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Abstract: The agricultural sector is a vital source of human well-being that provides the necessities of
daily life. A variety of farming systems are utilized in agriculture, such as a wide range of tillage
options, no-till, agroforestry, precision farming, organic farming, cover cropping, crop rotations,
etc. Each of these farming systems has unique challenges, and nanotechnology has successfully
improved on many of them. Agricultural applications of nanotechnology include nanofertilizers,
nanopesticides, nanosensors, nanobiotechnology, and nanoremediation. This study focuses on
the application of nano-farming technologies to different farming systems. Suggested practices
include nano improvement of soil quality, crop nano-protection under biotic stress, nanoremediation
of polluted soil and water environments, nanomanagement of agro-wastes, nano-agrochemicals,
nano-precision farming, and nanobiotechnology for modern farming. This review also addresses
expected problems that may occur due to over application of nanomaterials to farming systems,
such as nanopollution and nanotoxicity of agroecosystem compartments. Several dimensions are
emphasized in this study, such as green energy, sustainable development, the circular bioeconomy,
land biodegradation, pollution, and the one health approach, as essential for the global goals of
sustainable development. Nanofarming presents both benefits and obstacles to human life. The exact
balance between these benefits and challenges needs more study.

Keywords: nanopollution; nanoremediation; nano-priming; nanopesticides; precision farming;
nanotoxicology; nanobiotechnology

1. Introduction

Farming includes growing crops and raising animals for food and raw materials,
practices that are critical to human health and well-being [1,2]. To sustainably utilize
agricultural resources, integrated farming systems should be established. Farming systems
may include cropping, livestock, and agroforestry [3]. Types of agriculture include smart
microalgae farming [4], seaweed farming [5], organic farming [6], agro-livestock farm-
ing [7], and mixed farming and agroforestry systems [3]. Farming has undergone a major
transition over the last few decades for a number of reasons, including a global increase in
population, urbanization, income growth, and development policies [8]. All opportunities
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for greater and more efficient production of cultivated crops and animals should be seized
as many modern farms experience income stress [9]. Combined cropping and forestry
farming can fuse economic and agroecological processes with temporal, spatial, and orga-
nizational integration across the farming enterprise [3]. Although intensive agriculture has
increased food self-sufficiency, this has also led to rapid changes in the use of agricultural
lands and affected the availability of water and its use [8]. Farming has many challenges
due to climate change [10], eroding soil health [11], and global biodiversity decline [12].
Diversified farming systems incorporate different species and/or varieties of cultivated
crops, fish, and/or livestock at multiple spatial and/or temporal scales to help address
these challenges [13].

Nanotechnology has several applications in the field of agriculture [14]. The im-
portance of nanotechnology has increased over time due to its fascinating solutions to
overcome different obstacles (stresses) during the farming enterprise [15]. The application
of nanomaterials (NMs) for farming practices is called “nanofarming”. Nanofarming can
supply several sustainable solutions under both normal and stressful conditions [15]. These
nanofarming practices may include the preparation of seeds by nano-priming [16], applying
nanofertilizers for plant nutrition [17], using nanopesticides, and detecting phytopathogens
with nanosensors [15,18]. Nanomaterials have also shown promise in supporting crops
under stress in a sustainable manner [19]. Nanotechnology can improve crop quality and
reduce post-harvest losses of agro-products by extending their shelf-life, particularly for
vegetables and fruits [14]. There is also the possibility of using nanotechnology to generate
sustainable energy from agro-wastes [20]. Removing pollutants from soil and water using
nanoremediation is a promising technique to restore degraded agricultural soils under
the nanofarming approach to achieve sustainable management of national resources [21].
However, the overuse of NMs during farming practices may lead to nanopollution [22].
Therefore, it is important that we understand the best ways to utilize NMs to enhance the
conservation and restoration of degraded soil and water resources in agricultural systems
without creating new problems.

Many recent studies have discussed nanofarming with a focus on only one or two
issues, such as nanofarming for food production [14], nanofarming and nanotoxicity [15],
nano-priming [16], nanofertilizers [17], or utilization of agro-wastes for nano-enabled
energy applications [20]. There is a need to provide a comprehensive review of different
farming activities using nanomaterials and synthesize the current state of knowledge.
As far as we know, this is a unique assessment of nanofarming, including several nano-
applications as utilized in different farming practices. This review also focuses on very
up-to-date information, with the majority of the references reviewed and synthesized
coming from 2020 through 2023.

This review focuses on nanofarming and its potential as a solution for wicked problems
in global agroindustry. A variety of practices under many farming systems have been
reported to show promise for management using NMs and nanotechnology, including
fertilization, irrigation, cultivation, crop protection, precision farming, remediation of
polluted soil and water, management of agro-wastes, biotechnological approaches, and
sustainable energy.

2. Methodology of the Review

Principal research database sources were utilized to search the literature for relevant
publications, including Scopus (Elsevier), Web of Science (Clarivate), PubMed (National
Institutes of Health (NIH), ScienceDirect (Elsevier), Frontiers, and MDPI. Keywords were
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identified that covered the main ideas investigated, such as “farming system”, “agro-
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farming industry”, “nanofarming”, “nanofertilizers”, “nanopesticides”, “nanofungicides”,

/a7 s

“nanosensors”, “stress”,
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smart fertilizers”, “smart irrigation”, “precision farming”, “agro-
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nanomaterials”, “nanoremediation”, “polluted soil and water”, “nanomanage-
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ment”, “nanobiotechnology”, “nanotechnology”, and “sustainable energy”. The main steps
followed for the study were: (1) create the main aim or theme of this study, (2) put the



Agronomy 2023, 13, 1600

30f32

suggested keywords and searches into the global research databases, (3) build the table of
contents (TOC), (4) re-check these contents based on the available information in databases,
(5) ensure that the TOC provided a good fit to the topics identified, (6) select recent articles
(mainly the last 4 years) for additional review, (7) priority was given to articles published in
high impact factor (primarily Q1) journals, and (8) creation of figures and tables to organize
and communicate themes discovered during the review. There are several farming practices
that can utilize NMs for their management, but this study focused on the more common
among them.

3. Nanofarming: An Overview

Farming involves growing crops (cropping) and keeping animals (animal husbandry)
for the production of food and raw materials (Figure 1). There has been a global increase in
intensive farming systems, which are characterized by their specialization and production
on a large scale [3]. These specialized systems have produced foods in unprecedented
quantities due to advanced agrochemicals, machinery advancement, breeding programs,
and globalized supply chains [3]. Initially, this intensive agriculture led to a diminished
threat of global hunger and malnutrition, but with challenges, such as the COVID-19
pandemic, climate change, and the increased number of conflicts over the last decade, the
number of undernourished people and food prices is on the rise [23]. Approximately 10%
(828 million people) of the world’s population was affected by hunger in 2021, an increase
from 8% (678 million) in 2019 [24]. Given this development, it is desirable that we find new
ways that will allow us to make additional progress so we can meet the United Nation’s
goal of zero hunger [25].

The simplest farming systems are cropping, livestock, and forestry systems. There are
several combinations among these systems, and they can be integrated, such as integrated
crop-livestock, livestock-forestry, crop-forestry, and crop-livestock-forestry systems [3].
Additional examples of farming system combinations can be found in Figure 2. It is very
important to minimize the environmental problems that result from farming practices. This
could be achieved by reducing the use of inputs (mainly agrochemicals) and replacing
them with alternative management practices, such as zero-tillage and applying manure,
and NMs as more eco-friendly practices [3]. Using nanoscale agrochemicals can signifi-
cantly reduce the overall applied rates to the field and minimize the pollution caused by
traditional agrochemicals [26]. These approaches are needed, especially in climate-smart
agriculture [27].

Nanomaterials have shown the potential to improve a number of practices or prop-
erties related to farming, including soil quality, smart fertilization, precision farming,
production under stressful conditions, remediation of polluted soil and water, management
of agro-wastes, and production of sustainable energy (Figure 2). Agro-nanotechnology has
been recognized as a novel and innovative approach to developing sustainable farming
practices that address a wide range of challenges (e.g., pollution and degradation, and
climate change) facing modern farming [15].
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Figure 1. Farming is an essential activity to produce food and feed for humans and animals. There
are many different types of farming and farm management, such as (1) cultivation of grain crops,
(2) agroforestry, (3) raising animals for meat production, (4) dairy production, (5) fruit production,
(6) vegetable production, (7) sheep production for meat and wool, and (8) aquaculture. Photos (1-4)
from Goéttingen, Germany and 8 from Burullus Lake, Egypt by El-Ramady. Photos (5,6) from Spain,
and (7) from Iceland by Brevik.
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(A) Applications of nano-farming

Nanomaterials for stressful conditions

Nano-improvement of soil quality Sustainable

Crop nano-protection under biotic stress
Nanoremediation of polluted soil and water
Nano-management of agro-wastes
Nano-agrochemicals for fertilization
Nano-precision farming

Part (B)

Agro-wastes for producing nanoparticles | Enhanced smart farming

Nanobiotechnology for modern farming Smart or precision farming

Climate-Smart Agriculture

Integrated vertical hydroponic farming V

Cellular farming  Integrated livestock forestry farming

Vertical farming Mixed farming Integrated farming

Microalgae or Seaweed farming Integrated aquaponic farming

development

PN

Cropping-agroforestry farming Aquaponic/hydroponic farming 7

Bio-farming = Shrimp—vegetable farming | Fish farming Cropping farming

Agro-livestock farming | Free-range livestock farming | Poultry-dairy farming

Arable or crop farming | Traditional farming l Monoculture/Polyculture farming

Sustainable Agriculture

Figure 2. The suggested applications of nanotechnology for different types of farming with the goal
of achieving sustainable agricultural development (Part (A)). Part (B) presents different types of
farming in a pyramid form, where common 20th-century large-scale practices form the base (e.g.,
monoculture farming) and sustainable practices are at the top (e.g., enhanced smart farming).

4. Nanomaterials for Stressful Conditions

Crop production can face several stresses that negatively impact plant productivity
(Figure 3). These include abiotic (e.g., drought, salinity, heavy metals, water logging, cli-
mate change) and biotic (e.g., viruses, bacteria, fungi, parasites, harmful insects, weed
pressure) stresses [26]. Such stresses can alter the physiological, morphological, genetic,
and biochemical processes that take place in plants [14]. Strategies to manage these stresses
have included plant breeding, genetic engineering approaches, agrochemicals, integrated
pest management, and a variety of tillage options, among others. Nanotechnology has
shown promise for managing these stresses as well and may include nanopesticides [28],
nanofertilizers [17], nano-based biostimulants [29], nano-encapsulated plant growth regu-
lators [19], and nanosensors [18]. These nanomaterials (MNs) have low cost, high surface
area to volume ratios, are eco-friendly, and possess unique physicochemical properties [30].
Nanomaterials can regulate plant protective responses through synergistic actions, regulate
phytohormone signaling, and modulate the gene expression of phytohormones involved in
plant growth under stress [31].



Agronomy 2023, 13, 1600 6 of 32

I(A) Suggested nanomaterials for stressful conditions

- Nano-improvement of soil quality

- Crop nano-protection under biotic stress

- Nanoremediation of polluted soil and water
- Nano-management of agro-wastes

[Part (B) List of abiotic/biotic stresses should be managed

[Abiotic stress i@ N Db W ¥ Biotic stress
= ‘ o ‘§

Heat /cold stress Bacterial disease

Ultraviolet radiation Fungal disease

Salinity or alkalinity Viral disease
Flood (waterlogging) Nematoda disease
Drought (water deficit) Insect pests
Heavy metals Arachnids

' Soil nutrient deficiency 2 | Weeds

Chilling stress Combined stresses

 Combined stresses . T BN Multiple stresses

Figure 3. Nanomaterials (NMs) provide a promising approach to support cultivated plants under
stressful conditions through many activities, including improving soil quality, protecting plants
against stress, removing pollutants from soil, and managing agro-wastes through the application
of NMs (Part (A)). Some examples of different biotic/abiotic stresses that cultivated plants face are
given in Part (B).

4.1. Nano-Improvement of Soil Quality

Soil is a vital resource that supplies humans with needed food, fuel, and fiber [2].
There are several kinds of soil, and each should be managed according to the crop being
produced and the soil’s characteristics, such as acidic, alkaline, saline, and saline-sodic
(Figure 4). Soil health is defined as “the capacity of soil to function within ecosystem and land-use
boundaries to sustain biological productivity, maintain environmental quality, and promote plant
and animal health” [32]. Additionally, soil health is controlled by soil’s physical, chemical
(e.g., soil pH, CEC, EC, SOM, and texture), and biological changes. However, few studies
have focused on changes in low molecular weight soil compounds and their impacts on
soil health, such as soil metabolomics and soil microbial communities [33]. Soil is the final
sink for many agrochemicals, including NMs. Nano-agrochemicals can be used to improve
soil health and perform an essential role in sustainable agriculture [34].

Many types of nanomaterials can improve soil quality, including nanobiochar, nano-
hydropolymers, nano-gypsum, nano-sulfur, nano-silica, nano-calcium, nanohydroxyap-
atite, nano titanium dioxide, nano-clay, nano-zeolite, nano-zinc oxide, nano-enhanced
materials, nano zero-valent iron, nano-plant hormones, and nano-rock phosphate (Table 1).
These nanomaterials have the ability to solve various soil quality challenges by improving
soil biological, chemical, and physical properties. For example, the proper nano-enabled
biofertilizers can manipulate the soil microbial community in a way that enhances plant
growth and improves crop productivity [34]. This, in turn, can assist in the production of
healthy food.
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';(:A) Suggested nanomaterials for improving soil quality

Nano-improvement of soil quality by
- Nano-biochar, nano-hydro-polymers,
- Nano-gypsum, nano-sulfur, nano-silica,
- Nano-calcium, nano-hydroxyapatite,
- Nano titanium dioxide, nano-clay,
- Nano-zeolite, nano-zinc oxide,
- Nano-enhanced materials,
- Nano zero-valentiron,
- Nano-rock phosphate,

- Nano-plant hormones

Sustainable
development

Part (B) |

Sustainable soils

|
Cons. of nanomaterials

Pros. of nanomaterigs

Organic soils | Forest soils

Sandy soils Acidic soils
Alkaline soils . Prairie soils

Desert soils ‘ Waterlogged soils

Sustainable Agriculture

Sodic soils Saline-sodic soils

v Alkaline soils ' Saline soils Eroded soils

Degraded soils ' Polluted soils ’ Reclaimed soils

Figure 4. Examples of selected nanomaterials (NMs) that can improve soil quality are presented
in part (A), while part (B) presents some examples of different kinds of soils. The soils in (B) are
arranged with degraded or polluted soils at the bottom and sustainable soil at the top. The benefits
of good NMs management (green area) and problems caused by overdoses of NMs (red area) are
presented as well.

Table 1. Some published studies on the potential of nano-agrochemicals to improve soil quality.

Nanomaterials Applied Dose Soil Studied Main Findings Ref.
Nano HA increased the soil content of many
Nanohydroxyapatite 10, 50, and pH =5.7, available low molecular weight metabolites, such as [33]
(nano HA) 150 mg P kg ! soil Fe =107.9 ppm sugar and sugar alcohols, amino acids, and
phenolic acids.
Combined application increased soil pH
Nanozeolite and Blochar7(15 '.10' and . Soil polluted with and organic mattetr; re('iuced t he
biochar 20 g-kg™"); nanozeolite cadmium exchangeable Cd in soil and its [35]
(5,10, and 20 g~kg_1) bioavailability; reduced oxidative damage
in pak choi plants.
Nanogypsum effectively reduced soil pH,
o Degraded saline soil,  EC, and sodium adsorption ratio (SAR),
Nanogypsum 15,30, and 45% GR pH=9.32,SAR =24% with a high ability to reclaim [36]
salt-affected soil.
P nanocontent in sheep Nano manures reduced the degree of
Nanomanure from  and poultry manure Soil saturated with P phosphorous (P) saturation and its colloidal [37]
sheep and poultry (5.96and 578 g L1, (200 mg LY release by increasing P adsorption on

respectively) studied soils.
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Table 1. Cont.

Nanomaterials Applied Dose Soil Studied Main Findings Ref.
Thiol- Nano SiO; significantly reduced the uptake
functionalized nano 4% as a mass fraction Soil polluted with of Cd, Pb, and Cu into pak choi by 92.02, [38]
silica ? metals (Cd, Pb, Cu) 68.03, and 76.34% and into lettuce by 89.81, :
43.41, and 5.76%, respectively.
. . NHAP significantly increased plant
Nanohydroxyapatite The apphgd dose of Wollastomte.- biomass by 643-865%, decreased Cd uptake
wollastonite was amended soil o - . [39]
(NHAP) 5 0 ko1 (180 mg P kg~ ! soil) by 74.8-75.1%, increased soil pH from 3.94
858 SR to 6.52-6.63 in the presence of wollastonite.
Hydroxyapatite Nano HA at 0.25, 0.5, Applied NPs to the Improved rosemary productivity as
. 1 o P-nanofertilizer can enhance plant growth [40]
nanoparticles and1.0gL soil in 23.6 nm T .
and essential oil production.
TiO,-NPs and bacteria (Alcaligenes faecalis
Titanium dioxide 500 mg kg~ ! of Soil polluted by HP8) can bio-degrade anthracene pollutants [41]
-NPs (TiO,-NPs) anthracene anthracene through nano-assisted bacterial
remediation.
. . Nanozeolite can act as a soil conditioner and
Zeolite . Zeolite . . S
. Zeolite (0.25 g) + guar . nutrient carrier and can be used in arid and
nanocomposite nanocomposite L . e [42]
gum (0.75 g) semi-arid regions due to its high K-content
hydrogel 30.76-62.01 nm . . .
and high-water absorption capacity.
. Soil polluted with Cd, Reduced bioavailability of Cd, Cr, and Pb in
Biochar (BC) and Cr, and Pb at 11.69, soil by immobilization through reduction
bentonite (BE)nZVI 15¢g kg_1 nZVI-BC-BE  811.41, and yu ion throug ’ [43]
. ] adsorptlon, co-precipitation, and
composite 949.05 mg kg™", S )
- complexation; reduced Fe leaching.
respectively.
Nanorock P encapsulated with bacteria is a
Abandoned . .
Nanorock 1 . . . sustainable approach to enhance maize
1140 kg P ha agricultural site with .. . . [44]
phosphate sandv loam soil production in degraded soil by promoting
y plant growth and biochemical P fertility.
Nano plant >0 ppm H.G_A; >0 ppm . .
standard indole acetic Nano plant hormones applied to soil
hormone- . Sandy and clay . . 1 L
® acid, 50 ppm HG . increased microbial diversity in soils and [45]
HormoGroe carrier as loam soils vegetative propagation
Auxin (HG-A) phosphatidylcholine

Abbreviations: nano zero-valent iron (nZVI), GR = Gypsum Requirement compared with 100% conventional
gypsum; the NPs were in nm in their diameter.

On the other hand, the excessive application of nanomaterials to soil may cause
environmental problems, including nutrient depletion, soil and groundwater pollution, and
the accumulation of toxic levels of a variety of compounds in the environment [34,45-47].
Collectively these problems are referred to as nanopollution. The toxic effects of NMs
largely depend on the types of NMs rather than enzyme variety. The exposure doses and
their time, soil pH, and organic matter content are also considered key factors controlling
how NMs affect soil [46]. Nano-Ag, -Cu, and -C have shown greater toxic effects on
soil enzyme or microbial activity than nano-Fe and -Zn, which either stimulated the soil
microbiome or had little inhibitory impact [46]. The efficiency of many agrochemicals
is increased when combined with the right microorganisms [41,44,45]. Therefore, many
lines of research are still needed to understand all the implications of utilizing nano-
agrochemicals in food production.

4.2. Crop Nano-Protection under Biotic Stress

Reducing plant biotic stress by inhibiting plant diseases is the main mission of bio-
control agents. These biocides can boost the productivity of stressed plants while being
eco-friendly and degrading quickly [28,48,49]. Crop nano-protection refers to using nano-
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agrochemicals to protect crops against biotic stresses (Figure 5). Crop nano protection can
be achieved using nanofungicides, nanopesticides, nano-herbicides, nano-based sensors,
metal- or metalloid-based NMs (e.g., silicon, selenium, silver, zinc, copper, titanium, etc.),
nano-based biostimulants, and nano-encapsulated plant growth regulators (Table 2). These
NDMs not only directly kill many phytopathogens but have also shown their role as biotic
elicitors by modulating plant immune response and oxidative stress [50]. Microbial NM
products are also promising nano-agrochemicals that can contribute to the sustainable
protection of crops [50]. Nano-based biostimulants can promote plant resistance/tolerance
to biotic/abiotic stresses, improve plant development, and minimize environmental dam-
ages [29,51]. More positive impacts of crop nano protectors are listed in Table 2. Many
elements can support cultivated plants in their nanoform as nanopesticides, such as cop-
per [52], titanium [53], zinc [54], selenium [52], silicon [55], iron [56], and silver [57].

[LA) Suggested nanomaterials for crop protection

Crop nano-protection by formulations:
- Nano-fungicides, Nano-pesticides, Sustainable
- Nano- herbicides, Nano-based sensors, development
- Silicon based-NMs, Selenium based-NMs,
- Silver based-NMs, Zinc based-NMs,

- Copper based-NMs, Titanium based-NMs

- Nano-based biostimulants,

- Nano-encapsulated plant growth regulator

Part (B)

Towards Sustainable Sustainable crop control

approach

Towards non-Sustainable
approach ﬂ

Smart nano-pesticides

Smart nano-bio-agrochemicals

Nano-biological pesticides

Microbial-based nanomaterials

Precision or smart plant protection

Sustainable Agriculture

Integrated Plant Disease Management
Microbial pesticides or biopesticides
Chemical/traditional pesticides

(fungicides, bactericides, insecticide, nematicides, viricides)

_J) S—

Figure 5. Different approaches for crop protection using nanomaterials with a focus on different

formulations of nanopesticides (Part (A)). Part (B) presents a list of selected words related to crop

protection, starting with (from the base) traditional pesticides, then moving towards the smart

nanopesticides and sustainable crop control to achieve sustainable agricultural development.

Table 2. Some published studies on the potential of nanopesticides under nanofarming systems.

Nanoformulations  Phytopathogen Plant Species Main Findings Ref.
Nano-Se (5.0 mg-L_l) had the best

Nano-Se (2.5, 5.0, . Melon pathogen (powdery mildew) resistance by

and 10.0 mg-L~1) Powdery mildew (Cucumis melo L.) improving antioxidant capacity as a (581
biostimulant and insecticide.

Nano-Se (5.0, and Xanthomonas albilineans ~ Sugarcane (Saccharum I?S?-Sieril}r:nf;i Ilf la?l tizgmit:lr; Ce~argj§£:§ [59]

10.0 mg~L_1) bacteria spp. hybrids) quality by imp &) quality;

the accumulation of both ROS and H,O,.
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Table 2. Cont.

Nanoformulations  Phytopathogen Plant Species Main Findings Ref.
Combined application of both
Nano-Se and nano  Leaf spot disease Common bean hanonutrients decr.eased the d1seasg
silica (nano-Si05) (Alternaria alternata) (Phaseolus vulgaris L.) iéel;iill?}]/ k0)¥ énAc;e’;sg;(g ;’}}’eoer;?;n;;;t:foxi dant [52]
activity in bean leaves.
Nano chitosan . Defense enzymes increased in tomatoes by
encapsulated Tomato wilt Tomato (Solanum increasing SOD. POX. chitinase. and [60]
Pseudomonas (Fusarium oxysporum) lycopersicum L.) lucanaseg a fter/a 1 ;n nano ﬁ/m cide
fluorescens & PPlyms & '
. . This nanoformulation is eco-friendly,
CI}ltosan-Sahcyhc . . L effectively used against yellow rust disease
acid and and Str’1.pe ru.st (Pucczn'u’z . Whgat (Triticum in wheat by increasing tyrosine ammonia [61]
ZnSQOy striiformis f. sp. tritici) aestivum L.) lyase, phenylalanine ammonia lyase, and
nanoformula polyphenol oxidase enzymes.
Nanochitosan (50, Potato and tomato Potato and tomato 100 ug ml~! of nanochitosan reduced
75,100, and bacterial wilt (Solanum spp.) disease incidence and severity in studied [62]
200 ug mL~1) (Ralstonia solanacearum) PP plants as an eco-friendly nanopesticide.
MgO-NPs (100 mg L) reduced leaf blight
Green synthesized  Alternaria leaf blight Carrot indices and disease severity, improved plant [63]
MgO-NPs (A. dauci) (Daucus carota L.) length, shoot, and root dry weight, and
plant fresh weight.
Carum copticum oil (CEO) and Peganum
Nano chitosan . harmala (PE) extract encapsulated with
encapsulation EZ;Z:;;?;;I ternata) fi?izziiiﬁazl;m chitosan as a nanofungicide successfully [64]
+ controlled A. alternata under both in vivo
(CEO + PE yeop : lled A. al der both in vi
and in vitro conditions.
Nanocapsules of Atrazine caused foliar damage on chicory
chi tosar?an d Chicory (Cichorium Maize (Zea mays) plants but not maize plants, whereas [65]
alginate (NCs) intybus) as a weed plants nanocapsules are considered harmless to
& the health of the plants.
. . . ZnO-NPs inhibited fungal growth at
Green ZnO-NPs Fru}t rot d'1sease . Gr.a pefruit iy 1.0 mg/mL concentration of green NPs, [66]
(Rhizoctonia solani) (Citrus paradisi) in vitre and in vivo
Treatment with the NPs is safer for the
Chitosan fabricated B'facterlal leaf spot Tomato (Solarnum ecosygtem, provided crop protection, and
bio-NPs of silver disease (Xanthomonas lycopersicum L) had higher levels of lycopene and [57]
campestris) ’ beta-carotene than infected tomato
plant fruits.
Applied NPs reduced brown planthopper,
Ag-NPs and 3{3‘2’21222% og}fser, Rice plants its survival, and enzymatic activities and [67]
CuO-NPs P 8 (Oryza sativa L.) enhanced rice plant defense and control of

(Stal)

insect pests.

NPs—nanoparticles.

Nanomaterials have dual benefits, including monitoring plant health and phytopathogens
detection for the management of plant diseases [68]. Many techniques are used to ap-
ply nano-agrochemicals, such as nanoencapsulation of biocontrol agents [49,60], nano-
biopolymers [49], microbial-assisted product NMs [50], and nano-encapsulated plant
growth regulators [29]. The encapsulation technique can guarantee a controlled release
of different bioactive materials [49]. Despite several advantages of nano-agrochemicals in
crop protection, certain risks are expected under intensive application causing eco-toxicity
and phytotoxicity, depending on the applied dose of NMs. Thus, extensive research on
nano-agrochemicals is required to monitor their impacts on microbiota and determine
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safe consumption levels for plants and animals [50]. Furthermore, appropriate regulations
are needed concerning the use of nano-agrochemicals [69]. The risk-associated factors of
microbial nano-agrochemicals may depend on their cost, scaling-up, and optimal microbial
conditions for the biosynthesis of these NMs, especially before their application on a large-
scale [50]. It is important to understand the NMs-plant-microbiome nexus with a focus on
the possible mechanisms underlying NMs-mediated changes in microbiome diversity for
the next generation of crop health [70].

4.3. Nanoremediation of Polluted Soil and Water

Soil and water pollution is one of the most pressing global issues facing humanity.
This pollution threatens human and environmental health [71,72]. A variety of organic and
inorganic pollutants are constantly increasing in the environment due to anthropogenic
activities, such as agrochemical application (mainly pesticides and mineral fertilizers),
fossil fuel combustion, mining, and the release of industrial wastes [73]. Improving soil
and water quality could be achieved through physical, chemical, and biological remedia-
tion. Remediation types focused on NMs include membrane filtration [74], phytoremedia-
tion [75], bioremediation [76], phyto-bioremediation [77], nanoremediation [78-81], and
nano-bioremediation [82,83] (Figure 6).

7(A)§uggested NMs for remediating polluted soil & water

Nanoremediation using the following materials:
1- Metallic NPs of CuO, ZnO, Fe,O,, TiO,, MgO, Sustainable
2- Polymeric NPs (chitosan-NPs, alginate based NPs), development
3- Carbonaceous NMs:

- Carbon nanotubes,

- Graphene nanosheets,

- Graphene oxide nanosheets,
4- Nanocomposites:

- Biochar supported nzZVI,
- Alginate based nanocomposites,
- Silica coated magnetic nano-composites, O\
- Graphene-based nano-composites Part (B)
Sustainable nano-
bioremediation

Bio-nanoremediation |
Nano- bioremediation
Bio-phytoremediation
Phyto-Bioremediation

Biological remediation

Phytostabilization/ phytoevaporation/ phytoextraction

[ Sustainable Agriculture J

Figure 6. Nanoremediation of soil and water using selected nanomaterials (NMs) are presented
in Part (A). Part (B) includes some common terms in the remediation field, starting with the com-
mon mechanisms of phytoremediation, such as phytoextraction, then moving to bioremediation,
and finally, sustainable nano-bioremediation as a promising technique for achieving sustainable

agricultural development.

Nanoremediation can be defined as a cost-effective and eco-friendly approach that
uses NPs to detoxify pollutants/contaminants in soils and other environmental compart-
ments [83]. Nanoremediation has many exceptional features, including cost-effectiveness,
large surface area to volume ratio, electronic characteristics, sensitivity, and enhanced
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catalytic features [84]. It is worth mentioning that a process has been developed in

nano-bioremediation that conjugates various NPs with microbes to clean hazardous en-

vironmental pollutants that results in a high efficacy and eco-friendly strategy to create

sustainable environments [83]. Nanoremediation includes many mechanisms for remov-

ing or immobilizing pollutants from soils, such as adsorption, heterogeneous catalysis,

electro-nanoremediation, photodegradation, and nano-bioremediation, using the following

materials [85]:

- Metallic NPs (CuO-, ZnO-, FexOy-, TiO;-, MgO-NPs);

- Polymeric NPs (chitosan-NPs, alginate-based NPs);

- Carbonaceous NMs (carbon nanotubes, graphene nanosheets, and graphene ox-
ide nanosheets);

- Nanocomposites (biochar supported nZVI], alginate-based nanocomposites, silica-
coated magnetic nanocomposites, and graphene-based nanocomposites).

Many studies have been published on the role of nanomaterials in the remediation of
polluted environments, including soil and water (Table 3). The nanomaterials may have
multiple potential uses in pollution remediation, including removing pollution, nanosen-
sors for detecting pollutants, and causing nanopollution due to intensive application of
NPs [86,87]. Due to unsustainable nano production in different fields, nanopollution
concerns have become a global issue. An increase in the number of published articles
on nanopollution has been noticed in recent years, with a focus on different points of
view regarding nanopollution [87], the problems of green mitigation of nano-plastic pollu-
tion [88,89], and the fate and impacts of nano glass pollution on the food web [90].

Table 3. Some published studies on the potential of nanomaterials for nanoremediation of soils.

Nanoformulations Soil Pollution Type Main Findings Ref.
0 0_ %,
Ni and Cu'-NPs Diesel contamination 2 mg dose of Nl + Cu”’-NPs removed 98.73 and 99.38% [91]
diesel contaminants.
Biochar and bentonite Cd(II), Cr(VI), and NMs improved immobilization of Cd, Cr and Pb in soils by 70.95, [43]
nZVI1 Pb(II) 100, and 100%, resp. N
Nano Fe3zOy activated C-  Polycyclic aromatic 2% NMs adsorbed PAH at 153.5 pg/mg for the total PAHs as [92]
composite hydrocarbons (PAHs) adsorbent in soil washing to remove the hazardous PAHs from soil
. Nano-ZVI at 2 and 5% reduced soil pollution as indicated using
Heavy As pollution . . . . ?
Nano-ZVI (1807 mg kg~ 1) soft computing models of extreme learning machines with particle [93]
&%8 swarm optimization.

. . Arsenic (As) and Over 3 cycles, the removal rate of As was 12%, whereas very low
Bio-nano sized FeS uranium (U) rate (1.59%) was recorded for U. [94]
Thiol-functionalized Pb, Cd, and Cu Nano SiO,-SH was nqt b1o—tox1c.to ’fh.e soil ecosystem but also

e . improved the soil environment, inhibited the movement of HMs [38]
nanosilica polluted soil . . .
into the soil solution.
Sulfidated nano Reductive efficiencies of water-soluble Cr(VI) reached 99.7, 99.3,
zero-valent iron Alkaline Cr(VT) and 99.8% in 3 tested soils with initial contents of 439, 3307, and [95]
(nFeS/Fe?) 4626 mg kg1, respectively, after 15 d of nFeS/Fe? treatment.
. L. Maximum diesel removal efficiency of 83.8% was obtained b

; ; 0 y y
Bimetallic Zn/Fe” NPs Diesel contamination Zn/Fe? bimetallic NP-stabilized Rhamnolipid (12 mg/L) foam. %6l
Nanohydroxyapatite . NHAP may be an appropriate P-fertilizer, soil Cd was immobilized
(NHAP) Cadmium (Cd) using wollastonite, which decreased Cd uptake by 74.8-75.1%. (3]
Nano Fe-based T?tra-bromo- Removal efficiency of 82.07% with the fastest reaction rate of
persulfate, bisphenol A degradation within 0.14 h~! in the presence of plant leaf extracts [57]
heterogeneous (TBBPA) & ’ P P ’
Nanovesicle and Heavy metals (HMs) Sporosarcina pasteurii bacteria can precipitate calcite, form NPs, and (98]

microbial activity

remediate multiple HMs to enhance the growth of various plants.
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4.4. Nanomanagement of Agro-Wastes

Agriculture includes several activities that prepare the soil to support seeds or seedlings
until harvest. Some of these farming activities are major sources of pollution in the agricul-
ture sector. Thus, the accumulation of mismanaged agro-wastes has created environmental
issues, especially in developing countries [99]. Agro-waste should be addressed to safe-
guard the environment and preserve renewable resources (Figure 7). The benefits of doing
so may include: (1) improving soil fertility and crop productivity; (2) reducing dependence
on mineral fertilizers; (3) reducing dependence on fossil fuels; (4) producing protein-based
feedstock for animal feeding; (5) producing bioactive compounds; (6) producing both nano-
materials and nanoparticles; (7) producing pharmaceutical compounds; (8) use as feedstock
in fermentation industries; (9) producing asphalt binder or as natural aggregate in concrete;
and (10) producing nano-adsorbents [99]. On the other hand, many environmental prob-
lems can happen when these agro-wastes are mismanaged, causing pollution of soil, water,
and air. This pollution may cause hypoxia, harmful algal blooms, and eutrophication in
water bodies, which may pose health risks and economic costs [100,101].

(A) Benefits of managing agro-wastes on a farm level |

- Agro-wastes to produce silica compounds,

- Agro-wastes for sustainable energy, Sustainable
- Improving soil fertility and crop yield, development
- Reducing dependence on chemical fertilizers,

- Reducing dependence on fossil fuels,

- Producing protein-based feedstock for animals,

- Producing bioactive compounds,

- Agro-wastes for producing green NPs/NMs, O

- Producing nano-cellulose/nano-adsorbent,

- Agro-wastes for fermentation industries, Part (B)

- Producing pharmaceutical compounds Aoro-wastes for
sustainable energy

Producing nanomaterials

Producing bioactive compounds
Fermentation industries | Green hydrogen
Compositing ' Producing bio-oil and bio-char

Substrates for edible fungi cultivation

Sustainable Agriculture

Producing protein-based feedstock for animal feeds

Biofertilizers @ Biogas, bioethanol, bio-methanol, biobutanol

Figure 7. Suggested management of agro-wastes on the farm level, including the nano applications
of agro-wastes under the waste-to-wealth concept (Part (A)). Part (B) presents some common terms
related to agro-wastes and their handling for producing energy of agro-wastes and progressing to
sustainable management as a promising target of sustainable agricultural development.

A strong relationship between the energy crisis and the management of increasing
amounts of solid wastes due to the growing global population will lead to environmental
deterioration. Under the circular economy concept, it is important to consider certain strate-
gies for converting agro-waste into energy, including nanotechnology-based processing,
to meet sustainable development goals [20]. Therefore, many recent studies focused on
converting agro-waste into sustainable energy within a circular economy (e.g., [102-104]),
a green strategy of converting agro-wastes into nano-enabled energy applications [20] and
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producing nanomaterials or nanoparticles from agro-wastes (Table 4). Agri-food wastes can
pose a threat to human and environmental health. Annual food wastes generated globally
total around 2 billion tons, with about 1.3 billion tons, which represents one-third of global

food production generated by the food industry [105].

Table 4. Some studies on the potential of agro-wastes as a feedstock to produce nanoparticles.

Type of NPs Method of Types of o re .
(Nanoparticles) Synthesis Agro-Wastes Main Findings of the Review Ref.
Nanosilica has many remarkable applications
Silica nanoparticles  Biological methods  Rice straw and others in environmental clean-up, water treatment, [106]
and other types of nanoremediation.
Groundnut shell,
Nano Silica Biogenic synthesis coconut husk, banana C;c?conut produced a higher content of biogenic [107]
peel, orange peel, and  silica compared to the other agro-wastes.
walnut shell
. . Extra‘cts from Persea Eucalyptus globulus leaves were recommended
Nickel oxide americana seed, .

. . . to produce NiO-NPs as compared to other
nanoparticles (NiO  Green method Zea mays silk, and . . [108]
NPs) Eucaluotus olobulus studied agro-wastes. The NiO-NPs could be

Ypris & used as a bacterial inhibitor.
leaves
Super paramagnetic . N Paddy rice and Blogem.c 1ron oxide NM? have good magnetic
- . Bio -fabrication and antioxidant properties for novel drug and  [109]
iron oxide NPs wheat straws . . R
biomedical applications.
. Biodiesel generation was effectively using
Nano graphene Green method with  Coconut husk and . .
. graphene oxide nanocatalyst derived from [110]
oxide azolla help sugarcane bagasse o .
agro-waste by transesterification using azolla.
Nano silica and Acid precipitation . Spherlc.al nano Slhcé NPs (17 nm) proylded .
o Rice paddy straw protection from environmental pollution, with ~ [111]
lignin process - . .
negligible mineral contaminants.
. . Agro-industrial S. ramosissima wastes were considered a
Cellulose Acid and enzymatic . . . .
. . wastes from Salicornia  renewable source of nanofiber production for [112]
nanofibers hydrolysis . .
ramosissima circular economy concepts.
NP application provided smart agro-waste
Multi- . Biological processes Fruit an.d vegetable management fo.r green energy applications, [20]
nanoparticles processing wastes such as generating and storing energy from
agro-wastes.
It can use in sustainable agriculture and
Nanostructured . Lime and banana medical fields because it is non-toxic,
. . Green synthesis . . . [113]
iron oxide peels biocompatible, and does not include any
harmful substances.
Chemical Cut garlic stalk, Produced nanocellulose for application as new
Cellulose . . . . e
method/acid corncob, and giant materials for food packaging, purification, and ~ [114]
nanocrystals h . s .
ydrolysis cane wastes multiple industrial sectors.

5. Nano-Agrochemicals for Fertilization

Fertilization is an important farming activity that exerts important controls on crop
production, especially under intensive agriculture. There are several kinds of fertilizers,
which include traditional (chemical/mineral and some forms of organic), bio-, and nanofer-
tilizers (Figure 8). These fertilizers have different roles in achieving sustainable agricultural
development. It could be noticed that bio- or nano-fertilizers (mainly biological synthesized
nanofertilizers) are more sustainable than organic fertilizers and preferable due to their
benefits on the economic and environmental level. Engineered nanomaterials (ENMs) have
been applied in many fields in recent years, including medicine and human health [115],
water desalination [116], renewable energy [117], cosmetics [118], textile fabrication [73],
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environmental cleanup [119], and electronics [120]. Due to intensive application, there
is an urgent need to consider the environmental implications of using NMs, appropriate
regulation of engineered NMs [69], and environmental remediation issues [74]. Furthermore,
the commercial production of several nanomaterials has generated toxic wastes, which may
create health and safety risks [19].

Fertilizer
definition

Fertilizer is a natural or artificial material containing chemical
elements that improve growth and productiveness of plants

Kind of
fertilizers

methods

Application

Mineral
biofertilizers

Bioorganic Nano-bio
fertilizers fertilizers

organic-nano Bio-nano
fertilizers fertilizers
Solid and
liquid form

Figure 8. Important information about fertilizers, including the definition, different kinds, examples of
each, and the expected methods of application for cultivated crops (adapted from El-Ramady et al. [121]).

Fertilization and irrigation are important farming practices that apply NMs to the
environment [122]. Nanomaterials have been applied as fertilizer in many different
forms, including chitosan nano-capsules, nanocomposite-based smart fertilizers, nano
silica-rich biochar formulations, nano-based slow releasing fertilizers, urea coated with
nano-bentonite, nanoengineered metal-based fertilizers, nanometal oxide fertilizers (e.g.,
nano-Se, nano-CuO, nano-Zn0O, etc.), nano soy-protein microcapsules, nanobiochar slow-
release fertilizers, and nanohydroxyapatite (Figure 9).

Smart fertilization/irrigation is a fertilization/irrigation system that depends on both
the weather and soil conditions to define fertilizer /watering requirements [123,124]. Fer-
tilization and irrigation are very common farming practices that often depend on each
other. Fertilization is a process by which amendments supply nutrients to crops. These
amendments can be applied by irrigation systems, including surface, sub-surface, drip,
sprinkler, or micro-irrigation. Smart agrochemicals are chemical substances that can be
applied while controlling the timing, rate, and duration of this application in response to
fluctuations in soil moisture, temperature, acidity, or other relevant conditions [125]. Smart
agrochemicals can include NMs [126,127]. The main benefits of smart nanofertilizers in
the soil-plant system include high nutrient efficiency, lower applied fertilizer doses, high
solubility of the fertilizers, time-controlled discharge of nutrients, reduced eco-toxicity
compared to most other fertilizers, simple delivery, and reduced nutrient leaching and
volatilization. Nanofertilizers can be applied through many different methods, such as
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nano-priming of seeds or seedlings, nano-foliar application, or plant nano-root nutrition
(Table 5). Nanotoxicity, oxidative stress, nutrient losses, and elevated reactive oxygen
species (ROS) are the main expected drawbacks that result from the excessive application
of nanofertilizers. Agrochemicals, including NMs, can be applied through smart irrigation.
The main features of smart irrigation management include soil monitoring, crop water mod-
eling, the use of high-quality water, the use of drones to assist in field monitoring, applying
weather forecasting to irrigation planning, and irrigation scheduling [128]. Smart farming,
including smart irrigation, is considered a crucial approach to developing sustainable
agriculture [129], especially under a nanofarming from farm-to-fork strategy [130].

(A) Suggested nano-agrochemicals for fertilization

By different nano-formulations:

- Chitosan nano-capsules, Sustainable
- Nanocomposite-based smart fertilizers, development
- Nano-silica-rich biochar formulation,

- Nano-based slow releasing fertilizers,

- Urea coated with nano-bentonite, 6“‘
- Nano-engineered metal-based fertilizers

- Nano- metal oxide fertilizers (e.g., n-Se,

ey
n-CuO, and n-Zn0) ‘\43‘ f N Part (B) AN
- Chitosan-based nano-fertilizers, ‘@ ‘5 ( ———
- Nano-soy-protein microcapsules, ) 5 Sustainable
bd' f Nano-fertilizers
Nano-bio fertilizers

- Nano-biochar slow-release fertilizer,

- Nano-hydroxyapatite éy‘ 6@9
¥ \éf Bio-nano fertilizers \

1 A

s ted effects ) r

uggested effe f:f éf‘ Bio- fertilizers
Positive effects \""

Bio-organic fertilizers

Sustainable Agriculture

Negative effects o N
f (e Organic-nano fertilizers
& g -
S f Organic fertilizers
Q‘&\ & Mineral bio-fertilizers

| Conventional/chemical/mineral fertilizers

Figure 9. Some nanomaterials that can be used as nanofertilizers or for smart fertilization (Part
(A)). Part (B) presents some suggested terms related to fertilizers. Traditional fertilizers may be
associated with a lower sustainability level, whereas higher sustainability levels may be achieved
with nanofertilizers.

Table 5. Some published studies on the potential of nano-agrochemicals on the nano-priming process.

Nanoformulations  Applied Dose Plant Species Main Findings Ref.

Plastic waste-derived carbon dots as
nanopriming agents accelerated the rate of
Pea (Pisum sativum) seed germination and seedling [131]
development in a sustainable,
cost-effective way.

Nano carbon dots From 0.25 to
(CDs) 2.0mg ml~!

Nanopriming prevented seed-borne fungal
infection (Aspergillus flavus) and improved [132]
the seedling vigor.

Priming with Mung bean (Vigna

Nano chitosan 571 ug mL-1 radiata)
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Table 5. Cont.

Nanoformulations  Applied Dose Plant Species Main Findings Ref.
ZnO nanopriming enhanced the
ZnO-NPs 100% Rapeseed (Brassica dfc‘)]teelgc?c?rllell:icoosf ftelfelslir;gc?fb}; O;I:r?’zc
ZnO-NPs (100 mg L~! dissolved P protection, H10sy ! pigments, [133]
in DW) napus L.). reducing ROS accumulation, antioxidant
enzymes, and enhancing the economic yield
under saline conditions.
CeO,-NPs and Horse gram Nanq biocatalyst Se-CeO, with hlg}}
. protein plant source enhanced the yield of
selenium-doped 100 and 300 ppm (Macrotyloma . [134]
. horse gram seed compared to CeO, without
CeO, uniflorum) - .
raising cytotoxicity.
MgO-NPs green synthesized with brown
L 5 10, 25, 50 and Green gram (Vigna alga acting as a nanopriming agent
Bio-MgO-NPs 100 mg Lt radiata L.) enhanced seed germination and seedling [135]
vigor in green gram plants.
. 50,100, 150, and Black gram (Vigna Nanc.)prlmmg with ZnO-NPs efficiently
Bio-ZnO-NPs alleviated As-stress in black gram by [136]
200 mg/L of ZnO-NPs  mungo L.) . . .
reducing root-shoot arsenic translocation.
Seed nanopriming improved germination
CaO-NPs 25,50, 75, and 100 ppm Canola (Brassica parameters of Car.101a plants under drought [137]
napus L.) stress by improving plant growth and
antioxidant defense.
Seed nanopriming enhanced leaf water
TiO,-NPs 40, 60, and 80 ppm Maize (Zea mays L.) status, seed vigor, and antioxidant enzymes [138]
under salinity stress.
Carbon nanotubes . . Nanoprimed seeds under field conditions
. Suspecsions of 25, 50, Indian mustard . . .
and SiO,-NP . increased the yield depending on dosage [139]
: 75,100, and 125 ng/ml  (Brassica juncea L.) .
suspensions and also the type of used nanomaterials.
Nanopriming significantly increased the
Ag-NPs 20, 40, and 80 mg L1 Chmgse cabbage germination rate. Ag dld.not bioaccumulate [140]
(Brassica rapa) in edible tissues, was a bio-safe agent,
increased crop yield and nutritional quality.
Nanoprimed seeds increased enzymatic and
g Chickpea (Cicer non-enzymatic antioxidants depending on
MgO NPs 10-150 pg/ml arietinum L.) dose as nanofertilizers for [141]
sustainable production.
Alleviated Co-toxicity via nanopriming of
—1 - . . g . P
Z7nO-NPs 500 mg L™ ZnO-NPs Maize (Zea mays L. maize; mitigated Co-phytotoxicity by [142]

for24h

decreasing Co-uptake; conferred stability to
photosynthetic apparatus.

Nano-agrochemicals are common materials that can be used during farming activi-
ties [143]. These activities may include germination through nano-priming [16], growing
of seedlings using nanofertilizers [144,145], protecting growing plants with nanofungi-
cides [52], improving rooting of seedlings with nanofertilizers [146], enhancing of accli-
matation of seedlings [145], enhancing the photosynthesis process [147], increasing yield
under stress [144], enhancing the quality of harvested fruits [148], and enhancing quality
during the post-harvest period [102]. Nano-soaking of seeds can initiate seed priming
and form nanopores for the uptake of nanonutrients. These pores increase water uptake
by seeds, whereas nanonutrients induce enhanced seed metabolism. Nano-priming can
also enhance oxidative respiration resulting in ROS generation, which acts as signaling
molecules to trigger germination-related metabolic processes. Gibberellic acid activates
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a-amylase to fasten starch hydrolysis into highly soluble sugars, which support embryo
growth, germination of seeds, and thereby, the vigor of seedlings [16].

6. Nano-Precision Farming

Precision agriculture or precision farming (PF) represents the management of dif-
ferent farming practices through near “real-time” observation using analysis tools and
technological sensors to reduce labor time and increase crop productivity and the efficiency
of fertilizers, irrigation practices, and other inputs [18]. This system of farming needs
analyses of different parameters, including soil water content, soil organic matter content,
topography, nitrogen, and other nutrient levels, pH, soil salinity, crop yield, etc. This can
assist farmers and researchers in locating and creating maps of the spatial variability of
inputs and how they relate to yield [18]. The main benefits of PF include the detection
of weeds and diseases in the fields, yield prediction, and productivity estimation [149].
Precision farming can apply best management practices, such as soil preparation, crop
fertilization, proper irrigation, management of pests and diseases, and harvesting and
storage of crops in a site-specific fashion using modern agro-technologies [149]. Due to its
promising applications, nanotechnology has been applied to precision farming to improve
the quality of agri-products, reduce post-harvest loss, mitigate stressful conditions, and
enhance crop protection ([14]; Figure 10).

(A) Suggested NMs using under precision farming

Best management practices by using:

- Nanosensors and nano-biosensors, Sustainable
- Nanosensors to monitor soil conditions, development
- Nanosensors to monitor plant growth hormones,
- Nano-biosensors for plant pathogen detection, ‘g\
- Nano-biosensors for pesticide residue detection, ¢$\°
- Nano-biosensors for detection of bio-components o‘ 09""
?
L | <8 b —
&
Q;’ N
S
Suggested effects S o §
uggested effe &ﬁ‘ \&o“ ‘ Part (B) ' 3
Positive effects > N ' . S
Negative effects Q‘ob °Qo\ Nano-smart farming o
S
doQ b“’o Smart Bio-Agriculture &o
‘,,ob °6°° Climate-smart agroforestry sys. Q
el
‘{&e @e’ Intelligent wearable devices ]
O éo ] £
{s\ @" Smart crops Smart harvest ©
2 |
‘\Q" &40 Smart water meters Smart packaging §
'b\t Q\é‘ Information technology (IT) Smart trash cans
Smart vending machines | Internet of things (loT)

Figure 10. Different ways to apply nanomaterials (NMs) for smart and/or precision farming are
listed in Part (A). These NMs may include nanosensors and others as promising approaches for the
development of sustainable agricultural practices. Part (B) shows terms related to smart fertilizers,
starting with Global Positing System (GPS), smart vending machines, and nano-smart farming as
high-level approaches towards sustainability. Some positive and negative effects of nanofarming are
also shown.

Nanosensors are “smart delivery systems” that can promote precision farming by guar-
anteeing the timely application of agrochemicals, potentially in a remote and self-regulated
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way, with spatially targeted, pre-programmed, and multifunctional characteristics [150].
These sensors are promising and powerful tools for converting any biological response
into an electric signal. A biosensor is a device that can detect biological components (e.g.,
antibodies, enzymes, and organic compounds) and/or organisms from an analyte using a
transducer [151]. Nanosensors have the ability to detect plant pathogens and pesticides
and monitor soil conditions and plant growth hormones [151]. Precision farming utilizes
a variety of sensors, computers, global satellite positioning systems (GPS), geographic
information systems (GIS), unmanned aerial vehicles (UAV), global navigation satellite
systems (GNSS), and remote sensing devices to measure highly localized environmental
conditions. This can help achieve maximum efficiency in crop production by identifying
the nature and location of potential problems in a precise manner. These smart sensors
may allow enhanced agro-productivity of crops and livestock by helping farmers make
well-informed decisions [152,153].

Ten technologies are most commonly used in precision agriculture. These are (1) global
positioning systems, (2) multimedia devices, (3) nanosensors, (4) remote sensors, (5) other
sensors, (6) unmanned aerial systems, (7) unmanned aerial vehicles, (8) unmanned ground
vehicles, (9) variable rate technology, and (10) wireless sensor networks [154]. Recently,
several studies focused on the crucial use of nanotechnology for precision farming, such as
its role in changing the future of agriculture [152], nanofarming [15], precision agriculture
applications [155], the detection of phytopathogens [156], smart nano-agrochemicals [127],
nano-precision farming [18], nanocomposite-based smart fertilizers [157], and the future of
farming [158]. The main advantages of smart farming include saving time, reducing the use
of agrochemicals and environmental problems from leaching, runoff, etc., and improving
crop productivity and water protection. The limitations include a lack of standard protocols
regarding applied doses of nano-agrochemicals, few studies at the field level, limited
information concerning the fate, release, and ecotoxicity of these nano-agrochemicals into
the environment, and limited safety assessment data [158].

7. Nanobiotechnology for Modern Farming

The combination of interdisciplinary fields that address different applications of
biotechnology to nanotechnology is called nanobiotechnology (NBT). Applications of NBT
can be found in the fields of agriculture, health, medicine, imaging, drug delivery, immune-
proteomics, tissue engineering, cosmetics, pharmacy, and more [159]. Nanobiotechnology
has great potential for the development of new nano-biosensors, drug delivery and gene
therapy tools, nano diagnostics, nano crop protection and management, nano postharvest
processing, and bio-compatible nanodevices (Figure 11). Nanomaterials and nanoparticles
can be biosynthesized using biological methods, which have several applications during
farming practices, such as:

1. Using nano-biosensors and biosensors to detect diseases and their outbreaks through
wastewater-based epidemiology [160,161]. This is important when wastewater is used
in farming applications.

2. Biorefining agro-wastes through agri-nanobiotechnology approaches to produce
lignin-based nanomaterials for use as fertilizers, agrochemicals, soil conditioners/
modifiers, and mulching. These applications can promote crop productivity and
manufacture high-value bio-products from lignin [162,163].

3. Using nanobiotechnology to diagnose plant and animal diseases, such as cancers and
inflammatory diseases [164], or nano-biosensors in sustainable agriculture [165].

4. Nanobiotechnology is very important for PF as it allows regulation of many practices
starting with the preparation of soil for cultivation, nanodelivery of agrochemicals for
crop production, and plant adaptation to stressful conditions [15,102,166].

5. Nanobiotechnology has great potential to reduce food loss during post-harvest man-
agement and promote agricultural production with environmental safety, premium
quality, biological support, and financial stability [102].
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6.  Gene delivery and plant micropropagation using promising nano-vectors for delivery
of genes in the engineering of the plant genome [167,168].

7. Applications of nanotechnology for bio-based packaging and bio-nanosensors-based
packaging of food products. These nanosensors can monitor the quality of packed
foods and allow the use of biodegradable packaging, which can increase the shelf life
of foods [169,170].

8. Green synthesis of NPs using plants, fungi, algae, and bacteria for metal recovery as a
cost-effective and eco-friendly approach to recover several valuable metals that may
be polluting soil or water resources [171].

9.  E-waste management by recovering high-added value materials from these waste
components, producing high purity metals, nanostructured alloys, nanoparticles, and
nanocomposites [172,173].

10. Nanotechnology-enabled biosensors as diagnostic tools for food safety and clinical
applications, such as rolling circle amplification in DNA nanotechnology [174,175].

IL Suggested applications of nanobiotechnology for modern farming

rRegulating human diseases |
with healthcare services

biagnosis of plant and
animal diseases

[Bioreﬁning agro-wastes
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RRemoving pollutants from

soil, water, air, etc. oo, : o
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Figure 11. Nanobiotechnology (NBT) is an emerging science that may support sustainable agricul-
ture. NBT includes several applications in different fields. Many terms are related to NBT, includ-
ing diagnosis of plant and animal diseases, biorefining agro-wastes, nanosensors for biosensing,
nanobiotechnology for smart farming, and so on.

8. General Discussion

Nanotechnology is considered an emerging and exciting new field of science that has a
number of potential applications in various areas of our lives. Nanotechnology has shown
the potential to improve the agricultural sector by enhancing crop productivity and its
quality. This review highlights some of the main questions concerning the application of
nanotechnologies to farming. They include: What are the possible applications? What
benefits arise from nanotechnology? What are the different subdivisions of nanotechnology
that may have applications in agriculture? Additionally, what are the expected problems
that may be encountered when using nanofarming practices? Several farming practices
have already been investigated using different nanomaterials or nanoparticles and have
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shown many potential benefits (Figure 12). These farming practices may start with soil
preparation for cultivation, which would allow the incorporation of nanofertilizers or nano
amendments, such as nano-gypsum [36]. Nano-gypsum has proven to improve saline-
sodic soils at lower doses (up to 960 kg ha!) compared to traditional gypsum due to its
greater solubility/efficiency of use. Gypsum does this by decreasing soil pH, EC, and bulk
density while increasing soil hydraulic conductivity, stable aggregates, and Na-removal
efficiency [176]. The germination of seeds (at the pre-sowing stage) also has been improved
by applying nano-agrochemicals (nanofertilizers, nanopesticides, nano-amendments, or
nano-biostimulants) as nano-priming in the case of many crops, such as carbon nanodots
on peas (Pisum sativum) [177], TiO»-NPs on mung beans (Vigna radiate) [178], and nanohy-
droxyapatite on cluster beans (Cyamopsis tetragonoloba L.) [179]. The reasons may trace
back to the enhanced role of NMs in increasing the antioxidant enzyme activities of seeds,
chlorophyll content, carbohydrate content, and seedling vigor index [131]. This synergistic
role of NMs is clear under both normal and stressful conditions as reported by the following
studies: TiO,-NPs on maize (Zea mays L.) under salinity stress [138], CaO-NPs on canola
(Brassica napus L.) under drought stress [137], and ZnO-NPs on Vigna mungo L. under
arsenic stress [136].

Suggested mechanisms

Suggested mechanisms

' Plant oxidative stress/lipid peroxidation

Development and Sustainable Agriculture

~—

Figure 12. A general overview of nanofarming, including different applications, expected problems,
and their suggested mechanisms. The grade of red color represents the potential level of toxicity or
problem, whereas the green shades the desirable benefits from nanofarming. Darker colors indicate
greater effects. Sources: [14,15,22,180].

Farming activities using NMs include the growing stages of cultivated crops and the
use of NMs in nanoremediation of polluted soil, water, and air. This topic may include the
cultivation of polluted soils [80,85], irrigation of cultivated plants with low-quality irriga-
tion water [148], or nanoremediation of polluted groundwater through the detoxification
of pollutants by nano-adsorbents [181]. Agrochemicals in nanoform (i.e., nanofertilizers,
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nanopesticides, nano-herbicides, nano-phytohormones, etc.) represent the main source
of nano agro-pollutants in terrestrial environments. These pollutants need to be nano-
remediated as they can cause undesirable changes in the fertility and quality of soil and
groundwater [78]. The nano-remediation of agro-pollutants depends on the kind of agro-
pollutants and the type of NM remediation used. Nanomaterials work for remediation
because they have high surface areas and are relatively safe with high detoxification,
degradation, and transformation potential as regards the NM pollutants found in the
environment [78]. It is worth noting that cultivated plants are considered a part of the
solution when using nano-phytoremediation, especially plants that are tolerant to the types
of pollutants present. Soil microbes are considered promising agents as biosurfactants that
can be applied as nano-biosurfactants for bioremediation processes [80]. Furthermore, both
cultivated plants and soil microbes may contribute to detecting nano agro-pollutants as
they can serve as nano-biosensors. These smart nano-biosensors are important for detecting
nanopollutants and phytopathogens and sensing plant hormones and metabolites, soil
health, pesticides, fertilizers, and heavy metal ions in the soil [182].

The relationship between agro-wastes and their nanomanagement is a crucial global
issue. Lenses through which this relationship can be viewed include the circular economy,
energy crisis, sustainable goals, food production and preservation, and management of
agro-wastes. Agro-wastes may represent a real threat to the entire environment when
proper management is absent because they increase problems, such as harmful insects,
nutrient pollution, and nutrient binding. The sustainable management of agro-wastes
has the ability to produce many useful products, especially energy production and other
biorefinery approaches using nanobiotechnologies [162]. Converting these wastes into
sustainable energy would provide major benefits [106]. There is an urgent need to manage
waste within smart and sustainable systems so that the utilization of our scarce natural
resources is maximized to achieve the global goals of sustainable development. The One
Health approach should be integrated into several development programs and policies as a
catalyst for sustainable development [183].

There are many potential sources of nanopollution under nanofarming management.
This may result from activities before, during, and/or after cultivation due to the excessive
application of nanomaterials. Nanopollutants may include nano-glass, fibers, plastics,
biologics, metals or metal oxides, etc. Nanoparticles of glass can result from waste wind-
shield glass, and nano-plastics are a major threat to environmental and human health.
Nanoparticles of glass have been shown to inhibit the germination of wheat seeds and
the length of roots and shoots and reduce chlorophyll content [184]. The impacts of nano-
plastics on terrestrial plants are negative, particularly during early development stages (i.e.,
germination and root growth). These negative effects have been documented in many plant
species (e.g., lettuce, maize, rice, and wheat), irrespective of the size and polymer type of
the nano-plastic. This has been attributed to the negative influence of these nano-plastics on
chlorophyll content, and the formation of free radicals or ROS [185]. Due to the wide range
of applications of nanomaterials, there are also abundant possibilities for environmental
nano-pollution, and this increases as the use of NMs increases. Nanoparticles can end up in
water, air, and soil and may pose a major threat due to their small size. Therefore, this threat
should be controlled and managed [22,26,177]. Nanopollution is called “invisible pollution”
because NPs can easily penetrate the cells of plants, animals, and through human skin,
leading to serious consequences. They can also accumulate in plants, entering humans via
the food chain and causing health problems [22].

Concerning the main mechanistic pathways of nanoparticles under different agricul-
tural practices, this mechanism mainly depends on the kind of nanoparticles, the agri-
cultural practice, or the plant growth stage. For example, the germination of seeds is
considered one of the most important periods or stages in agricultural production. Ap-
plying nanomaterials to seeds through nano-priming can be used to enhance germination
through a special mode of action (Figure 13). This mechanism mainly depends on induc-
ing enhanced expression of aquaporin genes and alteration in seed metabolism, which
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promotes enzymatic activity to convert stored starch into soluble sugars that move to the
embryo. Increasing oxidative respiration and forming reactive oxygen species (mainly
H,05;), which are converted from O,—through the enzyme superoxide dismutase, followed
by diffusion to the embryo, allows interplay between H,O, and phytohormone gibberellic
acid (Kandhol et al. [16]).
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Figure 13. (A): The factors that control seed germination. (B): Suggested nano-priming mechanism:
soaking seeds with nanoparticles (NPs), followed by high seed uptake of water, allows NPs uptake
(steps 1 and 2), which reduces stress during germination. NPs also enhance the expression of
aquaporin genes and alter seed metabolism (3), which enhance enzymatic activity that converts stored
starch into soluble sugars (4) and moves to the embryo (5). This increases oxidative respiration and
the formation of reactive oxygen species (mainly HyO,), which convert from O,—due to superoxide
dismutase (SOD) and H,O,, followed by diffusion to the embryo which allows interplay between
H,0, and phytohormone gibberellic acid (GA). Source: image of seed germination from https:
/ /www.pexels.com/ (accessed on 15 March 2023) (adapted from Sari et al. [186]).

Many questions still need to be answered concerning the toxicity and nanopollu-
tion from farm practices. Due to this review included several farming practices; each
practice itself has many open questions, including the germination, growing, flowering,
and harvesting, and post-harvest of crop farming. The same is true for different kinds
of farming, such as animal and forestry farming, which could include many applications
of nanotechnology. These fields are not only the suggested areas to be included in open
questions but also different anthropogenic activities on the farm, environment, and global
level. Related questions about the agroecosystem are also needed, including climate change
or greenhouse-gas emissions, pollution, loss of biodiversity, water crisis, soil degradation,
and disruption of aquatic ecosystems. Lastly, these questions will need to be answered for
nanofarming to reach its full potential. The suggested questions on farming research may
include the following:

To what extent can nanopollution be controlled at the farm level?
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What practices are the main sources of nano-pollution on the farm level?

Which parameters control nanopollution under greenhouse cultivation?

What are the differences between greenhouses and open fields?

Which nanomaterials are the most efficient, innovative, economic, and reliable to
remediate environmental pollutants?

What are the expected potentials of nanobiotechnology for micropropagation of
rare plants?

What are the promising nanomaterials for mitigating stress on farming crops?

What are the global regulations on applying nanomaterials should be issued to protect
food security?

What are the global regulations on nanofertilizers/nanopesticides that should
be implemented?

To what extent can nanofarming be a solution for sustainable energy production
and storage?

9. Conclusions

Throughout its history, agriculture has advanced from a simple system of sowing
seeds and harvesting crops to a true science that extends from pre-planting to post-harvest,
with each step formulated to get the maximum possible yield of nutritious food to sustain
human life and health. Utilizing nanotechnology to advance this goal is called nanofarm-
ing. The application of NMs in nanofarming can begin with seed and soil preparation
prior to planting and extend to the use of NMs to reduce food spoilage during storage
and transport. All the steps in between, including removing any growth restrictions, en-
hanced flowering, phytopathogen resistance, fertilization/irrigation performance, crop
nano-protection under biotic stress, nano-improvement of soil quality, removing pollu-
tants from soil and water, management of agro-wastes for energy and other nanomaterials
production, the performance of precision farming, etc., may be addressed with nanotech-
nologies. Nanobiotechnology can also support modern farming with safe and healthy
agro-production. The negative sides of nanofarming present a great challenge that needs to
be carefully investigated. Nanofarming should be discussed from different points of view,
including the economic, social, and environmental aspects.
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