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1. Introduction

"You are what you eat." The originator of this now cliché proverb probably didn't

realize at the time that by consuming a single part of a plant, one could consume an entire

ecosystem. In fact, research over the last few decades has shown that, under natural

conditions, the inner tissues and cells of plants can be home to a diverse community of

bacteria and fungi. Typically, these organisms colonize the host plant without any visible

symptoms and may even help it to grow, survive pathogens, etc.

In our research work, which is the basis of this thesis, we have investigated these

organisms, in particular to answer the question of the molecular level relationships involved

in the interactions between endophytic filamentous fungi and the host plant. Our studies

focused on the fungal community of horseradish (Armoracia rusticana), a member of the

Brassicaceae plant family. This plant is not only important for its food and molecular biology

(the enzyme horseradish peroxidase is used in a number of immunohistochemical and ELISA

methods) uses, but may also be of pharmacological importance due to its chemopreventive

properties. The plant is also capable of producing diverse antimicrobial compounds, which

raises a number of intriguing questions about how a diverse and complex microbial

community can develop in such a harsh chemical environment.

During our work we had the opportunity to investigate these interactions in both in

vitro and in vivo models. We have isolated and long-term maintained a number of endophytic

filamentous fungi from horseradish roots, and used headspace GC-MS techniques to

investigate their ability to produce volatile organic compounds (VOCs) when incubated on

horseradish root extracts. In addition, over the past few years we have had the opportunity to

collect more than 100 root samples from horseradish cultivars grown in field conditions on an

experimental agricultural field to explore in vivo interactions between the fungal community

and horseradish metabolites using metabolomics and metagenomics methods.

Among the methods we used, metabolomics, like the other "omics", is an

interdisciplinary field, applying tools from several disciplines (instrumental analysis,

informatics, data science) to study the complete set of metabolites of a biological system. In

contrast to classical analytical methods, which mainly only allow the analysis of a few

well-defined compounds, metabolomics allows the relative amounts of up to hundreds of

chemical "features", to be determined and even approximately identified by means of

computer algorithms, thus providing a wealth of information on the current state of the

organisms.
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Using these methods, we wanted to answer the following questions in our research: are

endophytes or soil-dwelling fungi living in the host plant's environment able to utilize the

plant's metabolites? If so, what volatile metabolites might indicate this? Is there a difference

between endophytes and soil fungi in the use of compounds produced by the plant? Another

key question was whether the chemical composition of the host plant influences the

composition of the fungal community living in it? Which compounds or compound classes

play a significant role in such interactions?
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2. Aims

In the course of our research for my doctoral thesis, we formulated the following objectives:

- We planned to determine the volatile organic compounds (VOCs) in the vapour space

of endophytic and soil fungi incubated on plant extracts to investigate whether fungi

in the horseradish and its environment are able to use and transform plant-specific

metabolites.

- We also planned to explore fungal communities in the roots of horseradish cultivars

grown in field conditions using metagenomic (amplicon sequencing) methods, to gain

more information on the taxa that make up the endospheres of these plants.

- We planned to perform metabolomic studies on the horseradish roots to map in detail

the metabolome of the plant. We also planned to identify the chemical features from

metabolomic measurements in more detail, at least at the level of compound classes.

- Finally, we planned to investigate the chemical interactions between the host plant

and its microbiome, which compounds are responsible for the assembly of the fungal

community and which fungal taxa affect the composition of the fungal community.
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3. Materials and methods

3.1. Volatile organic compound (VOC) analysis in the vapor space of

horseradish-associated fungi

The horseradish extract was prepared according to the following protocol:

approximately 500-1000 g of fresh, healthy horseradish roots were cut into large pieces,

boiled in water for 30 min to inactivate the myrosinase enzyme, and homogenized with

methanol in a solvent:molar mass ratio of 3:2. The methanolic mixture was boiled for 30

minutes under reflux. The resulting extract was filtered and evaporated to near dryness in a

rotary vacuum evaporator and resuspended in approximately the same volume of water as the

water content of the roots (typically 70% of the initial weight). After pre-filtration, the liquid

was sterile filtered through a 0.20 µm pore diameter PES membrane and stored at -24 ˚C until

further use. If necessary, the extract was supplemented with 2% sterile agar.

The fungal strains used in the present work have been previously isolated by the

Department of Botany (Szűcs et al., 2018). Soil fungi were isolated from the plant-free areas

of the area used for horseradish cultivation. The species-level identification of isolates E1-E7

was previously performed (Szűcs et al., 2018). For the other strains, the taxonomic

identification was performed by amplification of their ITS (Internal Transcribed Spacer),

α-actin or calmodulin genes and Sanger sequencing. NCBI BLAST searches were performed

on the sequences and the results were used to identify fungi up to genus level.

To measure the VOCs emitted by the different fungal strains, the fungi were incubated

in autoclaved headspace chromatography vials. 1 mL of warm agar-supplemented extract was

pipetted into the vials, which were then spinned until the extract solidified as a thin film layer

on the bottom of the vial. A liquid suspension of each fungal strain was prepared for uniform

inoculation of the headspace jars. The fungi were cultured in 30 mL MEB medium, shaken at

200 rpm, at room temperature for 7-10 days. The mycelia were homogenized using a

MiniMix CC homogenizer in sterile BagPage bags. The resulting suspensions were

centrifuged for 2 min at 13500 rpm and the mycelia were washed with sterile water. The

fungal suspensions were stored at 4 ˚C prior to inoculation. Since morphology and conidia

formation capacity may differ between species, we standardized the inoculation volume on a

dry weight basis, which was determined by lyophilization.

For inoculation of headspace vials, 500 µL of 500 µg dry weight equivalent fungal

suspension was pipetted into the vials. Finally, the vials were sealed and incubated at room
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temperature for at least 3 days. The vapor space of each culture was sampled on days 3 and 4

after inoculation. The experiment was performed with two biological replicates, for a total of

4 replicates per fungus. In order to verify that the sulfur-containing compounds are produced

from specialized metabolites in the horseradish extracts, control cultures were also inoculated

on MEB medium. These were prepared in one biological replicate and injected on days 3 and

4 after inoculation.

The VOC profile of the fungal vapor space was analyzed using a Bruker Scion 456 gas

chromatograph, consisting of a Bruker SHS-40 Headspace sampler and a Bruker SQ mass

spectrometer connected to it. A Br-5 capillary column was used for the analyses. The

identification of volatile compounds was performed according to the NIST (National Institute

of Standards and Technology, Gaithersburg, MD, USA; version 2.0g, build 19.05.2011)

spectral library. The performance of the method was also tested with a calibration curve of

standard compounds.

All the chromatographic peaks were manually evaluated on the ion chromatograms

(EIC, XIC), then the most abundant characteristic ions (max. 5) from the purest spectrum

(high peak sample) were manually collected for each peak. Using the list of characteristic

ions, a targeted peak detection algorithm was used in mzMine 2.39 software, and the ion

abundance values for the same metabolite were summed in R. To detect significant

differences between fungi, raw metabolite abundance values were tested in ANOVA models

(n = 4 for each fungal strain). Dunnett's post hoc tests were run on significant compounds to

obtain statistical differences between individual fungi and controls. To test for statistical

differences between endophytic and soil fungi, the presence of each compound in each fungal

strain was averaged as a single numerical value and then tested using Fisher's exact test.

3.2. Investigation of metabolome - microbiome correlations in horseradish plants

For conservation purposes, several varieties of horseradish (Armoracia rusticana

G.Gaertn., B.Mey. & Scherb.) were grown on an experimental farm in

Hajdúhadház-Fényestelep (site 1, 47°39'09.8 "N 21°42'30.5 "E). A total of 13 varieties were

sampled (at least four per variety) in November 2018 and 2019. In addition, 4 soil samples

were collected in both years. In November 2019, additional samples of carrot (Daucus carota

L.) and horseradish were collected as external controls from a site in Haláp (site 2). During

sampling, leaves were removed from the plants and the roots were placed in sterile plastic

bags and transported to the Department for further processing. As a first step in the surface
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sterilization procedure, the roots were dipped in 96% ethanol for 30 s, soaked in a solution of

0.1% Tween 20 and 2.5% NaOCl containing active chlorine for 10 min, and then sterilely cut

to pieces after sterile washing with water. The resulting sample was placed in sterile plastic

sample containers and flash frozen in liquid nitrogen. The samples were stored at -80 ˚C until

further processing.

The frozen, cut plant samples were cryogenically ground with a 20 mm steel ball in 50

mL stainless steel sterile grinding jars. Homogenized samples were lyophilized and stored in

a dark desiccator on silica gel prior to genomic DNA and metabolomic extractions.

From the cryogenically ground and lyophilized plant samples, 25 mg were weighed and

extracted for 5 min with 0.1% formic acid supplemented with 75% methanol at 4 ˚C. Based

on our preliminary studies, this extractant gave the highest compound coverage in untargeted

metabolomic studies. The extracts were centrifuged at 24000 g at 4 ˚C for 3 min, and 10× or

200× dilutions of the supernatants were prepared with the extractant for untargeted

metabolomic analysis and quantification of glucosinolates, respectively. The diluted extracts

were filtered through a syringe filter with a pore diameter of 0.22 µm into chromatographic

vials prior to instrumental analysis.

LC-MS measurements were performed using a Dionex Ultimate 3000RS UHPLC

system with a Thermo Q Exactive Orbitrap mass spectrometer. The ionization used was

electrospray ionization (ESI). For untargeted metabolomic measurements, a Kinetex Polar

C18 column was used. A volume of 1-1 μL of 10× diluted samples was injected. For the

quantification of glucosinolates, a four-point calibration equation was formed from four

glucosinolates (sinigrin, gluconasturtiin, glucobrassicin, glucoiberin) present in higher

amounts in horseradish, in the concentration range 0.01-5 μg mL-1. Kinetex XB-C18 columns

were used for quantification measurements. 1 µL of 200× dilution of the horseradish samples

and calibration line samples were injected.

Targeted fragmentation of all candidate compounds of interest for further analyses was

performed with similar parameters, except for the mass range, which was reduced to only

analyze ions that were included in the inclusion list; data from the positive and negative ion

modes were recorded separately. A list of candidate compounds for fragmentation was

generated based on candidates that passed QC (quality control) screening, and the list was

then broken down into inclusion lists such that a maximum of 5 co-eluting candidate

compounds were included in a list, thus ensuring good coverage. Based on the overlap of the

lists, the most intense 2-5 candidate compounds were selected for fragmentation at 30

normalized collision energy (NCE), with an ion collection time of up to 250 ms.
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The raw measurement files were converted to mzXML format and analyzed using the

XCMSOnline 2.7.2 (XCMS 1.47.3) platform. For the quantification of glucosinolates, the

previously mentioned four-point calibration equation was used for all glucosinolates whose

quantification fell within the linear range of the calibration. In such cases, targeted peak

detection was performed in mzMine 2.53 software.

The QC (quality control) samples for metabolomics measurements were prepared

according to the principle of "long-term reference samples" (Dudzik et al., 2018; Evans et al.,

2020), which states that if we are investigating similar samples over a longer period of time

(up to several years), we need to prepare a sample mixture that contains a similar matrix as

the samples to be measured and can be kept in a chemically stable state throughout the

duration of our studies. Accordingly, we mixed concentrated extracts of one sample from

each of the 2018 Fényestelep varieties (23 in total) and the 2019 Haláp sampling points (13 in

total), then pipetted 50 mL of the mixture into 2 mL cryotubes and stored in liquid nitrogen

until further use. For each measurement sequence, 2 mL of QC sample was allowed to thaw

and then diluted 10× to form QC samples prior to measurement.

After removal of isotopic and adduct features, the values obtained from the integration

of the QC samples were then used to generate candidates that could be measured with reliable

linearity and accuracy. We then removed all features with a relative standard deviation (RSD)

greater than 30% and used a less frequently applied filter to ensure a strong linear

relationship between the signals from the candidate compounds and their concentrations. This

was done for all features passing the RSD filter by evaluating the linearity between

abundance and concentration values using Pearson correlation. To do this, we used a QC

linearity sample set (dilution series, the most concentrated QC sample was twice as

concentrated as the real samples) and a blank sample. This way, only features that reacted

linearly within the dilution range were retained. Only features with an R2 > 0.8 were retained

for further analyses, so features present in significant amounts in the blank samples were also

discarded.

Finally, a LOESS (locally estimated smoothing) function was fitted to the data for each

features separately, based on the QC samples. The assumed theoretical sensitivities between

the known values (QCs) were calculated for each metabolite separately using the fitted curve,

and the candidate intensities of the real samples were corrected by these values. In practice,

this expresses each abundance value as a "fold-change" value, where the reference (1.00) is

the abundance of the features in the mean sample, the QC sample. This procedure also allows

sequences measured months apart to be pooled and analyzed together without the use of
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standards. After this we performed the correction by the dry weight of the extracted plant

material.

MS2 spectra were collected from the raw measurement files using the CluMSID

package. For each candidate compound, the 10 purest MS2 spectra were used to generate a

consensus spectrum, which was exported from R and imported into SIRIUS 4.9.9 for

annotation. We then used the SIRIUS CSI:FingerID and CANOPUS algorithms to determine

the putative structure of organic compounds and the Classyfire hierarchical classes for each

feature separately. We also manually evaluated the SIRIUS suggestions against literature

data, aiming to achieve Metabolomic Standards Initiative (MSI) identification level 2.

To effectively identify the fungi in horseradish, we had to ensure that the primers

commonly used in the literature to amplify ITS only amplified horseradish sequences to a

non-intrusive extent. To test this in vitro, we amplified the full ITS of horseradish clones, as

well as ITS1 and ITS2 sequences, using primer pairs ITS1-F_KYO2 & ITS4, ITS1-F_KYO2

& ITS2_KYO2, and ITS3_KYO2 & ITS4. In order to have a specific primer pair that does

not bind in the ITS2 region of the horseradish but is specific for all Ascomycota,

Basidiomycota taxa, a new forward primer was designed for the existing ITS4_KYO3 reverse

primer. Using the DECIPHER R package, we performed alignments from ITS sequences of

previously described fungi of horseradish origin and relevant plants (e.g. Armoracia, Daucus)

and searched for new candidate primers based on consensus sequence details. Primary

candidates with practically useful melting temperatures were subjected to further in silico

analyses. Our designed forward primers in combination with the ITS4_KYO3 reverse primer

were tested by PCR in vitro on horseradish clones and various fungal gDNAs. According to

our tests, the best performing candidate primer was 5' - TTT CAA CAA CGG ATC TCT T -

3', referred to as "ITS3_NOHR". The performance of this primer was also evaluated in silico

using the UNITE 8.3 fungal ITS database, followed by a pilot Illumina sequencing.

For both plant, soil and "QC" samples, the ITS2 region was amplified using

ITS4_KYO3 and our ITS3_NOHR primer. An equimolar mixture of the libraries was

sequenced on Illumina MiSeq platform using MiSeq Reagent Kit V3 (2×300 bp paired-end

reads, 600 cycles). Pilot sequencing of primer performance was performed using MiSeq

Reagent Kit Nano V2 (150 bp paired-end reads, 150 cycles). Library construction and

sequencing was performed by the staff of the Genomic Medicine and Bioinformatics Core

Facility, University of Debrecen.

After sequencing, the data were demultiplexed and FASTQ files were generated. All

further sequence analysis was performed in R using the DADA2 package. At the suggestion
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of the authors of DADA2, we used ASVs (amplicon sequence variants) instead of OTUs

(Operational taxonomic units), which are commonly used in metagenomics, as they are more

advantageous when combining data from different sequencing runs and easier to distinguish

individual contaminant sequences identified in control samples. Taxonomic assignment was

performed using a "Naive Bayesian" classification algorithm with the DADA2 function

"assignTaxonomy". The classification algorithm performed the assignment based on the

UNITE 8.3 Fungal ITS database. We then filtered all ASVs that did not reach a minimum

bootstrap confidence level of 80% or if they could be identified by the algorithm only at a

taxonomic level of "Kingdom" or less. In order to verify the reliability of the method, we also

performed NCBI BLASTn searches on the pre-filtered ASVs in the more rigorously

controlled but significantly smaller RefSeq database, and then manually checked the

taxonomic assignments by DADA2 based on the taxonomic information of the results.

To characterize and compare the alpha and beta diversity of the samples, we considered

the type of samples (site 1 or site 2 horseradish, carrot, soil) and the species (site 1

horseradish). The taxonomic richness of the samples was estimated using the ACE index. The

diversity of the samples was determined using the Shannon, Dominance (Simpson) and

Buzas & Gibson indices. Kruskal-Wallis tests were used to statistically compare the

taxonomic richness and diversity of the above-mentioned groups. Beta diversity was

estimated using Bray-Curtis similarity, Whittaker diversity and unweighted UniFrac distance.

Beta diversity was plotted using principal coordinate analysis (PCoA) based on similarity or

distance values. We also performed one-way similarity analysis (ANOSIM) to determine

differences within and between groups. For significantly different groups, we used SIMPER

(Clarke, 1993) to determine the taxonomic units responsible for the differences. All analyses

were performed in Past v4.09 (Hammer et al., 2001) software, except for the unweighted

UniFrac analysis, which was performed in R.

Prior to downstream analyses, ASVs with the same taxonomic assignment were pooled

and the number of individual ASVs within each pool was not further considered. The data

were assessed using abundances pooled at the phylum, order and genus level, and diversity

metrics (previously calculated from raw, unpooled ASVs). Where the bootstrap confidence

value of the taxonomic assignment was less than or equal to 80%, i.e. the assignment was not

reliable at the genus level, the lowest reliable level was used. The latter resulted in mixed

identification levels for many ASVs. Correlation analyses of metagenomic and metabolomic

candidate compounds were only performed within the Fényestelep cultivar dataset (n = 8 × 2

× 4), while community differences between sample groups were investigated using both
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cultivars, carrot and soil samples, and Haláp horseradish. The metagenomic data are

compositional in nature and therefore a clr transformation was performed on the data set.

Significant differences between sample groups and species were determined using

principal component regression. For this purpose, the normalized chemical and fungal data

were subjected to sparse principal component analysis (sPCA). For chemical and fungal

abundance data, the number of principal components was 12 and 6, respectively. Statistical

tests were only performed on principal components that covered at least 2.5% of the variance

of the total variance of the data set, such principal components were tested using ANOVA

models in R. Spearman's correlations between sPCA scores or appropriately scaled data were

calculated using the cor.test function in R. All p-values from statistical tests were subjected to

Benjamini-Hochberg correction (n = 18004) for false discovery rate (FDR) correction.
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4. Results

4.1. Volatile organic compound (VOC) analysis in the vapor space of

horseradish-associated fungi

4.1.1. Identification of endophytes and soil fungi

Prior to performing our incubation experiments, we needed to classify fungal isolates

taxonomically. Sequencing of marker genes, most commonly ITS for fungi, is now a cheap

and easy-to-perform procedure that allows the identification of a large number of

environmental fungal isolates at least at genus level using bioinformatics databases. In our

work, a total of 43 horseradish endophyte and soil fungi were analyzed and identified at least

to genus level.

4.1.2. Volatile organic compounds (VOCs) identified from the vapor space of fungi

Because of the large number of fungi to be tested, an agar film procedure was

developed that allowed the parallel incubation and chemical screening of tens of separate

cultures. VOCs of several compounds classes were identified from the vapor space of each

fungal culture, including esters, short-chain alcohols, a short-chain acid, an aromatic

compound, a monoterpene, as well as several sulfur-containing VOCs and nitriles, the latter

presumably derived from glucosinolates, found in horseradish extract. We were also able to

compare the spectra and retention times of several compounds with those authentic standards,

other compounds were identified putatively by NIST spectral library searches.

Of the compounds identified, 2-phenylethyl isothiocyanate, phenyl propionitrile, allyl

isothiocyanate and allyl cyanide are clearly degradation products of glucosinolate origin. In

addition, 2 other sulfur-containing compounds have been identified, which are also assumed

to be of glucosinolate origin. In addition to these, the presence of six ester compounds, ethyl

acetate, ethyl propionate, methyl-1-butanol acetate, methyl acetate, methyl formate and

propyl acetate, was also detected. Other classes of compounds included two aromatic

compounds (benzaldehyde, styrene), an organic acid (acetic acid), a ketone (acetone) and a

monoterpene (β-phellandrene). 18 peaks were not identified, mainly due to a low

signal-to-noise ratio, resulting in a low Similarity Score.

In our previous studies (Szűcs et al., 2018), we have already attempted to detect,

unsuccessfully, the presence of allyl cyanide from fungal vapor using an activated carbon

desorption method. However, our inoculation method described in the present work was
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excellent for the detection of this compound. Furthermore, it is important to mention that no

sulfur-containing degradation products were detected in the vapor space of fungi growing on

malt extract medium, thus confirming their glucosinolate origin.

4.1.3. VOC patterns of fungi

As we have seen, we identified alcohols, esters and glucosinolate degradation products

from the vapor space of several fungi, but it is important to note that these compounds were

also present in trace amounts in the vapor of control, uninoculated horseradish extracts,

which may mean that they can also be formed as a result of spontaneous degradation.

However, a significant number of endophytic and soil fungi produced significantly higher

amounts of these compounds compared to the control.

In the case of acetone, the most prominent strains were E1 - Fusarium oxysporum, E15

- Phomopsis sp. and S18 - Penicillium sp., which produced significant amounts of acetone, a

commonly occurring VOC in fungi such as the endophytic Muscodor albus (Strobel, 2011).

Significantly more allyl cyanide was detectable in the vapor space of several Fusarium

sp. strains (E8, S7 and S19) compared to the control, and in one Curvularia soil fungus (S5).

Allyl isothiocyanate, a product of the degradation of sinigrin, the major glucosinolate of

horseradish, was significantly more detectable in the vapor space of 3 fungi compared to the

control, E12 - Plectosphaerella sp., S1 - Notophoma sp. and S21 - Paraphoma sp. but was

detectable in several cases with relatively high variance.

Several compounds were absent in the vapor space of control samples (uninoculated

horseradish extract), including benzaldehyde, β-phellandrene, dimethyl sulfide, acetic acid,

ethyl acetate, ethyl propionate, methyl 1-butanol, methyl-1-butanol acetate, methyl

1-propanol, methyl acetate, methyl formate, propyl acetate, carbon disulfide and styrene. This

makes it certain that these were produced by the fungi during incubation.

Among the sulfur-containing VOCs, carbon disulfide was present in the vapor space of

all fungi, but four fungal strains produced it in significant amounts, E17 - Colletotrichum sp.,

E21 - Plectosphaerella sp., S16 - Fusarium sp. és S18 - Penicillium sp. In addition to carbon

disulfide, dimethyl sulfide was also detected, but only 4 fungal strains produced it in

detectable quantities: E7 - Oidiodendron cerealis, E16 - Cadophora sp., S3 - Curvularia sp.

and S26 - Penicillium sp.

An additional VOC, probably also containing sulfur based on its fragmentation pattern,

was detected in several samples (retention time 3.33 min, m/z = 72), but was not identified in

detail. This potentially sulfur-containing but unidentified compound was produced in
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significantly high amounts by a large number of strains of the genus Fusarium (E1, E3, E8,

E9, S10, S11, S12, S15, S19, S25) and by Macrophomina phaseolina (E2) compared to the

control.

A group of fungi belonging to the genus Fusarium (E1, E8, E9, S10, S11, S12, S15,

S19, S25) showed a distinct pattern of production of esters such as ethyl acetate. Other esters,

including methyl acetate, ethyl propionate, propyl acetate, were also prominent in the

production of the strains mentioned above, with significant amounts of these compounds

being detectable in all cases. These strains were also notable for the production of alcohols

(e.g. methyl-1-butanol).

Among the more abundant compounds, methyl formate, which was produced by strains

S13 - Penicillium sp., S16 - Fusarium sp. and S18 - Penicillium sp. in significant amounts

compared to the control, and methyl-1-butanol acetate, which was detected in significant

amounts in the vapor space of strains E12 - Plectosphaerella sp., E17 - Colletotrichum sp.

and S21 - Paraphoma sp. Some less abundant compounds were acetic acid and styrene

detected in one Fusarium sp. isolate (S11), benzaldehyde in E2 - Macrophomina phaseolina,

S19 - Fusarium sp. strains and β-phellandrene produced by E15 - Phomopsis sp. in notable

amounts.

4.2. Investigation of metabolome - microbiome correlations in horseradish plants

4.2.1. Glucosinolate content of horseradish varieties

Headspace-GC-MS analysis has shown that several members of fungi isolated from

horseradish and its environment are able to utilize and transform compounds found in

horseradish. Based on this and our previous results (Szűcs et al., 2018), we hypothesized that

the natural, in vivo endosphere of horseradish may contain an even higher proportion of fungi

that have similar chemical interactions with the plant. To investigate this, we collected a large

number of horseradish roots for 2 years and processed and stored them in a

metabolome-sparing manner. Logically, we hypothesized that glucosinolates are the most

dominant in horseradish-fungal chemical interactions, as they are precursors of highly diverse

antimicrobial compounds (Plaszkó et al., 2022, 2021). As these compounds also constitute

the largest part of the specialized metabolite pool of horseradish, we considered it of utmost

importance to determine the concentrations of the major glucosinolates in a targeted,

quantitative manner. In all the varieties studied, the main glucosinolates were sinigrin and

gluconasturtiin, while glucobrassicin and glucoiberin were also quantifiable in smaller
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amounts. The dry weight concentration of sinigrin in each variety ranged from 1.14 ± 0.66%

to 3.43 ± 0.65%, and that of gluconasturtiin ranged from 0.36 ± 0.18% to 0.67 ± 0.31%. The

concentrations of glucoiberin and glucobrassicin ranged from 0.03% to 0.07%. The relative

variation in glucosinolate concentrations within varieties was relatively high, 26.9% for

sinigrin and 19.8% for gluconasturtiin, but the variation between varieties was smaller than

expected. For sinigrin, gluconasturtiin, glucobrassicin, glucoiberin, the differences between

the highest and lowest mean values were 3.33, 1.99, 20.5 and 2.81 times, respectively. The

concentration of aliphatic sinigrin and glucoiberin was much more affected by the cultivar

itself (puncorr. = 0.0008 and 0.0049) than by glucobrassicin and gluconasturcin (puncorr. = 0.6510

and 0.0227). In 2019, significantly less sinigrin, glucoiberin and glucobrassicin were

synthesized in the varieties (puncorr. = 5.21E-7, 0.0019 and 0.0024, respectively), while there

was no significant year effect on the amount of gluconasturtiin (puncorr. = 0.2465). We were

also able to investigate additional glucosinolates by non-targeted metabolomics on a relative

abundance basis.

4.2.2. Untargeted metabolomics

As no significant differences in glucosinolate content were found between horseradish

varieties, the role of untargeted LC-MS/MS metabolomics in understanding plant-fungal

interactions became even more important. The XCMS online peak-detection algorithm

identified a total of 2576 chemical features in positive and negative ion modes, of which 1310

remained after removal of isotope peaks and adducts. The QC samples used in the

instrumental analysis were also used to determine the linearity, relative standard deviation

and reproducibility of the measurement. These were used to filter out the candidate

compounds that showed a maximum relative standard deviation of 30% and a linearity of at

least 0.8, allowing a total of 355 features to be further investigated.

MS/MS fragmentation was also performed on 233 features with high within-sample

variability. Based on the fragmentation patterns, potential candidate compounds were

identified by Sirius software and verified against literature data (MSI - Metabolomics

Standards Initiative Level 2 identification). The features include specific metabolites such as:

flavonoid glycosides (kaempferol aglycone), polyphenolic compounds (phenylpropanoid and

coumarin glycoside), indole derivatives and primary metabolites (phospholipids, amino acid

derivatives, peptides).

Candidate compounds that could not be validated from the literature are referred to

either by their putative compound class (Classyfire hierarchy, MSI level 3 identification)
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(Djoumbou Feunang et al., 2016) or by their m/z - retention time (not identified). At MSI

level 3, we were able to rank several features into the following classes of compounds: 2

cyanogenic glycosides, 1 flavonoid glycoside, 1 glucosinolate, 3 lipids (or lipid-like

structures), 9 amino acid derivatives, 14 glycosides and 19 other putative aromatic

compounds.

The metabolomic results revealed that several varieties had very similar chemical

patterns, and a subset was selected to be the chemical side of the data set for determining

microbiome-metabolome correlations. Based on the PCA (principal component analysis)

plots of the chemical data, we manually selected 8 species that covered the majority of the

candidate compounds with high relative variance that were approximately identified. The

principal component values were significantly different between the 8 selected varieties (p =

0.0332), indicating that there was a significant chemical difference between the varieties. The

distribution of effect size values calculated when comparing different sampling years or

varieties can also be used to illustrate metabolomic differences.

By calculating the difference between the values of the varieties with the smallest and

the largest amount of a given candidate compound and then dividing the difference by the

standard deviation, the effect size values (Cohen's d) per candidate compound were obtained.

The median of the effect size values with standard deviation of 1.289 indicated that there is a

significant degree of chemical variability between varieties. Compared to the effect size

values for the year factor, the median was relatively high at 0.4678, indicating that the

chemical composition of horseradish roots may vary to a non-negligible extent from year to

year. Of the 359 candidate compounds tested, 59 had an effect size of 1 or more for the year

factor, presumably due to differences in weather between 2018 and 2019. As we did not aim

to investigate chemical differences between varieties, data were entered into the further data

analysis models without grouping by variety or year. The resulting chemical diversity

allowed us to find direct correlations between candidate compounds and endophytic fungal

abundance values.

4.2.3. Amplicon sequencing

Another layer of our efforts to understand plant-fungus interactions has been to explore

the endophytic fungal community in plants. Currently, one of the most suitable methods for

this is metagenomics, including high-throughput amplicon sequencing, which can identify

tens or hundreds of thousands of fungal sequences per sample. As already shown, ITS can be

a good marker gene for fungal identification and is frequently sequenced in metagenomic
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studies. Within the ITS, the use of the ITS2 subregion for fungal amplicon sequencing can

have important advantages, e.g., less variability in the length of the amplicons compared to

the ITS1 subregion, and more universal primary binding sites. Due to its advantageous

properties, its use on second-generation sequencing platforms is accepted (Ihrmark et al.,

2012; Nilsson et al., 2019; Toju et al., 2012). When amplification of fungal sequences is

performed from living plant tissue, it is advisable to use at least one primer that specifically

amplifies fungal sequences (Toju et al., 2012).

During our in silico pilot experiment, the universal fungal primers commonly used in

the literature were not effective in the horseradish-endophyte system, as the host plant DNA

was also highly amplified. As a consequence, bioinformatics methods were used to design a

primer that does not have a binding site in the ITS2 region of horseradish, but does in as

many fungal regions as possible. We also performed a preliminary sequencing experiment

with the ITS3_KYO2/ITS4_KYO3 and fITS7/ITS4_KYO3 primer pairs, where at least 40%

of the amplicons were identified as plant-derived ITS sequences according to the UNITE 8.3

eukaryotic database (Abarenkov et al., 2021b). However, using our ITS3_NOHR forward

primer and the ITS4_KYO3 reverse primer used in the literature, the percentage of ITS reads

with a clear plant origin was 0.2%. Based on our preliminary sequencing results, we used our

developed forward primer in further experiments.

In silico, the ITS3_NOHR primer was able to bind to 95.3% of unique Ascomycota ITS

sequences and 85.8% of unique Basidiomycota ITS sequences according to the UNITE 8.3

fungal database (Abarenkov et al., 2021a), provided that we allowed up to 1 mismatch error

for the alignment algorithm (the most frequent mismatch was in base 6 at the 5' end of the

primer). The primer efficiency approximates that of ITS3_KYO2 and fITS7 primers in these

fungal strains (Ihrmark et al., 2012).

The screening step removed 0.7% of the total unique ASVs by removing ASVs also

found in negative control samples. The ASVs removed presumably included dermatophytic

genera of human origin such as Malassezia. A much larger impact on the overall data set was

the removal of ASVs that did not give meaningful hits in either the UNITE or NCBI RefSeq

(fungal ITS) databases, as 78.5% of the unique ASVs (26.35% of the total reads) were

removed. Examination of the 50 most common such sequences using NCBI BLAST revealed

that most of them are of some plant origin but not ITS sequences. The screening steps

resulted in a total of 2673 ASVs, with a median read count of 26116 per sample.

The use of sequencing QC samples proved to be very useful in optimizing the filtering

parameters, as all 4 replicates showed almost identical ASV composition with very low
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variance. Due to this property, QC samples may be useful in correcting sequencing errors, but

this requires further investigation.

4.2.4. Analysis of microbiome diversity

When processing the raw data from amplicon sequencing, we observed that the fungal

community data (e.g. individual reads) of the soil samples differed significantly from the

plant samples. Furthermore, based on literature data, it could be assumed that the fungal

community in soil samples differs significantly from the endosphere of horseradish, and this

is supported by the different diversity indices. Diversity metrics were constructed based on

2673 ASVs that passed the preliminary screening steps. For the horseradish samples from site

1, the average ASV richness was 45.2 (range 27-94), for site 2 45.4 (range 24-109), and for

the carrot control samples we found an average value of 39.5 (range 29-48). In contrast, the

soil samples showed a much higher richness with an average value of 383.6 (range 109-609).

ACE and Shannon indices also showed similar dynamics. The Simpson dominance index

indicated that some fungal taxa were significantly more abundant in the horseradish samples.

Although the overall dominance was relatively low in the carrot and soil samples, the

abundance values were much more uniform in these samples compared to the horseradish

samples. Irrespective of dominance values, abundance values were less uniform as measured

by the Buzas and Gibson indices. Overall, there was significantly more variability in the

diversity index values within the group of horseradish samples.

Beta diversity between samples was assessed using Bray-Curtis similarity and

Whittaker's diversity values. Both beta diversity metrics showed that soil samples were

extremely different from other sample types. In addition, beta-diversity values were higher

within the horseradish sample groups than in the other sample sets, with low R values in the

ANOSIM tests also supporting this observation. Although the differences between the

different sample groups (soil, carrot, horseradish) were much larger than the differences

within groups (due to the large distance between soil samples), the horseradish samples

showed a high variability for both beta-diversity metrics.

A more sophisticated analysis, an unweighted UniFrac analysis, was also performed to

examine diversity. A robust phylogenetic tree is a prerequisite for the UniFrac method, so we

constructed several trees to test their reliability. Based on the metrics of the multiple fits, the

UniFrac analysis was reliable. UniFrac dyadicity values showed a similar arrangement to

previous diversity metrics. The ANOSIM tests of UniFrac distancing values were also

comparable to previous results, although showing greater variability within soil samples.
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Overall, both alpha and beta diversity metrics indicated significant variability between

and within horseradish sample groups, which may be related to variation in the metabolome

of horseradish samples.

4.2.5. Endophytic fungal community composition of horseradish varieties

ANOVA analysis revealed significant differences in fungal communities between

sample groups at the strain, family and genus level (p = 10-18), similar to the beta diversity

metrics. In the horseradish samples from site 1, the most abundant ASVs were classified in

the fungal orders Cantharellales, Glomerellales, Hypocreales, Pleosporales,

Saccharomycetales, Sordariales, which also include several plant-related genera (typical

endophyton, epiphyton, pathogen), e.g. Claviceps, Colletotrichum, Epichloë, Fusarium,

Rhizoctonia. The taxonomically less resolvable ASVs were mainly included in the

Ceratobasidiaceae, Nectriaceae, Pezizaceae, Sordariomycetes, Ascomycota groups. Carrot

control samples from the same area showed a similar taxonomic composition.

In contrast to the plant samples, a significantly different fungal community was

observed in the soil samples from site 1, dominated by the orders Filobasidiales,

Mortierellales, Hypocreales, Sordariales, Thelebolales, Umbelopsidales. The most common

genera were Humicola, Metarhizium, Mortierella, Penicillium, Pseudogymnoascus,

Solicoccozyma, Trichoderma, and Umbelopsis. In addition, unidentified members of the

Chaetomiaceae family and other Ascomycota ASVs were abundant. It is important to note

that the soil communities did not change significantly between 2018 and 2019, which may

indicate that the composition of the communities observed in the plant samples is not

primarily influenced by the soil.

In several cases, one or two endophytic taxa were highly dominant in a sample. This

phenomenon was mainly observed in horseradish samples but not in carrot, which may be

due to the difference in sampling depth (64 + 12 horseradish, 4 carrot), but was also clearly

visible when examining the dominance indices. In most cases, the most dominant taxa

accounted for 20-40% of all reads (median 33.57%), but in one sample it reached 95.9%.

This phenomenon was not so prevalent in soil samples (median 21.61%).

Since the plant-soil differences were much larger than the variability between

horseradish samples, we also examined the data from horseradish samples from site 1 in more

detail. Several fungal taxa showed high variability between varieties, suggesting to us that

they could be used to build good correlation models in the future. Examples of such taxa

include Agaricomycetes (0.01% - 6.5%), Morosphaeriaceae and Melanoleuca (0 - 10%),

20



Monosporascus (0.04% - 17.1%) and Setophoma (<0.01% - 6.3%). In many cases these

differences were correlated with some compound candidate, as will be shown later.

Regarding the composition of the fungal community, significant within-species

variability was observed in some cases. For cultivars C, G, I, K and M, the average pattern

was stable between the two sampling years, whereas for cultivars A, U and W, considerable

variability in the 2-year fungal community pattern was observed. A significant proportion of

taxa showing variability showed correlations with chemical features (e.g. Xylariales,

Sordariales, Pleosporales, Eurotiales, Capnodiales, etc.).

4.2.6. Microbiome - metabolome correlations

After the individual analyses of the metabolomics and metagenomics data, these data

were analyzed together finally. The integration of the different omics data sets, the most

complex and difficult to interpret elements of the study of plant-fungus interactions.

Fortunately, increasingly sophisticated statistical methods, models and dimensionality

reduction techniques can greatly aid the biological interpretation of such complex data sets.

The principal components of the fungal data sets aggregated at the family or genus

level showed significant Spearman correlations with different candidate compounds in 37 and

41 cases, respectively. Due to the large number of cases, rather than interpreting PCA loading

values, we attempted to examine direct Spearman correlations between clr-transformed

fungal and chemical abundance data, an increasingly widely used approach (Quinn and Erb,

2021). One important advantage of this approach is that it does not omit compounds from the

analysis that are not correlated with any other (and therefore are in an unstudied principal

component dimension), and it also makes interpretation of the data much simpler. The main

disadvantage is that a very large number of statistical tests have to be performed, and

therefore statistical correction has to be applied to eliminate false positives, which

significantly reduces the statistical power. Due to the previously described transformations,

the fungal dataset was no longer compositional (Gloor et al., 2017). The metabolomics data

were expressed either as true concentrations (glucosinolate content) or as fold-change values

relative to the QC of the candidate compounds (values from non-targeted metabolomics), and

therefore the metabolomics dataset is not compositional. As a consequence, no correlation

artifacts were assumed and the method was found to be usable. Although there was a clear

overlap between the family and genus level data sets, where one genus was very dominant

within a family, we still managed to find significant correlations of 99 (family level) and 72

(genus level) using this method.
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At order level, the most affected fungal strains were observed to belong to the orders

Xylariales, Capnodiales, Sordariales and Saccharomycetales. It is important to note that in

some samples, the proportion of these reads reached 73.4%, 15.7%, 74.2% and 38.4% of the

total reads, respectively. Some other taxa from other groups also showed correlations with

some chemical features, e.g. Laboulbeniomycetes, Agaricomycetes and Eurotiales, but these

accounted for less than 1% of the reads on average.

When data aggregated at least at genus level were examined, fungi belonging to the

taxa Monosporascus, Setophoma, Tetracladium, and Morosphaeriaceae, Agaricomycetes had

the greatest impact on plant chemistry. These taxa accounted for 5.6%, 1.3%, 0.3%, 1.5% and

0.8% of the total readings, respectively, with maximum percentages of up to 73.4%, 32.1%,

28.6%, 59.2% and 21.7%. Other fungal taxa also varied, but with smaller effect sizes, e.g.

Fusarium, Melanoleuca, Brachyphoris, Thanatephorus, and fungi belonging to the

Pezizaceae and Pleosporales groups, which accounted for 4.0%, 5.4%, 0.4%, 4.9%, 2.4% and

3.2% of the total readings, respectively. Overall, ASVs, accounting for 35.23% of all reads,

were correlated with one or more chemical features.

The list of the most influential candidate compounds includes many natural compounds

from different biosynthetic classes. Surprisingly, the main glucosinolates did not result in a

crude correlation with any of the fungal groups, despite being found in very high

concentrations in horseradish, compared to other cabbage species. When comparing the effect

size values of the significant correlations between classes of compounds and fungal orders, it

is not possible to clearly select the class of compounds with the greatest effect, although

small differences are apparent.

Looking at the genus level data, the hypothesis that glucosinolates play a key role in

fungal community formation cannot be supported, at least as much as the effect of flavonoid

glycosides or other glycosides that have been identified. In addition, lipids and lipid-like

molecules and peptides also appear to play an important role, although the relative standard

deviation values for peptides were high. The highest effect size values (absolute effect size >

2) were found for peptide-like compounds, which according to the Canopus algorithm may

belong to gamma-glutamyl amino acid derivatives or additional peptides. The other larger

group of correlations (abs. effect size > 1.5) also includes primary and specialized metabolite

classes such as: flavonoids and other putative glycosides, and a glucosinolate. These show a

strong correlation with the abundance of several fungal taxa. In addition to these, some

peptides, phospholipids and N,N-(dimethyl)-thiobenzamide are also found in this group. At

the order level, the most strongly affected fungal taxa were Xylariales, Capnodiales and

22



Saccharomycetales, while at the genus level, Setophoma, Monosporascus and Tetracladium

were the most affected.

Plotted on a heatmap, we observed that several classes of primary and specialized

compounds were involved in these interactions, including lipids, indole derivatives,

glycosides and peptides. Compounds with high correlations with one or more fungal taxa

may be scattered in multiple clusters on the heat map, implying that the results cannot be

explained simply by multi-correlation of compounds.

Our results presented in this thesis suggest that plant-fungal interactions are indeed a

web of complex networks, and that the 2 dimensions (metabolomics-metagenomics) we have

presented already explain many biological phenomena. However, the exploration of such

networks is not a trivial task, and the set of problems can be extended even further by adding

new omics layers. Several solutions to this problem may exist, e.g. the construction of

correlation networks, which is an important cornerstone of our future research.

5. Discussion

5.1. Volatile organic compound (VOC) analysis in the vapor space of
horseradish-associated fungi

5.1.1. Identified fungi

The endophytic fungi we identified are also commonly found in the endospheres of

plants of Brassicaceae, and also some less common strains, such as Volutella sp. We have

found several genera that were described in Arabidopsis thaliana, also a member of

Brassicaceae, e.g. Phoma, Phomopsis and Plectosphaerella (Junker et al., 2012).

Although we were able to isolate many more soil fungi compared to the endophytes, it

appeared to be a more homogeneous group in terms of species diversity, dominated mainly

by Fusarium and Penicillium species. This is not surprising, as only a few Ascomycota taxa

are dominant in soil communities worldwide, including the genera mentioned (Egidi et al.,

2019).

5.1.2. Performance of the proposed headspace GC-MS inoculation method

With our method, the sealed headspace glass is assumed to provide a microaerophilic

environment for the fungi, which stimulates the production of VOCs. This phenomenon has

been observed previously in endophytic fungi (Schoen et al., 2017). Using our method, we

23



have described, for the first time to our knowledge, the VOC patterns of fungi belonging to

the genera Cadophora, Curvularia, Notophoma, Paraphoma, Plectosphaerella,

Pyrenochaeta, Setophoma and Volutella. The VOC profiles of representatives of some other

genera we have studied have been described previously, e.g. Colletotrichum (Rojas-Flores et

al., 2019), Penicillium (Ndagijimana et al., 2008), Phomopsis (Singh et al., 2011), in which

studies several compounds were found, similar to those we have identified, such as

methyl-1-butanol, acetone (Singh et al., 2011), methyl-1-butanol acetate, benzaldehyde

(Rojas-Flores et al., 2019) and styrene (Ndagijimana et al., 2008). The VOCs produced by

fungi can provide them with various competitive advantages, especially if nutrients produced

by the host plants are also available to them. This phenomenon can also be exploited by

plants for their own benefit, for example by releasing various exudates into their environment

(Zeng et al., 2003), thus attracting and feeding fungi that can help their development. By

altering the composition of exudates, e.g. the proportion of glucosinolates, the plant can

change the composition of the rhizosphere community to its own benefit (Bressan et al.,

2009; DeWolf et al., 2023).

5.1.3. Glucosinolate decomposition by fungi

It has long been known that fungi are also capable of degrading glucosinolates, with

thioglucosidase activity first described from Aspergillus sydowi nearly 80 years ago (Reese et

al., 1958). Since then, the list of glucosinolate-degrading fungi has expanded considerably, as

reviewed by us (Plaszkó et al., 2022), e.g. Macrophomina phaseolina, Phoma radicina,

Setophoma terrestris (Szűcs et al., 2018), Aspergillus clavatus, Fusarium oxysporum (Smits

et al., 1993).

Since no sulfur-containing compounds were detected in the vapor space of fungi

growing on malt extract medium, it is likely that sulfur-containing compounds produced by

fungi incubated on horseradish extract could be glucosinolate degradation products. Based on

our preliminary calculations, glucosinolates in horseradish account for about 30-35% of the

total sulfur content of the plant. Calibration samples containing a mixture of different

standards showed good relative standard deviations (RSD) for allyl cyanide, allyl

isothiocyanate, dimethyl sulfide and carbon disulphide. The instrumental analysis of

2-phenylethyl isothiocyanate and phenyl propionitrile could not be reliably reproduced due to

their low volatility and are not discussed further. Allyl cyanide from sinigrin was very well

detectable by our method, being detectable in the vapor space of virtually all fungal cultures,

and 4 strains produced significantly high amounts compared to controls. However, it is
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important to note that the formation of allyl cyanide may not only be the product of

enzymatic reactions, pH or ionic changes may contribute to its formation by spontaneous

decomposition. Allyl isothiocyanate is also undeniably a compound of sinigrin origin, and

was produced in significant quantities by 3 strains of fungi. Isothiocyanates can form

conjugates with glutathione or thiol side chains of proteins, which are virtually impossible to

detect by GC-MS (Hanschen et al., 2014; Plaszkó et al., 2021). This may also contribute to

the low number of fungal strains detected, as it is assumed that fungi release glutathione into

the environment as a kind of chemical adaptation mechanism to eliminate isothiocyanates

that are toxic to them. A similar conclusion was reached in our previous studies (Szűcs et al.,

2018). We also detected carbon disulfide in several fungal strains, in 4 cases in significant

amounts compared to controls, which could be derived from non-enzymatic degradation of

allyl isothiocyanate (Pecháček et al., 1997) or even from detoxification pathways by fungi.

This may be supported by the relatively high correlation between the levels of allyl

isothiocyanate and carbon disulfide in the headspace vapor spaces (R2 = 0.608).

5.1.4. Separation of endophytes and soil fungi by VOC patterns

The vast majority of the fungal isolates could be uniquely characterized by their VOC

patterns, as the amount of several compounds differed very significantly between isolates,

such as allyl cyanide (p = 5.55 × 10-48), allyl isothiocyanate (p = 3.48 × 10-4) and carbon

disulfide (p = 5.40 × 10-13). Nevertheless, the endophytic and soil fungal sets we investigated

were not significantly distinguishable, either in terms of VOC patterns or in terms of the

amount of individual compounds. This observation may also be due to the fact that while the

endophytic group showed a high taxonomic diversity, this was not the case for the soil fungi

group. Although it is important to note that there was a very significant difference between

Fusarium and other genera of fungi in terms of the compounds detected in their vapor space,

no significant difference was found between the two groups studied.

5.2. Investigation of metabolome - microbiome correlations in horseradish plants

5.2.1. Compounds identified by untargeted metabolomics

In addition to glucosinolates, kaempferol glycosides and phospholipids have also been

detected from horseradish roots before (Herz et al., 2017), supporting our observations. The

isomers of the putatively identified glucosinolates have been described from horseradish as

isothiocyanate degradation products (Blažević et al., 2020), although pentyl glucosinolate has
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not been previously found in horseradish samples (Agneta et al., 2012). The presence of the

m/z 259,0126 fragment (Rochfort et al., 2008), which is characteristic of glucosinolates, and

the Canopus hits suggest that the candidate compound is most likely a glucosinolate. The

other compounds include a coumarin glycoside, which to our present knowledge has not been

previously described from horseradish roots, but is known to be an important constituent of

exudates from some members of the Brassicaceae plant family (Sarashgi et al., 2021), so its

presence is not surprising. Indole-3-carbaldehyde and other tryptophan-derived compounds

are also frequently found in the Brassicaceae literature and have been detected in various

species of the plant family (Bednarek et al., 2011; Li et al., 2023). Overall, the suggestions

generated by the CSI:FingerID and Canopus algorithms have significantly shortened the time

required to identify candidate compounds, although not all suggestions have proven to be

completely accurate when examined in detail.

5.2.2. Variability of the glucosinolate content and metabolome

Glucosinolates are essentially precursors of antifungal compounds (Plaszkó et al., 2022,

2021) and are of particular importance in the prevention of plant pathogenesis (Agee et al.,

2010; Frerigmann et al., 2016; Kuhn et al., 2017). In a comparative study on six Italian

horseradish cultivars, similar sinigrin, gluconasturtiin, glucobrassicin and glucoiberin

glucosinolate ratios were reported as those we found in our dataset (Agneta et al., 2014). The

variability between sampling years is presumably due to differences in the amount of rain that

falls during the growing seasons, as temperature and water play an important role in plant

production (Nguyen et al., 2013). It is also important to note that the 2-20-fold differences in

the concentrations of the main glucosinolates between cultivars were found to be sufficient to

test the concentration data using Spearman correlation tests after autoscaling.

5.2.3. Endophytic fungal community composition of horseradish varieties

In the plant samples, we found several genera that have been previously described as

endophytes, including Paraphoma (Kang et al., 2021), Plectosphaerella (Feng et al., 2021;

Wei et al., 2021), Podospora (Penner and Sapir, 2021). Some of these have been identified in

Brassicaceae plants, e.g. Exophiala (Maciá-Vicente et al., 2016), Plectosphaerella (Ważny et

al., 2021), Setophoma (Poveda et al., 2020; Szűcs et al., 2018).

All alpha and beta diversity metrics showed clear differences between different sample

types. As expected, soil samples showed the highest richness and diversity compared to other

samples. This is not surprising, as the plant microbiome is generally less diverse (Sasse et al.,
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2018), as a very strong filter may be the inability of many soil fungi to colonize plant tissues.

It has also been previously described that root endophytic communities of phylogenetically

distant plant families show surprisingly high similarity (Toju et al., 2019).

In contrast, dominance and equality indices showed that horseradish samples have

higher variability within their own category than soil samples. A similar phenomenon has

been described previously (Seabloom et al., 2019), where the authors concluded that fungal

endophytic communities vary within a field but are not consistently affected by host plant

nutrient supply. Nevertheless, as we will see later, if a sufficiently large number of replicates

of a single variety are available, it is possible to successfully build models that can explore

correlations between plant chemistry and fungal colonization. In most of the horseradish

samples, a few fungal strains had relatively high dominance, which has been observed

previously in several plant families (Toju et al., 2019). However, the degree of dominance is

still striking, which may suggest that there are pioneer or fast-growing opportunistic species

that may occupy a significant part of the plant niche. This also raises interesting questions

about how many replicates would need to be examined in detail in such studies.

5.2.4. Correlations between fungal and chemical features

Our results suggest that complex chemical methods, such as metabolomics, can be

highly advantageous in the study of plant-microbe interactions. Although this method cannot

replace studies using knock-out mutant plants to demonstrate the effect of a compound on the

assembly of the plant microbiome, metabolomics has shown that about one third of the plant

fungal community correlates with changes in the plant metabolome.

Although the designed experimental setup allowed us to search for correlations, our

results should not be interpreted directly as causal relationships, as there are many other

explanations that may underlie the phenomena. For example, a positive correlation between

candidate compounds and fungal abundance values could be the result of a positive feedback

loop between "recruitment" and elicitation. In such cases, the fungus follows the chemical

signals emitted by the plant and then attempts to colonize it, which the plant tries to control

by a response reaction (Sasse et al., 2018). The biosynthesis of the compound is stabilized at

a level that the fungus can tolerate, but no longer results in a further plant response, creating a

balanced antagonistic relationship between the plant and the fungus (Schulz et al., 2015). If

this biosynthetic rate is higher than the baseline, then presumably a positive correlation

between fungal abundance values and metabolite concentrations can be seen. Since

metabolomics is a "snapshot" of dynamic processes (Shen et al., 2023), it is also possible that
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an increase in the concentration of a candidate compound is the result of a fungal invasion, an

event that may cause accumulation of, for example, amino acids, short peptides or cell

wall-forming monomers. It is worth mentioning that fungi may use specific cell wall

degrading enzymes when colonizing living tissues (Sun et al., 2023; Zuccaro et al., 2011).

Since the invasion strategy of different fungal taxa may differ, the plant defends itself with a

combination of different biosynthetic compounds (Narayani and Srivastava, 2017; You et al.,

2021).

Presumably, negative correlations between chemical and fungal data are seen in cases

where the fungus attempts to invade the host plant but biosynthesis of a compound that

successfully reduces fungal colonization is triggered. Plants that are not capable of

biosynthesis of such compounds are much more likely to be colonized by such a fungal

strain, although this phenomenon can only be narrowed down to compounds with proven

antifungal activity (Bednarek et al, 2009; Lipka et al., 2010). In other cases, the negative

correlation may also indicate that during cell and apoplast colonization, fungi take up certain

compounds, so that plant tissues may be partially depleted of them.

Of the classes of compounds identified, flavonoid glycosides were shown to be one of

the most influential groups in the fungal abundance correlations. Many flavonoids, including

kempferol derivatives, have been shown to be antifungal compounds under in vitro

conditions (Al Aboody and Mickymaray, 2020; Sá et al., 2023), and there is also in vivo

evidence that these compounds may play a role in fungal defense. There are publications in

the literature describing that in fungal infection, biosynthesis of flavonoids or their

downstream products may be increased (Förster et al., 2022) or accumulate in higher

amounts, e.g. in Cucumis sativus plants (McNally et al., 2003). Since flavonoids have shown

positive correlations with most fungi, it is conceivable that they may play an important role in

the colonization-elicitation feedback loop mentioned above or in attracting fungi capable of

forming arbuscular mycorrhizal connections (Wu et al., 2023).

A considerable literature on the antifungal aspect of glucosinolate degradation products

is already available, but since glucosinolates per se have no antifungal activity, it is likely that

degradation products have a real role in the regulation of fungal colonization, as summarized

previously by us (Plaszkó et al., 2022). The effect of native glucosinolates on fungi

investigated in the present research does not seem clear even in the present data set, as the

abundance of Saccharomycetales species is negatively correlated with the approximate

glucosinolates identified, but members of the Xylariales and Morosphaeriaceae are positively

correlated. The major glucosinolates do not seem to show correlations, but this may be due to
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the fact that horseradish has a particularly high concentration of glucosinolates compared to

other Brassicaceae vegetables, which may imply that only the formation of downstream

products is a prerequisite for stopping fungal colonization and that it is not necessary (or even

possible) to enhance glucosinolate biosynthesis.

Not surprisingly, phytoalexin-like compounds showed negative correlations with fungal

abundance values, several Ascomycota ASVs that could not be identified in more detail were

negatively correlated with an indole-3-carboxylic acid derivative, and an indole-3-methyl

amino acid derivative and indole-3-methyl cysteine were also found to be active. Close

relatives of these compounds are frequently reported in publications on Arabidopsis-fungal

interactions, where a significant role is attributed to these compounds in inhibiting fungal

colonization (Bednarek et al., 2011; Fukunaga et al., 2017; Gamir et al., 2014; Kuhn et al.,

2017; Sanchez-Vallet et al., 2010), hence we believe that high levels of these compounds

contribute to the inhibition of fungal colonization.

Peptides in general do not have significant antifungal activity, but specific peptides

with antifungal activity have been described (Fan et al., 2023), although they are much larger

than some amino acids. Nevertheless, it is interesting to note that peptides 423,1387@12.58

and 471,1058@11.06 showed a very strong negative correlation, with higher concentrations

of these peptides leading to a reduction in the amount of fungi belonging to the Xylariales,

Capnodiales, Saccharomycetales, Sordariales, Agaricomycetes groups and the genera

Setophoma, Monosporascus, Melanoleuca. More remarkably, one of these was identified as a

glutathione isothiocyanate adduct, which is formed during the detoxification of

isothiocyanates in fungi (Szűcs et al., 2018). In a targeted search of the data (using mzMine

software), we also found the features 407,1071@11.86 and 471,1388@13.35, which are most

likely glutathione adducts with isothiocyanates of sinigrin and gluconasturtiin, and a trace of

a glucobrassicin origin was also found. It is worth mentioning that while the amount of

glucoiberin-derived isothiocyanate adduct showed a correlation of 0.709 with the actual

amount of glucosinolate of glucoiberin, this value was below 0.35 for sinigrin and

gluconasturtiin. This is encouraging from the point of view that we are probably not seeing

sample preparation artifacts, i.e. downstream products from the myrosinase reaction due to

insufficient cryogenic homogenization. However, the presence of these adducts raises a

number of additional questions that could form the basis for further research. As

isothiocyanate derivatives or adducts are part of the glucosinolate defense system (Hiruma et

al., 2013; Piślewska-Bednarek et al., 2018), it is hypothesized that glucosinolate degradation

can occur without visible concentration changes. As shown above, this may also be a result of
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the particularly high concentration of glucosinolates in horseradish compared to other

cruciferous plants (Gonda et al., 2016). Instead of directly investigating glucosinolates, it may

be more relevant to study downstream degradation products when studying fungus-plant

interactions, which may shed light on additional, hitherto unknown phenomena. This

approach has already been applied to Arabidopsis thaliana plants, where a wide range of

glucosinolate downstream degradation products have been investigated (Bednarek et al.,

2011). Glutathione also plays an important role in the generation of glucosinolate-derived

isothiocyanate downstream products, presumably also in the protection against autotoxicity

(Hématy et al., 2020; Hiruma et al., 2013; Piślewska-Bednarek et al., 2018), which is

supported by our results. The ability to biosynthesize various glucosinolate downstream

products, such as indole compounds, is an important prerequisite for the regulation of

colonization by fungi (Bednarek et al., 2009). However, it is important to note that the list of

key compounds involved in these processes is not yet complete (Frerigmann et al., 2016;

Kuhn et al., 2017). Based on our results, we hypothesize that glutathione-conjugated

isothiocyanate degradation products of glucosinolate origin may be a good starting point for

future plant-fungal interaction studies.

The positive correlations shown by the amino acid derivatives, however, primarily

support the "fungal recruitment" hypothesis, since the primary metabolites, not surprisingly,

may also serve as nutrients for fungi. It is also possible that the increased fungal diversity

could lead to an increase in the abundance of protein-degrading enzymes in the apoplast,

which could result in more amino acids and amino acid derivatives that could be taken up by

fungi. Other primary metabolites (phospholipids and lipid-like molecules, nucleotide

derivatives) showed mixed correlations with individual fungal taxa. Although specific

phospholipids with antifungal activity have been described (Cho et al., 1999), they do not

have direct antifungal activity and it can be assumed that their reduced abundance is mainly

due to their use by the fungi as a source of carbon and phosphorus.

6. Summary
The research underlying the present thesis focused on the fungal endophytes of the

horseradish microbiome. We used GC-MS and LC-MS/MS instrumental analysis and

next-generation sequencing methods to investigate the chemical interactions between

endophytes and the host plant.
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In the first phase of our study, we investigated the volatile organic compounds (VOCs)

produced during the incubation of endophytic/soil fungi isolated from/near horseradish roots

on a medium prepared from horseradish roots. Our proposed incubation method proved to be

suitable for efficient analysis of the VOCs produced by the fungi. Among the volatile

compounds detected in the headspace of the growing fungi, we found, for example, alcohols,

esters and ketones, as well as sulfur-containing compounds that are most likely degradation

products of glucosinolates in horseradish. Not only allyl cyanide and allyl isothiocyanate of

sinigrin origin were detected, but also carbon disulphide and dimethyl sulfide. The presence

of these compounds suggests the existence of alternative degradation or detoxification

pathways. Furthermore, we firstly described the VOC patterns of representatives of several

fungal genera (e.g. Curvularia, Notophoma, Paraphoma, Setophoma). Although the VOC

patterns of the individual fungi were significantly different, the endophytic and soil fungi

groups could not be significantly distinguished on the basis of these patterns.

In the second phase of our research, we investigated the in vivo chemical interactions

between the metabolome of different horseradish varieties and their endophytic fungi,

integrating untargeted metabolomic and metagenomic data. Changes in the metabolome of

horseradish roots showed several correlations with the relative abundance of different

endophytic fungi. At least one third of the identified fungal taxa were significantly correlated

with one or more chemical features. Using untargeted metabolomics, we were also able to

putatively annotate several features, including amino acid derivatives, flavonoid glycosides,

glucosinolates, indole derivatives, lipids, aromatic/polyphenolic compounds, peptides, etc.

Our results suggest that untargeted metabolomics can be a very useful complementary

technique to other omics (metagenomics, proteomics, transcriptomics) approaches. Our

metabolomics - metagenomics combination has also revealed a number of well-understood

phenomena in the complex world of plant - fungus interactions. We hope that our research

can provide a good starting point for future multi-omics studies.
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