
International Journal of Applied Earth Observations and Geoinformation 105 (2021) 102619

Available online 12 November 2021
0303-2434/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Lithological mapping enhancement by integrating Sentinel 2 and 
gamma-ray data utilizing support vector machine: A case study from Egypt 

Ali Shebl a,b,*, Mahmoud Abdellatif c,d, Musa Hissen a, Mahmoud Ibrahim Abdelaziz c,e, 
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A B S T R A C T   

Hybrid data fusion mostly gives a better diagnosis to lithological units compared to single-source mapping 
techniques. Rock unit discrimination depends mainly on variations in the concentrations of chemical elements. 
Remote sensing datasets reflect these variations as different spectral reflectances, while gamma-ray spectrometric 
measurements enable recording the varied concentrations of K, Th, and U in these rock units. Accordingly, in this 
study, we use Support-Vector Machine (SVM) learning algorithm to classify combined high spectral resolution 
Sentinel 2 data with K, Th, and U content of the rocks to better differentiate a lithologically complex area in 
Egypt. SVM classifier has been trained and tested on a reference map (built from FCCs, principal and independent 
component analysis of remote sensing images, as well as previous geological maps) to allocate 13 lithological 
targets. K, Th, U, and total count maps are interpolated using the inverse distance weighted (IDW) method, 
cubically resampled, and fused with Sentinel 2 data. We concluded that incorporating any single chemical 
concentration in the allocation gives better results than using remote sensing data solely and raised the Overall 
Accuracy by 4.14%, 5.11%, and 6.83% by adding U, K, and Th, respectively. Moreover, blending the total count 
band (K + Th + U) with Sentinel 2 data outstandingly boosts the classification accuracy by 7.77 %. We per-
formed field reconnaissance to verify the classification results. The study demonstrates the effectiveness of 
integrating Sentinel 2 data with airborne geophysical spectrometric data, and the proposed approach may prove 
a more precise and sophisticated lithological map.   

1. Introduction 

Orogenic belts around the world mostly constitute a major source of 
mineral deposits (Deng et al., 2014) including rare earth elements 
(REEs) however, a comprehensive geochemical survey is always chal-
lenging due to their vast area and rugged topography (Cheng et al., 
2021). The lack of geochemical data hinders more efficient lithological 
mapping, which is the solid base for mineral exploration. Airborne 
gamma-ray spectrometric data could provide a reasonable mapping over 
extensive terranes (Harris and Grunsky, 2015). These spectrometric data 
could be well-implemented in lithological identification and hydro-
thermal alteration confirmation (Shebl et al., 2021) especially with the 

availability and proven advancements of Machine learning algorithms 
(MLAs) and remote sensing datasets in geosciences (Harris and Grunsky, 
2015; Pal and Mather, 2005). 

Gamma-ray spectrometry provides a method for detecting the 
geochemical variations of potassium, thorium, and uranium in material 
near the earth’s surface (Dickson and Scott, 1997). Various lithologies 
show different discrete radioelement concentrations. Consequently, the 
measured concentrations from the gamma-ray spectrometric data may 
be utilized to identify zones of the consistent lithology and contacts 
between contrasting lithologies (Anderson and Nash, 2018; Charbon-
neau et al., 1997), through (i) ternary map (Elkhateeb and Abdellatif, 
2018; Patra and Veldi, 2016), (ii) statistical methods including cluster 
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and principal component analysis (Harris, 1989; Harris et al., 1987), and 
(iii) integration with complementary datasets such as aeromagnetic, 
satellite imagery, and aerial photographs (Harris et al., 2014; Schetse-
laar et al., 2000). Although gamma-ray spectrometric datasets are rarely 
interpreted by themself, they are effective in mapping surface geology, 
when they are compared to other airborne geophysical methods 
(Darnley, 1989). Furthermore, when integrated with other datasets, 

considerable results could be attained. Sentinel 2 data as one of the latest 
optical satellites offering high spectral resolution by 13 channels 
distributed in Visible Near Infrared (VNIR), and Short-Wave Infrared 
(SWIR) spectral regions are conjoined and exploited for better miner-
alogical and lithological recognition (Shebl et al., 2021). The latter is 
attributed to chemical electronic transitions and vibrations recorded as a 
radiance then transformed into spectral reflectance uniquely specified to 
these chemical elements or compounds (Hunt and Ashley, 1979). 

Utilizing these data, several MLAs could assign their pixels or sub-
pixels to classes in a process known as classification. The latter could be 
supervised by the analyst who specifies training and testing samples for 
the classifier in a process called supervised classification. Contrarily, the 
unsupervised classification process categorizes pixels depending mainly 
on cluster analysis without analyst interference. Also, classifiers could 
be widely divided into parametric (preferred with normally distributed 
data) or non-parametric types. Maximum likelihood classifier is a typical 
parametric classifier (Grebby et al., 2011) whereas neural networks and 
support vector machine (SVM) methods are efficient non-parametric 
classifiers widely applied for lithological mapping using remote 
sensing data (Liesenberg and Gloaguen, 2012; Pal and Mather, 2005). 
Support vector machine, as a well-known efficient classifier in per-
forming lithological mapping (has higher ability in separating compli-
cated boundaries) utilizing geological and geophysical datasets (Bachri 
et al., 2019; Mou et al., 2015; Shebl and Csámer, 2021), was 

Fig. 1. Location and geological map of the study area (modified after (Conoco, 1987)).  

Table 1 
Characteristics of Sentinel 2 data.  

Band (b) Central wavelength (µm) Pixel size (m) 

1  0.443 60 
2  0.490 10 
3  0.560 10 
4  0.665 10 
5  0.704 20 
6  0.740 20 
7  0.782 20 
8  0.842 10 
8a  0.865 20 
9  0.945 60 
10  1.375 60 
11  1.610 20 
12  2.190 20  
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implemented in the current study. 
The current study aims to use the power of SVM to classify the fused 

remote sensing (Sentinel 2 data) and radiometric measurments to 
enhance lithological differentiation over a case study from Arabian 
Nubian Shield (well-known for the abundance of various mineral de-
posits). Thus, orogenic belts could be efficiently mapped, or at least the 
old geological maps could be renovated by adopting this approach. 

2. Study area and geological setting 

The investigated area (Atalla area and its environs) is located be-
tween latitudes 26◦ 05′′ to 26◦ 17′′ N and longitudes 33◦ 15′′ to 33◦ 46′′ E 

as shown in Fig. 1. This area is covered by a part of Meatiq Group gneiss 
(one of the oldest Precambrian rock units in the Nubian shield), 
ophiolitic constituents (serpentinite, metagabbro, and amphibolite 
within volcaniclastic metasediments, as a matrix of the ophiolitic 
mélange), metavolcanics (acidic and basic), syn- to late-tectonic gran-
itoids (Atalla granite), granodiorites, felsites, post tectonic granitoids, 
Nubian sandstone and wadi deposits (ABD EL MONSEF, 2020; Conoco, 
1987; Hamimi et al., 2020; Shebl et al., 2021). Thus, 13 lithological 
targets representing igneous, metamorphic, and sedimentary rocks are 
included. They exemplify most of the major lithological units within the 
Nubian shield. The study area includes several alteration zones around 
the Atalla gold mine at the central part of the investigated area. The 

Fig. 2. Visual representation of (a) the total count, and (b) potassium gamma-ray spectrometric maps.  
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recently published geological maps (ABD EL MONSEF, 2020; Hamimi 
et al., 2020; Shebl et al., 2021) were built upon field check and petro-
graphic studies, and cover significant parts of the study area, however, 
CONOCO (Continental Oil Company) geological map (Conoco, 1987) 
covers the whole area as shown in Fig. 1. 

The four geological maps besides remote sensing data were inte-
grated to build a reference geological map suitable to specify training 
and testing samples (depending mainly on radiometric and spectral 
signatures). The availability of these maps, reasonable representation of 
various rock units, and finally, the area accessibility for executing a 
reconnaissance field check strongly recommended this case study for 
applying the current method. 

3. Materials and methods 

3.1. Sentinel 2 (S2) 

Sentinel-2 satellites (S2A and S2B) are provided with Multi-Spectral 
Instrument (MSI) to image the earth at the visible and broad NIR, red 
edge, narrow NIR, and SWIR regions from an altitude of approximately 
786 km as shown in Table 1. MSI implies a push-broom imaging concept 
and has a swath width of 290 km (20.6◦ field of view). For the current 
study, 
S2A_MSIL1C_20201231T082341_N0209_R121_T36RWP_20201231-
T100300.SAFE Top-Of-Atmosphere (TOA) scene was accessed via 

Fig. 3. Visual representation of (a) thorium, and (b) uranium gamma-ray spectrometric maps.  
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European Space Agency (ESA) Open Access Hub then atmospherically 
corrected using Sen2Cor (S2C) Level-2A offline processor to get 
S2A_MSI-
L2A_20201231T082341_N9999_R121_T36RWP_20210314T120209. 
SAFE Bottom-Of-Atmosphere (BOA) reflectance scene, which is handled 
using Sentinel Application Platform (SNAP). Then VNIR and SWIR bands 
are resampled to a pixel size of 10 m. All 60 m pixel-sized S2A_MSIL2A 
bands were excluded from this analysis due to their smaller spatial 
resolution. 

3.2. Gamma-ray and fused data 

The gamma-ray spectrometric data were obtained through (Aero- 
Service, 1984). The data are available in the form of contour maps. For 
further processing, the maps have been digitized and then the resultant 
data points (29069, 9334, 7382, and 10,216 for the total count, potas-
sium, thorium, and uranium respectively) are visually displayed in 
Figs. 2, and 3. Also, the raw data have been statistically analyzed to 
determine minima, maxima, means (X), standard deviations (σ), and 
coefficient of variability (CV%) of every variable as shown in Fig. 4. It is 
worth mentioning that if the CV% is less than 100 %, the variables tend 
to exhibit normal distribution based on the relation of CV = (σ/X) × 100. 

Then, the projections of these radiometric points are transformed to 
WGS_1984_UTM_Zone_36N. Thereafter, a spatial interpolation using 
inverse distance weighted method (IDW) was carried out to generate 
four rasters of K, Th, U, and their sum (Figs. 5 and 6) having the same 
spatial size (10 m) and dimensions in pixels (5338 × 2156) of Sentinel 2. 
IDW method assigns the predicted cell value using a weighted 

combination of surrounding sample points, and as the name suggests the 
predicted weight is a function of the inverse distance (Eckstein, 1989). 
IDW method was adopted in this study due to its wide usage, and its 
convenience with our data nature (densely distributed points). To form 
extended pixel vectors by aggregating spectral (Sentinel 2) and radio-
metric (gamma-ray), the data is fused using the stacked-vector method 
(Richards and Jia, 1999; Shebl and Csámer, 2021) to build 5 main fused 
classifier inputs (S2, S2 + K, S2 + Th, S2 + U, S2 + TC) having the same 
dimensions and pixel sizes. 

4. Reference geological map and sampling 

An efficient reference geological map is crucial for influential sam-
pling which has a pivotal role in enhancing classification accuracy 
(Kumar et al., 2020). To be away from scale inconveniences accompa-
nied with traditional geological maps, we built a high-resolution 
geological map (10 m) through enhancing the spectral separability be-
tween the lithological targets by integrating four geological maps (as 
they covered different parts of the study area in varied mapping scales, 
that could help in better interpretation compared to single lithologic 
map), with False Color composites (FCCs), Principal Component Anal-
ysis (PCA), and Independent Component Analysis (ICA). Each technique 
accentuated certain lithological and structural features as shown in 
Figs. 7 and 8, however, it was found that FCC 12/6/2 RGB gives 
reasonable demarcation for all the required targets (that could be better 
resolved with reference to PCA and ICA results), hence it is implemented 
as the input for feature selection and sampling. 

FCC 12/6/2 RGB (10 m reference map) displayed a reasonable 

Fig. 4. Radioelements statistical analysis of the investigated rock units.  
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separation for each lithological target, thus a random sampling method 
was espoused to select training samples from 13 classes. The lithological 
classes are Gneiss (Gn), Serpentinites (Sp), Metagabbros (MG), Am-
phibolites (Amp), Volcaniclastic metasediments (VM), Acidic meta-
volcanics (AM), Basic metavolcanics (BM), Syn to late tectonic granites 
(SG), Granodiorite (Gd), Felsites (Ft), Younger Granites (YG), Nubian 
Sandstone (SD), and Wadi Deposits (WD). Researchers always recom-
mend 70%-80% to 30%-20% percentage of training to testing samples 
respectively (Kumar et al., 2020). Thus, area-wise training samples with 
percentages ranging between 70 and 80% were extracted depending on 
the spectral characteristics of each rock unit (Table 2). Training samples 
are utilized to build spectral reflectance curves for the utilized samples 
and the total reflectance values as shown in Fig. 9, which reveals how 

close are the rock units’ reflectances. Training areas separability was 
assessed via Jeffries-Matusita (JM) distance which represents dissimi-
larity between 2 different classes on a scale ranging from 0 to 2 (Kumar 
et al., 2020) as displayed in Table 3. Testing data has never been seen by 
the classifier and carefully selected to evaluate the classifier 
performance. 

4.1. Support vector Machine 

A widely used classifier that performs optimal separation by delin-
eating the closest training samples in the spectral space (Pal and Mather, 
2005; Scholkopf and Smola, 2018). SVM is originally a binary classifier 
that tries to separate two classes via building a decision boundary 

Fig. 5. IDW results showing (a) total count, and (b) potassium gamma-ray spectrometric maps.  

A. Shebl et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 105 (2021) 102619

7

between them, then several classes could be distinguished via a hyper-
plane by repeating the process between classes (Maxwell et al., 2018). In 
this study, Radial Basis Function (RBF) was preferred as a kernel func-
tion as suggested by (Bachri et al., 2019). Gamma in kernel function was 
selected to be the inverted number of the participated bands, a penalty 
parameter for misclassifications was set to 100 to ensure reliable results. 
After this optimization process, the five inputs (S2, S2 + K, S2 + Th, S2 
+ U, S2 + TC) were classified using the same training samples via SVM 
classifier. 

5. Results and discussion 

Five classification processes were executed via SVM using the same 
training areas to ensure wise comparison. Accuracies were assessed via 
confusion matrix, User Accuracy (UA), Producer accuracy (PA), Overall 
Accuracy (OA), and Kappa Coefficient (K). Generally, blending of S2 
optical data with any element of the implemented spectrometric data 
enhances the allocation OAs, whereas S2 only delivers the least OA of 
77.93% compared to 82.07%, 83.04%, 84.76%, 85.70% using S2 + U, 

Fig. 6. IDW results showing (a) thorium, and (b) uranium gamma-ray spectrometric maps.  
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Fig. 7. Lithological discrimination via (a) FCC 12/6/2 (b) S2 data PC5, PC2, and PC1 (c) fused S2 and total count PC3, PC1, and PC2, in RGB respectively.  
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S2 + K, S2 + Th, and S2 + Tc, respectively. Variations in OAs are 
attributed to different concentrations of K, Th, and U in the lithological 
classes, as displayed in Fig. 4. The final thematic layers are shown in 
Figs. 10 and 11 to closely compare the separability of the lithological 
targets depending on the classifier feed. For instance, at the western side 

of the study area, where the basement rocks are unconformably overlain 
by sedimentary rocks and through the drainage area (wide wadis), we 
can see how accurate the S2 + total count map is, in diagnosing not only 
the wadi deposits but also could specifying other lithological composi-
tions within it as represented by serpentinite apparition. The presence of 
serpentinite along these wadis may be attributed to the accumulation of 
weathered serpentinite fragments in low topographic regions. In the 
eastern part of the maps, a massive serpentinite block (Gabal El- 
Rubbshi) is clearly isolated in all the maps however, if we intensively 
focused on the rock unit, we could notice the random distribution of 
error pixels (light cyan) within it in case of using S2 only as a classifier 
input. These misclassified pixels are almost well-classified by adding 
radiometric data. This in turn confirms the powerful function of the 
integrated datasets in lithological allocation and gives a possible way to 
weed out the salt and pepper effect that is predominantly associated 
with lithological classifications. This is meticulously confirmed over the 
resultant maps, for example, investigating the inconspicuous picking out 
of amphibolite block (blue color) using S2 compared to pure identifi-
cation when Th, K, U, or Tc data are added to S2. Metagabbroic rocks at 
the eastern part of the map confirmed that the area of the mapped rock 
unit is affected by the utilized data, where significant parts are mis-
classified as volcaniclastic metasediments using only spectral S2 or S2 +

Fig. 8. Lithological discrimination via, (a) S2 data IC2, IC4, and IC1, (b) fused S2 and potassium data IC1, IC2, and IC3, in RGB respectively.  

Table 2 
Characteristics of training and testing data.  

Classes Training data Testing data total 

pixels % pixels % 

Sp 3098 77.6 891 22.4 3989 
Amp 2029 78.4 557 21.6 2586 
VM 3204 76.2 996 23.8 4200 
SG 2016 79 531 21 2547 
Ft 3037 78.9 808 21.1 3845 
YG 3095 78.4 852 21.6 3947 
Gn 1580 75 525 25 2105 
MG 2204 77.2 648 22.8 2852 
WD 3386 71.3 1357 28.7 4743 
SD 2654 79 703 21 3357 
GD 955 80 233 20 1188 
AM 1993 74.1 693 25.9 2686 
BM 3396 79 902 21 4298  
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U content, however, an outright identification is noticed for S2 + K, S2 
+ Th, and S2 + Tc with slight variances between them corresponding to 
their content as shown in Fig. 4. All these differences are attributed to 
the varied radiometric contents of each rock unit as shown in Fig. 4 and 
the consequent algorithm response to these inputs. Generally, increasing 
the operative amount of data (included in the classification process) 
enhances the allocation process (Shebl and Csámer, 2021) as observed 
for the S2 + total count map. 

Statistically, the sublimity of the additional spectrometric data be-
sides S2 multispectral bands is explicitly distinct when comparing the 
JM distance matrix of the former to the latter, as displayed in Table 3. S2 
+ TC JM matrix values are optimum (2) or very close to 2 for the most 
lithological classes. That differs from the S2 JM dissimilarity matrix, 
where several values are far from the optimum separation. Pair sepa-
ration comparison is carried out to closely monitor the least separation 
values or classes displaying higher similarities. For S2 data solely, 
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Fig. 9. Average spectral reflectances of the classified lithological classes.  

Table 3 
Average Jeffries–Matusita distances respective to Sentinel 2 and Sentinel 2 + total count images.  

S2 Amp VM BM SG Ft AM YG Gn MG WD SD GD 

Sp 1.998616 1.776571 1.992235 1.989125 1.573896 1.966661 1.857694 1.823067 1.975211 1.895772 1.999251 1.957564 
Amp 0 1.987557 1.802624 1.996974 2 2 1.996036 1.9516 1.986816 1.999694 1.998009 2 
VM 0 0 1.886733 1.624341 1.982777 1.921096 1.591896 1.44851 1.449328 1.918179 1.962584 1.892818 
BM 0 0 0 1.927016 1.998272 1.977543 1.97202 1.778091 1.567768 1.999146 1.971037 1.985086 
SG 0 0 0 0 1.998915 1.759178 1.315719 1.515118 1.742344 1.996513 1.997419 1.917847 
Ft 0 0 0 0 0 1.981898 1.928999 1.874673 1.998074 1.985269 1.999999 1.967379 
AM 0 0 0 0 0 0 1.80947 1.739928 1.967141 1.994842 1.97228 1.481924 
YG 0 0 0 0 0 0 0 1.379709 1.914998 1.985249 1.999305 1.788691 
Gn 0 0 0 0 0 0 0 0 1.720845 1.98431 1.990948 1.749116 
MG 0 0 0 0 0 0 0 0 0 1.986008 1.98783 1.974849 
WD 0 0 0 0 0 0 0 0 0 0 1.989247 1.986303 
SD 0 0 0 0 0 0 0 0 0 0 0 1.958738  

S2 + Tc Amp VM BM SG Ft AM YG Gn MG WD SD GD 
Sp 2 1.839695 1.994198 1.994586 1.999498 1.999484 1.979653 1.999986 1.985973 1.92911 1.99948 1.996994 
Amp 0 1.997435 1.995261 2 2 2 2 2 1.993575 2 1.999967 2 
VM 0 0 1.924475 1.840753 1.999884 1.999939 1.955283 1.999996 1.855786 1.951438 1.984327 1.996679 
BM 0 0 0 1.995896 2 2 2 2 1.811586 2 1.989866 2 
SG 0 0 0 0 1.999716 1.976653 1.896835 1.999477 1.997263 1.998281 1.99955 1.982959 
Ft 0 0 0 0 0 1.981588 1.940945 1.910365 2 1.99677 2 1.966362 
AM 0 0 0 0 0 0 1.906471 1.912597 2 1.998681 1.999995 1.600687 
YG 0 0 0 0 0 0 0 1.686131 2 1.995945 2 1.853869 
Gn 0 0 0 0 0 0 0 0 1.720845 1.98431 1.990948 1.749116 
MG 0 0 0 0 0 0 0 0 0 1.986008 1.98783 1.974849 
WD 0 0 0 0 0 0 0 0 0 0 1.989247 1.986303 
SD 0 0 0 0 0 0 0 0 0 0 0 1.958738  

A. Shebl et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 105 (2021) 102619

11

Fig. 10. Lithological thematic maps classified using SVM based on (a) Sentinel 2, (b) Sentinel 2 and Uranium, (c) Sentinel 2 and Potassium.  
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classes that offer higher similarities are SG and YG, YG and Gn, VM and 
Gn, VM and MG, AM and GD, SG and Gn, BM and MG, Sp and Ft, VM and 
YG, VM and SG, by JM distances of 1.315, 1.379, 1.44, 1.44, 1.48, 1.515, 
1.56, 1.57, 1.59, and 1.62, respectively. These pairs are more distinct 
and separable using S2 + Tc data by JM values of 1.89, 1.68, 1.85, 1.99, 
1.60, 1.99, 1.85, 1.95, and 1.84. This in turn shows how well the added 
spectrometric total count layer helps in the discrimination spectrally 
similar classes and thus delivering higher OAs. 

A closer investigation of each rock unit through confusion matrix, 
UA, PA reveals that spectral confusion is always evident with volcani-
clastic metasediments (VM), granitic rocks (SG, YG, GD), and gneisses, 
as shown in Fig. 12. For VM and as a matrix for ophiolitic mélange, it is 
expected to find several inclusions of ophiolitic blocks which, in turn, 
increases intra-class variability and leading to faint separation, as shown 

in Table 4. Similarly, SG, YG, GD, and Gn have very similar mineral-
ogical and chemical compositions, thus the classifier sometimes is 
confused and may classify SG as YG or Gn, and vice versa (Commission 
and Omission errors) dropping down UA and PA for these classes as 
confirmed via the JM matrix, where the least separation is almost 
accompanied with one of these classes. On the other side, Sp, Ft, SD, WD, 
Amp, and MG are well separated and resulted in higher PA, UA, and JM 
distances due to reasonable discrimination from the rest of the classes 
almost with the five inputs introduced to SVM. 

Slight inequalities in UA, PA, and JM values for the same class are 
attributed to varied powers of the input data in distinguishing such 
classes. For instance, the spectral remarkability of Sp with S2 data, 
depletion in U, K, and Th (Fig. 4) results in a low total count makes Sp 
easily separated from other rock units (PA is over 90% for all the inputs). 

Fig. 11. Lithological thematic maps classified using SVM based on (a) Sentinel 2 and thorium, (b) Sentinel 2 and total count (letters are related to the approximate 
locations of field photographs (Fig. 13) and names of rock units). 
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Similarly, felsites with higher content of spectrometric data and distin-
guished spectral signature are rarely misclassified (PA is over 90% for all 
the inputs). 

Contrarily, the K content of VM is very close to that of AM and BM, 
VM has low U content closer to SP and AM content, as well as the mixed 
spectral signatures included from predominant ophiolitic blocks and 
dykes resulting in PA less than 80 % for all the data inputs. In this way, a 
rock unit is distinguished from the other by its K, Th, U, or total content 
added to its spectral reflectance. It is worth mentioning that K, Th, U, 
and Tc spectrometric maps poorly differentiate all the rock units, as 
shown in spectrometric data maps, however, fusing any of these maps 
with S2 multispectral data boost the classification process and separa-
tion accuracy as shown in Fig. 11b (great representation compared to 
reference geological map) and proved in Table 3 and Table 4. It was 
confirmed by Fig. 12, which shows the effect of the added radiometric 
data compared to Sentinel 2, depending on the lithological target 
composition. 

Besides visual comparison with reference and previous geological 
maps, the statistical accuracy assessment of the thematic results, a field 
check was performed to validate our results. Fieldwork was carried out 
by investigating the mapped rock units (Fig. 13) via 30 randomly 
distributed stations across the area. A great coincidence was evident 
among most of the investigated rocks, confirming the validity of the 
utilized approach in an efficient lithologic mapping. 

Through the results of the current study, we strongly recommend 
incorporating gamma-ray data in predictive lithological mapping uti-
lizing MLAs. The study highlighted the effectiveness of the approach in 
decreasing fuzzy representation of the information classes and 
increasing the cohesion and accuracy of the categorization process. Most 
prior studies implemented multispectral data in geological mapping, 
however, augmentation with gamma-ray data generates improved the-
matic maps. The best results are obtained when all the chemical con-
centrations (Total count) are utilized. SVM proved its efficiency in the 
reasonable prediction of the lithological classes. In our opinion, this 

Fig. 12. (a) Producer accuracy (PA), and (b) User accuracy (UA) for each class showing how well the classification is enhanced by adding any of K, U, Th, or Tc to 
Sentinel 2 data (solid line). This is obviously manifested just by comparing the number of points above and below the solid line. 
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method is amenable to a wide spectrum of lithological conditions as it 
delivers acceptable results in complicated basement rocks of highly 
similar spectral signatures. Our future research will be executed over 
vegetated geological terranes aiming to enhance the allocation process 
of rocks suppressed by vegetation cover using radiometric data and the 
power of deep learning algorithms. 

6. Conclusion 

The study proposed an approach for efficient lithological mapping 
through applying Support Vector Machine (SVM) to integrated gamma- 
ray spectrometric data with Sentinel 2 data (high spatial and spectral 
resolutions) leading to monitoring minute variations among 13 classes 
and discrimination of closely related spectral signatures. The study 
concludes the following points:  

1- FCC, PCA, and ICA conjugated with geological maps could generate a 
reference lithological map (with the same scale and pixel size of 
classification inputs) that is more compatible for training and testing 
samples extraction compared to conventional maps. 

2- Gamma-ray spectrometric data delivers a poor lithological classifi-
cation and cannot separate rock units compared to Sentinel 2 data. 
Fusing S2 data with K, Th, U, or their sum results in better litho-
logical identification. The overall classification accuracies for 
Sentinel 2, S2 + U, S2 + K, S2 + Th, and S2 + TC are 76.5%, 77.93%, 
82.07%, 83.04%, 84.76%, and 85.70%, respectively. The optimum 
result is achieved by combining S2 bands with total count gamma- 
ray data.  

3- The study strongly recommends blending the power of MLAs with 
the combined S2 and gamma-ray data in further geological mapping 
or in renovating older geological maps, especially at terranes that are 

Table 4 
Error matrix, Producer Accuracy (PA), User Accuracy (UA), Overall accuracy (OA), and Kappa coefficient (K) of SVM classification results.  

S2 Sp Amp VM BM SG Ft AM YG Gn MG WD SD GD Tot PA UA 

Sp 826 0 13 0 0 23 1 1 13 0 21 0 2 900 92.7 91.78 
Amp 0 442 0 10 0 0 0 0 0 0 0 0 0 452 79.35 97.79 
VM 16 0 725 6 63 0 15 250 21 34 0 0 0 1130 75.05 64.16 
BM 0 115 0 866 0 0 1 0 7 155 0 0 5 1149 96.01 75.37 
SG 0 0 56 0 285 0 60 33 20 3 0 0 8 465 53.67 61.29 
Ft 36 0 0 0 0 785 0 0 0 0 8 0 0 829 97.15 94.69 
AM 0 0 1 0 0 0 403 27 20 0 0 23 8 482 58.15 83.61 
YG 0 0 149 0 143 0 86 475 182 2 0 0 47 1084 55.75 43.82 
Gn 1 0 1 2 23 0 18 13 221 26 0 0 64 369 42.1 59.89 
MG 0 0 10 14 14 0 17 26 26 415 0 2 0 524 64.04 79.2 
WD 12 0 11 3 2 0 35 23 15 3 1318 2 0 1424 97.13 92.56 
SD 0 0 0 1 1 0 6 0 0 10 10 675 0 703 96.02 96.02 
GD 0 0 0 0 0 0 51 4 0 0 0 1 89 145 39.91 61.38 
Tot 891 557 966 902 531 808 693 852 525 648 1357 703 223 9656 OA = 77.93 K = 0.757 
S2 + Tc Sp Amp VM BM SG Ft AM YG Gn MG WD SD GD Tot PA UA 
Sp 864 0 5 0 0 40 0 0 0 0 0 102 0 1011 96.97 85.46 
Amp 0 489 0 26 0 0 0 0 0 1 0 0 0 516 87.79 94.77 
VM 15 0 656 17 54 0 0 0 0 0 2 2 0 746 67.91 87.94 
BM 0 68 0 792 0 0 0 0 0 14 19 0 0 893 87.8 88.69 
SG 0 0 300 56 474 6 0 73 0 0 4 0 0 913 89.27 51.92 
Ft 0 0 0 0 0 760 0 0 0 0 0 0 0 760 94.06 100 
AM 0 0 0 0 0 0 566 13 0 0 0 0 18 597 81.67 94.81 
YG 0 0 0 0 0 0 39 736 217 0 0 0 112 1104 86.38 66.67 
Gn 0 0 0 0 0 0 0 16 308 0 0 0 2 326 58.67 94.48 
MG 1 0 0 5 0 0 0 0 0 631 0 0 0 637 97.38 99.06 
WD 0 0 0 4 0 0 0 0 0 0 678 16 0 698 96.44 97.13 
SD 11 0 5 2 3 0 14 11 0 2 0 1231 0 1279 90.71 96.25 
GD 0 0 0 0 0 2 74 3 0 0 0 6 91 176 40.81 51.7 
Tot 891 557 966 902 531 808 693 852 525 648 703 1357 223 9656 OA = 85.70 K = 0.843  

S2+U PA UA S2+K PA UA S2+Th PA UA  
Sp  96.18  90.21 Sp  95.06  80.36 Sp 96.97  98.74  
Amp  82.94  81.77 Amp  80.43  95.12 Amp 84.92  87.76  
VM  80.12  78.66 VM  67.49  82.32 VM 64.29  80.96  
BM  83.92  73.93 BM  92.9  86.21 BM 79.82  89.55  
SG  66.67  55.31 SG  71.56  47.56 SG 78.91  50.67  
Ft  99.38  99.38 Ft  99.63  98.89 Ft 100  99.63  
AM  68.69  89.14 AM  68.83  93.71 AM 71.57  84.21  
YG  75.82  62.18 YG  81.81  63.71 YG 96.83  71.37  
Gn  65.33  88.63 Gn  59.62  78.05 Gn 49.14  72.27  
MG  66.67  85.54 MG  98.3  95.79 MG 98.77  97.41  
WD  91.89  93.62 WD  84.89  96.48 WD 95.28  94.66  
SD  94.74  91.48 SD  97.01  99.27 SD 96.02  94.41  
GD  48.43  67.5 GD  40.81  44.61 GD 41.7  48.19  
Tot  OA=82.07  K=0.803 Tot  OA=83.04  K=0.814 Tot OA=84.76  K=0.833   
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Fig. 13. Field photographs showing the mapped rock units of (a) Atalla granite, (b) Sharp contact between Atalla granite and metavolcanics, (c) Volcaniclastic 
metasediments, (d) Massive serpentinite blocks transformed into talc carbonates along zones of thrusting, (e) Meatiq granitic gneiss thrusting over Um Esh am-
phibolites, (f) Atalla felsites, (g) granitic gneiss at the southeastern corner of the study area, (h) Um Esh amphibolites and El-Rubbshi serpentinite, (i) Um Had granite, 
(j) Nubian sandstone, (k) basic metavolcanics, and (l) Massive serpentinite. 
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rich in mineral deposits. The results can highlight some geochemical 
aspects of rocks and can aid not only in lithological identification but 
also in tracing alteration zones and other geochemical characteris-
tics. Furthermore, the significant success of the current approach 
greatly supports linking of other geophysical datasets (e.g., gravity 
and magnetic) and evaluate their results for more reliable geological 
mapping not only in the arid regions but the vegetated ones as well. 
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