this section I will
investigate some properties of the one dimensional case.

The following theorem is my result (see [77]). Theorem 2.2.1 can be consid-
ered as the generalization of the cutout polyhedra de�ned in [2]. These are areas
de�ned by a closed curve (arcs and lines). Let this area be denoted by P . Let's
consider this as cutout area.

Theorem 2.2.1. Let c ∈ C and let's say that applying the mapping τd,c by l
times on the number a0 ∈ Ed, it admits a period as follows:

a0 ⇒
d,c
a1 ⇒

d,c
a2 ⇒

d,c
a3 . . .⇒

d,c
al−1 ⇒

d,c
a0, if and only if

c ∈
(
Dd − a1
a0

)
∩
(
Dd − a2
a1

)
∩ · · · ∩

(
Dd − al−1
al−2

)
∩
(
Dd − a0
al−1

)
.

The number l will be called the length of the period.

Proof. Let's investigate ai ⇒
d,c
aj for an i, j ∈ {0; 1; . . . ; l−1}. Let's see what are

the conditions for c in order to get aj by applying the mapping τd,c on ai.

τd,c(ai) := (−bcaic) = −(cai − d) = −cai + r,
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for an r ∈ Dd. This means that aj = −cai + r, so

c =
r − aj
ai

,

which proves the theorem.

Theorem 2.2.2 is my result (see [77]). It shows that if the ESRS associated
to c has the �niteness property then it must lie in the closed unit circle.

Theorem 2.2.2. Let |c| > 1, d ∈ {1, 2, 3, 7, 11} then τd,c doesn't have the
�niteness property.

Proof. The basic idea is that we ignore those values of a where the length
decreases after applying τd,c, since after �nitely many steps it will end in 0 or
another value a′ the absolute value of which increases by applying the mapping.
Investigating the length of a vector after applying the shift radix mapping:

a⇒
d,c
ac− r.

For the length

|a| > |ac− r| ≥ |a||c| − |r| > |a||c| − 1,

|a| < 1

|c| − 1
.

If this inequality holds the length decreases. This is a �nite open disk around
the origin. For any other a the length will increase, so starting from a applying
the shift radix mapping leads to a divergent sequence.

Plainly τd,1 doesn't have the �niteness property for any d. For �nding ESRS
with �niteness property, one has to use a well chosen complex number c. Based
on Theorem 2.2.2, let's start from the closed unit disc around the origin, and
let's ignore these cutout areas in order to reach those points which are good to
de�ne ESRS with �niteness property:

Remark 2.2.3. The set D0
n,d can be de�ned in the following way. Let S :=

{c ∈ C| |c| ≤ 1} and let's consider the areas de�ned by Theorem 2.2.1 as Pi.
Then

D0
n,d = S \ ∪Pi.
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Since there can be in�nitely many cutout areas, they can be disjoint, over-
lapped by each other or superset and subset of each other, �nding the union
area of all is a hard problem. The following de�nition helps to estimate how
many cutout areas are around some point in Dn,d.

De�nition 2.2.4. Let c ∈ Dn,d.

• If there exists an open neighborhood of c which contains only �nitely many
cutout areas then I call c a regular point.

• If each open neighborhood of c has nonempty intersection with in�nitely
many cutout areas then I call c a weak critical point for Dn,d.

• If for each open neighborhood U of c the set U \D0
n,d cannot be covered by

�nitely many cutout areas then c is called a critical point.

Let's check what are the conditions to reach a cutout area in the one dimen-
sional case.

Remark 2.2.5. Theorem 2.2.1's result for one dimensional case can be used to
de�ne cutout areas with periods of any length. τd,c admits a period a0 ⇒

d,c
a1 ⇒

d,c

a2 ⇒
d,c
. . .⇒

d,c
an ⇒

d,c
a0 if and only if

c ∈
(
Dd − a1
a0

)
∩
(
Dd − a2
a1

)
∩ · · · ∩

(
Dd − an
an−1

)
∩
(
Dd − a0
an

)
.

The one-step and the two-step cases are really important, since the one-step
periods de�ne large sets around −1, and the two-step cases appear most likely
around 1. The following two lemmata speak about these special cases.

Lemma 2.2.6. Let c ∈ C be with |c| < 1. τd,c admits a one-step period, if and

only if c ∈
(Dd

a

)
− 1 for an a ∈ Ed \ {0}.

Proof. The shift radix mapping leads to the following:

a⇒
d,c
−ac+ r,

a ∈ Ed \ {0}. This can be a one-step period, if and only if c = r
a − 1. r is a

general element of the fundamental sail tile, so c ∈
(Dd

a

)
− 1.

Lemma 2.2.7. Let c ∈ C be with |c| < 1. τd,c admits a two-step period, if and

only if c ∈
(

Dd−a′
a

)
∩
(Dd−a

a′

)
, where a, a′ ∈ Ed \ {0}.
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Proof. The shift radix mapping leads to the following:

a⇒
d,c
−ac+ r,

a ∈ Ed \ {0}. Let a′ := −ac + r ∈ Ed \ {0}, a′ ⇒
d,c
−a′c + r. This can be a

two-step period, if and only if a = −a′c+ r. This means that c has to be in the
set

c ∈
(
Dd − a′

a

)
∩
(
Dd − a
a′

)
.

Theorem 2.2.8 is my result (see [77]). It shows that only �nitely many a ∈ Ed
have to be investigated to decide the �niteness property of a speci�c value of c.

Theorem 2.2.8. Let c ∈ C be with |c| < 1. τd,c is an ESRS with �niteness

property, if and only if for all a ∈ Ed where |a| < 1
1−|c|

a
∗

==⇒
d,c

0.

Proof.

a⇒
d,c
−ac+ r, where

r ∈ Dd. To decide the �niteness property one has to check only those numbers
where the absolute value does not decrease.

|a| ≤ | − ac+ r| ≤ |a||c|+ |r| < |a||c|+ 1, so

|a| < 1
1−|c| .

Now, let's see how the sets D0
1,d (d ∈ {1, 2, 3, 7, 11}) look like.

Algorithm 1 is a common result with A. Peth® and M. Weitzer (see [77]).
It de�nes a searching method, which will approximate the mentioned set using
the results of Remark 2.2.3 and Theorem 2.2.8. The input parameters are
d ∈ {1, 2, 3, 7, 11} and rs, which sets how many points in the unit circle will be
tested, the result is a superset of D0

1,d.
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Algorithm 1 Approximation algorithm for the set D0
1,d

1: d ∈ {1, 2, 3, 7, 11} (input parameter)
2: rs := 1000000 (input parameter)
3: res := 1√

rs

4: S := {c ∈ C| |c| ≤ 1}
5: Scurr := S
6: for rad ∈ {0, res, 2res . . . , 1} do
7: for ang ∈ {0, res, 2res . . . , 2π} do
8: ccurr := rad · ei·ang
9: if ccurr ∈ Scurr then
10: Acurr := {a′|a′ ∈ Ed and |a′| < 1

1−|ccurr|}
11: for acurr ∈ Acurr do
12: if τd,ccurr admits a period P ′ starting from acurr then
13: Scurr = Scurr \ P ′
14: break operation 11
15: end if

16: end for

17: end if

18: end for

19: end for

20: return Scurr
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Figure 2.2. Using Algorithm 1, these are the generated approximations of
D0

1,1,D0
1,2,D0

1,3,D0
1,7,D0

1,11, respectively (black area).

The next theorem is my result (see [77]). The area close to the origin is the
easiest part of the disc to decide the �niteness property, so let's consider the
case |c| < 1

2 .

Theorem 2.2.9. Let c ∈ C be with |c| < 1− 1√
4

= 1
2 . The function τd,c is an
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ESRS with �niteness property, if c ∈ Dd. Additionally, if d = 11 then

c 6∈
{
z ∈ C

∣∣∣∣ |(−ω)z + ω − 1| ≥ 1 and −
√

11

4
< Im((−ω)z + ω)

}
, and

c 6∈
{
z ∈ C

∣∣∣∣ |(−1 + ω)z − ω| ≥ 1 and Im((−1 + ω)z + 1− ω) ≤
√

11

4

}
.

Proof. The proof of this theorem only uses basic considerations and the results
of this article.

The following Lemma implies that D0
1,d and D1,d re�ected at the real axis

coincide almost everywhere. Parts where the two sets might not coincide are
contained in the union of their respective boundaries.

Lemma 2.2.10. Let c ∈ C, a, b ∈ Ed, and ϕ = (a1, a2, . . . , ak) ∈ Ekd. Then
2Imd(ca) is not an odd integer ⇔ (τca = b⇔ τca = b),
2Imd(ca) is an odd integer ⇒ (τca = b⇒ τca− b ∈ {(0,−1)d, (1,−1)d}).
In particular, if c is contained in the interior of the cutout area corresponding
to ϕ then
(a1, a2, . . . , ak) period of τc ⇔ (a1, a2, . . . , ak) period of τc.

Proof. The proof can be done the same way as the proof of Lemma 3.6 in
[24].

De�nition 2.2.11. Let(
((x2,1, y2,1), (a2,1, b2,1)), . . . , ((x2,45, y2,45), (a2,45, b2,45)

)
:=
(

((
1, 0
)
,
(
− 2, 0

))
,
((
− 529

4023 ,
22378908
45415717

)
,
(
0, 1
))
,

((
− 8413

3862276 ,
6385
8993

)
,
(
0, 1
))
,((

− 560
3763 ,

166
229

)
,
(
0, 1
))
,
((

11051
36427 ,

12022
16987

)
,
(
0, 1
))
,
((
− 39833

139318 ,
634841
887952

)
,
(
0, 1
))
,((

− 587
32542 ,

1260970
1501501

)
,
(
0, 1
))
,

((
20911
27059 ,

183
517

)
,
(
0, 1
))
,

((
− 3533

7022 ,
1411
1988

)
,
(
0, 1
))
,((

645
3757 ,

1432877
1660169

)
,
(
0, 1
))
,

((
844688
1266909 ,

2031
3445

)
,
(
0, 4
))
,

((
44399
51256 ,

4447
14348

)
,
(
0, 2
))
,((

781981
1137704 ,

159
260

)
,
(
0, 4
))
,
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((
3741
6160 ,

2237
3237

)
,
(
0, 2
))
,

((
18563
132052 ,

677269
744909

)
,
(
0, 1
))
,

((
− 273

461 ,
256
357

)
,
(
0, 1
))
,((

− 23531
44649 ,

2367
3041

)
,
(
0, 1
))
,
((
− 2504

4903 ,
53361
66614

)
,
(
0, 1
))
,
((

2295978
14352937 ,

128937
134770

)
,
(
0, 1
))
,((

− 22537
155137 ,

19631
20469

)
,
(
0, 1
))
,
((
− 1324

2503 ,
85287
104894

)
,
(
0, 1
))
,
((

186647
247677 ,

278
433

)
,
(
0, 2
))
,((

81473
111068 ,

86419
129984

)
,
(
0, 2
))
,
((
− 1087

2004 ,
670
809

)
,
(
0, 1
))
,
((

19
25 ,

16
25

)
,
(
0, 2
))
,
((

27
37 ,

25
37

)
,(

0, 2
))
,

((
13
17 ,

54
85

)
,
(
0, 2
))
,

((
7647
10000 ,

16
25

)
,
(
0, 2
))
,

((
7339
10000 ,

1347
2000

)
,
(
0, 2
))
,((

1979
20000 ,

4961
5000

)
,
(
0, 1
))
,

((
− 1979

20000 ,
397
400

)
,
(
0, 1
))
,

((
− 2701

5000 ,
8399
10000

)
,
(
0, 1
))
,((

− 1097
2000 ,

4169
5000

)
,
(
0, 1
))
,

((
1527
2000 ,

6429
10000

)
,
(
0, 2
))
,

((
3831
5000 ,

6413
10000

)
,
(
0, 2
))
,((

3699
5000 ,

6711
10000

)
,
(
0, 2
))
,

((
7321
10000 ,

6767
10000

)
,
(
0, 2
))
,

((
7419
10000 ,

1339
2000

)
,
(
0, 2
))
,((

3683
5000 ,

3377
5000

)
,
(
0, 2
))
,

((
− 1087

2000 ,
4183
5000

)
,
(
0, 1
))
,

((
− 1089

2000 ,
8387
10000

)
,
(
0, 1
))
,((

− 1089
2000 ,

1677
2000

)
,
(
0, 1
))
,
((

1
10 ,

7
5
√
2

)
,
(
0, 1
))
,
((

1
100

(
50 +

√
1534

)
,−−100+

√
1534

100
√
2

)
,(

0, 1
))
,
((

9
10 ,

3
5
√
2

)
,
(
0, 1
)))

,

(
((x11,1, y11,1), (a11,1, b11,1)), . . . , ((x11,47, y11,47), (a11,47, b11,47)

)
:=
(

((1, 0), (−2, 0))
((
− 529

4023 ,
22378908
45415717

)
,
(
0, 1
))
,

((
25699
75158 ,

11951
22586

)
,
(
2, 0
))
,((

122233
192089 ,

5593
12399

)
,
(
0, 1
))
,

((
6229
23994 ,

22353
28738

)
,
(
0, 9
))
,

((
2039
57213 ,

17365
20941

)
,
(
0, 1
))
,((

3099
4183 ,

442047
1060847

)
,
(
0, 1
))
,

((
− 39923

156499 ,
22371
26896

)
,
(
0, 1
))
,

((
4038
5203 ,

4722
11383

)
,
(
0, 1
))
,((

285
406 ,

752
1417

)
,
(
0, 1
))
,

((
15765
22453 ,

431
725

)
,
(
0, 1
))
,

((
2023
7895 ,

2634
2981

)
,
(
0, 1
))
,((

− 810241
3496246 ,

662044
743591

)
,
(
0, 1
))
,
((

127129
185005 ,

42539
67882

)
,
(
0, 4
))
,
((
− 109151

435226 ,
1106
1235

)
,
(
0, 1
))
,((

1499
5037 ,

10953
12284

)
,
(
0, 1
))
,

((
− 8495

29356 ,
259913
290617

)
,
(
0, 1
))
,

((
755
851 ,

3083
7406

)
,
(
0, 1
))
,((

− 15483
32584 ,

4513239
5265740

)
,
(
0, 1
))
,
((
− 39752315

80135632 ,
1130
1337

)
,
(
0, 1
))
,
((
− 45318560

90412991 ,
235960
280199

)
,(

0, 1
))
,
((
− 422566

838723 ,
6443
7665

)
,
(
0, 1
))
,
((
− 7361

14390 ,
105082
125711

)
,
(
0, 1
))
,
((
− 724614

1438463 ,
2019
2369

)
,(

0, 1
))
,
((
− 4861

9600 ,
1020
1199

)
,
(
0, 1
))
,
((
− 1064

2059 ,
166081
196678

)
,
(
0, 1
))
,
((
− 545

1034 ,
168253
200773

)
,(

0, 1
))
,
((

13
50 ,

24
25

)
,
(
0, 1
))
,
((

13
51 ,

49
51

)
,
(
0, 1
))
,
((
− 45

82 ,
34
41

)
,
(
0, 1
))
,
((
− 1135

2048 ,
1699
2048

)
,(

0, 1
))
,
((
− 1125

2048 ,
851
1024

)
,
(
0, 1
))
,
((
− 1123

2048 ,
1701
2048

)
,
(
0, 1
))
,
((
− 1083

2048 ,
869
1024

)
,
(
0, 1
))
,((

− 1075
2048 ,

433
512

)
,
(
0, 1
))
,

((
− 1069

2048 ,
873
1024

)
,
(
0, 1
))
,

((
− 531

1024 ,
1745
2048

)
,
(
0, 1
))
,((

− 529
1024 ,

875
1024

)
,
(
0, 1
))
,

((
505
2048 ,

991
1024

)
,
(
0, 1
))
,

((
511
2048 ,

1983
2048

)
,
(
0, 1
))
,((

513
2048 ,

991
1024

)
,
(
0, 1
))
,

((
135
512 ,

987
1024

)
,
(
0, 1
))
,

((
129106
516339 ,

2147435
2219844

)
,
(
0, 1
))
,((

1
212

(
− 140 +

√
573
)
,
√
11
4

)
,
(
0, 3
))
,
((−550−√42130

1500 ,
√
11
(
−25+2

√
42130

)
1500

)
,
(
0, 1
))
,((

1
48

(
− 33 +

√
93
)
, 1
48

√
11
(
3 +
√

93
))
,
(
0, 1
))
,

((
1639+

√
10021

6600 , 539+
√
10021

200
√
11

)
,(

0, 1
)))

,

and let C
(2)
0 (k) denote the ultimate period of the orbit of (a2,k, b2,k)2 under

τ2,(x2,k,y2,k) for all k ∈ {1, . . . 45} and C(11)
0 (k) the ultimate period of the orbit

of (a11,k, b11,k)11 under τ11,(x11,k,y11,k) for all k ∈ {1, . . . 47}. Furthermore let
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for all k ∈ Z:

C
(d)
1 (k) := ((−k, 1)d, (k,−1)d)

C
(d)
2 (k) := ((−k, 1)d, (k + 1,−1)d).

The next theorem is a common result with M. Weitzer (see [77]). It shows

the critical points of the sets D(0)
1,2 and D(0)

1,11.

Figure 2.3. Cutout areas of D1,2 which covers the annulus with radii 99/100
and 1. The green area represents the �rst cutout area, the blue ones are the
two in�nite sequences.

Theorem 2.2.12. The sets D(0)
1,2 and D(0)

1,11 do not contain any weakly critical

points (and thus no critical points) r satisfying r ∈ D(0)
1,2 and r ∈ D(0)

1,11 respec-
tively. More precisely the circle of radius 0.99 around the origin contains the

sets D(0)
1,2 and D(0)

1,11.
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Proof. For any cycle π of complex numbers let π denote the cycle one gets if
all elements of π are replaced by their complex conjugates. The cutout sets of

the cycles C
(2)
1 (k), C

(2)
2 (k), k ∈ Z, C(2)

0 (1), . . . , C
(2)
0 (45), C

(2)
0 (1), . . . , C

(2)
0 (45),

and C
(11)
1 (k), C

(11)
2 (k), k ∈ Z, C(11)

0 (1), . . . , C
(11)
0 (47), C

(11)
0 (1), . . . , C

(11)
0 (47)

respectively, completely cover the ring centered at the origin in the complex
plane with inner radius 99

100 and outer radius 1. Figures 2.3 and 2.4 show the
cutout sets for the cases d = 2 and d = 11 respectively. The list has been found
by a combination of a variant of Algorithm 1 with manual search.

Figure 2.4. Cutout areas of D1,11 which covers the annulus with radii 99/100
and 1. The green area represents the �rst cutout area, the blue ones are the
two in�nite sequences.
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2.3 Generalization of Brunotte's algorithm

This section describes a possible generalization of Brunotte's algorithm to one
dimensional ESRS (see Theorem 2.3.5). Proving this theorem requires the fol-
lowing three lemmas. First, let's recall, how ω has been de�ned.

De�nition 2.3.1. Let Ed be an imaginary quadratic Euclidean domain. Its
canonical integer basis is: {1, ωd}, where ωd ∈ Ed and

ωd :=

{ √
−d , if d ∈ {1, 2},

1+
√
−d

2 , otherwise (d ∈ {3, 7, 11}).

(In the case of d = 1 ω1 =
√
−1, so that the imaginary unit i is used.)

(For ωd during these investigations simply ω is used.)

Lemma 2.3.2. Let c ∈ Cn be a complex vector, |c| < 1, a ∈ Z. If −ca ∈ R and
the remainder part of −ca is greater than 0, then τc(a) = −τc(−a) + 1.

Proof. τc(a) = −ca+ r, r ∈ [0, 1). If r ≥ 0, then τc(−a) = ca+ 1− r.

Lemma 2.3.3. Let c ∈ C be a complex number, |c| < 1, a ∈ Z. If −ca ∈ R
then τc(aω) = ±τc(±a)ω. If the remainder part of −ca is less than 1

2 , then
τc(aω) = τc(a)ω.

Proof. τc(aω) = −caω + rω, r ∈
[
− 1

2 ,
1
2

)
. If r ≥ 0, then τc(a) = −ca + r, so

τc(aω) = τc(a)ω. If r < 0, then τc(−a) = ca− r, so τc(aω) = −τc(−a)ω.

Lemma 2.3.4. Let c ∈ C be a complex number, |c| < 1, a ∈ Z. If −ca ∈ R
then τc(aω) = ±τc(±a)ω∓ω. If the remainder part of −ca is less than 1

2 , then
τc(aω) = −τc(−a)ω + ω.

Proof. τc(aω) = −caω + rω, r ∈
[
− 1

2 ,
1
2

)
. If r ≥ 0, then τc(−a) = ca + 1 − r,

so τc(aω) = (−τc(−a) + 1)ω. If r < 0, then τc(a) = −ca+ 1 + r, so τc(aω) =
(τc(a)− 1)ω.

The next Theorem is my result and it is not published previously. It aims to
generalize Brunotte's algorithm for ESRS. This theorem and its proof is inspired
by S. Akiyama and H. Rao's result in [12].

Theorem 2.3.5. Let d ∈ {1, 2, 3, 7, 11}, c ∈ C be a complex number, |c| < 1,
let cE ∈ Ed be a number from the Euclidean domain, arg(cE) = arg(c). τd,c is
an ESRS with �niteness property, if the set E exists for c and has �nitely many
elements:
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• −cE , cE ∈ E,

• a+ bω ∈ E, where a+ bω ∈ Dd,cE , (the sail digit set of the corresponding
ENS),

• if z ∈ E then τd,c(z),−τd,c(−z) ∈ E,

• for any z ∈ E there exists n ∈ Z+ such that τ n
d,c(z) = 0.

Proof. Let z ∈ Ed and b ∈ Z. Let's assume that z has �niteness property and
bcE ∈ E , and

τd,c(z) = −cz + rz,

τd,c(bcEω) = −cbcEω + rbω,

rz ∈ Dd, rb ∈
[
−1

2
,

1

2

)
.

It will be proven that z + bcEω also has a �niteness property.

τd,c(z + bcEω) = −cz − cbcEω + r.

1. If Im(rz) + rb ∈
[
− 1

2 ,
1
2

)
, then rz + rbω = r,

τd,c(z + bcEω) = τd,c(z) + τd,c(bcEω).

2. If Im(rz) + rb ∈
[
− 1

2 ,
1
2

)
+ 1, then rz + rbω − ω = r and rb > 0.

τd,c(z + bcEω) = τd,c(z) + τd,c(bωcE)− ω = τd,c(z)− τd,c(−bcE)ω.

3. If Im(rz) + rb ∈
[
− 1

2 ,
1
2

)
− 1, then rz + rbω + ω = r and rb < 0.

τd,c(z + bcEω) = τd,c(z) + τd,c(bcEω) + ω = τd,c(z) + τd,c(bcE)ω.

Since bcE ∈ E , −τd,c(−bcE) ∈ E and τd,c(bcE) ∈ E . It means that

τ nd,c(z + bcEω) = τ nd,c(z) + b∗ (Re(b∗) = 0),

for all n ∈ Z+, where b∗ ∈ E . If this n is large enough, both τ n
d,c(z) and b

∗ will

be zero, so z + bcEω has a �niteness property.
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In the second part of this proof let's turn to the other dimension. Let z ∈ E
and a ∈ Z. Let's assume that z has �niteness property and acE ∈ E , and

τd,c(z) = −cz + rz,

τd,c(acE) = −cacE + ra,

rz ∈ Dd, ra ∈ [0, 1).

It will be proven that z + acE also has a �niteness property.

τd,c(z + acE) = −cz − cacE + r.

It's easy to see that Im(r) = Im(rz).

• If Re(rz) + ra ∈ [0, 1), then Re(rz) + ra = Re(r),

τd,c(z + acE) = τd,c(z) + τd,c(acE).

• If Re(rz) + ra ∈ [0, 1) + 1, then Re(rz) + ra − 1 = Re(r) and ra > 0.

τd,c(z + acE) = τd,c(z) + τd,c(acE)− 1 = τd,c(z)− τd,c(−acE).

Since acE ∈ E , −τd,c(−acE) ∈ E and τd,c(acE) ∈ E . It means that

τ nd,c(z + acE) = τ nd,c(z) + a∗,

for all n ∈ Z+, where a∗ ∈ E . If this n is large enough, both τ n
d,c(z) and

a∗ will be zero, so z + acE has a �niteness property.

Example 2.3.6. Let

d = 1,

c =
3 + 2i

4
, (|c| ≈ 0.9014, arg(c) = arctan 2

3 ≈ 0.588rad)

then

cE = 3 + 2i.
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Figure 2.5. c and cE on the complex number �eld

Dd,cE = {0, 1, 2, 3, 1 + i,−1− i,−i, 1− i, 2− i, 3− i,−2i, 1− 2i, 2− 2i}.

It means the initial set of E is:

E0 = {−3+2i, 3−2i, 0, 1, 2, 3, 1+i,−1−i,−i, 1−i, 2−i, 3−i,−2i, 1−2i, 2−2i},

τc(E0) \ E0 = {4,−3,−2− 2i, i,−2,−2− i,−1 + i},

−τc(−E0) \ E0 = {−4,−1,−2− i,−3− i, i,−2,−1 + 2i,−3 + i},

so the new elements are

E1 = {4,−4,−3,−2−2i, i,−2,−2− i,−1+ i,−1,−2− i,−3− i,−1+2i,−3+ i},

τc(E1) \ (E1 ∪ E0) = {−3− 2i, 3 + 2i, 3 + i, 1 + 2i, 2 + i, 2 + 2i, 3 + i},

−τc(−E1) \ (E1 ∪ E0) = {3 + 2i,−3− 2i, 2 + 2i,−1− 2i, 1 + 2i, 2 + i},
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thus

E2 = {−3− 2i, 3 + 2i, 3 + i, 1 + 2i, 2 + i, 2 + 2i, 3 + i,−1− 2i},

τc(E2) \ (E2 ∪ E1 ∪ E0) = {2 + 3i,−1− 3i,−3i, 2i},

−τc(−E2) \ (E2 ∪ E1 ∪ E0) = {1 + 3i,−2− 3i,−2− 2i},

consequently

E3 = {2 + 3i,−1− 3i,−3i, 2i, 1 + 3i,−2− 3i,−2− 2i},

τc(E3) \ (E3 ∪ E2 ∪ E1 ∪ E0) = {3i, 1− 3i},

−τc(−E3)\(E3∪E2∪E1∪E0) = {−1+3i,−2+2i, 3i}, E4 = {3i, 1−3i,−1+3i,−2+2i},

τc(E4) \ (E4 ∪ E3 ∪ E2 ∪ E1 ∪ E0) = {},

−τc(−E4) \ (E4 ∪ E3 ∪ E2 ∪ E1 ∪ E0) = {},

the iterative step �nished. These are all the elements which needs to be investi-
gated in order to decide the �niteness property. There is an orbit, namely

−1 ⇒
1, 3+2i

4

1 ⇒
1, 3+2i

4

−i ⇒
1, 3+2i

4

i ⇒
1, 3+2i

4

1− i ⇒
1, 3+2i

4

−1,

thus τc is not an ESRS with �niteness property.



Chapter 3

Summary, conclusion

To sum up, I have initiated a new approach how to de�ne the digit set for number
systems over imaginary quadratic Euclidean domains. This, so called �sail digit
set� is well de�ned on all of the �ve possible domains. I was able to prove several
interesting properties of this set. The result is a number system with this digit
set, which can be considered as generalization of canonical number systems over
integers with some useful properties. I showed that there are in�nitely many
ENS polynomials. There is an interesting connection between CNS, symmetric
CNS and ENS polynomials, which is described in Theorem 1.6.1. For a given
polynomial the ENS property is always algorithmically decidable, this is the
result of Theorem 1.2.13. I fully characterized the linear case (Theorem 1.4.6),
however it turned out that the quadratic case is hard, and its characterization is
still an open problem. I generalized the shift radix systems to �nite dimensional
Hermitian vector spaces using this structure. One of the main features of this
construction is that the remainder set is the subset of the opened unit disc,
thus for every remainder r we have the property |r| < 1. Theorem 2.2.1 can
be considered as the generalization of the cutout polyhedra de�ned in [2]. I
generalized and use Brunotte's algorithm [18] for the case of linear ESRS with
some restrictions (Theorem 2.3.5). This can be continued to de�ne Brunotte's
algorithm for any number of dimensions, and it can be used to further investigate
Euclidean shift radix systems.
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Chapter 4

Appendix

In this chapter I've investigated all possible triplets (d, p, a), which is essential for
the proof of the Theorem 1.4.6. d determines the imaginary quadratic Euclidean
domain, p is the constant term of the linear polynomial P (x) = x + p, and
A(x) = a is a constant polynomial whose representability needs to be checked.
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◦ d = 1,

• p = 1− i, N(p) = 2,
Dd,p = {0;−i},
a ∈ {±1,±i, 1± i,−1± i,±2,±2i, 2± i,−2± i, 1± 2i,−1± 2i}.

−2 + i

−2 −2− i

−1 + 2i

−1 + i −1

−1− i −1− 2i

2ii

0

−i

−2i

1 + 2i

1 + i1

1− i1− 2i

2 + i

2 2− i

x+ 1− i is an ENS polynomial with the sail digit set D1,p.

• p = 1 + i, N(p) = 2,
Dd,p = {0; 1},
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a ∈ {±1,±i, 1± i,−1± i,±2,±2i, 2± i,−2± i, 1± 2i,−1± 2i}.

−2 + i

−2−2− i

−1 + 2i

−1 + i

−1

−1− i

−1− 2i

2ii

0

−i

−2i

1 + 2i

1 + i

1

1− i

1− 2i

2 + i

2 2− i

x+ 1 + i is an ENS polynomial with the sail digit set D1,p.

• p = −1− i, N(p) = 2,
Dd,p = {0;−1},
−i⇒

P
−i and this is a cycle(1 6∈ Dd,p).

• p = −1 + i, N(p) = 2,
Dd,p = {0; i},
1⇒
P

1 and this is a cycle.

• There are no elements in E1 with norm 3.

• p = 2, N(p) = 4,
Dd,p = {0; 1;−i; 1− i},
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a ∈ {±1,±i, 1± i,−1± i}.

−1 + i−1 −1− i i

0

−i

1 + i

1 1− i

x+ 2 is an ENS polynomial with the sail digit set D1,p.

• p = −2i, N(p) = 4,
Dd,p = {0;−1;−i;−1− i},
a ∈ {±1,±i, 1± i,−1± i}.

−1 + i

−1 −1− i

i

0

−i

1 + i

11− i

x− 2i is an ENS polynomial with the sail digit set D1,p.

• p = 2i, N(p) = 4,
Dd,p = {0; 1; i; 1 + i},
a ∈ {±1,±i, 1± i,−1± i}.

−1 + i −1−1− i

i

0

−i

1 + i 1

1− i

x+ 2i is an ENS polynomial with the sail digit set D1,p.
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• p = −2, N(p) = 4,
Dd,p = {0;−1; i;−1 + i},
1⇒
P

1 and this is a cycle.

• p = 2− i, N(p) = 5,
Dd,p = {0; 1; 2;−i; 1− i},
a ∈ {±1,±i, 1± i,−1± i}.

−1 + i −1

−1− i

i

0

−i

1 + i

11− i

x+ 2− i is an ENS polynomial with the sail digit set D1,p.

• p = 2 + i, N(p) = 5,
Dd,p = {0; 1; 2; i; 1 + i},
a ∈ {±1,±i, 1± i,−1± i}.

−1 + i

−1−1− i

i

0

−i

1 + i 1

1− i

x+ 2 + i is an ENS polynomial with the sail digit set D1,p.

• p = 1− 2i, N(p) = 5,
Dd,p = {0; 1;−i; 1− i;−2i},
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a ∈ {±1,±i, 1± i,−1± i}.

−1 + i−1

−1− i

i

0

−i

1 + i

11− i

x+ 1− 2i is an ENS polynomial with the sail digit set D1,p.

• p = 1 + 2i, N(p) = 5,
Dd,p = {0; 1; i; 1 + i; 2i},
a ∈ {±1,±i, 1± i,−1± i}.

−1 + i

−1 −1− i

i

0

−i

1 + i 1

1− i

x+ 1 + 2i is an ENS polynomial with the sail digit set D1,p.

• p = −2− i, N(p) = 5,
Dd,p = {0;−1;−2;−i;−1− i},
1⇒
P

1 and this is a cycle.

• p = −2 + i, N(p) = 5,
Dd,p = {0;−1;−2; i;−1 + i},
1⇒
P

1 and this is a cycle.

• p = −1− 2i, N(p) = 5,
Dd,p = {0;−1;−i;−1− i;−2i},
1⇒
P

1 and this is a cycle.

• p = −1 + 2i, N(p) = 5,
Dd,p = {0;−1; i;−1 + i; 2i},
1⇒
P

1 and this is a cycle.
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• There are no elements in E1 with norm 6 or 7.

• p = 2− 2i, N(p) = 8,
Dd,p = {0; 1;−1− i;−i; 1− i; 2− i;−2i; 1− 2i},
a ∈ {±1,±i, 1± i,−1± i}.

−1 + i−1

−1− i

i

0

−i

1 + i

11− i

x+ 2− 2i is an ENS polynomial with the sail digit set D1,p.

• p = 2 + 2i, N(p) = 8,
Dd,p = {0; 1; 2; 1− i; i; 1 + i; 2 + i; 1 + 2i},
a ∈ {±1,±i, 1± i,−1± i}.

−1 + i

−1 −1− i

i

0

−i

1 + i 1 1− i

x+ 2 + 2i is an ENS polynomial with the sail digit set D1,p.

• p = −2− 2i, N(p) = 8,
Dd,p = {0;−1;−2;−1 + i;−i;−1− i;−2− i;−1− 2i},
1⇒
P

1 and this is a cycle.

• p = −2 + 2i, N(p) = 8,
Dd,p = {0;−1; 1 + i; i;−1 + i;−2 + i; 2i;−1 + 2i},
1⇒
P

1 and this is a cycle.

• If N(p) ≥ 9, then l
2 >

√
|p|+1
|p|−1 .

◦ d = 2,
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• p = −ω, N(p) = 2,
Dd,p = {0;−1},
a ∈ {±1,±ω, 1± ω,−1± ω,±2}.

−2

−1 + ω

−1

−1− ω

ω

0

−ω

1 + ω

1 1− ω2

x− ω is an ENS polynomial with the sail digit set D2,p.

• p = ω, N(p) = 2,
Dd,p = {0; 1},
a ∈ {±1,±ω, 1± ω,−1± ω,±2}.

−2

−1 + ω

−1 −1− ω

ω

0

−ω

1 + ω

1

1− ω

2

x+ ω is an ENS polynomial with the sail digit set D2,p.
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• p = 1− ω, N(p) = 3,
Dd,p = {0; 1;−ω},
a ∈ {±1,±ω, 1± ω,−1± ω}.

−1 + ω−1

−1− ω

ω

0

−ω

1 + ω

1

1− ω

x+ 1− ω is an ENS polynomial with the sail digit set D2,p.

• p = 1 + ω, N(p) = 3,
Dd,p = {0; 1;ω},
a ∈ {±1,±ω, 1± ω,−1± ω}.

−1 + ω

−1 −1− ω

ω

0

−ω

1 + ω

1

1− ω

x+ 1 + ω is an ENS polynomial with the sail digit set D2,p.

• p = −1− ω, N(p) = 3,
Dd,p = {0;−1;−ω},
1⇒
P

1 and this is a cycle.

• p = −1 + ω, N(p) = 3,
Dd,p = {0;−1;ω},
1⇒
P

1 and this is a cycle.
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• p = 2, N(p) = 4,
Dd,p = {0; 1;−ω; 1− ω},
a ∈ {±1,±ω, 1± ω,−1± ω}.

−1 + ω−1−1− ω ω

0

−ω

1 + ω

1 1− ω

x+ 1 + ω is an ENS polynomial with the sail digit set D2,p.

• p = −2, N(p) = 4,
Dd,p = {0;−1;ω;−1 + ω}, 1⇒

P
1 and this is a cycle.

• There are no elements in E2 with norm 5.

• If N(p) ≥ 6, then l
2 >

√
|p|+1
|p|−1 .

◦ d = 3,

• There are no elements in E3 with norm 2.

• p = 2− ω, N(p) = 3,
Dd,p = {0; 1; 1− ω},
a ∈ {±1,±ω,±(1− ω),±(1 + ω),±(2− ω),±(1− 2ω)}.

−1− ω

−2 + ω −1

−ω 1− 2ω

−1 + ω

0

1− ω

−1 + 2ω ω

1

2− ω

1 + ω

x+ 2− ω is an ENS polynomial with the sail digit set D3,p.
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• p = 1 + ω, N(p) = 3,
Dd,p = {0; 1;ω},
a ∈ {±1,±ω,±(1− ω),±(1 + ω),±(2− ω),±(1− 2ω)}.

−1− ω

−2 + ω

−1 −ω1− 2ω

−1 + ω

0

1− ω

−1 + 2ω

ω 1

2− ω

1 + ω

x+ 1 + ω is an ENS polynomial with the sail digit set D3,p.

• p = 1− 2ω, N(p) = 3,
Dd,p = {0;−ω; 1− ω},
a ∈ {±1,±ω,±(1− ω),±(1 + ω),±(2− ω),±(1− 2ω)}.

−1− ω

−2 + ω−1

−ω

1− 2ω

−1 + ω

0

1− ω

−1 + 2ω ω

1 2− ω1 + ω

x+ 1− 2ω is an ENS polynomial with the sail digit set D3,p.

• p = −1 + 2ω, N(p) = 3,
Dd,p = {0;ω;−1 + ω},
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a ∈ {±1,±ω,±(1− ω),±(1 + ω),±(2− ω),±(1− 2ω)}.

−1− ω −2 + ω−1

−ω1− 2ω

−1 + ω

0

1− ω

−1 + 2ω

ω

1 2− ω1 + ω

x− 1 + 2ω is an ENS polynomial with the sail digit set D3,p.

• p = −1− ω, N(p) = 3,
Dd,p = {0;−1;−ω},
1⇒
P

1 and this is a cycle.

• p = −2 + ω, N(p) = 3,
Dd,p = {0;−1;−1 + ω},
1⇒
P

1 and this is a cycle.

• p = 2, N(p) = 4,
Dd,p = {0; 1; 1− ω; 2− ω},
a ∈ {±1,±ω,±(1− ω),±(1 + ω),±(2− ω),±(1− 2ω)}.

−1− ω

−2 + ω

−1−ω

1− 2ω

−1 + ω

0

1− ω

−1 + 2ωω

1 2− ω

1 + ω

x+ 2 is an ENS polynomial with the sail digit set D3,p.



75

• p = 2− 2ω, N(p) = 4,
Dd,p = {0; 1− ω;−ω; 1− 2ω},
a ∈ {±1,±ω,±(1− ω),±(1 + ω),±(2− ω),±(1− 2ω)}.

−1− ω−2 + ω−1

−ω 1− 2ω

−1 + ω

0

1− ω

−1 + 2ω

ω12− ω 1 + ω

x+ 2− 2ω is an ENS polynomial with the sail digit set D3,p.

• p = 2ω, N(p) = 4,
Dd,p = {0; 1;ω; 1 + ω},
a ∈ {±1,±ω,±(1− ω),±(1 + ω),±(2− ω),±(1− 2ω)}.

−1− ω −2 + ω −1

−ω1− 2ω

−1 + ω

0

1− ω

−1 + 2ω

ω 1

2− ω

1 + ω

x+ 2ω is an ENS polynomial with the sail digit set D3,p.

• p = −2, N(p) = 4,
Dd,p = {0;−1;−1 + ω;−2 + ω},
1⇒
P

1 and this is a cycle.

• p = −2 + 2ω, N(p) = 4,
Dd,p = {0;−1 + ω;ω;−1 + 2ω},
1⇒
P

1 and this is a cycle.

• p = −2ω, N(p) = 4,
Dd,p = {0;−1;−ω;−1− ω},
1− ω ⇒

P
1− ω and this is a cycle (1 6∈ D3,−2ω).
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• There are no elements in E3 with norm 5 or 6.

• p = 3− ω, N(p) = 7,
Dd,p = {0; 1; 2;ω;−ω; 1− ω; 2− ω},
a ∈ {±1,±ω,±(1− ω)}.

−1

−ω

−1 + ω

0

1− ωω 1

x+ 3− ω is an ENS polynomial with the sail digit set D3,p.

• p = 3− 2ω, N(p) = 7,
Dd,p = {0; 1;ω;−ω; 1− ω; 2− ω; 2− 2ω},
a ∈ {±1,±ω,±(1− ω)}.

−1

−ω

−1 + ω

0

1− ωω 1

x+ 3− 2ω is an ENS polynomial with the sail digit set D3,p.

• p = 2 + ω, N(p) = 7,
Dd,p = {0; 1; 2;−ω;−1 + ω;ω; 1 + ω},
a ∈ {±1,±ω,±(1− ω)}.

−1−ω

−1 + ω

0

1− ωω 1

x+ 2 + ω is an ENS polynomial with the sail digit set D3,p.

• p = 1 + 2ω, N(p) = 7,
Dd,p = {0; 1; 1− ω;−1 + ω;ω; 1 + ω; 2ω},
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a ∈ {±1,±ω,±(1− ω)}.

−1−ω

−1 + ω

0

1− ωω 1

x+ 1 + 2ω is an ENS polynomial with the sail digit set D3,p.

• p = −1 + 3ω, N(p) = 7,
Dd,p = {−1; 0; 1;−1 + ω;ω;−1 + 2ω; 2ω},
a ∈ {±1,±ω,±(1− ω)}.

−1

−ω

−1 + ω

0

1− ω

ω 1

x− 1 + 3ω is an ENS polynomial with the sail digit set D3,p.

• p = −2 + 3ω, N(p) = 7,
Dd,p = {−1; 0; 1;−1 + ω;ω;−2 + 2ω;−1 + 2ω},
a ∈ {±1,±ω,±(1− ω)}.

−1

−ω

−1 + ω

0

1− ω

ω 1

x− 2 + 3ω is an ENS polynomial with the sail digit set D3,p.

• p = 2− 3ω, N(p) = 7,
Dd,p = {−1; 0; 1;−ω; 1− ω; 1− 2ω; 2− 2ω},
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a ∈ {±1,±ω,±(1− ω)}.

−1 −ω

−1 + ω

0

1− ω

ω

1

x+ 2− 3ω is an ENS polynomial with the sail digit set D3,p.

• p = 1− 3ω, N(p) = 7,
Dd,p = {−1; 0; 1;−ω; 1− ω;−2ω; 1− 2ω},
a ∈ {±1,±ω,±(1− ω)}.

−1 −ω

−1 + ω

0

1− ω

ω

1

x+ 1− 3ω is an ENS polynomial with the sail digit set D3,p.

• p = −1− 2ω, N(p) = 7,
Dd,p = {0;−1;−1 + ω;−1− ω;−ω; 1− ω;−2ω},
1⇒
P

1 and this is a cycle.

• p = −2− ω, N(p) = 7,
Dd,p = {0;−1;−2;−1 + ω; 1− ω;−ω;−1− ω},
1⇒
P

1 and this is a cycle.

• p = −3 + ω, N(p) = 7,
Dd,p = {0;−1;−2;−ω;ω;−1 + ω;−2 + ω},
1⇒
P

1 and this is a cycle.

• p = −3 + 2ω, N(p) = 7,
Dd,p = {0;−1;−ω;ω;−1 + ω;−2 + ω;−2 + 2ω},
1⇒
P

1 and this is a cycle.

• There are no elements in E3 with norm 8.



79

• p = 3, N(p) = 9,
Dd,p = {0; 1; 2;ω; 1 + ω; 2 + ω; 1− ω; 2− ω; 3− ω},
a ∈ {±1,±ω,±(1− ω)}.

−1 −ω−1 + ω

0

1− ωω 1

x+ 3 is an ENS polynomial with the sail digit set D3,p.

• p = 3− 3ω, N(p) = 9,
Dd,p = {0; 1;−ω; 1− ω; 2− ω; 1− 2ω; 2− 2ω; 3− 2ω; 2− 3ω},
a ∈ {±1,±ω,±(1− ω)}.

−1

−ω

−1 + ω

0

1− ω

ω

1

x+ 3− 3ω is an ENS polynomial with the sail digit set D3,p.

• p = 3ω, N(p) = 9,
Dd,p = {0; 1;−1 + ω;ω; 1 + ω;−1 + 2ω; 2ω; 1 + 2ω;−1 + 3ω},
a ∈ {±1,±ω,±(1− ω)}.

−1 −ω

−1 + ω

0

1− ω

ω 1

x+ 3ω is an ENS polynomial with the sail digit set D3,p.

• p = −3ω, N(p) = 9,
Dd,p = {0;−1;−1− ω;−ω; 1− ω;−1− 2ω;−2ω; 1− 2ω; 1− 3ω},
1⇒
P

1 and this is a cycle.
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• p = −3, N(p) = 9,
Dd,p = {0;−1;−2;−ω;−1− ω;−2− ω;−1 + ω;−2 + ω;−3 + ω},
1⇒
P

1 and this is a cycle.

• p = −3 + 3ω, N(p) = 9,
Dd,p = {0;−1;ω;−1+ω;−2+ω;−1+2ω;−2+2ω;−3+2ω;−2+3ω},
1⇒
P

1 and this is a cycle.

• There are no elements in E3 with norm 10.

• If N(p) ≥ 11, then l
2 >

√
|p|+1
|p|−1 .

◦ d = 7,

• p = 1− ω, N(p) = 2,
Dd,p = {0;−1},
a ∈ {±1,±ω,±(1− ω),±2,±(2− ω),±(1 + ω)}.

−2

−1− ω

−2 + ω

−1

−ω

−1 + ω

0

1− ω

ω1

2− ω

1 + ω2

x+ 1− ω is an ENS polynomial with the sail digit set D7,p.

• p = ω, N(p) = 2,
Dd,p = {0; 1},
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a ∈ {±1,±ω,±(1− ω),±2,±(2− ω),±(1 + ω)}.

−2

−1− ω

−2 + ω−1

−ω

−1 + ω

0

1− ω

ω

1

2− ω

1 + ω 2

x+ ω is an ENS polynomial with the sail digit set D7,p.

• p = −1 + ω, N(p) = 2,
Dd,p = {0; 1},
a ∈ {±1,±ω,±(1− ω),±2,±(2− ω),±(1 + ω)}.

−2

−1− ω

−2 + ω −1

−ω

−1 + ω

0

1− ω

ω

1

2− ω

1 + ω 2
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x− 1 + ω is an ENS polynomial with the sail digit set D7,p.

• p = −ω, N(p) = 2,
Dd,p = {0;−1},
a ∈ {±1,±ω,±(1− ω),±2,±(2− ω),±(1 + ω)}.

−2

−1− ω

−2 + ω

−1

−ω

−1 + ω

0

1− ω

ω

1

2− ω

1 + ω 2

x− ω is an ENS polynomial with the sail digit set D7,p.

• There are no elements in E7 with norm 3.

• p = 2, N(p) = 4,
Dd,p = {0; 1;−ω; 1− ω},
a ∈ {±1,±ω,±(1− ω)}.

−1

−ω

−1 + ω

0

1− ω

ω

1

x+ 2 is an ENS polynomial with the sail digit set D7,p.

• p = 1 + ω, N(p) = 4,
Dd,p = {0; 1;ω; 1− ω},
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a ∈ {±1,±ω,±(1− ω)}.

−1 −ω

−1 + ω

0

1− ω ω1

x+ 1 + ω is an ENS polynomial with the sail digit set D7,p.

• p = 2− ω, N(p) = 4,
Dd,p = {0; 1;−ω; 1− ω},
a ∈ {±1,±ω,±(1− ω)}.

−1

−ω

−1 + ω

0

1− ω

ω

1

x+ 2− ω is an ENS polynomial with the sail digit set D7,p.

• p = −2, N(p) = 4,
Dd,p = {0;−1;−1 + ω;ω},
1⇒
P

1 and this is a cycle.

• p = −2 + ω, N(p) = 4,
Dd,p = {0;−1;−1 + ω;ω},
1⇒
P

1 and this is a cycle.

• p = −1− ω, N(p) = 4,
Dd,p = {0;−1;−ω;−1 + ω},
1⇒
P

1 and this is a cycle.

• There are no elements in E7 with norm 5.

• If N(p) ≥ 6, then l
2 >

√
|p|+1
|p|−1 .
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◦ d = 11,

• There are no elements in E11 with norm 2.

• p = ω, N(p) = 3,
Dd,p = {−1; 0; 1},
a ∈ {±1,±ω,±(1− ω)}.

−1

−1 + ω−ω

0

ω1− ω

1

x+ ω is an ENS polynomial with the sail digit set D11,p.

• p = −ω, N(p) = 3,
Dd,p = {−1; 0; 1},
a ∈ {±1,±ω,±(1− ω)}.

−1

−1 + ω−ω

0

ω1− ω

1

x− ω is an ENS polynomial with the sail digit set D11,p.

• p = −1 + ω, N(p) = 3,
Dd,p = {−1; 0; 1},
a ∈ {±1,±ω,±(1− ω)}.

−1

−1 + ω−ω

0

ω1− ω

1

x− 1 + ω is an ENS polynomial with the sail digit set D11,p.
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• p = 1− ω, N(p) = 3,
Dd,p = {−1; 0; 1},
a ∈ {±1,±ω,±(1− ω)}.

−1

−1 + ω−ω

0

ω1− ω

1

x+ 1− ω is an ENS polynomial with the sail digit set D11,p.

• p = 2, N(p) = 4,
Dd,p = {0; 1;−ω; 1− ω},
a ∈ {±1,±ω,±(1− ω)}.

−1

−ω

−1 + ω

0

1− ω

ω

1

x+ 2 is an ENS polynomial with the sail digit set D11,p.

• p = −2, N(p) = 4,
Dd,p = {0;−1;ω;−1 + ω},
1⇒
P

1 and this is a cycle.

• If N(p) ≥ 5, then l
2 >

√
|p|+1
|p|−1 .
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