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Ig class switch recombination (CSR) defi ciencies 
are rare primary immunodefi ciencies, usually 
called hyper-IgM syndromes, whose frequency 
is 1 in 100,000 births. They are characterized by 
a defective Ig CSR, as shown by serum IgM 
levels that are normal or increased, contrasting 
with a marked decrease, or absence, of IgG, IgA, 
and IgE (1). As a consequence of the molecular 
defect, the defective CSR may be associated 
with defective generation of somatic hypermu-
tations (SHMs) in the Ig variable (V) region. 
The defi nition of several Ig CSR defi ciencies 
made possible a better description of the mecha-
nisms underlying CSR and SHM, both required 
for the maturation of antibody responses (2).

The maturation of the antibody repertoire 
produces several antibody isotypes with high af-
fi nity for antigen, a necessary feature for an effi  -

cient humoral response. Antibody maturation 
occurs mostly in the germinal centers of the sec-
ondary lymphoid organs after antigen and 
T cell–driven activation: CSR results in the pro-
duction of antibodies of diff erent isotype (IgG, 
IgA, and IgE) with the same V(D)J specifi city 
and, therefore, the same antigen affi  nity (3, 4). 
SHM commonly introduces stochastic mutations 
(1/103 bp/cell cycle), mainly in the V region of 
the Ig, a genetic modifi cation that is followed by 
the positive selection of B cells harboring a B cell 
receptor (BCR) with high antigen affi  nity (5, 6). 
CSR and SHM occur together in germinal cen-
ters under BCR/CD40 activation, but neither is 
a prerequisite for the other because IgM may be 
mutated, whereas IgG or IgA may not (7–9).

Mutations in the gene encoding the CD40 
ligand molecule (CD40L and CD154; references 
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drome. We previously described another Ig CSR defi ciency condition, characterized by a 

defect in CSR downstream of the generation of double-stranded DNA breaks in switch (S) 

𝛍 regions. Further analysis performed with the cells of fi ve affected patients showed that the Ig 

CSR defi ciency was associated with an abnormal formation of the S junctions characterized 

by microhomology and with increased cell radiosensitivity. In addition, SHM was skewed 

toward transitions at G/C residues. Overall, these fi ndings suggest that a unique Ig CSR 

defi ciency phenotype could be related to an as-yet-uncharacterized defect in a DNA repair 

pathway involved in both CSR and SHM events.
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10–13), a molecule highly expressed on activated follicular 
helper T cells (14), results in an Ig CSR defi ciency generally 
associated with reduced SHM generation. This observation, 
corroborated by the description of a similar phenotype caused 
by mutations in CD40 (15), has demonstrated an essential 
role for the CD40 signaling pathway in B cells for both CSR 
and SHM.

Other Ig CSR defi ciencies are a consequence of an in-
trinsic defect of the CSR machinery (16, 17). The autosomal 
recessive Ig CSR defi ciency, caused by mutations in the 
AICDA gene encoding the activation-induced cytidine de-
aminase (AID), is characterized by an impairment of both 
CSR and SHM (18). This fi nding, together with the descrip-
tion of the phenotypic characteristics of AID−/− mice (19), 
has demonstrated a key role for AID in antibody maturation. 
AID selectively modifi es cytosine residues into uracils in 
Switch (S) and V regions (20–23). The uracil-N-glycosylase 
(UNG), also mutated in another CSR defi ciency (24), removes 
the uracil residues (introduced by AID) from DNA by base 
excision repair (25).

However, half the Ig CSR defi ciencies caused by an in-
trinsic B cell defect are not secondary to either AID or UNG 
defi ciency. One subset, named HIGM4 (hyper-IgM 4), has 
been characterized as a CSR block downstream from the 
DNA double-stranded breaks (DSBs) in S regions, suggesting 
a defect during DNA repair (26). SHM, only assessed at the 
time in six patients with suffi  cient CD27+ B cells, was nor-
mal in both frequency and pattern (26). However, in a fur-
ther investigation in fi ve more patients with low CD27+ B 
cell numbers, we observed a skewed pattern of SHM, strongly 
reminiscent of that found in UNG defi ciency, although that 
condition was excluded. These fi ndings suggest a more global 
defect in DNA repair aff ecting both the Ig S and V regions. 
The functional characteristics of CSR defi ciency are now de-
scribed in greater depth.

RESULTS

Skewed pattern of SHM in patients’ CD19+/CD27+ B cells

All fi ve patients presented with a defective in vivo and in vitro 
CSR defect (26). The pattern of SHM was assessed in the 
IgVH 3–23 region of IgM on purifi ed CD19+CD27+ B 
lymphocytes (Fig. 1). SHM frequency was either slightly de-
creased (patients P1 and P5) or normal (P2, P3, and P4), and 
the ratio of mutated clones to total analyzed clones was gener-
ally lower than in controls. G/C nucleotides were preferen-
tially targeted in the two patients with a low SHM frequency, 
with, respectively, 80 and 74% of mutations on G/C residues 
(control, 65 ± 4%; range, 55–71%), whereas G/C targeting 
was normal in P2, P3, and P4. However, in all fi ve patients, 
although there were variations from one patient to another, 
including in siblings P2 and P3, SHM showed a skewed pat-
tern of nucleotide substitution on G/C residues: 63–92% muta-
tions were transitions (G > A, C > T), compared with 56 ± 5% 
(range, 49–62%) in the controls (P < 0.005; nonparametric 
Mann-Whitney U test). Except for P1, transitions at A/T resi-
dues were within normal ranges (Fig. 1).

The CSR defect associated with a biased SHM pattern 
found in these patients was reminiscent of that seen in UNG 
defi ciency (24). The in vitro uracil-DNA glycosylase activity 
of extracts from patients’ cell lines was therefore studied on a 
double-stranded probe containing an U:G mismatch. Cell-
free extracts from all patients were similarly able to undergo 
base excision, leading to the cleavage of the probe (Fig. 2). As 
expected, an UNG-defi cient B cell line had no detectable 
activity, and no cleavage was observed using control or pa-
tients’ cell extracts on a double-stranded DNA probe that did 
not contain a U/G mismatch. These results, associated with 
the observation of normal UNG sequences and CSR-induced 
DSB in Sμ regions (26), excluded a UNG defi ciency as the 
basis of the CSR defi ciency found in these patients. 

Another pathway used for bypassing the UNG-induced 
abasic site consists of translesion synthesis, involving the REV 
polymerases (27). Its role in antibody maturation has been re-
cently reported, based on the observation of normal frequency 
but a skewed pattern of SHM in Rev1-defi cient mice (28). 

Figure 1. SHMs in V regions of patients’ CD27+ B cells. SHMs of 

VH3-23 IgM region were assessed in CD19+CD27+ sorted B cells by RT-

PCR using Pfu Taq. Cloned products were sequenced. Nucleotide substitu-

tions are shown as absolute numbers, and SHM frequency is shown as a 

percentage of mutations occurring among all analyzed nucleotides (at 

least 2,400). Numbers of mutated clones among all different studied 

clones are also noted.

Figure 2. Normal Uracil incision activity in patients’ cell lines. 

Protein extracts from control fi broblasts (control 1); control EBV B cell line 

(control 2); P2, P3, and P4 fi broblasts; and P1 and P5 EBV B cell lines were 

mixed with double-stranded fl uorescein-labeled oligonucleotide substrate 

with or without a single dU/dG mismatch. Cleavage of the probe contain-

ing a dU/dG mismatch revealed an effi cient base excision activity in 

patients and controls. No detectable base excision activity was observed 

with UNG−/− cells or in the absence of protein extracts (−).
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Rev1-defi cient lines have an increased sensitivity to γ-irradiation 
and other DNA damaging agents, including methyl methane 
sulfate (29). Although unlikely, as Rev1−/− mice are not as 

aff ected by a CSR defect, REV1, REV3, and REV7 genes 
were sequenced and found to be normal (unpublished data). 
The skewed SHM pattern is also reminiscent of mismatch 

Figure 3. Abnormal pattern of S𝛍-S𝛂 junctions in patients’ B 

cells. (A) Sequences of Sμ-Sα junctions. Two sequences from each pa-

tient are shown. The Sμ and Sα1 or Sα2 sequences are aligned above and 

below the recombination switch junctional sequences. Microhomology 

was determined by identifying the longest region at the switch junction 

of perfect uninterrupted donor/acceptor identity (boxed with solid lines). 

Imperfect repeat was determined by identifying the longest overlap region 

at the switch junction by allowing one mismatch on either side of the 

breakpoint (the extra nucleotide identifi ed beyond the perfect-matched 

sequence identity is boxed by dotted lines). The Sμ and Sα breakpoints for 

each switch fragment are indicated by ▼ and ▲, respectively, and their 

positions in the germ line sequences are indicated on top of or below the 

arrowheads. The number of base pairs involved in microhomology and 

imperfect repeat for each junction is shown at the bottom right of each 

switch junction. (B) Pie charts demonstrate the perfectly matched short 

homology usage at Sμ-Sα junctions in controls and patients. The propor-

tion of switch junctions with a given size of perfectly matched short 

homology is indicated by the size of the slices. (C) Comparison of Sμ-Sα 

junctions in controls, patients described herein, and A-T and DNA ligase 

IV–defi cient patients. *, P < 0.05; **, P < 0.01; ***, P < 0.001 (χ2 test).
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repair (MMR) defect (30). Such a defect, although unlikely 
because of the absence of cancer during early life (31, 32), was 
excluded because MSH2, MSH6, MSH5, EXO1, MLH1, 
and PMS2 RNA transcripts were normally expressed and 
gene sequence was normal (unpublished data).

Abnormal switch junctions in patients’ B cells

Switch junctions are generated after the processing of DNA 
ends produced in S regions and several DNA repair defects 
lead to abnormal structure of these junctions. We therefore 
characterized switch junctions from patients to detect poten-
tial abnormalities. We cloned and sequenced 44 switch frag-
ments (43 Sμ-Sα and 1 Sμ-Sγ-Sα) from B cells of patients 
P1, P3, P4, and P5. All the switch fragment sequences were 
unique and therefore represent independent CSR events. 
Two sequences from each patient are shown in Fig. 3 A. The 
Sμ-Sα junctions from controls (n = 154), used for compari-
son, have been previously published (33, 34). There was a 
signifi cant increase in the extent of donor-acceptor homol-
ogy at the Sμ-Sα junctions from patients B cells (the mean 
length of overlap was 7.2 ± 4.7 bp in patients vs. 1.8 ± 3.2 
bp in controls; Student’s t test, P = 1.2 × 10−9). The major-
ity of junctions (39 out of 43; 91%) from patients displayed a 

perfectly matched homology (microhomology) of ≥1 bp 
(i.e., at least one nucleotide is shared by both the Sμ and Sα 
regions), whereas the remaining four junctions showed a 
1-bp insertion and no junction showed precisely joined blunt 
ends (Fig. 3, B and C). Moreover, 60% of the junctions ex-
hibited a long microhomology of ≥7 bp. When one mis-
match was allowed at either side of the switch junction, most 
of the switch junctions (38 out of 43; 88%) from the patients 
were fl anked by ≥7–8 bp of imperfect repeats (unpublished 
data). The dramatic shift in using long microhomologies or 
imperfect repeats in the Sμ-Sα junctions from these patients 
have previously only been observed in patients with ataxia 
telangiectasia (A-T) or DNA ligase IV defi ciency (Lig4D; 
references 33, 35). Interestingly, in our patients, the shift 
was caused by homologies encompassing 7–9 bp or longer, 
whereas in A-T and Lig4D patients, it was mainly due to an 
increased usage of microhomologies of ≥10 bp (Fig. 3 C). Of 
note, a signifi cantly reduced rate of insertions, but not muta-
tions, was observed at or close to the switch junctions of 
B cells from patients as compared with controls (Fig. 3 C).

Increased radiosensitivity of patients’ cell lines

To search for a possible DNA repair defect, the radiosensitiv-
ity of patients’ fi broblasts was fi rst tested. Fibroblast lines from 
three patients (P2, P3, and P4) were submitted to increasing 
doses of γ-irradiation, and their survival was assessed by clono-
genic assay. A reproducibly increased radiosensitivity was ob-
served in these three cell lines, including those from the two 
siblings (P2 and P3). Although the increased radiosensitivity 

Figure 4. Increased radiosensitivity of patients’ cell lines. (A) Fi-

broblasts from patients (P2 [X], P3 [●], and P4 [○]) were irradiated at 

0.5–3 Gy. Survival was assessed after 14 d of culture as the number of 

colony-forming cells compared with nonirradiated cells. Fibroblasts from 

two age-matched controls and fi broblasts from two Ig CSR–defi cient 

patients with normal SHM (diagonal lines), one ARTEMIS−/−, and one A-T 

cell line (gray) were positive and negative controls. Results are expressed 

in log scale. *, P < 0.05; **, P < 0.005; ***, P < 0.001 (unpaired two-

tailed Student’s t test). (B) EBV B cell lines from patients (P1 [△], P2 [X], 

P4 [○], and P5 [◇]) were irradiated at 0.5–1.5 Gy. After 10 d of culture, 

survival was assessed as the number of positive wells (defi ned as viable 

cell colonies containing >32 cells) for each plate containing irradiated 

cells compared with number of positive wells for each plate containing 

unirradiated cells. EBV B cell lines from four controls, three AID-defi cient 

patients, two UNG-defi cient patients, and six patients with Ig CSR defi -

ciency with normal SHM (diagonal lines), and two A-T–EBV B cell lines 

(gray) were used as positive and negative controls. *, P < 0.05; **, P < 

0.005 (unpaired two-tailed Student’s t test). Radiosensitivity of cell 

lines was assessed two to four times each. Results are expressed as 

mean ± SD.

Figure 5. Normal irradiation-induced cell cycle progression arrest 

in patients’ fi broblasts. (A) The G1/S cell cycle checkpoint was assessed 

by BrdU incorporation and DNA content quantifi cation of fi broblasts from 

a control patient, an A-T patient, and P3 after 5 Gy of irradiation or no 

irradiation. (B) The G2/M cell cycle checkpoint was assessed by FACS 

analysis of phosphorylation of histone H3 and DNA content in either 

untreated or 5 Gy–irradiated fi broblasts from a control patient, an A-T 

patient, and P3. The same results were obtained in P2 and P4 fi broblasts. 

Percentages of G1/S and G2/M cells are indicated.
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was less marked than that of fi broblasts from patients suff ering 
a DNA repair defect, such as A-T or Artemis defi ciency used 
as controls, it was signifi cantly diff erent from that of healthy 
fi broblasts (Fig. 4 A; 0.5 and 3 Gy, P < 0.05; 2 Gy, P < 0.005; 
1 Gy, P < 0.001 [unpaired two-tailed Student’s t test]). These 
results were confi rmed by using Epstein-Barr virus (EBV) 
B cell lines from P1, P2, P4, and P5 that were more radio-
sensitive than the control cell lines (Fig. 4 B; 0.5 and 1 Gy, 
P < 0.05; 2 Gy, P < 0.005 [unpaired two-tailed Student’s 
t test]). In contrast, increased radiosensitivity of AID or UNG-
defi cient cell lines or cell lines from patients with other forms 
of Ig CSR defi ciency was not observed (Fig. 4). These results 
suggest a defect in double-stranded DNA break repair.

Normal irradiation-induced cell cycle progression arrest 

in patients’ fi broblasts

Another event occurring rapidly after DNA damage sensing 
in dividing cells is cell cycle progression arrest. We therefore 
studied the irradiation-induced inhibition of cycle progression 
in fi broblasts from patients P2, P3, and P4. Arrest of entry into 
S phase (G1/S checkpoint) was studied 10 h after a 5-Gy irra-
diation, whereas entry into mitosis (G2/M checkpoint) was as-
sessed after 1 h. Arrested cell cycle progression was observed in 
the patients’ cells in contrast to A-T fi broblasts, which exhib-
ited, as expected, a drastic defect in both checkpoints (Fig. 5). 
These results show that the increased sensitivity of cells to 
γ-irradiation does not result from a defect in the cell cycle 
checkpoints induced by DNA damage.

Normal irradiation-induced foci formation in patients’ 

cell lines

Excessive radiosensitivity could be due to a DNA repair de-
fect caused by an impaired recruitment of proteins to double-
stranded DNA break sites. We, therefore, studied one of the 

earliest responses to DNA damage, namely, the induction of 
histone H2AX phosphorylation (γH2AX; references 36, 37). 
γH2AX is essential for keeping DNA ends together and 
for stabilizing the association of DNA repair factors, such as 
the MRE11–RAD50–NBS1 complex, 53BP1 (tumor.protein.
p53-binding.protein.1), and mediator of DNA damage check-
point 1 (MDC1), at the site of the damage (38). DNA repair 
foci, including γH2AX, MRE11, 53BP1, and MDC1, were 
equally recruited 2 h after a 2-Gy irradiation in control and 
patients’ cells, both in fi broblasts (P2, P3, and P4) and in EBV 
B cell lines (P1, P2, P4, and P5; Fig. 6 and not depicted). 
FACS analysis did not demonstrate the persistence of γH2AX 
in nuclei of fi broblasts (P2 and P4) or of EBV B cell lines (P1, 
P2, P4, and P5) as analyzed at diff erent time points after 
irradiation (unpublished data). These results indicate that 
the increased sensitivity to irradiation does not result from a 
defect in the initial DNA damage sensing, or in a major DNA 
repair, pathway. Alternatively, the molecular defect may lead to 
the unrepair of only a fraction of irradiation-induced DNA 
damage, not detectable in these experiments, as observed in 
Artemis defi ciency (39).

Normal nonhomologous end joining (NHEJ) in patients’ 

cell lines

The major DSB DNA repair pathway used in mammals is 
the NHEJ pathway. Some NHEJ factors have been shown 
to be necessary during CSR (40, 41). To study the ability 
of  patients’ cells to join double-stranded DNA ends by this 
pathway, we analyzed the in vitro end joining of linearized 
plasmid DNA by using patients’ fi broblast and/or EBV B cell 
line extracts by the methods of Baumann and West (42) and 
Buck et al. (43). The DNA-end ligation assay resulted in 
the formation of DNA concatemers when extracts from 
both patient and controls were used (Fig. 7 A). Expectedly, 

Figure 6. Normal irradiation-induced foci formation in patients’ 

fi broblasts. Primary fi broblasts from P4 either untreated or irradiated with 

2 Gy were labeled with anti-MRE11, anti-53BP1, or anti-γH2AX mouse mono-

clonal antibodies and anti-MDC1 rabbit polyclonal antibody followed by 

anti-mouse Alexa Fluor 488, anti-mouse Alexa Fluor 546,or anti-rabbit Alexa 

Fluor 488. Nuclei were stained with DAPI. The same results were obtained with 

fi broblasts from patients P2, P3, and P4 and EBV B cell lines from patients 

P1, P2, and P5. Similar foci formation was observed at 5 Gy of irradiation.
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Cernunnos-defi cient fi broblast extracts did not lead to con-
catemer formation. We next examined the ability of patients’ 
cells to join incompatible DNA DSB formed in vivo and, 
thus, requiring DNA break processing before ligation. P2 and 
P4 fi broblasts were transfected with restriction enzyme–
digested, linearized plasmids containing incompatible 3′-3′ 
overhang ends. Recircularized plasmids were recovered 72 h 
after transfection, and their junctions were studied by DNA 
sequencing (43). Most junctions in plasmids recovered from 
both patient and control fi broblasts showed similarly accu-
rate repair, in contrast to what is observed in Cernunnos-
defi cient fi broblasts (Fig. 7 B). Because a subtle defect may be 
undetectable in these assays, we excluded hypomorphic de-
fects in DNA-dependent protein kinase, Ku complex, Cer-
nunnos, Artemis, XRCC4 (X-ray repair complementing 
defective in chinese hamster), and ligase IV either by gene 
sequencing in patients or by study of segregation with poly-
morphic markers in both informative families (P2, P3, and 
P5; unpublished data).

D I S C U S S I O N 

We have described here a new primary immunodefi ciency, 
characterized by a defect in Ig class switching associated with 
a reduced memory B cell population and a skewed nucleo-
tide substitution in SHM. The observation of a female born 
to consanguineous parents and of two aff ected siblings sug-
gests an autosomal recessive inheritance pattern. Although all 
patients exhibited the same CSR defect with increased radio-
sensitivity, there were some diff erences between patients in 
regard to SHM pattern and frequency. Because the underly-
ing molecular basis of this condition is still unknown, we do 
not know so far whether all patients are aff ected by distinct 
molecular defects or by distinct mutations of the same gene. 
Other genetic and/or environmental factors could also be 
involved, according to P2 and P3 phenotypic diff erences. 
However, the overall phenotype was unique in these fi ve 
patients. Several hypotheses, including one of defective survival 
of switched B cells, or of a defect in the CSR/SHM machinery 
involving DNA repair, could account for the condition.

Figure 7. Normal in vitro and in vivo NHEJ assays in patients. 

(A) In vitro NHEJ activity was assessed by testing ligation of a linearized 

plasmid incubated with protein extracts from fi broblasts from two age-

matched controls, from patients P2 and P4, and one Cernunnos-defi cient 

patient as a negative control (a), and from EBV B cell lines from two controls 

and patients P1, P2, P4, and P5 (b). The reaction products were run on agarose 

gel and stained with SYBR green. Dimerized DNA molecules (2×) were 

formed with controls and P1–P5 extracts, but not, as expected, with the 

Cernunnos-defi cient fi broblast extracts or without WCEs (−). (B) To test the 

in vivo function of the NHEJ pathway, fi broblasts from two age-matched 

controls, patients P2 and P4, and one Cernunnos-defi cient patient were 

transfected with a 3′-3′ linearized plasmid. After 72 h of culture, plasmids 

were extracted, and the ligation junctions were PCR amplifi ed, cloned, and 

sequenced. NHEJ was found to be normal in patients’ cells, as shown by a 

similar number of accurate junctions in control and patients’ fi broblasts. 

The frequency of each sequence among analyzed clones is indicated.



JEM VOL. 204, May 14, 2007 1213

ARTICLE

Abnormalities in survival signaling of switched B cells 
could underlie this condition. Molecular interactions are 
known to be essential for B cell survival, including that of 
B cell activating factor (BAFF) with its receptor on B cells, 
BAFF-R (44–46). The observation of fewer switched 
CD27+ B cells could fi t this model. However, the observed 
in vitro defective CD40-dependent CSR cannot be ac-
counted for by a BAFF-R or BAFF abnormality. A response 
to DNA damage leading to inappropriate cell death should 
also be considered. In cells other than germinal center B cells, 
DSBs activate p53 and p21, resulting in cell cycle arrest and 
apoptosis. In contrast, in germinal centers, the p53 response 
to DNA damage is directly inhibited by the highly expressed 
transcriptional regulator B cell lymphoma 6 (BCL6), whereas 
p21-induced cell cycle arrest is suppressed through interac-
tion of its transcriptional activator Miz1 (protein inhibitor of 
activated STAT2) with BCL6. Both these events enable in-
tense proliferation of B cells undergoing CSR (47). Fitting in 
with this observation, BCL6-defi cient mice are depleted of 
germinal centers because of a strong B cell apoptosis (48). 
Such a defect in transcriptional repression of proteins in-
volved in cell cycle arrest induced by DNA damage could 
also underlie this Ig CSR defi ciency. Another interesting 
 hypothesis is related to the recently described role of phos-
phoinositide-3 kinase (PI3K) acting as a negative regulator of 
CSR (49). PI3K-induced CSR inhibition is dependent on 
the inhibition of AICDA transcription via B lymphocyte–
induced maturation protein 1 overexpression and inactivation 
of the Forkhead Box family (FOXO) of transcription factors 
by the serine threonine kinase AKT. Activated B cells from 
the patients in this study expressed the AICDA gene tran-
scripts and AID protein normally. However, PI3K also exerts 
a downstream function in AID activity regulation, as shown 
by the observation that overexpressed AID does not fully 
compensate for the inhibitory eff ect of PI3K on CSR. Thus, 
any abnormal signal leading to increased PI3K activity in 
patients’ B cells could induce a CSR defi ciency.

Alternatively, a defect in the complex machinery under-
lying the SHM and the CSR processes, and especially the 
DNA repair, appears more likely because of abnormal S junc-
tions and increased radiosensitivity of fi broblasts and EBV B 
cell lines. AID and UNG-induced DNA lesions are repaired 
diff erently in S and V regions. The CSR-induced DSB repair 
requires phosphorylation of the H2AX histone (γH2AX), as 
well as the MRE11–RAD50–NBS1 complex and the 53BP1 
and MDC1 proteins, as shown by the phenotype of mice or 
B cells depleted of each of these molecules (50–54). The ob-
served normal accumulation of γH2AX, MRE11–RAD50–
NBS1 complex, and 53BP1 and MDC1 proteins on DNA 
repair foci of patients’ cells excluded a defect in the fi rst step 
after DNA damage sensing, leading to DNA repair. In addi-
tion, the H2AX, 53BP1, and MDC1 genes were sequenced 
and found to be normal. MRE11 and NBS1 mutations in 
man lead to well-known syndromes, A-T–like disease (55) 
and Nijmegen syndrome (56), respectively. ATM (A-T 
mutated) is involved in DNA repair of S regions (33, 57). 

Nevertheless, as A-T patients exhibit an Ig CSR defi ciency 
(reference 58; unpublished data), a potential role for ATM 
could be envisaged. The observation of a normal irradiation-
induced cell cycle progression arrest excludes an abnormal 
ATM-mediated cell cycle checkpoint pathway. Moreover, 
the switched junctions, although based on microhomologies, 
were slightly diff erent from those observed in A-T. The 
NHEJ enzymes have been shown to be required for CSR 
(35, 40, 41, 59). However, such defi ciency of these factors is 
unlikely because of normal TCR and BCR expression and 
function in patients’ cells, as well as the absence of γH2AX 
persistence after irradiation and the normal results obtained 
for both NHEJ assays. However, we cannot defi nitively rule 
out a defect in a NHEJ factor redundant with other factors 
in mediating the V(D)J recombination process that remains 
undetectable in the experimental assays used. It should be 
stressed that the nature of the switch junctions and the bias to 
transitions at G/C residues do not fi t well with defective 
NHEJ. The SHM abnormality could be the consequence of 
a defective repair of V region breaks. The nature of the DNA 
breaks in V regions and their repair have not been completely 
elucidated (60). The recent observation that the MRE11–
RAD50–NBS1 complex localizes on V regions is compatible 
with DSB generation in V regions during SHM introduction 
(61). The MMR enzymes play a role in CSR and SHM in 
mice, as shown by the slightly defective CSR and skewed 
pattern of SHM observed in MMR-defi cient mice (62, 63). 
In addition, abnormality of S junctions observed in the B 
cells from our patients is reminiscent of that observed in 
Mlh1- or Pms2-defi cient mice (30), both defects, however, 
that are excluded by gene sequencing. Thus, an as-yet-
uncharacterized defect in a DNA repair pathway can be pos-
tulated to account for a unique phenotype characterized by 
defective CSR and SHM, associated with an abnormality of 
the switch junction repair and increased cell radiosensitivity. 
This factor could be required for effi  cient NHEJ in S regions 
and DNA repair of V regions. It could also be NHEJ inde-
pendent. Of note, AID-dependent illegitimate recombina-
tion events occurring between the IgH locus and c-myc in B 
cell lymphomagenesis have been shown to be mediated by an 
as-yet-unknown NHEJ-independent process (64). It is, thus, 
attractive to consider that this as-yet-uncharacterized DNA 
repair pathway might be physiologically involved in the CSR 
and SHM processes.

MATERIALS AND METHODS
Patients. We studied fi ve patients (4 males and 1 female), 4–8 yr of age, 

from four unrelated families. P2 and P3 were siblings, and P5 was born to a 

consanguineous family. All patients suff ered from recurrent bacterial infec-

tions. P4 also presented with enlarged lymph nodes, and P4 and P5 had se-

vere autoimmune hemolytic anemia. P3 died from severe hepatitis, and P5 

suddenly died at 6 yr of age. A diagnosis of defective Ig CSR was made on 

the basis of low-serum IgG, IgA, and IgE concentrations and high-serum 

IgM concentrations (Table I). Cases P1, P2, P3, and P4 were previously 

reported (26). B cell and T cell counts were similar to those of age-matched 

controls, and T cell functions were found to be normal (unpublished data). 

However, the percentage of memory B cells was strongly decreased, and 

switched B cells were virtually absent (Fig. 1), whereas the in vitro IgE 
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production of B cells upon soluble CD40L+ IL4 activation was negative, 

though B cells proliferated normally in that setting. The in vitro CSR defect 

was shown to occur downstream of DNA DSBs (26). AID and UNG defi -

ciencies were excluded by normal gene sequence. AID protein was detect-

able by Western blot in activated B cells whenever tested (EBV B cell lines 

from P1, P2, P4, and P5 and soluble CD40L+IL4-activated B cells from P1 

and P4 (unpublished data). Immunological and genetic studies were per-

formed after the informed consent of parents. The study was approved by 

the ethics committee.

Analysis of SHM in variable gene of Ig. SHM in VH3-23 IgM gene 

in CD19+CD27+ sorted B cells was assessed as described previously (18). 

RT-PCR was performed with 0.5 U Pfu polymerase (Stratagene) and the 

primers V3-23 leader exon and CμB (35 cycles at 94°C for 45 s, 60°C for 

1.5 min, and 72°C for 2 min). Products were cloned and sequenced.

Uracil incision assay. Whole-cell extracts (WCEs) were prepared by cells 

lysis in buff er 1 (10 mM TRIS, pH 8, 1 mM EDTA, 5 mM dithiothreitol 

[DTT], and protease inhibitors) followed by the addition of 0.5 volume of 

buff er 2 (50 mM Tris, pH 8.0, 1 M Kcl, 2 mM EDTA, and 2 mM DTT) and 

submitted to three freeze–thaw cycles. After centrifugation, supernatants 

were dialyzed against dialysis buff er (20 mM Tris, pH 8.0, 20% glycerol, 

0.1 M K [OAc], 0.5 mM EDTA, and 1 mM DTT).

For the uracil incision assay, adapted from Di Noia (65), 10 μg WCEs 

were mixed in reaction buff er with 1 pmol of double-stranded, FITC-

labeled oligonucleotide containing or not containing a single dU/dG mis-

match in 20 μl. After 2 h at 37°C, the reaction was stopped with 10 μl of 

formamide loading dye (GE Healthcare) and products run on a denaturing 

gel were visualized via FluorImager (FLA3000; Fujifi lm).

Study of switch junctions. The amplifi cation of Sμ-Sα fragments from 

in vivo switched B cells was performed as described previously (33, 66). The 

PCR-amplifi ed switch fragments were gel purifi ed, cloned, and sequenced. 

The switch breakpoints were determined by aligning the switch fragment 

sequences with the Sμ (X54713), Sα1 (L191219), or Sα2 (AF030305) se-

quences. Analysis of microhomology usage at the junctions and mutations ± 

15 bp around the junction and upstream Sμ region were performed as 

described previously (33, 58). Data from controls, A-T, and DNA ligase 

IV–defi cient patients were described previously (33–35).

Ionizing radiation sensitivity assay. Primary fi broblasts were irradiated 

(137Cs source) with diff erent doses (0, 0.5, 1, 2, or 3 Gy), and serial dilutions 

were cultured for 14 d in a 10-cm culture dish. The number of colonies for 

each dose was assessed, and ratios referring to the dilutions of the nonirradi-

ated cells were determined (67).

Irradiated (0, 0.5, 1, or 1.5 Gy) EBV B cell lines were serially diluted 

and cultured in a 96-well plate for 10 d (68). Each well containing viable cell 

colonies, dark blue stained after a 4-h incubation in 1 mg/ml 3-(4,5dimeth-

ylthiazol-2-4)-2,5-diphenyltetrazolium bromide (Sigma-Aldrich), with >32 

cells was scored as positive.

G1/S and G2/M checkpoint cell cycle analysis. For G1/S checkpoint, 

primary fi broblasts were subjected to 5-Gy γ-rays, followed by a 1-h pulse 

of BrdU incorporation 10 h after irradiation, and incubated with FITC-

conjugated anti-BrdU antibody (Becton Dickinson; reference 69). G2/M 

checkpoint was performed in immortalized SV40-transformed fi broblasts 

harvested 1 h after 5 Gy of γ-irradiation labeled with a rabbit polyclonal 

anti-phosphohistone H3 (Upstate Biotechnology) detected with FITC-

conjugated goat anti–rabbit IgG antibody (Becton Dickinson; reference 70). 

Determination of the cellular proportions in G1/S and G2/M phases and 

DNA content measured by propidium iodide were analyzed by FACS 

(Becton Dickinson).

DNA repair foci detection. 2 h after 2–5 Gy of γ-irradiation, primary 

 fi broblasts or EBV B cell lines were labeled with the mouse monoclonal 

anti-γH2AX (Ser139; clone JBW103; Upstate Biotechnology), mouse 

monoclonal anti-MRE11 (clone 12D7; Abcam), mouse monoclonal anti-

53BP1 (provided by I. Ward, Mayo Clinic College of Medicine, Rochester, 

MN), or rabbit polyclonal anti-MDC1 (provided by S. Grant, Baylor Col-

lege of Medicine, Houston, TX) antibodies. Cells were incubated with the 

secondary antibodies goat anti-mouse Alexa Fluor 488, goat anti-mouse 

Alexa Fluor 546, and goat anti-rabbit Alexa Fluor 488 (Invitrogen). Slides 

were counterstained with DAPI and analyzed by epifl uorescence microscopy 

(Axioplan; Carl Zeiss MicroImaging, Inc.).

In vitro and in vivo NHEJ assay. Functional activity of the NHEJ system 

repair was assessed in vitro (43) by incubation of 5 μg WCEs with 25 ng 

EcoRI-digested pEGFPN2 in ligation buff er for 1 h at 37°C. Reactions were 

treated with 1 mg/ml RNase followed by deproteination. Samples were run 

on agarose gels and stained by SYBR gold (Invitrogen), and fl uorescence was 

detected via a FluorImager.

In vivo NHEJ assay was performed as described previously (43), and 

5 μg SacI–SacII linearized 3′-3′ overhang-ends EGFP-N2 plasmid (CLON-

TECH Laboratories, Inc.) were introduced into primary fi broblasts by elec-

troporation. After 72 h, recircularized plasmids were extracted. The junctions 

were PCR amplifi ed, cloned, and sequenced.
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Table I. Phenotype of patients

Characteristic P1 P2a P3a P4 P5 Age-matched controls

Age at diagnosis (yr) 6 6 8 4 4 —

Serum Ig levels (g/l) —

 IgM 16 4.1 2.6 2.8 0.9 0.5–1.2

 IgG 0.6 3.6 5.7 0.7 1.4 6.8–12.5

 IgA 0.3 <0.03 <0.03 <0.03 <0.03 0.6–1.6

T lymphocyte counts/μl 2,400 1,420 1,238 1,612 1,300 1,200–2,600

B lymphocyte counts/μl 452 120 170 462 440 110–570

IgD+/CD19+ (%)b 99.9 99.2 ND 99.8 ND 83–93

CD27+/CD19+ (%)b 1.5 3.3 3.1 4.7 3.1 13–58

aP2 and P3 are siblings.
bGated on CD19+ B cells.
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