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Abstract: Adipokines are the primary mediators of adipose tissue-induced and regulated systemic 
inflammatory diseases; however, recent findings revealed that serum levels of various adipokines 
correlate also with the onset and the severity of dermatological diseases. Importantly, further data 
confirmed that the skin serves not only as a target for adipokine signaling, but may serve as a source 
too. In this review, we aim to provide a complex overview on how adipokines may integrate into 
the (patho) physiological conditions of the skin by introducing the cell types, such as keratinocytes, 
fibroblasts, and sebocytes, which are known to produce adipokines as well as the signals that target 
them. Moreover, we discuss data from in vivo and in vitro murine and human studies as well as 
genetic data on how adipokines may contribute to various aspects of the homeostasis of the skin, 
e.g., melanogenesis, hair growth, or wound healing, just as to the pathogenesis of dermatological 
diseases such as psoriasis, atopic dermatitis, acne, rosacea, and melanoma. 
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1. Introduction 

White adipose tissue (WAT) is present throughout the human body with a pivotal role in lipid 
storage, thermoregulation, mechanical organ protection and regulation of energy homeostasis [1], 
but with remarkable anatomical, ontogenic, metabolic, cellular, molecular and physiological 
differences between its two forms, namely the visceral and the subcutaneous ones [2,3]. Importantly, 
WAT is also an active endocrine tissue due to the secretion of various hormones and bioactive 
molecules called adipokines [4], and has a central role in the regulation of immune responses locally 
and systemically; thus, it is considered as an immunometabolic system [5]. Alterations in the number 
of WAT cells and their dysregulated functions, therefore results in the pathogenesis of various 
diseases such as obesity, insulin resistance, type 2 diabetes, cardiovascular diseases [6,7] but may also 
be involved in “non-typical metabolic diseases” such as psoriasis [8,9]. 

Adipokines are small molecular weight biologically active proteins primarily produced by 
adipocytes, however many members are expressed and secreted also by non-adipocyte cells [10]. As 
opposed to protein families—which share a specific domain structure and homologous, conserved 
amino acid sequence—adipokines constitute a merely functional category of diverse proteins and 
peptides which are active in cell signaling. Interestingly, beyond the significant conformational and 
structural differences across the adipokines, different isoforms may exist even for individual 
adipokines (e.g., adiponectin or apelin) [11]. Furthermore, adipokines (such as adiponectin, the 
member of the serine protease inhibitor (SERPIN) gene family (SERPINE1) or apelin) may undergo 
further structural reorganization when involved in pathological process [11,12]. 
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Not surprisingly, their receptors have a diverse repertoire as well, accounting for the wide range 
of signaling pathways which may be activated by adipokines. While some of the adipokines transmit 
their signals through designated receptors, others act through receptors of various cytokines and 
hormones [12]—for example, leptin exerts its biological effect through the leptin receptor (Ob-R), 
which belongs to the type I cytokine receptor family [13]; the receptors for chemerin, monocyte 
chemoattractant protein-1 (MCP-1) and apelin are G protein-coupled receptors (GPRs) [14–16], while 
effects of resistin, visfatin and fetuin-A are mediated through the insulin receptor and a pattern 
recognition receptor (Toll-like receptor [TLR] 4) [17–19]. Adiponectin receptors are the members of 
the progestin and adipoQ receptor family, while the zinc-α2-glycoprotein (ZAG) is a β2 adrenergic 
receptor agonist [20,21]. SERPINE1 binds to the urokinase receptor, lipocalin 2 (LCN2) is able to act 
through its own specific 24p3 receptor and in the case of omentin-1, no specific receptor has been 
identified so far [22–24]. Moreover, multiple isoforms of a given receptor could be present as well on 
various cell types, as it is in the case of Ob-R, which has multiple splice variants—but only the long 
isoform (Ob-Rb) contains all the intracellular motifs that are necessary to activate the Janus kinase 
2/signal transducer and activator of the transcription factor 3 (JAK2/STAT3) pathway [25]. 

Currently, more than 600 adipokines have been described in the human body with various 
biological properties. The most widely used classification places their inflammatory properties in the 
center and distinguishes pro-and anti-inflammatory adipokines. Up-regulation of pro-inflammatory 
adipokines leads to the development of a chronic, low-grade inflammatory state and contributes to 
metabolic dysfunction. On the other hand, the adipose tissue secretes certain anti-inflammatory 
adipokines as well, which are under intensive investigation regarding their role in these processes 
[9,26]. Although adipokines are the key mediators of various adipose tissue-induced and -regulated 
inflammatory diseases, it has become evident that they may also be active regulators of cutaneous 
inflammatory processes, which promoted the identification of adipokine source and target cells in 
the skin [27–29]. Up to now, adipokine research has acquired an indisputable place in dermatology, 
with a growing body of information regarding the role of adipokines in skin (patho) physiology. In 
this review, with the limitation of not involving interleukins and the skin-associated immune cells, 
we summarize the adipokines produced by different human skin cell types, and demonstrate how 
these adipokines may contribute to the development of various skin diseases. 

2. Expression of Adipokines in Skin Cells 

2.1. Keratinocytes 

Continuously proliferating and differentiating keratinocytes are the dominant cell type of the 
epidermis. Keratinocytes are able to secrete and to respond to a wide range of bioactive molecules 
including adipokines, thereby regulating skin homeostasis (Figure 1). 

Leptin, encoded by the “obese” (Ob) gene [30], is one of the first discovered and most-studied 
adipokines in skin biology. Generally, leptin acts as a regulatory factor through the central nervous 
system, balancing food intake and energy expenditure [31]. In addition to the JAK2/STAT3 signaling, 
Ob-Rb is able to regulate members of the mitogen-activated protein kinase (MAPK) family (p38 
MAPK), as well as, the stress activated c-Jun N-terminal kinase (JNK) and phosphatidylinositol 3-
kinase/protein kinase B (PI3K/Akt) pathways [25,32,33]. The common endpoint of these signaling 
pathways is nuclear factor kappa-B (NF-κB), the major transcription regulator of inflammatory 
mediators. Therefore, it is generally accepted that in the human skin, leptin acts as a pro-
inflammatory adipokine [34]. In the human epidermis, prominent leptin immunoreactivity could be 
observed in the basal and suprabasal layers and its biologically active receptor (Ob-Rb) was also 
found to be expressed by keratinocytes [35]. The leptin/STAT3 pathway is linked to the 
differentiation, proliferation and migration of keratinocytes and it is a potent regulatory factor of 
innate and adaptive immunity. In human keratinocytes in vitro, leptin is able to stimulate the 
expression of the antimicrobial peptide human β-defensin-2 (hBD-2) as well as the production of pro-
inflammatory cytokines (interleukin [IL]-6, IL-8 and tumor necrosis factor-α [TNF-α]) via STAT1, 
STAT3, JAK2, p38 MAPK and NF-κB pathways. [36,37]. However, in transgenic mice overexpressing 
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leptin in keratinocytes, although high serum leptin levels could be detected, a normal histological 
morphology of the epidermis and the epidermal appendages were observed with unaltered 
expression of differentiation and proliferation markers [38]. Whether these findings are mice specific, 
or highlight the importance of investigating the role of leptin in combination with other factors, calls 
for further studies. 

 
Figure 1. Overview of adipokines expressed and secreted by different human skin cell types and their 
effects on these cells. 

Visfatin (also known as pre-B-cell colony-enhancing factor (PBEF), or nicotinamide 
phosphoribosyltransferase (NAMPT)) was originally identified in human peripheral blood 
lymphocytes and was found to enhance the maturation of B-cell precursors [39]. In human 
keratinocytes, the expression of visfatin could be induced by epidermal growth factor (EGF) 
treatment and was able to enhance the proliferation and migration of these cells via extracellular 
signal-regulated kinases (ERK) 1/2 and JNK1/2 pathways [40]. In vitro experiments showed that 
visfatin activated the NF-κB, STAT3 and CCAAT/enhancer-binding protein (C/EBP) pathways, 
increasing the basal and TNF-α-induced mRNA expression and secretion of chemokines (CXCL8, 
CXCL10) and antimicrobial peptides (cathelicidin, hBD2, hBD3) in normal human keratinocytes 
(NHKs) [41,42]. Although it is obvious that visfatin acts as a pro-inflammatory mediator under the 
conditions studied so far [43,44], further investigations are needed to understand its role in the 
immunobiology of keratinocytes. 

Recent in vitro evidence showed that LCN2 (also known as neutrophil gelatinase–associated 
lipocalin (NGAL)) is another potential immunomodulatory adipokine as it was able to induce 
immune tolerance through modulation of regulatory T cell expansion [45]. Although both normal 
hair follicles and in vitro cultured keratinocytes express LCN2, its strong induction in the epidermis 
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can only be observed in certain skin diseases suggesting an association with pathological conditions 
in human skin [46]. In line with this, IL-1β, IL-17 and TNF-α treatment stimulated the secretion of 
LCN2 in NHK and HaCaT keratinocytes, and by ERK1/2 and p38 MAPK pathways, LCN2 was found 
to induce neutrophil chemotaxis [47,48]. Interestingly, a characteristic high expression of LCN2 was 
detected in the apical layer of the epidermis in sebaceous gland (SG) rich human skin as opposed to 
SG poor areas suggesting that LCN2 (together with other cytokines and antimicrobial peptides) has 
a role in the maintenance of the specific immune milieu of SG rich skin [49]. 

SERPINE1 (or plasminogen activator inhibitor type-1 (PAI-1)) has a major role in the modulation 
of extracellular matrix degradation and tissue remodeling [50]. The mRNA and protein expression of 
SERPINE1 are undetectable in normal mouse epidermis. However, its strong expression could be 
observed after mechanical injury or topical treatment with a specific NF-κB activator [51,52]. 

Adipokines with chemotactic properties are also found in keratinocytes. Chemerin (also known 
as retinoic acid receptor responder 2 (RARRES2), or tazarotene-induced gene 2 protein (TIG2)), has 
been introduced as a chemokine as it is able to exert a chemotactic effect through the p38 MAPK 
pathway on dendritic cells (DCs) and natural killer cells (NK cells) and regulates macrophage-
mediated immune responses [53]. The mRNA and protein expression of chemerin and its receptors 
(chemerin chemokine-like receptor 1 (CMKLR1) and (GPR1)) show a characteristic distribution in 
human skin. While chemerin is expressed primarily in the epidermis, CMKLR1 and GPR1 expression 
tends to be higher in the dermal compartment [14]. The dermal response to chemerin is most probably 
a result of the release from its site of synthesis in the epidermis triggered by danger signals. In human 
skin cultures as well as in mouse skin in vivo, microbial stimuli increase chemerin synthesis 
indicating that the epidermis is a functional microbe-responsive site of chemerin production [14]. In 
the same experimental models, psoriasis-related cytokines, IL-17 and IL-22 significantly down-
regulated chemerin expression [14]. Based on in vitro experiments, chemerin facilitated the secretion 
of IL-1β, IL-8, TNF-α, as well as of reactive oxygen species (ROS), and consequently activated the NF-
κB signaling in NHK and HaCaT cells [54]. Overexpression of bioactive chemerin by basal 
keratinocytes in transgenic mice revealed that chemerin is able to significantly delay tumor 
development and progression in a DMBA/TPA model of skin carcinogenesis [55]. 

In addition to chemerin, MCP-1, also known as C-C motif ligand 2 (CCL2) also has chemotactic 
activity with a primary function to recruit immune cells (e.g., monocytes, memory T lymphocytes 
and NK cells) to the site of inflammation [56]. In human keratinocytes, via p38 MAPK and NF-κB 
pathways, chemical stimuli or inflammatory factors (e.g., TNF-α and interferon-γ (IFN-γ)) are able 
to induce the mRNA and protein expression/secretion of MCP-1 but its presence is not detectable 
under basal conditions [57–59]. In vitro experiments have shown that MCP-1 treatment increased p53 
and p21 protein expression in NHKs through p38 MAPK signaling, suggesting that it might be 
involved in keratinocyte senescence [60]. Further animal studies proved that subcutaneous injection 
or epidermis-specific expression of MCP-1 induced neither spontaneous cutaneous inflammation nor 
did it result in tissue damage, but stimulated the recruitment of DCs and Langerhans cells into the 
epidermis [61,62]. Thus, it can be speculated that MCP-1 alone is inefficient to induce a local 
inflammatory response. 

Resistin is a cysteine-rich protein that influences glucose homeostasis through the regulation of 
the suppressor of cytokine signaling 3 (SOCS-3) [63]. With low levels of expression, resistin can be 
detected in the cytoplasm of the outer root sheath and epidermal keratinocytes [64], however, little is 
known about its effect on these cells, as monocytes and macrophages appear to be its major source 
and target cells [65]. 

Retinol-binding protein (RBP) 4 mobilizes retinol (vitamin A) from the liver to target tissues 
where it is taken up through the transmembrane protein stimulated by retinoic acid 6 (STRA6) [66]. 
Although STRA6 is constitutively expressed in NHK and HaCaT keratinocytes and down-regulation 
of this receptor leads to hyperproliferation in vitro and in vivo skin models [67], the role of RBP4 in 
human keratinocytes is not fully known and clarified. 

Apelin is an endogenous ligand of the GPR called APJ [16]. Although the expression of apelin 
in the epidermis has not been studied, transgenic overexpression of apelin in mouse keratinocytes 
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resulted in enlarged blood vessels in the dermis which was mainly mediated by endothelial cell 
aggregation [68]. This is not surprising because APJ is structurally related to the angiotensin II 
receptor type 1, and one of its major functions is the regulation of angiogenesis [69]. 

Fetuin-A can be produced primarily by hepatocytes and adipocytes, but keratinocytes and 
fibroblasts were also proposed to secrete it [70,71]. Low levels of fetuin-A was detected in the 
epidermis and in primary human keratinocytes, mainly at the cell membrane and in the cytoplasm 
[71]. Although fetuin-A results in morphological changes in HaCaT and primary keratinocytes and 
significantly promotes the migration of these cells in an EGF receptor (EGFR)-independent manner, 
further studies are needed to clarify its role in the homeostasis of keratinocytes. 

ZAG is involved in the regulation of obesity-associated inflammatory responses in hepatocytes 
[72]. Normal keratinocytes express ZAG which plays an important role in the terminal differentiation 
of these cells and thus in the cohesion of the stratum corneum [73]. 

Besides pro-inflammatory adipokines, anti-inflammatory adipokines are also found in the 
epidermis, although in smaller amounts. Adiponectin (ACRP, AdipoQ) is predominantly involved 
in the regulation of insulin sensitivity and whole body energy metabolism through its cell surface 
receptors (ADIPOR1 and 2) and via the AMP-activated protein kinase (AMPK) pathway [74]. Based 
on experiments performed in mouse models, disruption of both receptors abrogated adiponectin 
binding and action, but the two receptors affected different pathways with opposing effects [75]. As 
an anti-inflammatory adipokine, adiponectin is able to inhibit TLR-mediated NF-κB signaling, 
thereby abrogating lipopolysaccharide (LPS) induced TNF production and stimulating the release of 
IL-10 and IL-1 receptor antagonists (IL-1Ra) from human monocytes/macrophages [76–78]. In the 
human epidermis, adiponectin receptors are expressed mainly in the basal cell layer [79]. In NHK 
and HaCaT keratinocytes adiponectin is capable of enhancing cell proliferation, differentiation and 
migration, of increasing lipid contents via Sirtuin 1, , and of inhibiting TNF-α and IL-6 secretion [80–
82]. Furthermore, adiponectin down-regulates ultraviolet B (UVB) induced mRNA expression of 
hBD2 through the suppression of p38 and JNK MAPK signaling [83] and also acts on NHK filaggrin 
synthesis indicating that it may also be involved in skin diseases associated with disrupted barrier 
functions [84]. 

Omentin is also present in the epidermis of normal human skin, and its decreased protein 
expression has been described under pathological conditions, suggesting that omentin has an anti-
inflammatory effect [85]. The evaluation of the role of omentin-1 with relevance to keratinocyte 
function requires further experiments. 

The serpin protease inhibitor vaspin (SERPINA12) is also considered to be an anti-inflammatory 
adipokine. Keratinocytes are the major vaspin-expressing cells in the human skin [86]. Higher vaspin 
levels could be measured in differentiated keratinocytes, suggesting that its expression is associated 
with the maturation of these cells [87]. In co-cultures with immune cells, vaspin was able to modulate 
the crosstalk between keratinocytes and immune cells and attenuated the production of cytokines 
and chemokines of the inflammatory cells [87]. 

2.2. Fibroblasts 

The most abundant cell types in the dermis are fibroblasts, which are the major source of 
extracellular matrix components (collagen, elastin, and fibronectin), thus playing a fundamental role 
in developing the proper structure and elasticity of the skin. Given the close ontogenic relationship 
between fibroblasts and adipocytes, it is not surprising that fibroblasts are also able to produce 
adipokines [88,89] (Figure 1). 

mRNA and protein expression of leptin and its full-length receptor can be observed in human 
skin in vivo and in cultured fibroblasts [35,90]. In addition, leptin production is also detectable under 
basal conditions and can be induced by various stimuli [90,91]. Based on in vitro experiments, leptin 
has no effect on cell proliferation; however, it up-regulates hyaluronic acid production, reduces UV-
induced TNF-α release and matrix metalloproteinase (MMP) expression [92]. 

Although adiponectin is not expressed at mRNA level in human dermal fibroblasts, its receptors 
are present in these cells and are up-regulated after UV irradiation and wounding suggesting that 
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fibroblasts are potential adiponectin-responsive cells in the dermis [80,93,94]. In extracellular matrix 
regulation, adiponectin may exert a potent anti-fibrotic effect via AMPK signaling, while its impaired 
production is accompanied by abnormal fibroblast activation [95]. Moreover, exogenous adiponectin 
administration down-regulated the MMP expression and prevented UV-induced dermal matrix 
degradation via suppression of EGFR signaling in human foreskin fibroblasts [94]. 

Regarding chemoattractant proteins, although relatively high chemerin receptor expression can 
be observed in the dermis, chemerin itself is hardly detectable under normal conditions [14]. Its 
transcription and protein expression is however increased in senescent human dermal fibroblasts, 
enhancing the chemotaxis of tumor cells via activation of MAPK signaling [96]. Dermal fibroblasts 
also produce and secrete MCP-1, which is positively regulated by growth factors in both an auto- and 
a paracrine manner [15]. 

mRNA and protein expressions of apelin are also detectable in normal human fibroblasts, which 
can be reduced by transforming growth factor β (TGFβ) 1 stimulation. Vice versa, TGFβ1-induced 
fibrosis-related gene expression was inhibited by apelin treatment suggesting that apelin might have 
a potential role in blocking TGFβ1/Smad signaling under pathological conditions in dermal fibroblast 
[97]. 

High levels of fetuin-A were found throughout the dermal layers, with fibroblasts stained 
positive for fetuin-A; however, further details are needed to conclude on any of its possible biological 
relevance [71]. 

Progranulin was not detected at basal conditions in fibroblasts but its mRNA levels increased 
after injury [98]. 

2.3. Sebocytes 

SGs together with the hair follicle (HF) form the pilosebaceous unit with a primary role to 
produce sebum to cover the hair and the skin [99]. However, studies confirmed that the role of 
sebocytes is not limited to the production of lipids, but may have inflammatory roles as well in which 
sebocytes may utilize adipokines [99–101] (Figure 1). 

Intense leptin and leptin receptor expression was observed in the SGs under normal as well as 
pathological conditions [101,102]. Moreover, sebocytes were capable of increasing the secretion of 
leptin when activated with TLR2 and 4 activators [101]. Importantly, in response to leptin, sebocytes 
exerted pro-inflammatory responses such as enhanced inflammatory enzyme (5-lipoxygenase (5-
LOX) and cyclooxygenase-2 (COX-2)) and cytokine production (IL-6 and IL-8) via the activation of 
the NF-κB and STAT3 pathways, in vitro [102]. Based on further in vitro and in vivo experiments, 
leptin is involved in a complex regulation of lipid production in mice sebocytes by inducing the 
diglyceride acyltransferase (DGAT)-regulated sebaceous lipogenesis, promoting the enlargement of 
the intracellular lipid bodies and increasing the ratios of the produced unsaturated/saturated fatty 
acids [102,103]. Activated mammalian target of rapamycin complex 1 (mTORC1) signaling, a master 
regulator of sebocyte differentiation, also enhances sebocyte-derived leptin production, while leptin 
further stimulates mTORC1 and sterol regulatory element binding protein 1 (SREBP1) expression, 
which may have an important role in the pathogenesis of SG-associated diseases [104]. 

Although immunohistochemical analysis revealed that in vivo SGs and in vitro SZ95 cells 
expressed resistin, visfatin, SERPINE1 and omentin-1, the role of these adipokines in the biology of 
SGs is not fully elucidated [64,85,101]. Resistin was predominantly localized in the basal cells of SGs—
suggesting that it may play a role in the regulation of sebocyte proliferation and differentiation [64] 
—but with further studies needed to determine its role in SG physiology. 

The high levels of visfatin and SERPINE1 in sebocytes, which were also further increased upon 
TLR stimulation, support that these adipokines could be involved in the pro-inflammatory potential 
of SGs and may contribute to a specific dermal milieu and to extracellular matrix remodeling under 
pathological conditions [101]. 

Adiponectin and its receptors are also expressed in SGs of normal human skin and primary 
sebocytes [79,101,105]. In addition to promoting proliferation, adiponectin efficiently activates the 
AMPK/Akt pathways, induces the expression of SREBP1 and significantly up-regulates the 
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production of lipids such as cholesterols, triglycerides, wax esters and squalene in primary sebocytes 
[105]. Although SZ95 sebocytes were found to express adiponectin at the mRNA level under normal 
conditions—which was down-regulated by a TLR1/2 activator—its secretion was not detectable in 
the supernatants, calling for further studies to reveal the possible biological role for sebocyte derived 
adiponectin [101]. Omentin-1 was also found to be present in normal SGs by immunohistochemical 
analysis; however, its role in the SG biology was not examined in detail [85]. 

3. Adipokines in Physiological Processes in the Skin 

3.1. Melanogenesis 

Melanogenesis is a complex process under the regulation of signals from the endocrine, immune 
as well as the nervous system, leading to the production of the pigment melanin in the melanosomes 
of melanocytes [106]. Interestingly, studies have shown that certain adipokines are also able to 
influence directly or indirectly the process of melanogenesis (Figure 1). 

In the hypothesis that obesity might be associated with the reduction of melanogenesis, leptin 
became a major candidate, by increasing the levels of melanocyte stimulating hormone (MSH) 
antagonists in the circulation, that may result in a lower activity of circulating MSH and melanocortin 
1 receptor (MC1R) [107]. 

Adiponectin receptors were found to be expressed also in immortalized human and mouse 
melanocytes. In response to adiponectin, melanocytes decreased the production of melanin and 
expressed melanogenesis-associated genes at a lower levels via the AMPK/CREB-regulated 
transcription co-activators (CRTCs) pathway, suggesting that adiponectin is an anti-melanogenic 
factor [108]. As a biological relevance, in hyperpigmentary disorders such as melasma, the mRNA 
levels of adiponectin and its receptors were also down-regulated in the basal layer of the lesional skin 
of melasma patients compared to the non-lesional skin [108,109]. However, the serum levels of 
adiponectin, just as of leptin, were not significantly different between melasma and control patients 
[108].  

ZAG was also found to act on both normal and malignant melanocytes by inhibiting the 
production of melanin through post-transcriptional effects on tyrosinase protein [110] and inhibiting 
the proliferation of melanocytes, which may even have therapeutic implications in diseases with 
hypopigmentation such as vitiligo [111,112]. 

3.2. Hair Growth 

Both unwanted loss (i.e., various alopecia forms) as well as undesired overgrowth (i.e., hirsutism 
and hypertrichosis) of the hair can substantially impair the quality of life of patients. Hair growth 
disorders are usually caused by a disturbance of the strictly regulated life cycle of the HFs, i.e., the 
hair cycle [113]. This life-long cycling consists of growth (“anagen”), regressive (“catagen”), and 
quasi-quiescent (“telogen”) phases [114]. Obviously, both the hair cycle and the hair growth are 
under tight and quite complex neuroendocrine control [115–117], and, of great importance, 
adipokines were also shown to contribute to this regulation. 

Indeed, by using immunohistochemistry, leptin expression was demonstrated in the hair matrix, 
in the inner root sheath, as well as in the dermal papilla (DP) fibroblasts of human HFs, while its 
receptor (long isoform) was only found to be expressed by DP fibroblasts [118]. Pro-inflammatory 
cytokines as well as the growth factors that are known to suppress hair growth significantly reduced 
the production of leptin, whereas those that support hair growth did not affect its production, 
highlighting the possibility that leptinergic signaling may be involved in the initiation and/or 
maintenance of the anagen phase of HFs [118]. In line with this concept, transition from the first 
telogen to the second postnatal anagen phase was found to be delayed in db/db (leptin receptor-
deficient) mice. Moreover, via JAK2, STAT3 and ERK1 signaling, the local injection of recombinant 
leptin promoted hair regrowth after shaving, by stimulating telogen-to-anagen transition [119]. 
Careful analysis of the hair cycle-dependent expression of leptin revealed that it was expressed in DP 
fibroblasts and follicular epithelial cells of catagen and telogen HFs. Intriguingly, in early anagen, 
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leptin expression could only be detected in DP fibroblasts, and no leptin expression was found in late 
anagen HFs of wild-type mice [119]. In line with these observations, leptin expression in human DP 
fibroblasts was stronger in the catagen than in early anagen phase, and chemically mimicked hypoxia 
also promoted leptin release of DP fibroblasts isolated from male scalp HFs [119]. Based on these 
findings, the authors speculated that the hypoxic stress that usually accompanies catagen and telogen 
might be one of the positive regulators of the leptin production of DP fibroblasts, and this hypoxia-
driven local leptin release may later play a role in initiating telogen-to-anagen transition. Intriguingly, 
however, although administration of leptin increased the number of nestin+ progenitor cells via the 
STAT3 pathway in the mesenchyme of organ-cultured human skin, it failed to do so in the HF 
epithelium [120], indicating that leptin might be a necessary—but not sufficient—player in the 
ignition of the telogen-to-anagen transition. Considering that leptin mRNA expression in the dermal 
white adipose tissue (DWAT) of mice was the lowest in the early anagen, increased in the late anagen, 
and peaked in the telogen phase [121], one might speculate that DWAT-derived leptin may be 
involved in driving telogen-to-anagen transition. 

Intriguingly, certain data point to the fascinating possibility that putative leptinergic 
communication between DWAT and HFs may even be bidirectional. Indeed, it has recently been 
shown that DWAT undergoes major morphological changes during the spontaneous and induced 
murine HF cycling. Specifically, the thickness of DWAT is the greatest in late anagen, and decreases 
in the catagen and telogen phases [122]. Considering that leptin is thought to suppress lipid 
accumulation of DWAT [123] and that, as mentioned above, follicular leptin production is high in the 
catagen, telogen, and early anagen, but low in the late anagen phase [119], one might speculate that 
HF-derived local leptin production may reduce lipid accumulation of dermal white adipocytes. 

Intriguingly, although the above findings introduce leptin as a potent pro-anagen agent, certain 
data argue that the in vivo regulation might be more complex. Indeed, higher plasma leptin 
concentration was found to be associated with a higher risk of androgenetic alopecia (AGA) in men, 
and plasma leptin level was significantly higher in subjects with advanced AGA compared to subjects 
with mild AGA [124], suggesting that disturbed leptinergic signaling may play a role in the 
pathogenesis of the said disease. Moreover, leptin was found to suppress the growth of organ-
cultured mouse vibrissa [121], signifying that the final effect of leptin on hair growth (i.e., promotion 
or suppression) may also depend on the anatomical location as well as on yet unknown other 
biological variables. 

Importantly, leptin is not the sole hair-relevant adipokine. Indeed, adiponectin receptors were 
shown to be expressed in human HFs [79]. Moreover, adiponectin treatment promoted hair shaft 
elongation in microdissected human HFs ex vivo [79]. Similarly, SERPINE1 was also found to be a 
hair growth promoting adipokine. Indeed, it was shown to be expressed in HFs of female BALB/c 
mice [52]. Importantly, SERPINE1–/– mice were found to exhibit delayed hair growth as compared 
to wild-type littermates [125], highlighting the possibility that SERPINE1 may indeed be a potent 
auto- and paracrine pro-anagen regulator. 

In contrast to adiponectin and SERPINE1, overexpression of progranulin in keratin 5 (K5)+ cells 
decreased hair growth as well as the diameter of the hair shaft in mice by activating the p38 MAPK 
pathway [126]. Although only scant data are available in the literature, the serum level of the pro-
inflammatory visfatin was not significantly different in alopecia areata (AA) patients and healthy 
individuals, according to a case control study [127]. In contrast, serum level of LCN2 was found to 
be elevated in hidradenitis suppurativa (HS) patients and LCN2 was also found to be up-regulated 
in lesional skin of HS patients [47,128]. Intriguingly, follicular LCN2 expression is restricted to the 
inner root sheath, and it is thought to be a marker for dysregulated keratinocyte differentiation in the 
interfollicular epidermis, because it was not present in healthy human epidermis, but it became 
prominent in parakeratotic lesions (e.g., in psoriasis) [46]. 

3.3. Wound Healing 

Based on experiments in leptin-deficient animal models, numerous studies have confirmed that 
as an autocrine/paracrine regulator, leptin has a role also in regulating wound healing. During the 
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normal healing process, leptin was found to be expressed at the wound site. Furthermore, 
immunohistochemical staining revealed that Ob-Rb was strongly expressed in the highly 
proliferative keratinocytes at the wound margin [129]. Moreover, by activation of the STAT3 
pathway, topically administered leptin promoted wound healing in mouse skin by accelerating 
keratinocyte function and enhancing angiogenesis around the wounded area [130,131], while 
injection of anti-leptin antibodies into skin wounds reduced fibroblast functions. These findings 
altogether suggested that leptin from the circulation as well as produced by keratinocytes and 
fibroblasts might be an important regulatory factor in wound healing [132]. This observation was 
further supported by fibroblasts cultured from db/db mice, which exhibited impaired cell migration, 
vascular endothelial growth factor (VEGF) production and a disrupted response to hypoxia [133]. 

According to in vitro and in vivo experiments, visfatin may also effectively improve wound 
healing by enhancing the proliferation and migration of keratinocytes and fibroblasts via ERK1/2 and 
JNK1/2 signaling as well as via the induction of VEGF expression through the MAPK pathway [40]. 

LCN2 expression was also found to be elevated at the wound edge both in animal and in human 
experiments, suggesting that together with transcription factor 3 (Tcf3) and transcription factor 7-like 
1 (Tcf7l1), LCN2 may regulate epidermal cell differentiation, migration and may accelerate wound 
healing via STAT3 signaling [134,135]. During the course of a scratch wound closure, an up-
regulation of SERPINE1 via mitogen-activated extracellular signal-regulated kinase (MEK)/ERK and 
p38 signaling could be detected suggesting that the activation of this protein is required for epithelial 
cell migration and the global cutaneous injury response program [136,137]. Although elevated MCP-
1 protein expression could be detected in normal wound repair, this protein is not derived from 
keratinocytes, but rather from infiltrating immune cells at the site of inflammation, with a role yet to 
be clarified [138]. 

Adiponectin in human and mouse fibroblasts plays an important role in hyaluronic acid 
metabolism and collagen synthesis, which may have beneficial effects also in wound healing [139]. 
Moreover, in adiponectin-deficient mice, keratinocyte proliferation and migration were impaired via 
the ERK signaling pathway during wound repair, underpinning that adiponectin is an important 
regulatory factor in this process [80]. 

Progranulin has also been identified as a wound-related growth factor in the human skin, 
because its mRNA expression was highly induced in dermal fibroblasts after injury and promoted 
the division and migration in an ERK- and PI3K-dependent manner [98]. 

4. Adipokines in Skin Diseases 

4.1. Psoriasis 

In psoriasis, the dermal inflammation induces the hyperproliferation of keratinocytes, which 
leads to the appearance of its hallmark plaques on predilection sites such as elbows, knees, lower 
back and scalp but can be present throughout the whole body. Importantly, a growing body of 
evidence supports the concept that psoriasis is not limited to the skin, but that it is rather a systemic 
inflammation, linked to metabolic diseases [140–142]. Several studies are available examining the 
relationship between psoriasis and the plasma or the tissue expression levels of different adipokines, 
with no clear conclusions which may be explained with methodological differences or incomparable 
study populations regarding the severity of psoriasis and/or comorbidities of the patients. 

While studies showed that the serum leptin levels were elevated in psoriatic patients with 
normal body mass index (BMI) and correlated with the psoriasis area and severity index (PASI) scores 
[143–145]—suggesting that the increased leptin concentrations in the serum might not only be 
derived from adipocytes but also from dermal cells—another study did not find a relationship 
between the circulating leptin concentrations and the PASI score [146]. Making the picture more 
complicated, another study showed that the levels of leptin were decreased in psoriasis [147]. 
Regarding histological studies, leptin and leptin receptor expression were significantly higher in the 
skin of severe psoriasis patients with normal BMI than in patients with mild-moderate psoriasis and 
controls [143]. However, in another study that found correlation between the BMI and leptin serum 
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levels but not with the disease severity in obese psoriatic patients, there were no differences in the 
expression levels of leptin in the skin between the examined groups. Moreover, the epidermal layer 
of lesional psoriatic skin exhibited lower leptin receptor expression than the normal or the 
uninvolved skin [148]. Interestingly, leptin mRNA expression in the subcutaneous adipose tissue 
positively correlated with circulating levels of leptin, as well as with the severity of psoriasis and the 
BMI in obese psoriatic patients, which highlights that the subcutaneous adipose tissue (and its 
adipokines) may play an important regulatory role in the pathogenesis psoriasis [149]. 

Elevated levels of resistin were consistently observed in the circulation of psoriasis patients and 
positively correlated with the PASI score [145,148,150]. The serum level of progranulin was also 
increased in patients with psoriasis and its expression was elevated in the affected skin [151]. 
SERPINE1 expression was found to be higher in the biopsies of psoriatic patients’ skin, however the 
limited data allows only speculation on its role [152]. Although increased levels of visfatin were also 
observed in the psoriatic patients, it correlated with the BMI, but not with the disease severity 
[153,154]. Furthermore, a gene expression study showed that the expression of visfatin was increased 
in peripheral blood monomorphonuclear cells of patients with psoriasis [154]. Chemerin expression 
may also be associated with the psoriasis progression, because its lowest levels were observed in 
chronic plaque psoriatic skin [155]. While the circulating RBP levels were in the normal range both in 
uninvolved and lesional psoriatic skin, studies with fetuin-A are more contradictory; indeed, one 
study found elevated serum fetuin-A levels in psoriasis whereas others did not [156–159]. 
Unfortunately, only limited number of studies are available on ZAG, with one showing that its 
immunoreactivity exhibited higher intensity in the epidermal cell layers of psoriatic patients which 
might be responsible for the process of desquamation [73]. 

Regarding anti-inflammatory adipokines, serum adiponectin and omentin levels were 
significantly lower in psoriatic patients compared to healthy controls, and studies found a negative 
correlation with disease severity [147,150,160–164]. Notably, both adipokines showed lower mRNA 
and protein expressions in the skin of patients with psoriasis [85,165]. Interestingly, topical or 
systemic anti-psoriatic treatment was shown to increase adiponectin and omentin levels in the 
psoriatic patient group [150,161,166] suggesting that both adipokines may play a protective role in 
the development of psoriasis. Altered vaspin expression might also contribute to the maintenance of 
psoriasis, because its epidermal expression was also down-regulated in human lesional psoriatic skin 
[86,87]; however, studies reported both an unaltered as well as significantly lower serum vaspin 
concentrations in psoriatic patients [86,167]. 

The number and size of SGs are known to decrease in psoriasis [168]. Importantly, SGs were 
found to express leptin, resistin, visfatin and SERPINE1 in lesional skin samples of patients with 
psoriasis. This raises the possibility that alterations in the number amount of SGs as well as in their 
adipokine-release pattern might contribute to the pathogenesis of psoriasis. [101]. 

Single nucleotide polymorphisms (SNPs) are the most common type of genetic variations, which 
result from a substitution of a single nucleotide in a specific position of the genome. SNPs in pro- and 
anti-inflammatory adipokine genes encoding leptin, leptin receptor, adiponectin and omentin were 
addressed in psoriasis; however, (with the exception of one study of the rs7799039 polymorphism in 
the leptin gene), researchers found no correlation or increased risk of psoriasis vulgaris with these 
polymorphisms [85,164,169–171]. 

The putative role of adipokine signaling in the pathogenesis of psoriasis is overviewed in Figure 
2. 
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Figure 2. Adipokines might be involved in the pathogenesis of psoriasis vulgaris. Note the simplified 
characteristic histopathological findings in psoriasis skin: hyperproliferation of keratinocytes (1), 
elongation of the dermal papillae (2), dilated blood vessels (3) and immune cell infiltration in the 
dermis (4). Hematoxylin eosin staining; original magnification: 50×. 

4.2. Atopic Dermatitis (AD) 

AD is a common chronic inflammatory skin disease usually with an early onset. People with AD 
have a dry and itchy skin with inflammation [172]. 

Although there is a consensus that adipokines might have a potential role in the pathogenesis of 
AD, further prospective, controlled studies with larger cohorts of patients are needed to confirm 
whether the alterations in adipokine levels precedes or “only” accompanies the manifestation of AD. 

Regarding leptin, studies showed that its serum levels were significantly elevated in children 
and adult patients with IgE-associated AD compared to healthy controls [173,174], whereas others 
found that the circulating leptin levels were decreased or had no statistically significant association 
in patients with AD [175–177]. 

In the case of resistin and LCN2 similar controversial observations are available. While elevated 
serum levels of resistin were reported in children with AD compared to healthy controls [178], studies 
with opposing results are also available [174,179]. Serum LCN2 levels were also significantly higher 
in patients with AD [180]; however, other studies reported its decreased concentrations [174,181]. 

ZAG, which might have a role in modulating the skin barrier functions and immune responses 
through influencing the Notch signaling, exhibited a reduced expression in both the serum and the 
skin of AD patients [182]. 

A decreased blood level of adiponectin has been found in AD [174,175], whereas no significant 
differences were detected in its serum levels when correlated with the SCORAD severity index score. 
Interestingly, the mean adiponectin levels in extrinsic AD were lower than in intrinsic AD [183]. 

In genetic studies, significant associations have been detected between the rs2167270 
polymorphism of leptin gene (A19G) and the rs3745367 polymorphism of resistin gene (G > A) with 
the incidence and development of AD [184,185]. 

The putative role of adipokine signaling in the pathogenesis of AD is overviewed in Figure 3. 
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Figure 3. Adipokines might be involved in the pathogenesis of atopic dermatitis. Note the simplified 
characteristic histopathological findings in AD skin: slight epidermal hyperplasia with impaired 
barrier function (1) and immune cell infiltration in the dermis (2). Hematoxylin eosin staining; original 
magnification: 50×. 

4.3. Acne Vulgaris 

Acne vulgaris is one of the most common inflammatory skin diseases, involving the 
pilosebaceous unit in SG rich areas of the body such as the face, the chest and the back [99]. 
Considering that sebocytes, similarly to adipocytes, are highly active in lipid metabolism, we 
previously performed a comprehensive analysis and revealed that SGs express a characteristic set of 
adipokines also in acne skin samples, and their secretion may be modulated by acne related 
pathogenic (TLR) and therapeutic (isotretinoin) stimuli. [101]. 

Among the adipokines, the effects of leptin has been studied the most. Acting in an autocrine 
manner, leptin may be involved in an increased lipid metabolism and pro-inflammatory 
cytokine/enzyme production by activating the STAT3 pathway as observed in human SZ95 sebocytes 
in vitro, which resembled the changes detected in the sebum of acne patients [102,186]. While through 
augmenting Th17/IL-17 signaling and enhancing the secretion of pro-inflammatory cytokines by 
immune cells, leptin may also be involved in generating the pathological immune-milieu 
characteristic for lesional acne skin [187–190]. Ductal hypoxia, occurring in the obstructed follicles, 
has been also linked to the development of acne and hypoxia-inducible factor 1-α (HIF-1α) was 
shown to promote leptin expression [91,191]. Because mTORC1 is a potential regulator of HIF-1α, 
activation of the mTORC1 pathway therefore could also alter the sebocyte-derived leptin production 
[104]. Interestingly, the findings that leptin and other factors from the “Western diet” may activate 
the mTORC1 pathway, which, in turn, further enhances leptin production, suggest a possible role for 
the leptin-mTORC1 axis to link nutrition with the development of acne [104,192]. 

Although linking the dysregulated adipokine function with acne vulgaris is an intriguing area, 
the available data on the serum levels can only be evaluated to a limited extent. The results are 
inconsistent and difficult to interpret or to compare also in the context of acne because: 1) small 
groups of patients were studied; 2) there are mostly insufficient data regarding acne severity; and 3) 
significant heterogeneity can be observed among the studies. 

Although some papers demonstrated that there was no significant difference between 
circulating leptin, adiponectin, and RBP4 levels in patients with acne vulgaris, others found higher 
leptin and lower adiponectin serum concentrations [193–196]. Interestingly, isotretinoin (the most 
effective anti-acne agent) altered adiponectin levels and decreased leptin levels, which were 
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significantly lower in the acne patients compared with the control group already at the basal levels 
[196,197]. 

In the available genetic studies, the resistin gene rs1862513 (+299G > A) and rs3745367 (−420C > 
G) polymorphisms were strongly associated with familial acne vulgaris and the severity of symptoms 
but not with the acne types [198,199]. Moreover, the omentin gene rs2274907 (Val109/Val109) 
polymorphism leading to protein dysfunction, increases the predisposition to acne vulgaris [200]. 

The putative role of adipokine signaling in the pathogenesis of acne is overviewed in Figure 4. 

 
Figure 4. Adipokines might be involved in the pathogenesis of acne vulgaris. Note the simplified 
characteristic histopathological findings in acne: ductal hyperkeratosis (1), altered sebum production 
by sebocytes (2) and immune cell infiltration in the dermis (3). Hematoxylin eosin staining; original 
magnification: 50×. 

4.4. Rosacea 

Rosacea is a chronic inflammatory skin disease with clinical features such as dry skin, 
teleangiectasias and papulopustular lesions primarily on the face, but it may have ocular 
manifestations as well. In its development, genetic and environmental factors such as colonization of 
Demodex folliculorum (D. folliculorum) are suggested to play roles [201]. Although pro-
inflammatory cytokines and chemokines were addressed [202–204], little is known about how 
adipokines may be involved in the development and progression of rosacea. In an in vitro rosacea 
skin lesion model, in response to the antibacterial peptide LL-37 (cathelicidin) the production of 
MCP-1 was increased in HaCaT keratinocytes through the activation of JAK2/STAT3 signaling, 
suggesting that these pathways may play an important role in the inflammation caused by D. 
folliculorum [205]. Furthermore, in ex vivo skin models, as well as in NHK and HaCaT cells, anti-
parasitic and anti-inflammatory agents (e.g., ivermectin or artemisinin) reduced the LL-37-induced 
activation of NF-κB signaling and the secretion of MCP-1 [206,207]. However, in a prospective, 
observational study, there were no differences in serum and tear MCP-1 levels between the rosacea 
patients with or without ocular involvement and the control groups [208]. As SERPINs are known to 
interact with kallikreins, which are important regulators of the immune barrier alteration and skin 
desquamation, they might be involved in modifying the physiological structures of the epidermis, 
which can lead to the typical clinical signs in rosacea [209–211]. Epidermal LCN2 levels were also 
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significantly higher in papulopustular rosacea compared with controls and this expression level was 
strongly associated with the levels of permeability barrier structural components [212]. Leptin, 
adiponectin, resistin, SERPINE1 and visfatin were also detectable in the SGs of rosacea-involved skin, 
suggesting that through the secretion of these adipokines, SGs may contribute to the development of 
the characteristic inflammatory milieu in rosacea [101]. 

The putative role of adipokine signaling in the pathogenesis of rosacea is overviewed in Figure 
5. 

 

Figure 5. Adipokines may be involved in the pathogenesis of rosacea. Note the simplified 
characteristic histopathological findings in rosacea: impaired barrier function (1), interfollicular 
inflammation in the dermis (2). Hematoxylin eosin staining; original magnification: 50×. 

4.5. Malignant Melanoma 

Melanoma is the most aggressive skin tumor. Its risk factors include (among others) genetic 
background, sun exposure, and skin type [213]. 

Although, a growing body of evidence suggests that obesity is also a risk factor for human 
melanoma incidence, the available data are controversial. Some studies found a positive association 
between obesity and the risk of melanoma, while others have not [214–216]. Thus, elucidation of the 
putative role of adipokines both from systemic as well as from local origin requires further studies. 

Based on experiments performed by using genetically obese mice as well as mice suffering from 
diet-induced obesity, researchers found that adipokines might enhance the proliferation of 
melanoma cells and thus obesity could be considered as a tumor-promoting factor, whose presence 
may result in a poor prognosis of melanoma [217–219]. Indeed, melanoma progression was found to 
be partially decreased when the body weight was controlled by anti-obesity drugs or restriction of 
the calorie intake [219]. 

Leptin and its functional receptor was detected in human melanoma cell lines as well as in 
histological sections in melanomas. Moreover, the expression of Ob-Rb was increased in the WM793 
and WM35 melanoma cell lines compared to normal melanocytes [220,221]. In line with this data, 
serum leptin levels correlated positively with melanoma risk; however, a reverse correlation was 
found in the case of tumor thickness and serum levels of leptin receptor [222,223]. In human WM793 
and WM35 melanoma cell lines, leptin treatment activated the MAPK pathway and enhanced cell 
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proliferation, suggesting that leptin may act as a melanoma growth factor, and may contribute to the 
uncontrolled proliferation of these cells [220]. Leptin treatment following the subcutaneous injection 
of melanoma cells into C57BL/6 mice resulted in larger tumor size, higher capillary density and 
increased plasma levels of VEGF, supporting that, as an angiogenic and mitogenic factor, leptin could 
promote melanoma growth [224]. Resistin, apelin and visfatin are also able to act on melanoma cells 
by enhancing the proliferation, accelerating the tumor growth and triggering the redox adaptation 
responses through an insulin receptor independent pathway [217,225,226]. Moreover, human MeWo 
and HMCB melanoma cells are able to produce visfatin, which can activate the MAPK, the AKT and 
the NF-κB pathways [227]. Providing further relevance for visfatin in the progression of melanoma, 
its elevated levels were found in the serum of patients with BRAF-mutated metastatic melanoma with 
decreasing concentrations in response to BRAF/MEK inhibitor therapy [228]. The decreased 
expression of chemerin in murine and human melanomas was associated with a poor prognosis, 
suggesting an impaired anti-tumor NK cell recruitment in the background, which can be observed in 
the tumor microenvironment, aggravating the disease [229,230]. SERPINE1 may be involved in the 
regulation of the invasion of malignant cells and the formation of metastasis with its effect on tissue 
matrix remodeling; thus, it may be considered as a poor prognostic biomarker in human melanomas 
[231]. 

The protective role of adiponectin in melanoma pathogenesis also calls for further investigations, 
as a remarkable but statistically non-significant reverse correlation of serum adiponectin levels were 
found in melanoma patients in a case-control study [232]. 

The putative role of adipokine signaling in the pathogenesis of melanoma is overviewed in 
Figure 6. 

 
Figure 6. Adipokines might be involved in the pathogenesis of malignant melanoma. Note the 
simplified characteristic histopathological findings in melanoma: invasion of the malignant cells (1), 
increased vascularization (2) and immune cell infiltration (3). Hematoxylin eosin staining; original 
magnification: 50×. 

5. Conclusions 

In this review, we attempted to summarize and highlight the complexity of the adipokines and 
their related signaling pathways in the skin, which may lead to proven and in some cases presumed 
changes in the function of various skin cell types. While adipokines, both as targets and tools, are 
potential candidates for therapies not only in obesity and metabolic diseases, but also in 
lipodystrophy, infertility and bone growth [233], there is still limited data on their possible 
application to treat skin diseases. Moreover, we need not only to understand their complex actions 
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in the skin and with that the possible side effects, but their targeted delivery to the skin cells just as 
utilizing the mechanisms that could induce or inhibit their local expression/secretion should be 
revealed as well. In summary, it appears that our knowledge on the role of adipokines to regulate the 
(patho)physiological changes in the skin is still in an early phase, calling for further studies to reveal 
their biological relevance and to deliver adipokine-based therapeutic solutions. 
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Abbreviations 

5-LOX 5-lipoxygenase 
AA Alopecia areata 
ACRP/AdipoQ Adiponectin 
AD Atopic dermatitis 
ADIPOR Adiponectin receptor 
AGA Androgenetic alopecia 
Akt Protein kinase B 
AMPK AMP-activated protein kinase 
APJ Apelin receptor 
BMI Body mass index 
BRAF B-Raf proto-oncogene serine/threonine kinase 
C/EBP CCAAT/enhancer-binding protein 
CCL2 C-C motif ligand 2 
CMKLR1 Chemerin chemokine-like receptor 1 
COX-2 Cyclooxygenase-2 
CRTCs CREB-regulated transcription co-activators 
CXCL (C-X-C motif) ligand 
DC Dendritic cell 
DGAT Diglyceride acyltransferase 
DP Dermal papilla 
DMBPA/TPA Dimethylbenz[a]anthracene/12-O tetradecanoylphorbol-13-acetate 
DWAT Dermal white adipose tissue 
EGF Epidermal growth factor 
EGFR Epidermal growth factor receptor 
ERK Extracellular signal-regulated kinases 
GPR1 G protein-coupled receptor 1 
hBD-2 Human β-defensin-2 
HF Hair follicle 
HIF-1α Hypoxia-inducible factor 1-α 
HS Hidradenitis suppurativa 
IFN-γ Interferon-γ 
IL Interleukin 
JAK2 Janus kinase 2 
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JNK c-Jun N-terminal kinase 
LCN2 Lipocalin2 
LPS Lipopolysaccharide 
MAPK Mitogen-activated protein kinase 
MC1R Melanocortin 1 receptor 
MCP-1 Monocyte chemoattractant protein-1 
MEK Mitogen-activated protein kinase kinase 
MMP Matrix metalloproteinase 
MSH Melanocyte stimulating hormone 
mTORC1 Mammalian target of rapamycin complex 1 
NAMPT Nicotinamide phosphoribosyltransferase 
NF-κB Nuclear factor kappa-β 
NGAL Neutrophil gelatinase–associated lipocalin 
NHK Normal human keratinocyte 
NK cell Natural killer cell 
Ob-Rb Leptin receptor 
PAI-1 Plasminogen activator inhibitor type-1 
PASI Psoriasis area and severity index 
PBEF Pre-B-cell colony-enhancing factor 
PI3K Phosphatidylinositol 3-kinas 
RARRES2 Retinoic acid receptor responder 2 
RBP Retinol-binding protein 
ROS Reactive oxygen species 
SCORAD SCORing Atopic Dermatitis 
SERPIN Serine protease inhibitor 
SG Sebaceous gland 
SNP Single nucleotide polymorphism 
SOCS-3 Suppressor of cytokine signaling 3 
SREBP1 Sterol regulatory element binding protein 1 
STAT3 Signal transducer and activator of transcription factor 3 
STRA6 Signaling receptor and transporter of retinol STRA6 
SZ95 Human sebaceous gland cell line 
Tcf Transcription factor 
TGFβ Transforming growth factor β 
Th T helper cell 
TIG2 Tazarotene-induced gene 2 protein 
TLR Toll-like receptor 
TNF-α Tumor necrosis factor-α 
UVB Ultraviolet B 
VEGF Vascular endothelial growth factor;  
WAT White adipose tissue 
ZAG Zinc α2-Glycoprotein 

References 

1. Stolarczyk, E. Adipose tissue inflammation in obesity: A metabolic or immune response? Curr. Opin. 
Pharmacol. 2017, 37, 35–40, doi:10.1016/j.coph.2017.08.006. 

2. Mittal, B. Subcutaneous adipose tissue & visceral adipose tissue. Indian J. Med. Res. 2019, 149, 571–573, 
doi:10.4103/ijmr.IJMR_1910_18. 

3. Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev. 
Off. J. Int. Assoc. Study Obes. 2010, 11, 11–18, doi:10.1111/j.1467-789X.2009.00623.x. 

4. Fasshauer, M.; Bluher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015, 36, 461–470, 
doi:10.1016/j.tips.2015.04.014. 

5. Reilly, S.M.; Saltiel, A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 2017, 
13, 633–643, doi:10.1038/nrendo.2017.90. 

6. Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature 2017, 542, 177–
185, doi:10.1038/nature21363. 



Int. J. Mol. Sci. 2020, 21, 9048 18 of 29 

 

7. Atawia, R.T.; Bunch, K.L.; Toque, H.A.; Caldwell, R.B.; Caldwell, R.W. Mechanisms of obesity-induced 
metabolic and vascular dysfunctions. Front. Biosci. (Landmark Ed.) 2019, 24, 890–934. 

8. Jialal, I.; Devaraj, S. Subcutaneous adipose tissue biology in metabolic syndrome. Horm. Mol. Biol. Clin. 
Investig. 2018, 33, doi:10.1515/hmbci-2017-0074. 

9. Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of Adipose Tissue 
Inflammation to the Development of Type 2 Diabetes Mellitus. Compr. Physiol. 2018, 9, 1–58, 
doi:10.1002/cphy.c170040. 

10. Giralt, M.; Cereijo, R.; Villarroya, F. Adipokines and the Endocrine Role of Adipose Tissues. Handb. Exp. 
Pharmacol. 2016, 233, 265–282, doi:10.1007/164_2015_6. 

11. Raucci, R.; Rusolo, F.; Sharma, A.; Colonna, G.; Castello, G.; Costantini, S. Functional and structural features 
of adipokine family. Cytokine 2013, 61, 1–14, doi:10.1016/j.cyto.2012.08.036. 

12. Gonçalves, N.; Falcão-Pires, I.; Leite-Moreira, A.F. Adipokines and their receptors: Potential new targets in 
cardiovascular diseases. Future Med. Chem. 2015, 7, 139–157, doi:10.4155/fmc.14.147. 

13. Gorska, E.; Popko, K.; Stelmaszczyk-Emmel, A.; Ciepiela, O.; Kucharska, A.; Wasik, M. Leptin receptors. 
Eur. J. Med. Res. 2010, 15 (Suppl. 2), 50–54, doi:10.1186/2047-783x-15-s2-50. 

14. Banas, M.; Zegar, A.; Kwitniewski, M.; Zabieglo, K.; Marczynska, J.; Kapinska-Mrowiecka, M.; LaJevic, M.; 
Zabel, B.A.; Cichy, J. The expression and regulation of chemerin in the epidermis. PLoS ONE 2015, 10, 
e0117830, doi:10.1371/journal.pone.0117830. 

15. Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An 
overview. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res. 2009, 29, 313–326, 
doi:10.1089/jir.2008.0027. 

16. Wysocka, M.B.; Pietraszek-Gremplewicz, K.; Nowak, D. The Role of Apelin in Cardiovascular Diseases, 
Obesity and Cancer. Front. Physiol. 2018, 9, 557, doi:10.3389/fphys.2018.00557. 

17. Park, H.K.; Kwak, M.K.; Kim, H.J.; Ahima, R.S. Linking resistin, inflammation, and cardiometabolic 
diseases. Korean J. Intern. Med. 2017, 32, 239–247, doi:10.3904/kjim.2016.229. 

18. Romacho, T.; Valencia, I.; Ramos-González, M.; Vallejo, S.; López-Esteban, M.; Lorenzo, O.; Cannata, P.; 
Romero, A.; San Hipólito-Luengo, A.; Gómez-Cerezo, J.F.; et al. Visfatin/eNampt induces endothelial 
dysfunction in vivo: A role for Toll-Like Receptor 4 and NLRP3 inflammasome. Sci. Rep. 2020, 10, 5386, 
doi:10.1038/s41598-020-62190-w. 

19. Trepanowski, J.F.; Mey, J.; Varady, K.A. Fetuin-A: A novel link between obesity and related complications. 
Int. J. Obes. 2015, 39, 734–741, doi:10.1038/ijo.2014.203. 

20. Tanabe, H.; Fujii, Y.; Okada-Iwabu, M.; Iwabu, M.; Nakamura, Y.; Hosaka, T.; Motoyama, K.; Ikeda, M.; 
Wakiyama, M.; Terada, T.; et al. Crystal structures of the human adiponectin receptors. Nature 2015, 520, 
312–316, doi:10.1038/nature14301. 

21. Ceperuelo-Mallafre, V.; Ejarque, M.; Duran, X.; Pachon, G.; Vazquez-Carballo, A.; Roche, K.; Nunez-Roa, 
C.; Garrido-Sanchez, L.; Tinahones, F.J.; Vendrell, J.; et al. Zinc-alpha2-Glycoprotein Modulates AKT-
Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase. PLoS ONE 
2015, 10, e0129644, doi:10.1371/journal.pone.0129644. 

22. Rahman, F.A.; Krause, M.P. PAI-1, the Plasminogen System, and Skeletal Muscle. Int. J. Mol. Sci. 2020, 21, 
doi:10.3390/ijms21197066. 

23. Langelueddecke, C.; Roussa, E.; Fenton, R.A.; Thévenod, F. Expression and function of the lipocalin-2 
(24p3/NGAL) receptor in rodent and human intestinal epithelia. PLoS ONE 2013, 8, e71586, 
doi:10.1371/journal.pone.0071586. 

24. Zhou, Y.; Zhang, B.; Hao, C.; Huang, X.; Li, X.; Huang, Y.; Luo, Z. Omentin-A Novel Adipokine in 
Respiratory Diseases. Int. J. Mol. Sci. 2017, 19, doi:10.3390/ijms19010073. 

25. Zhang, Y.; Chua, S., Jr. Leptin Function and Regulation. Compr. Physiol. 2017, 8, 351–369, 
doi:10.1002/cphy.c160041. 

26. Mancuso, P. The role of adipokines in chronic inflammation. Immunotargets Ther. 2016, 5, 47–56, 
doi:10.2147/itt.s73223. 

27. Francisco, V.; Pino, J.; Gonzalez-Gay, M.A.; Mera, A.; Lago, F.; Gómez, R.; Mobasheri, A.; Gualillo, O. 
Adipokines and inflammation: Is it a question of weight? Br. J. Pharmacol. 2018, 175, 1569–1579, 
doi:10.1111/bph.14181. 

28. Wolk, K.; Sabat, R. Adipokines in psoriasis: An important link between skin inflammation and metabolic 
alterations. Rev. Endocr. Metab. Disord. 2016, 17, 305–317, doi:10.1007/s11154-016-9381-0. 



Int. J. Mol. Sci. 2020, 21, 9048 19 of 29 

 

29. Lynch, M.; Ahern, T.; Sweeney, C.M.; Malara, A.; Tobin, A.M.; O'Shea, D.; Kirby, B. Adipokines, psoriasis, 
systemic inflammation, and endothelial dysfunction. Int. J. Dermatol. 2017, 56, 1103–1118, 
doi:10.1111/ijd.13699. 

30. Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse 
obese gene and its human homologue. Nature 1994, 372, 425–432, doi:10.1038/372425a0. 

31. Pan, W.W.; Myers, M.G., Jr. Leptin and the maintenance of elevated body weight. Nat. Reviews. Neurosci. 
2018, 19, 95–105, doi:10.1038/nrn.2017.168. 

32. Triantafyllou, G.A.; Paschou, S.A.; Mantzoros, C.S. Leptin and Hormones: Energy Homeostasis. Endocrinol. 
Metab. Clin. 2016, 45, 633–645, doi:10.1016/j.ecl.2016.04.012. 

33. Tong, K.M.; Shieh, D.C.; Chen, C.P.; Tzeng, C.Y.; Wang, S.P.; Huang, K.C.; Chiu, Y.C.; Fong, Y.C.; Tang, 
C.H. Leptin induces IL-8 expression via leptin receptor, IRS-1, PI3K, Akt cascade and promotion of NF-
kappaB/p300 binding in human synovial fibroblasts. Cell. Signal. 2008, 20, 1478–1488, 
doi:10.1016/j.cellsig.2008.04.003. 

34. Palhinha, L.; Liechocki, S.; Hottz, E.D.; Pereira, J.; de Almeida, C.J.; Moraes-Vieira, P.M.M.; Bozza, P.T.; 
Maya-Monteiro, C.M. Leptin Induces Proadipogenic and Proinflammatory Signaling in Adipocytes. Front. 
Endocrinol. 2019, 10, 841, doi:10.3389/fendo.2019.00841. 

35. Poeggeler, B.; Schulz, C.; Pappolla, M.A.; Bodó, E.; Tiede, S.; Lehnert, H.; Paus, R. Leptin and the skin: A 
new frontier. Exp. Dermatol. 2010, 19, 12–18, doi:10.1111/j.1600-0625.2009.00930.x. 

36. Lee, M.; Lee, E.; Jin, S.H.; Ahn, S.; Kim, S.O.; Kim, J.; Choi, D.; Lim, K.M.; Lee, S.T.; Noh, M. Leptin regulates 
the pro-inflammatory response in human epidermal keratinocytes. Arch. Dermatol. Res. 2018, 310, 351–362, 
doi:10.1007/s00403-018-1821-0. 

37. Kanda, N.; Watanabe, S. Leptin enhances human beta-defensin-2 production in human keratinocytes. 
Endocrinology 2008, 149, 5189–5198, doi:10.1210/en.2008-0343. 

38. Rico, L.; Del Rio, M.; Bravo, A.; Ramirez, A.; Jorcano, J.L.; Page, M.A.; Larcher, F. Targeted overexpression 
of leptin to keratinocytes in transgenic mice results in lack of skin phenotype but induction of early leptin 
resistance. Endocrinology 2005, 146, 4167–4176, doi:10.1210/en.2005-0156. 

39. Samal, B.; Sun, Y.; Stearns, G.; Xie, C.; Suggs, S.; McNiece, I. Cloning and characterization of the cDNA 
encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell Biol. 1994, 14, 1431–1437, 
doi:10.1128/mcb.14.2.1431. 

40. Lee, B.C.; Song, J.; Lee, A.; Cho, D.; Kim, T.S. Visfatin Promotes Wound Healing through the Activation of 
ERK1/2 and JNK1/2 Pathway. Int. J. Mol. Sci. 2018, 19, doi:10.3390/ijms19113642. 

41. Kanda, N.; Hau, C.S.; Tada, Y.; Tatsuta, A.; Sato, S.; Watanabe, S. Visfatin enhances CXCL8, CXCL10, and 
CCL20 production in human keratinocytes. Endocrinology 2011, 152, 3155–3164, doi:10.1210/en.2010-1481. 

42. Hau, C.S.; Kanda, N.; Noda, S.; Tatsuta, A.; Kamata, M.; Shibata, S.; Asano, Y.; Sato, S.; Watanabe, S.; Tada, 
Y. Visfatin enhances the production of cathelicidin antimicrobial peptide, human beta-defensin-2, human 
beta-defensin-3, and S100A7 in human keratinocytes and their orthologs in murine imiquimod-induced 
psoriatic skin. Am. J. Pathol. 2013, 182, 1705–1717, doi:10.1016/j.ajpath.2013.01.044. 

43. Managò, A.; Audrito, V.; Mazzola, F.; Sorci, L. Extracellular nicotinate phosphoribosyltransferase binds 
Toll like receptor 4 and mediates inflammation. Nat. Commun. 2019, 10, 4116, doi:10.1038/s41467-019-12055-
2. 

44. Travelli, C.; Colombo, G.; Mola, S.; Genazzani, A.A.; Porta, C. NAMPT: A pleiotropic modulator of 
monocytes and macrophages. Pharm. Res. 2018, 135, 25–36, doi:10.1016/j.phrs.2018.06.022. 

45. La Manna, G.; Ghinatti, G.; Tazzari, P.L.; Alviano, F.; Ricci, F.; Capelli, I.; Cuna, V.; Todeschini, P.; 
Brunocilla, E.; Pagliaro, P.; et al. Neutrophil gelatinase-associated lipocalin increases HLA-G(+)/FoxP3(+) 
T-regulatory cell population in an in vitro model of PBMC. PLoS ONE 2014, 9, e89497, 
doi:10.1371/journal.pone.0089497. 

46. Mallbris, L.; O’Brien, K.P.; Hulthén, A.; Sandstedt, B.; Cowland, J.B.; Borregaard, N.; Ståhle-Bäckdahl, M. 
Neutrophil gelatinase-associated lipocalin is a marker for dysregulated keratinocyte differentiation in 
human skin. Exp. Dermatol. 2002, 11, 584–591, doi:10.1034/j.1600-0625.2002.110611.x. 

47. Wolk, K.; Wenzel, J.; Tsaousi, A.; Witte-Händel, E.; Babel, N.; Zelenak, C.; Volk, H.D.; Sterry, W.; Schneider-
Burrus, S.; Sabat, R. Lipocalin-2 is expressed by activated granulocytes and keratinocytes in affected skin 
and reflects disease activity in acne inversa/hidradenitis suppurativa. Br. J. Dermatol. 2017, 177, 1385–1393, 
doi:10.1111/bjd.15424. 



Int. J. Mol. Sci. 2020, 21, 9048 20 of 29 

 

48. Shao, S.; Cao, T.; Jin, L.; Li, B.; Fang, H.; Zhang, J.; Zhang, Y.; Hu, J.; Wang, G. Increased Lipocalin-2 
Contributes to the Pathogenesis of Psoriasis by Modulating Neutrophil Chemotaxis and Cytokine 
Secretion. J. Investig. Dermatol. 2016, 136, 1418–1428, doi:10.1016/j.jid.2016.03.002. 

49. Béke, G.; Dajnoki, Z.; Kapitány, A.; Gáspár, K.; Medgyesi, B.; Póliska, S.; Hendrik, Z.; Péter, Z.; Törőcsik, 
D.; Bíró, T.; et al. Immunotopographical Differences of Human Skin. Front. Immunol. 2018, 9, 424, 
doi:10.3389/fimmu.2018.00424. 

50. Flevaris, P.; Vaughan, D. The Role of Plasminogen Activator Inhibitor Type-1 in Fibrosis. Semin. Thromb. 
Hemost. 2017, 43, 169–177, doi:10.1055/s-0036-1586228. 

51. Rømer, J.; Lund, L.R.; Eriksen, J.; Ralfkiaer, E.; Zeheb, R.; Gelehrter, T.D.; Danø, K.; Kristensen, P. 
Differential expression of urokinase-type plasminogen activator and its type-1 inhibitor during healing of 
mouse skin wounds. J. Investig. Dermatol. 1991, 97, 803–811, doi:10.1111/1523-1747.ep12486833. 

52. Lund, L.R.; Eriksen, J.; Ralfkiaer, E.; Rømer, J. Differential expression of urokinase-type plasminogen 
activator, its receptor, and inhibitors in mouse skin after exposure to a tumor-promoting phorbol ester. J. 
Investig. Dermatol. 1996, 106, 622–630, doi:10.1111/1523-1747.ep12345425. 

53. Jacenik, D.; Fichna, J. Chemerin in immune response and gastrointestinal pathophysiology. Clin. Chim. 
Acta; Int. J. Clin. Chem. 2020, 504, 146–153, doi:10.1016/j.cca.2020.02.008. 

54. Wang, Y.; Huo, J.; Zhang, D.; Hu, G.; Zhang, Y. Chemerin/ChemR23 axis triggers an inflammatory response 
in keratinocytes through ROS-sirt1-NF-kappaB signaling. J. Cell. Biochem. 2019, 120, 6459–6470, 
doi:10.1002/jcb.27936. 

55. Dubois-Vedrenne, I.; De Henau, O.; Robert, V.; Langa, F.; Javary, J.; Al Delbany, D.; Vosters, O.; Angelats-
Canals, E.; Vernimmen, M.; Luangsay, S.; et al. Expression of Bioactive Chemerin by Keratinocytes Inhibits 
Late Stages of Tumor Development in a Chemical Model of Skin Carcinogenesis. Front. Oncol. 2019, 9, 1253, 
doi:10.3389/fonc.2019.01253. 

56. Guzik, T.J.; Skiba, D.S.; Touyz, R.M.; Harrison, D.G. The role of infiltrating immune cells in dysfunctional 
adipose tissue. Cardiovasc. Res. 2017, 113, 1009–1023, doi:10.1093/cvr/cvx108. 

57. Mai, W.; Lu, D.; Liu, X.; Chen, L. MCP-1 produced by keratinocytes is associated with leucocyte recruitment 
during elicitation of nickel-induced occupational allergic contact dermatitis. Toxicol. Ind. Health 2018, 34, 
36–43, doi:10.1177/0748233717738633. 

58. Li, J.; Farthing, P.M.; Thornhill, M.H. Oral and skin keratinocytes are stimulated to secrete monocyte 
chemoattractant protein-1 by tumour necrosis factor-alpha and interferon-gamma. J. Oral Pathol. Med. Off. 
Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2000, 29, 438–444, doi:10.1034/j.1600-0714.2000.290904.x. 

59. Giustizieri, M.L.; Mascia, F.; Frezzolini, A.; De Pità, O.; Chinni, L.M.; Giannetti, A.; Girolomoni, G.; Pastore, 
S. Keratinocytes from patients with atopic dermatitis and psoriasis show a distinct chemokine production 
profile in response to T cell-derived cytokines. J. Allergy Clin. Immunol. 2001, 107, 871–877, 
doi:10.1067/mai.2001.114707. 

60. Lee, W.J.; Jo, S.Y.; Lee, M.H.; Won, C.H.; Lee, M.W.; Choi, J.H.; Chang, S.E. The Effect of MCP-1/CCR2 on 
the Proliferation and Senescence of Epidermal Constituent Cells in Solar Lentigo. Int. J. Mol. Sci. 2016, 17, 
doi:10.3390/ijms17060948. 

61. Yamashiro, S.; Takeya, M.; Kuratsu, J.; Ushio, Y.; Takahashi, K.; Yoshimura, T. Intradermal injection of 
monocyte chemoattractant protein-1 induces emigration and differentiation of blood monocytes in rat skin. 
Int. Arch. Allergy Immunol. 1998, 115, 15–23, doi:10.1159/000023825. 

62. Nakamura, K.; Williams, I.R.; Kupper, T.S. Keratinocyte-derived monocyte chemoattractant protein 1 
(MCP-1): Analysis in a transgenic model demonstrates MCP-1 can recruit dendritic and Langerhans cells 
to skin. J. Investig. Dermatol. 1995, 105, 635–643, doi:10.1111/1523-1747.ep12324061. 

63. Huang, X.; Yang, Z. Resistin’s, obesity and insulin resistance: The continuing disconnect between rodents 
and humans. J. Endocrinol. Investig. 2016, 39, 607–615, doi:10.1007/s40618-015-0408-2. 

64. Harrison, W.J.; Bull, J.J.; Seltmann, H.; Zouboulis, C.C.; Philpott, M.P. Expression of lipogenic factors 
galectin-12, resistin, SREBP-1, and SCD in human sebaceous glands and cultured sebocytes. J. Investig. 
Dermatol. 2007, 127, 1309–1317, doi:10.1038/sj.jid.5700743. 

65. Kumar, D.; Lee, B.; Puan, K.J.; Lee, W.; Luis, B.S.; Yusof, N.; Andiappan, A.K.; Del Rosario, R. Resistin 
expression in human monocytes is controlled by two linked promoter SNPs mediating NFKB p50/p50 
binding and C-methylation. Sci. Rep. 2019, 9, 15245, doi:10.1038/s41598-019-51592-0. 



Int. J. Mol. Sci. 2020, 21, 9048 21 of 29 

 

66. Kelly, M.; Widjaja-Adhi, M.A.; Palczewski, G.; von Lintig, J. Transport of vitamin A across blood-tissue 
barriers is facilitated by STRA6. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2016, 30, 2985–2995, 
doi:10.1096/fj.201600446R. 

67. Skazik, C.; Amann, P.M.; Heise, R.; Marquardt, Y.; Czaja, K.; Kim, A.; Rühl, R.; Kurschat, P.; Merk, H.F.; 
Bickers, D.R.; et al. Downregulation of STRA6 expression in epidermal keratinocytes leads to 
hyperproliferation-associated differentiation in both in vitro and in vivo skin models. J. Investig. Dermatol. 
2014, 134, 1579–1588, doi:10.1038/jid.2013.507. 

68. Kidoya, H.; Naito, H.; Takakura, N. Apelin induces enlarged and nonleaky blood vessels for functional 
recovery from ischemia. Blood 2010, 115, 3166–3174, doi:10.1182/blood-2009-07-232306. 

69. Lv, S.Y.; Cui, B.; Chen, W.D.; Wang, Y.D. Apelin/APJ system: A key therapeutic target for liver disease. 
Oncotarget 2017, 8, 112145–112151, doi:10.18632/oncotarget.22841. 

70. Lee, H.J.; Lim, Y.; Yang, S.J. Involvement of resveratrol in crosstalk between adipokine adiponectin and 
hepatokine fetuin-A in vivo and in vitro. J. Nutr. Biochem. 2015, 26, 1254–1260, 
doi:10.1016/j.jnutbio.2015.06.001. 

71. Wang, X.Q.; Hung, B.S.; Kempf, M.; Liu, P.Y.; Dalley, A.J.; Saunders, N.A.; Kimble, R.M. Fetuin-A promotes 
primary keratinocyte migration: Independent of epidermal growth factor receptor signalling. Exp. 
Dermatol. 2010, 19, e289–e292, doi:10.1111/j.1600-0625.2009.00978.x. 

72. Xiao, X.H.; Wang, Y.D.; Qi, X.Y.; Wang, Y.Y.; Li, J.Y.; Li, H.; Zhang, P.Y.; Liao, H.L.; Li, M.H.; Liao, Z.Z.; et 
al. Zinc alpha2 glycoprotein protects against obesity-induced hepatic steatosis. Int. J. Obes. 2018, 42, 1418–
1430, doi:10.1038/s41366-018-0151-9. 

73. Chen, S.H.; Arany, I.; Apisarnthanarax, N.; Rajaraman, S.; Tyring, S.K.; Horikoshi, T.; Brysk, H.; Brysk, 
M.M. Response of keratinocytes from normal and psoriatic epidermis to interferon-gamma differs in the 
expression of zinc-alpha(2)-glycoprotein and cathepsin D. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2000, 14, 
565–571, doi:10.1096/fasebj.14.3.565. 

74. Wang, Z.V.; Scherer, P.E. Adiponectin, the past two decades. J. Mol. Cell Biol. 2016, 8, 93–100, 
doi:10.1093/jmcb/mjw011. 

75. Bjursell, M.; Ahnmark, A.; Bohlooly, Y.M.; William-Olsson, L.; Rhedin, M.; Peng, X.R.; Ploj, K.; Gerdin, 
A.K.; Arnerup, G.; Elmgren, A.; et al. Opposing effects of adiponectin receptors 1 and 2 on energy 
metabolism. Diabetes 2007, 56, 583–593, doi:10.2337/db06-1432. 

76. Ouchi, N.; Kihara, S.; Arita, Y.; Nishida, M.; Matsuyama, A.; Okamoto, Y.; Ishigami, M.; Kuriyama, H.; 
Kishida, K.; Nishizawa, H.; et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid 
accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. 
Circulation 2001, 103, 1057–1063, doi:10.1161/01.cir.103.8.1057. 

77. Yamaguchi, N.; Argueta, J.G.; Masuhiro, Y.; Kagishita, M.; Nonaka, K.; Saito, T.; Hanazawa, S.; Yamashita, 
Y. Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett. 2005, 579, 6821–6826, 
doi:10.1016/j.febslet.2005.11.019. 

78. Wolf, A.M.; Wolf, D.; Rumpold, H.; Enrich, B.; Tilg, H. Adiponectin induces the anti-inflammatory 
cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 2004, 323, 630–635, 
doi:10.1016/j.bbrc.2004.08.145. 

79. Won, C.H.; Yoo, H.G.; Park, K.Y.; Shin, S.H.; Park, W.S.; Park, P.J.; Chung, J.H.; Kwon, O.S.; Kim, K.H. Hair 
growth-promoting effects of adiponectin in vitro. J. Investig. Dermatol. 2012, 132, 2849–2851, 
doi:10.1038/jid.2012.217. 

80. Shibata, S.; Tada, Y.; Asano, Y.; Hau, C.S.; Kato, T.; Saeki, H.; Yamauchi, T.; Kubota, N.; Kadowaki, T.; Sato, 
S. Adiponectin regulates cutaneous wound healing by promoting keratinocyte proliferation and migration 
via the ERK signaling pathway. J. Immunol. 2012, 189, 3231–3241, doi:10.4049/jimmunol.1101739. 

81. Hong, S.P.; Seo, H.S.; Shin, K.O.; Park, K.; Park, B.C.; Kim, M.H.; Park, M.; Kim, C.D.; Seo, S.J. Adiponectin 
Enhances Human Keratinocyte Lipid Synthesis via SIRT1 and Nuclear Hormone Receptor Signaling. J. 
Investig. Dermatol. 2019, 139, 573–582, doi:10.1016/j.jid.2018.08.032. 

82. Kawai, K.; Kageyama, A.; Tsumano, T.; Nishimoto, S.; Fukuda, K.; Yokoyama, S.; Oguma, T.; Fujita, K.; 
Yoshimoto, S.; Yanai, A.; et al. Effects of adiponectin on growth and differentiation of human keratinocytes-
-implication of impaired wound healing in diabetes. Biochem. Biophys. Res. Commun. 2008, 374, 269–273, 
doi:10.1016/j.bbrc.2008.07.045. 



Int. J. Mol. Sci. 2020, 21, 9048 22 of 29 

 

83. Kim, M.; Park, K.Y.; Lee, M.K.; Jin, T.; Seo, S.J. Adiponectin Suppresses UVB-Induced Premature 
Senescence and hBD2 Overexpression in Human Keratinocytes. PLoS ONE 2016, 11, e0161247, 
doi:10.1371/journal.pone.0161247. 

84. Jin, T.; Park, K.Y.; Seo, S.J. Adiponectin Upregulates Filaggrin Expression via SIRT1-Mediated Signaling in 
Human Normal Keratinocytes. Ann. Dermatol. 2017, 29, 407–413, doi:10.5021/ad.2017.29.4.407. 

85. Zhang, C.; Zhu, K.J.; Liu, J.L.; Xu, G.X.; Liu, W.; Jiang, F.X.; Zheng, H.F.; Quan, C. Omentin-1 plasma levels 
and omentin-1 expression are decreased in psoriatic lesions of psoriasis patients. Arch. Dermatol. Res. 2015, 
307, 455–459, doi:10.1007/s00403-015-1549-z. 

86. Saalbach, A.; Vester, K.; Rall, K.; Tremel, J.; Anderegg, U.; Beck-Sickinger, A.G.; Blüher, M.; Simon, J.C. 
Vaspin--a link of obesity and psoriasis? Exp. Dermatol. 2012, 21, 309–312, doi:10.1111/j.1600-
0625.2012.01460.x. 

87. Saalbach, A.; Tremel, J.; Herbert, D.; Schwede, K.; Wandel, E.; Schirmer, C.; Anderegg, U.; Beck-Sickinger, 
A.G.; Heiker, J.T.; Schultz, S.; et al. Anti-Inflammatory Action of Keratinocyte-Derived Vaspin: Relevance 
for the Pathogenesis of Psoriasis. Am. J. Pathol. 2016, 186, 639–651, doi:10.1016/j.ajpath.2015.10.030. 

88. Di Carlo, S.E.; Peduto, L. The perivascular origin of pathological fibroblasts. J. Clin. Investig. 2018, 128, 54–
63, doi:10.1172/jci93558. 

89. Chen, J.H.; Goh, K.J.; Rocha, N.; Groeneveld, M.P. Evaluation of human dermal fibroblasts directly 
reprogrammed to adipocyte-like cells as a metabolic disease model. Dis. Models Mech. 2017, 10, 1411–1420, 
doi:10.1242/dmm.030981. 

90. Glasow, A.; Kiess, W.; Anderegg, U.; Berthold, A.; Bottner, A.; Kratzsch, J. Expression of leptin (Ob) and 
leptin receptor (Ob-R) in human fibroblasts: Regulation of leptin secretion by insulin. J. Clin. Endocrinol. 
Metab. 2001, 86, 4472–4479, doi:10.1210/jcem.86.9.7792. 

91. Ambrosini, G.; Nath, A.K.; Sierra-Honigmann, M.R.; Flores-Riveros, J. Transcriptional activation of the 
human leptin gene in response to hypoxia. Involvement of hypoxia-inducible factor 1. J. Biol. Chem. 2002, 
277, 34601–34609, doi:10.1074/jbc.M205172200. 

92. Ezure, T.; Amano, S. Adiponectin and leptin up-regulate extracellular matrix production by dermal 
fibroblasts. Biofactors 2007, 31, 229–236, doi:10.1002/biof.5520310310. 

93. Luo, L.; Li, J.; Liu, H.; Jian, X.; Zou, Q.; Zhao, Q.; Le, Q.; Chen, H.; Gao, X.; He, C. Adiponectin Is Involved 
in Connective Tissue Growth Factor-Induced Proliferation, Migration and Overproduction of the 
Extracellular Matrix in Keloid Fibroblasts. Int. J. Mol. Sci. 2017, 18, doi:10.3390/ijms18051044. 

94. Fang, C.L.; Huang, L.H.; Tsai, H.Y.; Chang, H.I. Dermal Lipogenesis Inhibits Adiponectin Production in 
Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced 
Dermal Matrix Degradation in Human Skin. Int. J. Mol. Sci. 2016, 17, doi:10.3390/ijms17071129. 

95. Fang, F.; Liu, L.; Yang, Y.; Tamaki, Z.; Wei, J.; Marangoni, R.G.; Bhattacharyya, S.; Summer, R.S.; Ye, B.; 
Varga, J. The adipokine adiponectin has potent anti-fibrotic effects mediated via adenosine 
monophosphate-activated protein kinase: Novel target for fibrosis therapy. Arthritis Res. Ther. 2012, 14, 
R229, doi:10.1186/ar4070. 

96. Farsam, V.; Basu, A.; Gatzka, M.; Treiber, N.; Schneider, L.A.; Mulaw, M.A.; Lucas, T.; Kochanek, S.; 
Dummer, R.; Levesque, M.P.; et al. Senescent fibroblast-derived Chemerin promotes squamous cell 
carcinoma migration. Oncotarget 2016, 7, 83554–83569, doi:10.18632/oncotarget.13446. 

97. Yokoyama, Y.; Sekiguchi, A.; Fujiwara, C.; Uchiyama, A.; Uehara, A.; Ogino, S.; Torii, R.; Ishikawa, O.; 
Motegi, S.I. Inhibitory Regulation of Skin Fibrosis in Systemic Sclerosis by Apelin/APJ Signaling. Arthritis 
Rheumatol. 2018, 70, 1661–1672, doi:10.1002/art.40533. 

98. He, Z.; Ong, C.H.; Halper, J.; Bateman, A. Progranulin is a mediator of the wound response. Nat. Med. 2003, 
9, 225–229, doi:10.1038/nm816. 

99. Zouboulis, C.C.; Picardo, M.; Ju, Q.; Kurokawa, I.; Törőcsik, D.; Bíró, T.; Schneider, M.R. Beyond acne: 
Current aspects of sebaceous gland biology and function. Rev. Endocr. Metab. Disord. 2016, 17, 319–334, 
doi:10.1007/s11154-016-9389-5. 

100. Nagy, I.; Pivarcsi, A.; Kis, K.; Koreck, A.; Bodai, L.; McDowell, A.; Seltmann, H.; Patrick, S.; Zouboulis, C.C.; 
Kemény, L. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial 
peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 2006, 8, 2195–
2205, doi:10.1016/j.micinf.2006.04.001. 

101. Kovács, D.; Lovászi, M.; Póliska, S.; Oláh, A. Sebocytes differentially express and secrete adipokines. Exp. 
Dermatol. 2016, 25, 194–199, doi:10.1111/exd.12879. 



Int. J. Mol. Sci. 2020, 21, 9048 23 of 29 

 

102. Törőcsik, D.; Kovács, D.; Camera, E.; Lovászi, M.; Cseri, K.; Nagy, G.G.; Molinaro, R.; Rühl, R.; Tax, G.; 
Szabó, K.; et al. Leptin promotes a proinflammatory lipid profile and induces inflammatory pathways in 
human SZ95 sebocytes. Br. J. Dermatol. 2014, 171, 1326–1335, doi:10.1111/bjd.13229. 

103. Chen, H.C.; Smith, S.J.; Tow, B.; Elias, P.M.; Farese, R.V., Jr. Leptin modulates the effects of acyl 
CoA:diacylglycerol acyltransferase deficiency on murine fur and sebaceous glands. J. Clin. Investig. 2002, 
109, 175–181, doi:10.1172/jci13880. 

104. Melnik, B.C. Is sebocyte-derived leptin the missing link between hyperseborrhea, ductal hypoxia, 
inflammation and comedogenesis in acne vulgaris? Exp. Dermatol. 2016, 25, 181–182, doi:10.1111/exd.12917. 

105. Jung, Y.R.; Lee, J.H.; Sohn, K.C.; Lee, Y.; Seo, Y.J.; Kim, C.D.; Lee, J.H.; Hong, S.P.; Seo, S.J.; Kim, S.J.; et al. 
Adiponectin Signaling Regulates Lipid Production in Human Sebocytes. PLoS ONE 2017, 12, e0169824, 
doi:10.1371/journal.pone.0169824. 

106. D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. 
J. Mol. Sci. 2016, 17, doi:10.3390/ijms17071144. 

107. Morpurgo, G.; Fioretti, B.; Catacuzzeno, L. The increased incidence of malignant melanoma in obese 
individuals is due to impaired melanogenesis and melanocyte DNA repair. Med. Hypotheses 2012, 78, 533–
535, doi:10.1016/j.mehy.2012.01.028. 

108. Bang, S.; Won, K.H.; Moon, H.R.; Yoo, H.; Hong, A.; Song, Y. Novel regulation of melanogenesis by 
adiponectin via the AMPK/CRTC pathway. Pigment Cell Melanoma Res. 2017, 30, 553–557, 
doi:10.1111/pcmr.12596. 

109. Chung, B.Y.; Noh, T.K.; Yang, S.H.; Kim, I.H.; Lee, M.W.; Yoon, T.J.; Chang, S.E. Gene expression profiling 
in melasma in Korean women. Dermatology 2014, 229, 333–342, doi:10.1159/000365080. 

110. Hale, L.P. Zinc alpha-2-glycoprotein regulates melanin production by normal and malignant melanocytes. 
J. Investig. Dermatol. 2002, 119, 464–470, doi:10.1046/j.1523-1747.2002.01813.x. 

111. Bagherani, N. The Newest Hypothesis about Vitiligo: Most of the Suggested Pathogeneses of Vitiligo Can 
Be Attributed to Lack of One Factor, Zinc-alpha2-Glycoprotein. ISRN Dermatol. 2012, 2012, 405268, 
doi:10.5402/2012/405268. 

112. El-Rifaie, A.; Gohary, Y.M.; Abd-El Aziz, G.M.; Owies, F.O. Zinc-alpha2-Glycoprotein (ZAG): A New 
Deficiency in Vitiligo Patients. Skinmed 2019, 17, 248–253. 

113. Saxena, N.; Mok, K.W.; Rendl, M. An updated classification of hair follicle morphogenesis. Exp. Dermatol. 
2019, 28, 332–344, doi:10.1111/exd.13913. 

114. Oh, J.W.; Kloepper, J.; Langan, E.A.; Kim, Y.; Yeo, J.; Kim, M.J.; Hsi, T.C.; Rose, C.; Yoon, G.S.; Lee, S.J.; et 
al. A Guide to Studying Human Hair Follicle Cycling In Vivo. J. Investig. Dermatol. 2016, 136, 34–44, 
doi:10.1038/jid.2015.354. 

115. Paus, R.; Langan, E.A.; Vidali, S.; Ramot, Y.; Andersen, B. Neuroendocrinology of the hair follicle: 
Principles and clinical perspectives. Trends Mol. Med. 2014, 20, 559–570, doi:10.1016/j.molmed.2014.06.002. 

116. Grymowicz, M.; Rudnicka, E. Hormonal Effects on Hair Follicles. Int. J. Mol. Sci. 2020, 21, 5342, 
doi:10.3390/ijms21155342. 

117. Tóth, K.F.; Ádám, D. Cannabinoid Signaling in the Skin: Therapeutic Potential of the “C(ut)annabinoid” 
System. Molecules 2019, 24, 918, doi:10.3390/molecules24050918. 

118. Iguchi, M.; Aiba, S.; Yoshino, Y.; Tagami, H. Human follicular papilla cells carry out nonadipose tissue 
production of leptin. J. Investig. Dermatol. 2001, 117, 1349–1356, doi:10.1046/j.0022-202x.2001.01606.x. 

119. Sumikawa, Y.; Inui, S.; Nakajima, T.; Itami, S. Hair cycle control by leptin as a new anagen inducer. Exp. 
Dermatol. 2014, 23, 27–32, doi:10.1111/exd.12286. 

120. Tiede, S.; Kloepper, J.E.; Ernst, N.; Poeggeler, B.; Kruse, C.; Paus, R. Nestin in human skin: Exclusive 
expression in intramesenchymal skin compartments and regulation by leptin. J. Investig. Dermatol. 2009, 
129, 2711–2720, doi:10.1038/jid.2009.148. 

121. Yang, C.C.; Sheu, H.M.; Chung, P.L.; Chang, C.H.; Tsai, Y.S.; Hughes, M.W.; Tuan, T.L.; Huang, L.L. Leptin 
of dermal adipose tissue is differentially expressed during the hair cycle and contributes to adipocyte-
mediated growth inhibition of anagen-phase vibrissa hair. Exp. Dermatol. 2015, 24, 57–60, 
doi:10.1111/exd.12566. 

122. Foster, A.R.; Nicu, C.; Schneider, M.R.; Hinde, E.; Paus, R. Dermal white adipose tissue undergoes major 
morphological changes during the spontaneous and induced murine hair follicle cycling: A reappraisal. 
Arch. Dermatol. Res. 2018, 310, 453–462, doi:10.1007/s00403-018-1831-y. 



Int. J. Mol. Sci. 2020, 21, 9048 24 of 29 

 

123. Harris, R.B. Direct and indirect effects of leptin on adipocyte metabolism. Biochim. Biophys. Acta 2014, 1842, 
414–423, doi:10.1016/j.bbadis.2013.05.009. 

124. Yang, C.C.; Chung, P.L.; Lin, L.Y.; Hughes, M.W.; Tsai, Y.S. Higher plasma leptin is associated with higher 
risk of androgenetic alopecia in men. Exp. Dermatol. 2017, 26, 524–526, doi:10.1111/exd.13369. 

125. Lyons-Giordano, B.; Lazarus, G.S. Skin abnormalities in mice transgenic for plasminogen activator 
inhibitor 1: Implications for the regulation of desquamation and follicular neogenesis by plasminogen 
activator enzymes. Dev. Biol. 1995, 170, 289–298, doi:10.1006/dbio.1995.1215. 

126. Kato, M.; Hasunuma, N.; Nakayama, R.; Takeda, J.; Itami, S.; Taira, M.; Manabe, M.; Osada, S. Progranulin, 
a secreted tumorigenesis and dementia-related factor, regulates mouse hair growth. J. Dermatol. Sci. 2009, 
53, 234–236, doi:10.1016/j.jdermsci.2008.10.002. 

127. Incel-Uysal, P.; Akdogan, N.; Alli, N.; Oktem, A.; Candar, T.; Topcuoglu, C.; Turhan, T. Assessment of 
Metabolic Profile and Ischemia-modified Albumin Level in Patients with Alopecia Areata: A Case-Control 
Study. Indian J. Dermatol. 2019, 64, 12–18, doi:10.4103/ijd.IJD_238_18. 

128. Narla, S.; Azzam, M.; Townsend, S.; Vellaichamy, G.; Marzano, A.V. Identifying key components and 
therapeutic targets of the immune system in hidradenitis suppurativa with an emphasis on neutrophils. 
Br. J. Dermatol. 2020, doi:10.1111/bjd.19538. 

129. Stallmeyer, B.; Kämpfer, H.; Podda, M.; Kaufmann, R.; Pfeilschifter, J.; Frank, S. A novel keratinocyte 
mitogen: Regulation of leptin and its functional receptor in skin repair. J. Investig. Dermatol. 2001, 117, 98–
105, doi:10.1046/j.0022-202x.2001.01387.x. 

130. Tadokoro, S.; Ide, S.; Tokuyama, R.; Umeki, H.; Tatehara, S.; Kataoka, S.; Satomura, K. Leptin promotes 
wound healing in the skin. PLoS ONE 2015, 10, e0121242, doi:10.1371/journal.pone.0121242. 

131. Frank, S.; Stallmeyer, B.; Kämpfer, H.; Kolb, N.; Pfeilschifter, J. Leptin enhances wound re-epithelialization 
and constitutes a direct function of leptin in skin repair. J. Clin. Investig. 2000, 106, 501–509, 
doi:10.1172/jci9148. 

132. Murad, A.; Nath, A.K.; Cha, S.T.; Demir, E.; Flores-Riveros, J.; Sierra-Honigmann, M.R. Leptin is an 
autocrine/paracrine regulator of wound healing. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003, 17, 1895–
1897, doi:10.1096/fj.03-0068fje. 

133. Lerman, O.Z.; Galiano, R.D.; Armour, M.; Levine, J.P.; Gurtner, G.C. Cellular dysfunction in the diabetic 
fibroblast: Impairment in migration, vascular endothelial growth factor production, and response to 
hypoxia. Am. J. Pathol. 2003, 162, 303–312, doi:10.1016/s0002-9440(10)63821-7. 

134. Miao, Q.; Ku, A.T.; Nishino, Y.; Howard, J.M.; Rao, A.S.; Shaver, T.M.; Garcia, G.E.; Le, D.N.; Karlin, K.L.; 
Westbrook, T.F.; et al. Tcf3 promotes cell migration and wound repair through regulation of lipocalin 2. 
Nat. Commun. 2014, 5, 4088, doi:10.1038/ncomms5088. 

135. Xu, M.; Zhang, Y.; Cheng, H.; Liu, Y.; Zou, X.; Zhan, N.; Xiao, S.; Xia, Y. Transcription factor 7-like 1 
dysregulates keratinocyte differentiation through upregulating lipocalin 2. Cell Death Discov. 2016, 2, 16028, 
doi:10.1038/cddiscovery.2016.28. 

136. Fitsialos, G.; Chassot, A.A.; Turchi, L.; Dayem, M.A.; LeBrigand, K.; Moreilhon, C.; Meneguzzi, G.; Buscà, 
R.; Mari, B.; Barbry, P.; et al. Transcriptional signature of epidermal keratinocytes subjected to in vitro 
scratch wounding reveals selective roles for ERK1/2, p38, and phosphatidylinositol 3-kinase signaling 
pathways. J. Biol. Chem. 2007, 282, 15090–15102, doi:10.1074/jbc.M606094200. 

137. Providence, K.M.; Higgins, P.J. PAI-1 expression is required for epithelial cell migration in two distinct 
phases of in vitro wound repair. J. Cell. Physiol. 2004, 200, 297–308, doi:10.1002/jcp.20016. 

138. Dipietro, L.A.; Reintjes, M.G.; Low, Q.E.; Levi, B.; Gamelli, R.L. Modulation of macrophage recruitment 
into wounds by monocyte chemoattractant protein-1. Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. 
Tissue Repair Soc. 2001, 9, 28–33, doi:10.1046/j.1524-475x.2001.00028.x. 

139. Akazawa, Y.; Sayo, T.; Sugiyama, Y.; Sato, T.; Akimoto, N.; Ito, A.; Inoue, S. Adiponectin resides in mouse 
skin and upregulates hyaluronan synthesis in dermal fibroblasts. Connect. Tissue Res. 2011, 52, 322–328, 
doi:10.3109/03008207.2010.528566. 

140. Herédi, E.; Csordás, A.; Clemens, M.; Adám, B.; Gáspár, K.; Törőcsik, D.; Nagy, G.; Adány, R.; Gaál, J.; 
Remenyik, E.; et al. The prevalence of obesity is increased in patients with late compared with early onset 
psoriasis. Ann. Epidemiol. 2013, 23, 688–692, doi:10.1016/j.annepidem.2013.08.006. 

141. Wong, Y.; Nakamizo, S.; Tan, K.J.; Kabashima, K. An Update on the Role of Adipose Tissues in Psoriasis. 
Front. Immunol. 2019, 10, 1507, doi:10.3389/fimmu.2019.01507. 



Int. J. Mol. Sci. 2020, 21, 9048 25 of 29 

 

142. Kong, Y.; Zhang, S.; Wu, R.; Su, X.; Peng, D.; Zhao, M.; Su, Y. New insights into different adipokines in 
linking the pathophysiology of obesity and psoriasis. Lipids Health Dis. 2019, 18, 171, doi:10.1186/s12944-
019-1115-3. 

143. Cerman, A.A.; Bozkurt, S.; Sav, A.; Tulunay, A.; Elbaşi, M.O.; Ergun, T. Serum leptin levels, skin leptin and 
leptin receptor expression in psoriasis. Br. J. Dermatol. 2008, 159, 820–826, doi:10.1111/j.1365-
2133.2008.08742.x. 

144. Aly, D.G.; Abdallah, I.Y.; Hanafy, N.S.; Elsaie, M.L.; Hafiz, N.A. Elevated serum leptin levels in nonobese 
patients with psoriasis. J. Drugs Dermatol. JDD 2013, 12, e25-9. 

145. Kyriakou, A.; Patsatsi, A.; Sotiriadis, D.; Goulis, D.G. Serum Leptin, Resistin, and Adiponectin 
Concentrations in Psoriasis: A Meta-Analysis of Observational Studies. Dermatology 2017, 233, 378–389, 
doi:10.1159/000481882. 

146. Wang, Y.; Chen, J.; Zhao, Y.; Geng, L.; Song, F.; Chen, H.D. Psoriasis is associated with increased levels of 
serum leptin. Br. J. Dermatol. 2008, 158, 1134–1135, doi:10.1111/j.1365-2133.2008.08456.x. 

147. Baran, A.; Flisiak, I.; Jaroszewicz, J.; Świderska, M. Serum adiponectin and leptin levels in psoriatic patients 
according to topical treatment. J. Dermatol. Treat. 2015, 26, 134–138, doi:10.3109/09546634.2014.915917. 

148. Johnston, A.; Arnadottir, S.; Gudjonsson, J.E.; Aphale, A.; Sigmarsdottir, A.A.; Gunnarsson, S.I.; Steinsson, 
J.T.; Elder, J.T.; Valdimarsson, H. Obesity in psoriasis: Leptin and resistin as mediators of cutaneous 
inflammation. Br. J. Dermatol. 2008, 159, 342–350, doi:10.1111/j.1365-2133.2008.08655.x. 

149. Mitsuyama, S.; Abe, F.; Kimura, M.; Yoshida, M.; Higuchi, T. Association between leptin gene expression 
in subcutaneous adipose tissue and circulating leptin levels in obese patients with psoriasis. Arch. Dermatol. 
Res. 2015, 307, 539–544, doi:10.1007/s00403-015-1581-z. 

150. Takahashi, H.; Tsuji, H.; Honma, M.; Ishida-Yamamoto, A.; Iizuka, H. Increased plasma resistin and 
decreased omentin levels in Japanese patients with psoriasis. Arch. Dermatol. Res. 2013, 305, 113–116, 
doi:10.1007/s00403-012-1310-9. 

151. Huang, K.; Chen, A.; Zhang, X.; Song, Z.; Xu, H.; Cao, J.; Yin, Y. Progranulin is preferentially expressed in 
patients with psoriasis vulgaris and protects mice from psoriasis-like skin inflammation. Immunology 2015, 
145, 279–287, doi:10.1111/imm.12446. 

152. Rubina, K.A.; Sysoeva, V.Y.; Zagorujko, E.I.; Tsokolaeva, Z.I.; Kurdina, M.I.; Parfyonova, Y.V.; Tkachuk, 
V.A. Increased expression of uPA, uPAR, and PAI-1 in psoriatic skin and in basal cell carcinomas. Arch. 
Dermatol. Res. 2017, 309, 433–442, doi:10.1007/s00403-017-1738-z. 

153. Ismail, S.A.; Mohamed, S.A. Serum levels of visfatin and omentin-1 in patients with psoriasis and their 
relation to disease severity. Br. J. Dermatol. 2012, 167, 436–439, doi:10.1111/j.1365-2133.2012.10980.x. 

154. Sereflican, B.; Goksugur, N.; Bugdayci, G.; Polat, M.; Haydar Parlak, A. Serum Visfatin, adiponectin, and 
tumor necrosis factor alpha (TNF-alpha) levels in patients with psoriasis and their correlation with disease 
severity. Acta Dermatovenerol. Croat. 2016, 24, 13–19. 

155. Albanesi, C.; Scarponi, C.; Pallotta, S.; Daniele, R.; Bosisio, D.; Madonna, S.; Fortugno, P.; Gonzalvo-Feo, S.; 
Franssen, J.D.; Parmentier, M.; et al. Chemerin expression marks early psoriatic skin lesions and correlates 
with plasmacytoid dendritic cell recruitment. J. Exp. Med. 2009, 206, 249–258, doi:10.1084/jem.20080129. 

156. Rollman, O.; Vahlquist, A. Psoriasis and vitamin A. Plasma transport and skin content of retinol, 
dehydroretinol and carotenoids in adult patients versus healthy controls. Arch. Dermatol. Res. 1985, 278, 17–
24, doi:10.1007/bf00412490. 

157. Uysal, S.; Yılmaz, F.M.; Karatoprak, K.; Artüz, F.; Cumbul, N.U. The levels of serum pentraxin3, CRP, 
fetuin-A, and insulin in patients with psoriasis. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3453–3458. 

158. Gerdes, S.; Osadtschy, S.; Buhles, N.; Baurecht, H.; Mrowietz, U. Cardiovascular biomarkers in patients 
with psoriasis. Exp. Dermatol. 2014, 23, 322–325, doi:10.1111/exd.12381. 

159. Uyar, B.; Akyildiz, M.; Solak, A.; Genc, B.; Saklamaz, A. Relationship Between Serum Fetuin-A Levels and 
Carotid Intima-media Thickness in Turkish Patients with Mild to Moderate Psoriasis. A Case-control 
Study. Acta Dermatovenerol. Croat. 2015, 23, 171–177. 

160. Li, R.C.; Krishnamoorthy, P.; DerOhannessian, S.; Doveikis, J.; Wilcox, M.; Thomas, P.; Rader, D.J.; Reilly, 
M.P.; Van Voorhees, A.; Gelfand, J.M.; et al. Psoriasis is associated with decreased plasma adiponectin 
levels independently of cardiometabolic risk factors. Clin. Exp. Dermatol. 2014, 39, 19–24, 
doi:10.1111/ced.12250. 

161. Coimbra, S.; Oliveira, H.; Reis, F.; Belo, L.; Rocha, S.; Quintanilha, A.; Figueiredo, A.; Teixeira, F.; Castro, 
E.; Rocha-Pereira, P.; et al. Circulating adipokine levels in Portuguese patients with psoriasis vulgaris 



Int. J. Mol. Sci. 2020, 21, 9048 26 of 29 

 

according to body mass index, severity and therapy. J. Eur. Acad. Dermatol. Venereol 2010, 24, 1386–1394, 
doi:10.1111/j.1468-3083.2010.03647.x. 

162. Shibata, S.; Saeki, H.; Tada, Y.; Karakawa, M.; Komine, M.; Tamaki, K. Serum high molecular weight 
adiponectin levels are decreased in psoriasis patients. J. Dermatol. Sci. 2009, 55, 62–63, 
doi:10.1016/j.jdermsci.2009.02.009. 

163. Gerdes, S.; Pinter, A.; Biermann, M.; Papavassilis, C.; Reinhardt, M. Adiponectin levels in a large pooled 
plaque psoriasis study population. J. Dermatol. Treat. 2020, 31, 531–534, doi:10.1080/09546634.2019.1621979. 

164. Turan, H.; Yaykasli, K.O.; Soguktas, H.; Yaykasli, E.; Aliagaoglu, C.; Erdem, T.; Karkucak, M.; Kaya, E.; 
Ucgun, T.; Bahadir, A. Omentin serum levels and omentin gene Val109Asp polymorphism in patients with 
psoriasis. Int. J. Dermatol. 2014, 53, 601–605, doi:10.1111/ijd.12306. 

165. Shibata, S.; Tada, Y.; Hau, C.S.; Mitsui, A.; Kamata, M.; Asano, Y.; Sugaya, M.; Kadono, T.; Masamoto, Y.; 
Kurokawa, M.; et al. Adiponectin regulates psoriasiform skin inflammation by suppressing IL-17 
production from gammadelta-T cells. Nat. Commun. 2015, 6, 7687, doi:10.1038/ncomms8687. 

166. Shibata, S.; Tada, Y.; Hau, C.; Tatsuta, A.; Yamamoto, M.; Kamata, M.; Karakawa, M.; Asano, Y.; Mitsui, H.; 
Sugaya, M.; et al. Adiponectin as an anti-inflammatory factor in the pathogenesis of psoriasis: Induction of 
elevated serum adiponectin levels following therapy. Br. J. Dermatol. 2011, 164, 667–670, doi:10.1111/j.1365-
2133.2010.10123.x. 

167. Ataseven, A.; Kesli, R. Novel inflammatory markers in psoriasis vulgaris: Vaspin, vascular adhesion 
protein-1 (VAP-1), and YKL-40. G. Ital. Di Dermatol. E Venereol. Organo Uff. Soc. Ital. Di Dermatol. E Sifilogr. 
2016, 151, 244–250. 

168. Rittié, L.; Tejasvi, T.; Harms, P.W.; Xing, X.; Nair, R.P.; Gudjonsson, J.E.; Swindell, W.R.; Elder, J.T. 
Sebaceous Gland Atrophy in Psoriasis: An Explanation for Psoriatic Alopecia? J. Investig. Dermatol. 2016, 
136, 1792–1800, doi:10.1016/j.jid.2016.05.113. 

169. Karpouzis, A.; Tripsianis, G.; Gatzidou, E. Assessment of Leptin Gene Polymorphism rs2060713 in Psoriasis 
Vulgaris. Int. Sch. Res. Not. 2014, 2014, 845272, doi:10.1155/2014/845272. 

170. Abdel Hay, R.M.; Rashed, L.A. Association between the leptin gene 2548G/A polymorphism, the plasma 
leptin and the metabolic syndrome with psoriasis. Exp. Dermatol. 2011, 20, 715–719, doi:10.1111/j.1600-
0625.2011.01299.x. 

171. Torres, T.; Bettencourt, N.; Ferreira, J.; Carvalho, C.; Mendonça, D.; Vasconcelos, C.; Selores, M.; Silva, B. 
Lack of association between leptin, leptin receptor, adiponectin gene polymorphisms and epicardial 
adipose tissue, abdominal visceral fat volume and atherosclerotic burden in psoriasis patients. Arch. 
Physiol. Biochem. 2015, 121, 103–108, doi:10.3109/13813455.2015.1024136. 

172. Werfel, T.; Allam, J.P.; Biedermann, T.; Eyerich, K.; Gilles, S.; Guttman-Yassky, E.; Hoetzenecker, W.; Knol, 
E.; Simon, H.U.; Wollenberg, A.; et al. Cellular and molecular immunologic mechanisms in patients with 
atopic dermatitis. J. Allergy Clin. Immunol. 2016, 138, 336–349, doi:10.1016/j.jaci.2016.06.010. 

173. Kimata, H. Elevated serum leptin in AEDS. Allergy 2002, 57, 179, doi:10.1034/j.1398-9995.2002.1n3549.x. 
174. Jaworek, A.K.; Szepietowski, J.C. Adipokines as biomarkers of atopic dermatitis in adults. J. Clin. Med. 2020, 

9, doi:10.3390/jcm9092858. 
175. Nagel, G.; Koenig, W.; Rapp, K.; Wabitsch, M.; Zoellner, I.; Weiland, S.K. Associations of adipokines with 

asthma, rhinoconjunctivitis, and eczema in German schoolchildren. Pediatric Allergy Immunol. Off. Publ. Eur. 
Soc. Pediatric Allergy Immunol. 2009, 20, 81–88, doi:10.1111/j.1399-3038.2008.00740.x. 

176. Bostanci, I.; Atli, O.; Celebi, N.; Taşar, A.; Alpkarakoç, E.; Dallar, Y. Serum leptin level in children with 
atopic dermatitis-treated topical steroids. Pediatric Allergy Immunol. Off. Publ. Eur. Soc. Pediatric Allergy 
Immunol. 2004, 15, 267–269, doi:10.1111/j.1399-3038.2004.00145.x. 

177. Balato, N.; Nino, M.; Patruno, C.; Matarese, G.; Ayala, F. “Eczemas” and leptin. Dermatitis 2011, 22, 320–
323, doi:10.2310/6620.2011.11038. 

178. Machura, E.; Szczepanska, M.; Ziora, K.; Ziora, D.; Swietochowska, E.; Barc-Czarnecka, M.; Kasperska-
Zajac, A. Evaluation of adipokines: Apelin, visfatin, and resistin in children with atopic dermatitis. Mediat. 
Inflamm. 2013, 2013, 760691, doi:10.1155/2013/760691. 

179. Farag, A.G.A.; Hammam, M.A.; Khaled, H.N.; Soliman, S.; Tayel, N.R.; El-Shamendy, A.A.; Shehata, W.A. 
Resistin adipokin in atopic dermatitis patients: A clinical, biochemical, and genetic study. J. Cosmet. 
Dermatol. 2020, doi:10.1111/jocd.13338. 



Int. J. Mol. Sci. 2020, 21, 9048 27 of 29 

 

180. Aizawa, N.; Ishiuji, Y.; Tominaga, M.; Sakata, S.; Takahashi, N.; Yanaba, K. Relationship between the 
Degrees of Itch and Serum Lipocalin-2 Levels in Patients with Psoriasis. J. Immunol. Res. 2019, 2019, 8171373, 
doi:10.1155/2019/8171373. 

181. Kamata, M.; Tada, Y.; Tatsuta, A.; Kawashima, T.; Shibata, S.; Mitsui, H.; Asano, Y.; Sugaya, M.; Kadono, 
T.; Kanda, N.; et al. Serum lipocalin-2 levels are increased in patients with psoriasis. Clin. Exp. Dermatol. 
2012, 37, 296–299, doi:10.1111/j.1365-2230.2011.04265.x. 

182. Noh, J.Y.; Shin, J.U.; Kim, J.H.; Kim, S.H.; Kim, B.M.; Kim, Y.H.; Park, S.; Kim, T.G.; Shin, K.O.; Park, K.; et 
al. ZAG Regulates the Skin Barrier and Immunity in Atopic Dermatitis. J. Investig. Dermatol. 2019, 139, 1648–
1657.e1647, doi:10.1016/j.jid.2019.01.023. 

183. Han, B.; Wu, W.H.; Bae, J.M.; Son, S.J.; Lee, J.H.; Han, T.Y. Serum leptin and adiponectin levels in atopic 
dermatitis (AD) and their relation to disease severity. J. Am. Acad. Dermatol. 2016, 75, 629–631, 
doi:10.1016/j.jaad.2016.04.036. 

184. Banihani, S.A.; Elmadhoun, R.A.; Khabour, O.F.; Alzoubi, K.H. The rs2167270 polymorphism of leptin gene 
is associated with atopic dermatitis. Derm. -Endocrinol. 2018, 10, e1454191, 
doi:10.1080/19381980.2018.1454191. 

185. Banihani, S.A.; Abu-Alia, K.F.; Khabour, O.F. Association between resistin gene polymorphisms and atopic 
dermatitis. Biomolecules 2018, 8, 17,doi:10.3390/biom8020017. 

186. Zouboulis, C.C.; Jourdan, E.; Picardo, M. Acne is an inflammatory disease and alterations of sebum 
composition initiate acne lesions. J. Eur. Acad. Dermatol. Venereol 2014, 28, 527–532, doi:10.1111/jdv.12298. 

187. Pérez-Pérez, A.; Vilariño-García, T.; Fernández-Riejos, P.; Martín-González, J.; Segura-Egea, J.J.; Sánchez-
Margalet, V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor 
Rev. 2017, 35, 71–84, doi:10.1016/j.cytogfr.2017.03.001. 

188. Ingham, E.; Eady, E.A.; Goodwin, C.E.; Cove, J.H.; Cunliffe, W.J. Pro-inflammatory levels of interleukin-1 
alpha-like bioactivity are present in the majority of open comedones in acne vulgaris. J. Investig. Dermatol. 
1992, 98, 895–901, doi:10.1111/1523-1747.ep12460324. 

189. Reis, B.S.; Lee, K.; Fanok, M.H.; Mascaraque, C.; Amoury, M.; Cohn, L.B.; Rogoz, A.; Dallner, O.S.; Moraes-
Vieira, P.M.; Domingos, A.I.; et al. Leptin receptor signaling in T cells is required for Th17 differentiation. 
J. Immunol. 2015, 194, 5253–5260, doi:10.4049/jimmunol.1402996. 

190. Kelhälä, H.L.; Palatsi, R.; Fyhrquist, N.; Lehtimäki, S.; Väyrynen, J.P.; Kallioinen, M.; Kubin, M.E.; Greco, 
D.; Tasanen, K.; Alenius, H.; et al. IL-17/Th17 pathway is activated in acne lesions. PLoS ONE 2014, 9, 
e105238, doi:10.1371/journal.pone.0105238. 

191. Danby, F.W. Ductal hypoxia in acne: Is it the missing link between comedogenesis and inflammation? J. 
Am. Acad. Dermatol. 2014, 70, 948–949, doi:10.1016/j.jaad.2013.11.029. 

192. Dodd, K.M.; Yang, J.; Shen, M.H.; Sampson, J.R.; Tee, A.R. mTORC1 drives HIF-1alpha and VEGF-A 
signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 2015, 34, 2239–2250, 
doi:10.1038/onc.2014.164. 

193. Kaymak, Y.; Adisen, E.; Ilter, N.; Bideci, A.; Gurler, D.; Celik, B. Dietary glycemic index and glucose, insulin, 
insulin-like growth factor-I, insulin-like growth factor binding protein 3, and leptin levels in patients with 
acne. J. Am. Acad. Dermatol. 2007, 57, 819–823, doi:10.1016/j.jaad.2007.06.028. 

194. Chang, H.C.; Lin, M.H.; Huang, Y.C. Association between circulating adipokines and acne vulgaris: A 
systematic review and meta-analysis. Australas J. Dermatol. 2019, 60, e361–e364, doi:10.1111/ajd.13035. 

195. Çerman, A.A.; Aktaş, E.; Altunay, İ., K.; Arıcı, J.E.; Tulunay, A.; Ozturk, F.Y. Dietary glycemic factors, 
insulin resistance, and adiponectin levels in acne vulgaris. J. Am. Acad. Dermatol. 2016, 75, 155–162, 
doi:10.1016/j.jaad.2016.02.1220. 

196. Aydin, K.; Çetinözman, F.; Elcin, G.; Aksoy, D.Y.; Ucar, F.; Yildiz, B.O. Suppressed Adiponectin Levels and 
Increased Adiponectin Response to Oral Glucose Load in Lean Women with Severe Acne Normalizes after 
Isotretinoin Treatment. Dermatology 2017, 233, 314–319, doi:10.1159/000484168. 

197. Karadag, A.S.; Ertugrul, D.T.; Takci, Z.; Bilgili, S.G.; Namuslu, M.; Ata, N.; Sekeroglu, R. The effect of 
isotretinoin on retinol-binding protein 4, leptin, adiponectin and insulin resistance in acne vulgaris 
patients. Dermatology 2015, 230, 70–74, doi:10.1159/000367687. 

198. Hussain, S.; Faraz, A.; Iqbal, T. The RETN gene rs1862513 polymorphism as a novel predisposing marker 
for familial Acne vulgaris in a Pakistani population. Iran. J. Basic Med. Sci. 2015, 18, 526–528. 



Int. J. Mol. Sci. 2020, 21, 9048 28 of 29 

 

199. Younis, S.; Blumenberg, M.; Javed, Q. Resistin gene polymorphisms are associated with acne and serum 
lipid levels, providing a potential nexus between lipid metabolism and inflammation. Arch. Dermatol. Res. 
2016, 308, 229–237, doi:10.1007/s00403-016-1626-y. 

200. Soguktas, H.; Yaykasli, K.O.; Turan, H.; Kaya, E.; Yaykasli, E. Omentin Val/Val genotype increases 
predisposition to acne vulgaris without changing omentin serum level. Cell. Mol. Biol. 2018, 64, 81–86. 

201. Ahn, C.S.; Huang, W.W. Rosacea Pathogenesis. Dermatol. Clin. 2018, 36, 81–86, doi:10.1016/j.det.2017.11.001. 
202. Gerber, P.A.; Buhren, B.A.; Steinhoff, M.; Homey, B. Rosacea: The cytokine and chemokine network. J. 

Investig. Dermatology. Symp. Proc. 2011, 15, 40–47, doi:10.1038/jidsymp.2011.9. 
203. Rainer, B.M.; Kang, S.; Chien, A.L. Rosacea: Epidemiology, pathogenesis, and treatment. Derm. Endocrinol. 

2017, 9, e1361574, doi:10.1080/19381980.2017.1361574. 
204. Amir Ali, A.; Vender, R.; Vender, R. The Role of IL-17 in Papulopustular Rosacea and Future Directions. J. 

Cutan. Med. Surg. 2019, 23, 635–641, doi:10.1177/1203475419867611. 
205. Li, T.; Zeng, Q.; Chen, X.; Wang, G.; Zhang, H.; Yu, A.; Wang, H.; Hu, Y. The therapeutic effect of artesunate 

on rosacea through the inhibition of the JAK/STAT signaling pathway. Mol. Med. Rep. 2018, 17, 8385–8390, 
doi:10.3892/mmr.2018.8887. 

206. Thibaut de Ménonville, S.; Rosignoli, C.; Soares, E.; Roquet, M.; Bertino, B.; Chappuis, J.P.; Defoin-
Platel/Chaussade, C.; Piwnica, D. Topical Treatment of Rosacea with Ivermectin Inhibits Gene Expression 
of Cathelicidin Innate Immune Mediators, LL-37 and KLK5, in Reconstructed and Ex Vivo Skin Models. 
Dermatol. Ther. 2017, 7, 213–225, doi:10.1007/s13555-017-0176-3. 

207. Yuan, X.; Li, J.; Li, Y.; Deng, Z.; Zhou, L.; Long, J.; Tang, Y.; Zuo, Z.; Zhang, Y.; Xie, H. Artemisinin, a 
potential option to inhibit inflammation and angiogenesis in rosacea. Biomed. Pharmacother. Biomed. 
Pharmacother. 2019, 117, 109181, doi:10.1016/j.biopha.2019.109181. 

208. Topcu-Yilmaz, P.; Atakan, N.; Bozkurt, B.; Irkec, M.; Aban, D.; Mesci, L.; Tezcan, I. Determination of tear 
and serum inflammatory cytokines in patients with rosacea using multiplex bead technology. Ocul. 
Immunol. Inflamm. 2013, 21, 351–359, doi:10.3109/09273948.2013.795229. 

209. Fischer, J.; Meyer-Hoffert, U. Regulation of kallikrein-related peptidases in the skin—From physiology to 
diseases to therapeutic options. Thromb. Haemost. 2013, 110, 442–449, doi:10.1160/th12-11-0836. 

210. Di Paolo, C.T.; Diamandis, E.P.; Prassas, I. The role of kallikreins in inflammatory skin disorders and their 
potential as therapeutic targets. Crit. Rev. Clin. Lab. Sci. 2020, 1–16, doi:10.1080/10408363.2020.1775171. 

211. Meyer-Hoffert, U. Reddish, scaly, and itchy: How proteases and their inhibitors contribute to inflammatory 
skin diseases. Arch. Immunol. Ther. Exp. 2009, 57, 345–354, doi:10.1007/s00005-009-0045-6. 

212. Medgyesi, B.; Dajnoki, Z.; Béke, G.; Gáspár, K.; Szabó, I.L.; Janka, E.A.; Póliska, S.; Hendrik, Z.; Méhes, G.; 
Törőcsik, D.; et al. Rosacea Is Characterized by a Profoundly Diminished Skin Barrier. J. Investig. Dermatol. 
2020, 140, 1938–1950.e1935, doi:10.1016/j.jid.2020.02.025. 

213. Tímár, J.; Vizkeleti, L.; Doma, V.; Barbai, T.; Rásó, E. Genetic progression of malignant melanoma. Cancer 
Metastasis Rev. 2016, 35, 93–107, doi:10.1007/s10555-016-9613-5. 

214. Sergentanis, T.N.; Antoniadis, A.G.; Gogas, H.J.; Antonopoulos, C.N.; Adami, H.O.; Ekbom, A.; Petridou, 
E.T. Obesity and risk of malignant melanoma: A meta-analysis of cohort and case-control studies. Eur. J. 
Cancer 2013, 49, 642–657, doi:10.1016/j.ejca.2012.08.028. 

215. Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: 
A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578, 
doi:10.1016/s0140-6736(08)60269-x. 

216. Præstegaard, C.; Kjær, S.K.; Christensen, J.; Tjønneland, A.; Halkjær, J.; Jensen, A. Obesity and risks for 
malignant melanoma and non-melanoma skin cancer: Results from a large Danish prospective cohort 
study. J. Investig. Dermatol. 2015, 135, 901–904, doi:10.1038/jid.2014.438. 

217. Malvi, P.; Chaube, B.; Singh, S.V.; Mohammad, N.; Vijayakumar, M.V.; Singh, S.; Chouhan, S.; Bhat, M.K. 
Elevated circulatory levels of leptin and resistin impair therapeutic efficacy of dacarbazine in melanoma 
under obese state. Cancer Metab. 2018, 6, 2, doi:10.1186/s40170-018-0176-5. 

218. Brandon, E.L.; Gu, J.W.; Cantwell, L.; He, Z.; Wallace, G.; Hall, J.E. Obesity promotes melanoma tumor 
growth: Role of leptin. Cancer Biol. Ther. 2009, 8, 1871–1879, doi:10.4161/cbt.8.19.9650. 

219. Malvi, P.; Chaube, B.; Pandey, V.; Vijayakumar, M.V.; Boreddy, P.R.; Mohammad, N.; Singh, S.V.; Bhat, 
M.K. Obesity induced rapid melanoma progression is reversed by orlistat treatment and dietary 
intervention: Role of adipokines. Mol. Oncol. 2015, 9, 689–703, doi:10.1016/j.molonc.2014.11.006. 



Int. J. Mol. Sci. 2020, 21, 9048 29 of 29 

 

220. Ellerhorst, J.A.; Diwan, A.H.; Dang, S.M.; Uffort, D.G.; Johnson, M.K.; Cooke, C.P.; Grimm, E.A. Promotion 
of melanoma growth by the metabolic hormone leptin. Oncol. Rep. 2010, 23, 901–907, 
doi:10.3892/or_00000713. 

221. Chi, M.; Chen, J.; Ye, Y.; Tseng, H.Y.; Lai, F.; Tay, K.H.; Jin, L.; Guo, S.T.; Jiang, C.C.; Zhang, X.D. Adipocytes 
contribute to resistance of human melanoma cells to chemotherapy and targeted therapy. Curr. Med. Chem. 
2014, 21, 1255–1267, doi:10.2174/0929867321666131129114742. 

222. Gogas, H.; Trakatelli, M.; Dessypris, N.; Terzidis, A.; Katsambas, A.; Chrousos, G.P.; Petridou, E.T. 
Melanoma risk in association with serum leptin levels and lifestyle parameters: A case-control study. Ann. 
Oncol. Off. J. Eur. Soc. Med. Oncol. 2008, 19, 384–389, doi:10.1093/annonc/mdm464. 

223. Mizutani, H.; Fukushima, S.; Masuguchi, S.; Yamashita, J.; Miyashita, A.; Nakahara, S.; Aoi, J.; Inoue, Y.; 
Jinnin, M.; Ihn, H. Serum levels of leptin receptor in patients with malignant melanoma as a new tumor 
marker. Exp. Dermatol. 2013, 22, 748–749, doi:10.1111/exd.12238. 

224. Amjadi, F.; Mehdipoor, R.; Zarkesh-Esfahani, H.; Javanmard, S.H. Leptin serves as angiogenic/mitogenic 
factor in melanoma tumor growth. Adv. Biomed. Res. 2016, 5, 127, doi:10.4103/2277-9175.187005. 

225. Berta, J.; Hoda, M.A.; Laszlo, V.; Rozsas, A.; Garay, T.; Torok, S.; Grusch, M.; Berger, W.; Paku, S.; Renyi-
Vamos, F.; et al. Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget 2014, 5, 4426–
4437, doi:10.18632/oncotarget.2032. 

226. Bułdak, R.J.; Bułdak, Ł.; Polaniak, R.; Kukla, M.; Birkner, E.; Kubina, R.; Kabała-Dzik, A.; Duława-Bułdak, 
A.; Żwirska-Korczala, K. Visfatin affects redox adaptative responses and proliferation in Me45 human 
malignant melanoma cells: An in vitro study. Oncol. Rep. 2013, 29, 771–778, doi:10.3892/or.2012.2175. 

227. Grolla, A.A.; Torretta, S.; Gnemmi, I.; Amoruso, A.; Orsomando, G.; Gatti, M.; Caldarelli, A.; Lim, D.; 
Penengo, L.; Brunelleschi, S.; et al. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is a 
tumoural cytokine released from melanoma. Pigment. Cell Melanoma Res. 2015, 28, 718–729, 
doi:10.1111/pcmr.12420. 

228. Audrito, V.; Managò, A.; Zamporlini, F.; Rulli, E.; Gaudino, F.; Madonna, G.; D’Atri, S.; Antonini 
Cappellini, G.C.; Ascierto, P.A.; Massi, D.; et al. Extracellular nicotinamide phosphoribosyltransferase 
(eNAMPT) is a novel marker for patients with BRAF-mutated metastatic melanoma. Oncotarget 2018, 9, 
18997–19005, doi:10.18632/oncotarget.24871. 

229. Pachynski, R.K.; Zabel, B.A.; Kohrt, H.E.; Tejeda, N.M.; Monnier, J.; Swanson, C.D.; Holzer, A.K.; Gentles, 
A.J.; Sperinde, G.V.; Edalati, A.; et al. The chemoattractant chemerin suppresses melanoma by recruiting 
natural killer cell antitumor defenses. J. Exp. Med. 2012, 209, 1427–1435, doi:10.1084/jem.20112124. 

230. Song, Y.; Yin, W.; Dan, Y.; Sheng, J.; Zeng, Y.; He, R. Chemerin partly mediates tumor-inhibitory effect of 
all-trans retinoic acid via CMKLR1-dependent natural killer cell recruitment. Immunology 2019, 157, 248–
256, doi:10.1111/imm.13065. 

231. Klein, R.M.; Bernstein, D.; Higgins, S.P.; Higgins, C.E.; Higgins, P.J. SERPINE1 expression discriminates 
site-specific metastasis in human melanoma. Exp. Dermatol. 2012, 21, 551–554, doi:10.1111/j.1600-
0625.2012.01523.x. 

232. Mantzoros, C.S.; Trakatelli, M.; Gogas, H.; Dessypris, N.; Stratigos, A.; Chrousos, G.P.; Petridou, E.T. 
Circulating adiponectin levels in relation to melanoma: A case-control study. Eur. J. Cancer 2007, 43, 1430–
1436, doi:10.1016/j.ejca.2007.03.026. 

233. Blüher, M. Adipokines—Removing road blocks to obesity and diabetes therapy. Mol. Metab. 2014, 3, 230–
240, doi:10.1016/j.molmet.2014.01.005. 

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional 
affiliations. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


