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Introduction

The dissertation is devoted to investigate the relations between non-
associative binary systems loops L and the transformation groups M ult(L)
generated by all left and right translations of L. This group is called the
multiplication group of L. The action of the group Mult(L) on L is tran-
sitive and effective. The stabilizer of the identity element of L in the group
Mult(L) is the inner mapping group Inn(L) of L. The initial steps to
treat loops came from the study of coordinate systems of non-desarguesian
planes and from the investigation of topological questions in differential
geometry (cf. [3]). Firstly R. Baer considered loops in connection with
the group G, or G, generated by their left or right translations (cf. [2]).
The studies of A. A. Albert ([1]) and R. H. Bruck ([5]) strengthened the
algebraic features of loops. They proved that every normal subloop of L
corresponds to a normal subgroup of the group Mult(L) and the orbit of
a normal subgroup of Mwult(L) with respect to the identity element ¢ € L
results a normal subloop of L (cf. Theorems 3, 4 and 5 in [1] and Lemma
1.3, IV.1, in [5]). Hence the group Mult(L) and the subgroup Inn(L)
play an essential role for the investigation of the structure of the loop L (cf.
[11, [51, [6], [22], [23], [32], [33], [37], [38]). In [4] it is proved that the
nilpotency of the group Mult(L) forces that the loop L is centrally nilpo-
tent. In this case the group Inn(L) is commutative. For finite loops A.
Vesanen ([42]) proved that from the solvability of the group Mult(L) fol-
lows the classical solvability of the loop L. Analogously as in the group
case a loop L is classically solvable if there is a subnormal series of L
such that every factor loop is commutative. Using congruences defining
the decomposition of a loop L into its left cosets NV, x € L, with respect
to the normal subloop N of L, D. Stanovsky and P. Vojtéchovsky devel-
oped commutator theory for loops (cf. [37]). If there exists a normal series
{e} = Ly < Ly < ... < L, = L of L with the property that for all
i=1,---,n, the factor loop L;/L;_; is abelian in L/L; 4, then the loop L
is congruence solvable. In contrast to the group case the class of congru-
ence solvable loops is a proper subclass of the class of classical solvable
loops (cf. Exercise 10 in [18] and Construction 9.1 and Example 9.3 in
[37]). Moreover, the iterated abelian, respectively central extensions, yield
congruence solvable, respectively centrally nilpotent loops (cf. Corollaries
5.1 and 5.2 in [38]).



In this dissertation we deal with connected topological loops L. We fol-
low the approach of P. T. Nagy and K. Strambach who consistently studied
topological and differentiable loops using the tools of Lie theory. In [29]
topological and differentiable loops L are realized as sharply transitive sec-
tions in Lie groups (G, generated by the left translations of L. The subject
of our investigation is connected topological loops L having a solvable Lie
group G as the group Mult(L) generated by all left and right translations of
L. The action of the group Mwult(L) on the topological space L is transitive
and effective. Each 1-dimensional connected topological loop having a lo-
cally compact group as its multiplication group is associative (cf. Theorem
18.18 in [29]). In the class of Lie groups the elementary filiform groups
F,, with dimension n > 4 are the multiplication groups of 2-dimensional
connected topological proper loops. Moreover, these loops are central ex-
tensions of a 1-dimensional Lie group by the group R (cf. [9]). Chapter 2
deals with the investigation of the classical and congruence solvable prop-
erties for topological loops. Using the results of Lie on transitive actions
of Lie groups on the plane R? (cf. [21]) and those on the groups Mult(L)
of L, if dim(L) < 2, we obtain that all 3-dimensional connected topo-
logical loops L having solvable Lie groups as their multiplication groups
are classically solvable (cf. Theorem 12). Applying the relation between
iterated abelian extensions and congruence solvability we formulated nec-
essary and sufficient conditions for 3-dimensional topological loops L to
be congruence solvable (cf. Theorem 13). A particular interesting exam-
ple (Example 1) illustrates that also for the topological case the class of
congruence solvable loops forms a proper subclass of the class of classical
solvable loops.

In Chapters 3,4, 5, 6 we discuss the question what solvable Lie groups
can be represented as the multiplication groups of connected topological
loops having dimension 3. Many authors investigated the general problem,
what group can be realized as the group Mult(L) of a loop L, in partic-
ular if L is a finite loop ([7], [8], [22], [27], [34]). Firstly, T. Kepka and
M. Niemenmaa considered the latter question and answered it using group
theoretical tools (cf. [33]). The conditions for a group G to be the multi-
plication group Mult(L) of a loop L request the existence of two special
left transversals S, T" with respect to a subgroup K of GG. The group K
results in being the inner mapping group of L and the transversals .S and



T’ can be taken as the set of the left and right of the translations of L, re-
spectively. The transversals .S, 1" are K-connected and generate the group
G (see Lemma 7). These criterions can be fruitfully applied for the topo-
logical case too (cf. [9]-[17]). In [11] it is found the at most 5-dimensional
solvable connected simply connected Lie groups which are not nilpotent
and can be realized as the group Mult(L) for a 3-dimensional topological
loop L.

The isomorphism classes of solvable Lie algebras g are classified in
[24], [26], [25], [36], [41], if dim(g) < 6. Hence we restrict our con-
sideration for these classes of Lie algebras. The main result of Chapter 3
says that each at most 3-dimensional connected topological loop L, such
that the group Mult(L) of L is a solvable Lie group of dimension < 6,
has nilpotency class 2 (cf. Theorem 15). To prove this result in Chapter 3
we describe the structure of the 3-dimensional connected simply connected
topological loops L and their multiplication groups if Mult(L) are solvable
Lie groups. Theorem 16 deals with the case that Mult(L) has discrete cen-
tre. Theorem 17, respectively Theorem 18 treat the case that Mult(L) has
1-dimensional, respectively 2-dimensional, centre. In Chapter 3 we give
the steps of the procedure for the classification of the 6-dimensional solv-
able Lie groups which are multiplication groups 3-dimensional connected
simply connected topological loops L having a solvable Lie group G of di-
mension 6 as their multiplication group. Based on the results of Theorems
16, 17, 18 we formulated Proposition 19, which is applied in Chapter 4 to
exclude some classes of 6-dimensional Lie algebras which are not the Lie
algebras of the groups Mult(L) of L. These Lie algebras are characterized
by one of the following properties:

* they have discrete centre (cf. Propositions 21, 22, 23),

* they are indecomposable and have 2-dimensional centre (cf. Theo-
rem 20),

¢ they have 4-dimensional non-abelian nilradical (cf. Proposition 21),

« their nilradical is either R® or a 5-dimensional indecomposable nilpo-
tent Lie algebra with exception of the Lie algebra [e3,e5] = ey,
[e4, €5] = es (cf. Proposition 22).



In Chapters 5 and 6 we give the 6-dimensional solvable Lie algebras
which are the Lie algebras of the multiplication groups of 3-dimensional
topological loops L. Chapters 5 and 6 consist of Lie algebras having 1-
dimensional and 2-dimensional centre, respectively.

In Chapter 5 we find that there are seven classes of 6-dimensional solv-
able indecomposable Lie algebras g with 5-dimensional nilradical which
are the Lie algebras of Mult(L) (cf. Theorem 24). The nilradical of the Lie
algebras g is isomorphic either to f3R? or to £y R or to the 5-dimensional
indecomposable nilpotent Lie algebra such that its 2-dimensional centre co-
incides with its commutator ideal. Among the 6-dimensional solvable in-
decomposable Lie algebras having 4-dimensional nilradical there are three
classes which are Lie algebras of the multiplication groups of L. The nil-
radical of these Lie algebras is R*. The corresponding simply connected
Lie groups G and their subgroups K, which are the inner mapping groups
of L, are listed in Theorem 25. In Theorem 26 we give the 18 families of
decomposable solvable Lie algebras with 1-dimensional centre which are
the Lie algebras of Mult(L). In Theorems 24, 26 we determine also the
abelian subalgebras k of the Lie algebras g which are the Lie algebras of
the inner mapping group Inn(L). In Chapter 5 the centre Z(L) of all 3-
dimensional connected simply connected topological loops L is the group
R. Moreover, the factor loop L/Z(L) is the group R%. Hence these loops
have nilpotency class 2.

In Chapter 6 all Lie algebras are decomposable solvable Lie algebras
(cf. Theorem 20). Among the 6-dimensional Lie algebras there are 9 fam-
ilies which can be realized as the Lie algebra of the group Mult(L) of a
3-dimensional connected simply connected topological proper loop L (cf.
Theorems 30, 31). In this case the centre Z(L) of the loop L is the group
R? and the factor loop L/Z(L) is the group R. Therefore L is centrally
nilpotent of class 2.

Hence our main results in the dissertation are the following:

Theorem 1. Let L be a proper connected simply connected topological
loop of dimension 3 having a solvable Lie group as its multiplication group
Mult(L).

(a) Then L is classically solvable. There is a normal subgroup N = R of
L. Every normal subgroup N = R of L lies in a 2-dimensional normal
subloop M of L. The factor loop L/M is isomorphic to R, whereas the
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loops M and L/N are isomorphic either to a 2-dimensional simply con-
nected Lie group or to an elementary filiform loop.

(b) The loop L is congruence solvable if and only if either L has non-
discrete centre or L is an abelian extension of a 1-dimensional normal sub-
group N = R by the factor loop L/N isomorphic either to the group Ly or
to a loop L.

If the multiplication group Mult(L) of an at most 3-dimensional con-
nected topological proper loop L is a solvable Lie group of dimension < 6,
then in Chapter 3 we show the following:

Theorem 2. If L is a connected topological proper loop L of dimension
< 3 such that its multiplication group Mult(L) is an at most 6-dimensional
solvable Lie group, then L has nilpotency class 2.

Chapters 4,5 and 6 are devoted to classify the solvable Lie groups of
dimension < 6 which can be represented as the groups Mult(L) of 3-
dimensional topological loops L. Our main results are summarized in the
following Theorems. To formulate these results we use the notation in [24],
[26], [36], [41].

Theorem 3. Let L be a connected simply connected topological proper
loop of dimension 3 such that the Lie algebra of its multiplication group
Mult(L) is a 6-dimensional solvable Lie algebra g having 1-dimensional
centre. Then L is centrally nilpotent of class 2 and for the Lie algebra g we
obtain:

» If g is an indecomposable Lie algebra having 5-dimensional nilrad-

ical, then the Lie algebra g is one of the following: g, = ggjff:b,
- =0 __6=1l,a=0=¢ o =41 . —0=b o =0

g2 = g%,gg, g3 = 8,17 » B4 = g(as,m » B5 = g§754 » 86 = géﬁﬁg,
_ a=0=b

87 = 86,25

» Ifgis an indecomposable Lie algebra with 4-dimensional nilradical,
then for the Lie algebra g we get one of the following: g1 = Ng o3,
a < R, go = Nél:22’ a e ]R\{O}, g3 = N6’27.

* If g is a decomposable Lie algebra, then for the Lie algebra g we
have one of the following: g = R & g?fg e g, =R® gg"j(?,

g =R®gson 8s = RDEY, 85 = RD g3, 86 = R g3,
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g7 = R®Dgs34, 88 = RDgs35 89 = LD gy1, B1o = LD 813
g =f3Dg30 2o =130g33 83 =D 834 Guu =1 g}377>5 ,
gis = L OR D g3 g6 =L OPRDgs3 817 = L OR D g4,

gs=LORDgL;

Theorem 4. Let L be a 3-dimensional connected simply connected topolog-
ical proper loop having a solvable Lie algebra g of dimension < 6 with 2-
dimensional centre as the Lie algebra of the multiplication group Mult(L).
Then L is centrally nilpotent of class 2 and the Lie algebra g is one of the
following:

1 The nilpotent Lie algebras R & f;, R & f5.

2 The solvable and non-nilpotent Lie algebras: g, = R? @ gifo, g =

R2 @ gi4 83 = R2 @ g;éS’YSBSINﬂ#O’ g = R?2 & gi’%(],a?fo’ g5 =

Re g™ gs = R@ g0 87 = RO 8], g5 = R g1y,

1 Preliminaries

In this Chapter we collect notions, tools and results, which we use in the
later investigation.

A set L equipped with a binary operation (z,y) +— x - y is called a loop
if for all x € L the left translation map A\, : L — L, \.(y) = x - y as well
as the right translation map p, : L — L, p,(y) = y - = are bijections and
there is an element e € L with the property x =e -2 = 2 -e. Aloop L is
proper if it is not associative.

The relation between loops and sharply transitive sections in groups is
described in Section 1.2. of [29] in the following way: Denote by G, the
group generated by the left translations of a loop L and by H the stabilizer
of e € L in G,. The set A(L) of the left translations of L is a subset of G
and operates sharply transitively on the left cosets vH;x € (. The latter
property says that for any given left cosets aH,bH there is precisely one
left translation A\, with \,aH = bH.

The core C'og,(H ) of the subgroup H in the group G, is the largest normal
subgroup of GGy contained in H. If G is a group, H is one of its subgroups
with Cog,(H) = {1} and 0 : G;/H — G, is a section such that

1. the image o(G,/H) is a subset of G, with o (H) = 1 € G,
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2. the action of o(G//H) on the factor space G,/ H is sharply transitive,

3. 0(G¢/H) generates G,

then the multiplication on G,/ H given by xH * yH = o(xH)yH defines a
loop L(o) having G, as the group generated by its left translations.

The left, respectively the right division map is defined by L x L — L :
(z,y) = 2\y = \;1(y), respectively (z,y) — y/x = p;'(y). Moreover,
denote by 1, : L — L the map p.(y) = y\z. One has u!(y) = x/y. The
groups Mult(L) = (A, pz; v € L) and TMult(L) = (s, pa, foa; € L)
are called the multiplication group and the total multiplication group of L.
We denote by Inn(L) and T'Inn(L) the stabilizer of the identity element
e € Lin Mult(L) and in T Mult(L), respectively. These subgroups of
Mult(L) and T Mult(L) are called the inner mapping group and the total
inner mapping group of L.

A normal subloop NV of L is the kernel of a loop homomorphism « :
(L,-) = (L',*). A word W is a formal product of letters \;z), py(z) and
their inverses, where ¢(z) = t(xq,- -, z,) is a loop term. If we substitute
elements u; of a particular loop L for x; into a word W and interpret \(z),
pi(z) as translations of L, then we get an element W of M ult(L). The word
W is inner if W;(e) = e for each loop L with identity element e and each
assignment of elements u; € L. The notion of tot-inner word is defined
analogously allowing ji,(z) as generating letters. Let VV be a set of tot-inner
words such that each loop L satisfies the property T Inn(L) = (W5 : W €
W,u; € L). Let L be a loop and N, N, be normal subloops of L. The
commutator [N, Ny, is the smallest normal subloop of L containing the
set {Wa(a)/Wy(a) : W € W,a € Ny,u;,v; € Lyu;/v; € Ny} For
the set JV one can choose the set {7, U, L, ,, R, M, } of the tot-inner
words T, = p;'Aps Up = ' ey Loy = M Aadys Ry = 0l pupys
Moy = 1ttty (cf. Theorem 2.1. in [38]).

A normal subloop N of L is said to be central in L, respectively abelian
in L, if [N, L], = {e}, respectively [N, N|, = {e}. The centre Z(L) of
a loop L is the normal subloop of L consisting of all elements z € L that
satisfy the identities zx = zz, zx-y = 2.2y, T-Yyz = 2Y-2, T2 Yy = T+ 2Y
for all x,y € L. A normal subloop N is central in L precisely if one has
N < Z(L). The centre Z(L) of L is a commutative normal subgroup of
L. Aloop L is classically solvable if there is a series {e} = Ly < L; <

. < L, = L of subloops of L such that L; ; is normal in L; and the



factor loop L;/L; 1 is an abelian group for all i = 1,2,---,n. A loop L
is called congruence solvable, respectively nilpotent, if there exists a chain
{e} = Ly < L) < ... < L, = L of normal subloops of L such that every
factor loop L;/L;_; is abelian in L/L;_, respectively central in L/L; ;.
Based on the above remark this definition of nilpotence is equivalent to the
classical concept of central nilpotence in loop theory. If we put Z, = {e},
Zy=Z(L)and Z;/Z; 1 = Z(L/Z;_1), then we obtain a series of normal
subloops of L. If Z, 1 is a proper subloop of L but Z,, = L, then we
say that L is centrally nilpotent of class n. The centrally nilpotent loops
are congruence solvable. If (A, +,0) is a commutative group, (F), -, e) is a
loop and p,¢ : FF x F — Aut(A), 0 : F x F — A are functions with
o(y,e) = Id = ¢(e,y), 0(e,y) = 0 = O(y, e) for every y € F, then on
F x A aloop is defined by

(z,a) & (y,0) = (z -y, o(z,y)(a) + ¢(z,y)(b) + O(z, y)).

This loop has identity element (e, 0) and it is called the abelian extension
of A by F' determined by the factor system I' = (¢, ¢, #). We denote it by
L = F @r A. An abelian extension is central if p(z,y) = ¢(z,y) = Id for
all z,y € F. Aloop L is said to be an iterated abelian, respectively central
extension, if it has the form

((((Ag ®r, A1) @, Ag) ®ry ... Bry_, Ar—2) ®r,_, Ak—1) Br,, Ar,

where A;, 1 = 0,-- -, k, are abelian groups and all extensions are abelian,
respectively central (cf. Section 5 in [38] and Definition in [23], p. 380).
Corollaries 5.1 and 5.2 in [38], p. 380, prove:

Lemma 5. A loop L is congruence solvable, respectively centrally nilpo-
tent, precisely if it is an iterated abelian, respectively an iterated central
extension.

We will use very often the following relations between normal subloops
N, factor loops L/N of aloop L and their multiplication groups Mult(N),
Mult(L/N) in connection with the multiplication group Mult(L) of L (see
in [1], Theorems 3, 4 and 5, in [5], IV.1, Lemma 1.3 and in [17], Lemma
2.3).



Lemma 6. Let L be a loop having Mult(L) as its multiplication group and
e as its identity element.

(i) A homomorphism « of L onto the loop (L) with kernel N induces a
homomorphism of the group Mult(L) onto the group Mult(c(L)). The set
M(N) = {m € Mult(L); N = m(z)N forall x € L} forms a nor-
mal subgroup of Mult(L) containing the group Mult(N) for the normal
subloop N. The factor group Mult(L)/M(N) is isomorphic to the multi-
plication group Mult(L/N) of the factor loop L/N.

(ii) For each normal subgroup N of Mult(L) the orbit N'(e) is a normal
subloop of L. We have N < M (N (e)).

If G is a group, and K is a subgroup of G, then a system S of repre-
sentatives for the left cosets K, x € G, is called a left transversal to K
in G. If S, T are two left transversals to K in GG, then we say that these
are K -connected, if for all s € S and ¢t € T the product s~ 1st lies in
K. For aloop L the sets A(L) = {A\s; a € L}, P(L) = {ps; a € L}
are Inn(L)-connected left transversals in the group Mwult(L). In Theorem
4.1 of [33] the following necessary and sufficient conditions are given for a
group G to be the group Mult(L) of aloop L.

Lemma 7. A group G is isomorphic to the multiplication group of a loop
precisely if there is a subgroup K with Cog(K) = {1} and there exist
K -connected left transversals S and T such that G = (S, T).

In the later investigation we will often use the following assertion (cf.
Proposition 2.7. in [33]).

Lemma 8. If L is a loop having Mult(L) as its multiplication group and
Inn(L) as its inner mapping group, then one has Conpuyry(Inn(L)) =
{1} and the normalizer N (1) (Inn(L)) is the direct product Inn(L)x Z,
where Z denotes the centre of Mult(L).

A topological loop is a topological space L such that the three binary
operations (z,y) — z -y, (z,y) — x\y, (z,y) — y/x : L X L — L
are continuous. In this case the multiplication group of L is a topological
transformation group such that in general it has no natural (finite dimen-
sional) differentiable structure. The condition that the group Mult(L) is a
Lie group restricts strongly the isomorphic classes of Mult(L) as well as
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those of L. In the dissertation we suppose that the group Mult(L) is a Lie

group.
In the further considerations the following lemma is often applied.

Lemma 9. Each connected topological loop has a universal covering loop,
which is simply connected. If L is a 3-dimensional connected simply con-
nected topological loop such that the group Mult(L) is a solvable Lie
group, then L is homeomorphic to R3.

The first assertion is shown in [20], IX.1, whereas the second one is
showed in Lemma 3.3 of [10], p. 390.

An elementary filiform Lie group £, is a connected simply connected
Lie group of dimension n > 3 such that its Lie algebra f,, has a basis
{e1, -+, e} with [e1,¢;] = €;41 for 2 < i < n — 1. A 2-dimensional
connected simply connected loop L is said to be elementary filiform, if its
multiplication group is an elementary filiform group F,, with n > 4.

A transitive action of a Lie group GG on a manifold M is primitive, if on
M there does not exist any G-invariant foliation with connected fibres of
positive dimension smaller than dim M. A Lie algebra is called indecom-
posable, if it is not the direct sum of two proper ideals. Otherwise, the Lie
algebra is decomposable.

In the next Lemma we summarize the preliminary results if a connected
topological loop of dimension 3 has a solvable Lie group as its multiplica-
tion group (see Theorem 11 in [1], Lemmata 3.4, 3.5, 3.6 and Propositions
3.7, 3.8 in [10], Theorem 6, Sections 4 and 5 in [11], Propositions 2.6, 2.7
in [17]).

Lemma 10. Let L be a proper connected simply connected topological
loop of dimension 3. Assume that the group Mult(L) of L is a solvable Lie
group.

a) The centre Z of the group Mult(L) is isomorphic to the centre Z(L) =
Z(e) of the loop L. Moreover, the centre Z is either discrete or has dimen-
sion 1 or 2.

b) If dim(Z(L)) = 2 or if dim(Z(L)) = 1 and the factor loop L/Z(L) is
the group R?, then L has nilpotency class 2 and the inner mapping group
Inn(L) of L is commutative.

c) If dim(Z(L)) = 2, then the group Mult(L) is a semidirect product of
the group V.= R™, m > 3, by a group () = R. The centre Z of Mult(L)
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is the group R? and V is the direct product Z x Inn(L).

d) Each 1-dimensional connected normal subloop N of L is the group R
and one of the following holds:

(i) If the factor loop L/N is isomorphic to R?, then N is contained in the
centre of L and the group Mult(L) is a semidirect product of the group
P~ R™ m > 2bya group Q = R? such that P = C' x Inn(L), where
R = C = N is a central subgroup of Mult(L).

(ii) If the factor loop L/N is isomorphic either to the group Lo or to a
loop Lz, then the group Mult(L) has a normal subgroup S containing
Mult(N) = R so that the factor group Mult(L)/S is isomorphic to the
direct product Lo X Lo, if L/N = Lo, or to a Lie group F,, n > 4, if
L/N = L.

Lemma 11. Each elementary filiform loop Lz has nilpotency class 2.

The proof of this Lemma can be found in [9], p. 420.

2 Classical solvable, congruence solvable topo-
logical loops

In this Chapter we prove the following theorems:

Theorem 12. If L is a 3-dimensional connected simply connected topologi-
cal loop such that its multiplication group is a solvable Lie group, then L is
classically solvable. The loop L has a 1-dimensional normal subgroup N
isomorphic to R. For each 1-dimensional normal subgroup N there exists
a normal series {e} = Lo < N = L; < M = Ly < L = L3 of L such
that the loops M and L/N are isomorphic either to a 2-dimensional simply

connected Lie group or to a loop Lx and the factor loop L/M is the group
R.

Theorem 13. Let L be a 3-dimensional connected simply connected topo-
logical loop with a solvable Lie multiplication group. The loop L is con-
gruence solvable if and only if L has one of the following properties:

* the centre of L has dimension 1 or 2,
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* L has discrete centre and is an abelian extension of a normal sub-
group N = R by the factor loop L/N isomorphic either to the group
Lo orto aloop L.

Proof of Theorem 12. According to Lemma 9 the loop L is homeomor-
phic to R3. Since the group Mult(L) is solvable it has a connected normal
subgroup NN of dimension 1 or 2. The orbit N(e) is a connected normal
subloop of L such that N(e) # {e} (see Lemmata 6 and 8). Therefore one
has dim(/N(e)) = 1 or 2. The action of the group Mult(L) on the topolog-
ical space L is transitive, effective and imprimitive. According to [21], p.
141, the Lie groups G acting imprimitively on R? form three classes with
respect to their actions:

I. In R? there exists a G-invariant foliation with 2-dimensional connected
fibres D, but there is no G-invariant foliation of D with 1-dimensional con-
nected fibres.

II. In R? there is a G-invariant foliation with 1-dimensional connected fi-
bres F, but there does not exist any G-invariant foliation in R3 with 2-
dimensional fibres D which are unions of fibres F'.

I11. In R3 there exists a G-invariant foliation with 1-dimensional connected
fibres F' and there is a G-invariant foliation with 2-dimensional fibres D
which are unions of fibres F'.

Suppose that the group Mult(L) belongs to the L. class. Then the loop
L has a 2-dimensional connected normal subloop M such that M does not
have any one dimensional connected normal subloop. Since the multiplica-
tion group of M is a Lie group too, M is either a 2-dimensional Lie group
or an elementary filiform loop (see [9], p. 420). All these loops have a
1-dimensional normal subloop, which is a contradiction. Hence Mult(L)
is not in the I. class.

Assume that the group Mult(L) belongs to the II. class. In this case
L has a 1-dimensional connected normal subloop /N but there is no 2-
dimensional connected normal subloop M of L which contains N. Hence
the Lie groups in the 1L class act primitively on R?. Among the Lie alge-
bras acting locally primitively on R? the Lie algebras g; = (8%, 2 a(x%+

8_3/’
o) 9 0 o)

yg%) + yaﬁx - 376_y>,06 > 0; and g2 = <%7 a_y:x('% + ya%ﬁy% - ﬂ?a—y> are
solvable (see [19], p. 341, also [21], Theorem 34, p. 378). Hence the Lie
algebra mult(L) of Mult(L) is either isomorphic to one of the Lie alge-

bras g;, ¢ = 1,2, or it has a proper subalgebra isomorphic to g;, = = 1, 2.
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The first case is impossible because the Lie algebras g;, 1 = 1,2, are not
the Lie algebras of the multiplication groups of 3-dimensional topological
loops (see Section 4 in [11]). In the second case we get mult(L) = (X; +
o1z, y, z)%, vy X + o2, y, z)%, Fi(z,y, z)%, oo Bz, y, z)%},
where X1,..., X} are the basis elements of g;, © = 1,2, according to
whether g; is the subalgebra of mult(L). Moreover, the n — k-dimensional
Lie subgroup A of Mult(L) belonging to the subalgebraa = (Fj(z,y,z)Z),
t = 1,...,n — k, leaves every 1-dimensional connected left coset xV,
x € L, invariant (see [21], p. 155). Hence the subgroup A is the nor-
mal subgroup M (N) of Mult(L) in Lemma 6 (i) and the multiplication
group Mult(L/N) of the factor loop L/N is isomorphic to the Lie group
Mult(L)/A. Therefore the 2-dimensional connected topological loop L/N
is isomorphic either to a 2-dimensional Lie group or to a loop Lz (cf.
Lemma 10 d). The factor Lie algebra mult(L)/a is isomorphic to g;,
t = 1 or 2. But none of the Lie algebras g;, ¢« = 1, 2, is the Lie algebra
of the group Mult(L) of a 2-dimensional topological loop (see Theorem 1
in [9]).

This contradiction gives that the group Mult(L) belongs to the IIL
class. In this case the loop L has a 2-dimensional connected normal subloop
M containing a 1-dimensional connected normal subloop N of L. More-
over, every 1-dimensional normal subloop of L lies in a 2-dimensional nor-
mal subloop of L because Mult(L) is not in the II. class. According to
Lemma 10 d) the loop NV is isomorphic to the group R and every orbit of
N is homeomorphic to R. By Theorem 18.18 in [29] the factor loop L/M
is isomorphic either to the Lie group R or to SO(R). The loops M and
L/N have dimension 2 and their multiplication groups are Lie groups too
(see Lemma 6). Hence the topological spaces M and L/N are homeomor-
phic either to R? or to S x R or to S! x S! (cf. Theorem 19.1 in [29]).
The manifold L is a fibering of R over L/N with fibers homeomorphic
to IV and it is also a fibering of R? over L/M with fibers homeomorphic
to M. Therefore the first fundamental group 7 (R?) is isomorphic to the
sum 71 (L/N) + 71 (N) and also to the sum 7 (L /M) + 71 (M). Since one
has m (R") = 0, m(S') = Z and N is homeomorphic to R the loops M
and L/N are homeomorphic to R?, and the loop L/M is homeomorphic
to R. Each 2-dimensional topological loop which is homeomorphic to R?
and having a Lie group as its multiplication group is isomorphic either to a
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loop Lz or to one of the Lie groups {RQ, L5} (see Theorem 1 in [9]). This
proves the assertion. [

Proof of Theorem 13. According to Lemma 5 the loop L is congru-
ence solvable precisely if it is obtained by iterated abelian extensions. By
Lemma 10 a) the centre Z(L) of L is either discrete or has dimension 1 or
2. If dim(Z(L)) = 2, then L has nilpotency class 2 (see Lemma 10 b) and
therefore it is congruence solvable. If dim(Z (L)) = 1, then L is a central
extension of the group Z(L) = R by a loop isomorphic to the factor loop
L/Z(L). Since every central extension is an abelian extension, the loop L
is an abelian extension of Z (L) by L/Z(L). According to Theorem 12 the
factor loop L/Z(L) is isomorphic either to R? or to £, or to a loop Lz.
Taking into account Lemma 11 and the fact that £, is solvable, the factor
loop L/Z(L) is an abelian extension of the group R by R (see Lemmata
10, 11 in [23], p. 380-381). Hence L is an iterated abelian extension. Fi-
nally we consider the case that the group L has discrete centre. According
to Theorem 12 and Lemma 10 d) (ii) the loop L has a normal subgroup
N = R such that the factor loop L/N is isomorphic either to the group L,
or to a loop Lz. As the factor loop L/N is an abelian extension, the loop
L is an iterated abelian extension if and only if L is an abelian extension of
N by L/N. This proves the assertions. [

Schreier’s extensions defined in [30], p. 761, of the group R by the
group L, or by a loop Lz are abelian extensions. Hence these construc-
tions result into congruence solvable loops. The following construction for
topological loops yields non-abelian extensions.

Example 1. Ler (Q,-, 1) be a topological loop of dimension n having a
normal subloop ()1 such that the factor loop QQ/Q; is isomorphic to the
group R. Let ¢ : (Q,-) — (R,+) be a homomorphism. We consider a
one-parameter family of loops T';, : R x R — R, (a,b) — T'y(a,b) = a*; b,
t € R, suchthatTy(a,b) = a+band 'y is not commutative for some t € R.
Suppose that for all t € R the loops I'; have the same identity element 0. We
denote by Ay(a,b) : RxR — R the right division map (a,b) — Ai(a,b) =
a/, t € R, of the loop T',. For the loops Ty, t # 0, we can take loops

defined by the sharply transitive section o, : PSLy(R)/Ly — PSLy(R)
determined by the functions f(u) = exp[z sin® t cosu(cosu — 1)}, g(u) =
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(f(u)~t = f(u)) cot u (see Proposition 18.15 and its proof in [29], pp. 244-
245). All loops T'y, t # 0, are proper and hence they are not commutative
(cf. Corollary 18.19. in [29], p. 248). The multiplication

(z,a) 0 (y,0) = (x -y, Loty (a; b))

on Q x R defines a loop Ly which is an extension of the group R by
the loop Q). The loop L has the identity element (1,0) since one has
(1,0)o(y,b) = (y,L'4()(0,0)) = (y,b) = (y,b)o(1,0). Hence the loop Ly
is an Albert extension of the group R by the loop ((Q),-) given by the one-
parameter family I, of the loop multiplications on R (see [28], p. 4). Let
xr € Qwith ¢(x) # 0. We obtain T'(z,a)(1,¢) = ((z,a) o (1,¢))/(z,a) =
(2, Ly (a,c))/(z,a) = (1, Aga)(To@)(a,c),a)), which is not indepen-
dent of a € R because the loop Iy, is not commutative. Hence the normal
subgroup R is not abelian in the loop L, (see Proof of Theorem 4.1 in [38],
p. 377). In particular if the loop (Q, -) is the group Ly or a loop Lz, then
this construction yields a 3-dimensional connected topological loop, which
is a non-abelian extension of the group R by the loop (Q, -).

Note 14. We are very thankful to Péter T. Nagy for the construction in
Example 1.

3 Topological loops with solvable Lie multipli-
cation groups of dimension at most 6 are cen-
trally nilpotent

From now on we restrict us for those solvable Lie groups which have di-
mension at most 6. The reason for this restriction is that the classification
of the corresponding Lie algebras is complete (cf. [25], [36], [41]). Using
this restriction we show:

Theorem 15. If L is a connected topological proper loop of dimension < 3
such that its multiplication group Mult(L) is an at most 6-dimensional
solvable Lie group, then L has nilpotency class 2.

For the following cases this theorem is true: The multiplication group of
every proper 1-dimensional loop has infinite dimension (cf. [29], Theorem
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18.18, p. 248). By Theorem 1 in [9], p. 420, each 2-dimensional connected
topological proper loop having a Lie group as its multiplication group is
centrally nilpotent of class 2. Every 3-dimensional connected topological
proper loop L such that the group Mult(L) is an at most 5-dimensional
solvable non-nilpotent Lie group has nilpotency class 2 (see Proposition 17,
Theorem 18 in [11]). In Theorem of [17] we proved that all 3-dimensional
connected topological proper loops which have indecomposable nilpotent
Lie groups of dimension < 6 as their multiplication groups are centrally
nilpotent of class 2. To achieve the assertion of Theorem 15 it remains to
investigate the classes of solvable non-nilpotent Lie groups of dimension 6
and the decomposable nilpotent Lie groups of dimension at most 6. Hence
from now on we deal with these classes of Lie groups. According to Lemma
10 a) the centre Z of Mult(L) has either dimension 1 or 2 or it is discrete.
In Chapter 4 we prove that the centre Z of Mult(L) cannot be discrete.
Theorems 24, 25, 26 deal with the case that dim(Z) = 1. In this case the
loop L has an upper central series {e¢} < Z(L) = R < L with L/Z(L) =
R2. Hence L has nilpotency class 2. In Theorems 30, 31 we consider the
case that dim(Z) = 2. The corresponding loops L have an upper central
series {e} < Z(L) @ R?* < L with L/Z(L) = R. Therefore the loops L
have nilpotency class 2. This proves Theorem 15.

Firstly, Theorem 16 describes the structure of the 3-dimensional con-

nected simply connected topological loops and their multiplication groups
Mult(L), if Mult(L) has discrete centre.

Theorem 16. Let L be a proper connected simply connected topological
loop of dimension 3 having a solvable Lie group with discrete centre as its
multiplication group Mult(L). The loop L is classically solvable. It has a
connected normal subgroup N isomorphic to R and the factor loop L/N
is isomorphic either to the group Lo or to a loop Lx. The dimension of
the group Mult(L) is > 6 and the group Mult(L) has a normal subgroup
S containing Mult(N) = R such that the factor group Mult(L)/S is
isomorphic to the direct product Lo X Lo, if L/N = Lo, or to a group F,,
n >4, if L/N = Lx. For each normal subgroup N of L the loop L has a
normal subloop M isomorphic either to R? or to L, or to a loop Lz such
that N < M and L/M is isomorphic to R. The group Mult(L) contains
a normal subgroup V' such that Mult(L)/V = R and the orbit V (e) is the
loop M. The inner mapping group Inn(L) of L, the multiplication group
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Mult(M) of M and the commutator subgroup of Mult(L) are subgroups
of V. The normalizer Ny ry(Inn(L)) is Inn(L).

Proof. By Theorem 12 there exists a normal subgroup N of L isomorphic
to R and there is a 2-dimensional normal subloop M of L containing V.
As the group Mult(L) has discrete centre, the factor loop L/N is not iso-
morphic to R? (cf. Lemma 10 d (i)). Hence it is isomorphic either to the
Lie group L, or to a loop Lz and the group Mult(L) has a normal sub-
group S as in the assertion (cf. Lemma 10 d (ii)). Since none of the at
most H-dimensional solvable Lie groups with discrete centre is isomorphic
to the multiplication group of a topological loop homeomorphic to R? (cf.
[11]) we have dim(Mwult(L)) > 6. Since L/M is isomorphic to R there is
a normal subgroup V' = {v € Mult(L);zM = v(xz)M forall x € L} <
Mult(L) such that V(e) = M. By Lemma 6 the subgroup V' contains the
multiplication group Mult(M) of M and Mult(L/M) = Mult(L)/V =
R. The latter property yields that V' contains the commutator subgroup of
Mult(L). Since the group Mult(L)/V acts sharply transitively on the or-
bits of M in L the inner mapping group Inn(L) is a subgroup of V. By
Lemma 8 we obtain that Ny ry(Inn(L)) = Inn(L). O

The 3-dimensional connected simply connected topological loops and
their multiplication groups Mult(L), if Mult(L) has a 1-dimensional cen-
tre, are characterized by Theorem 17.

Theorem 17. Let L be a 3-dimensional proper connected simply connected
topological loop such that its multiplication group Mult(L) is a solvable
Lie group with 1-dimensional centre Z. Then L is congruence solvable.
The orbit K (e), where K is a 1-dimensional connected normal subgroup
of Mult(L), is a normal subgroup of L isomorphic to R. Moreover, one of
the following possibilities holds:

(a) If the factor loop L] K (e) is isomorphic to R?, then L has nilpotency
class 2. The orbit K (e) coincides with the centre Z (L) of L. The connected
simply connected group Mult(L) is a semidirect product of the abelian
normal subgroup P = Z x Inn(L) by a group Q = R? and the orbit P(e)
is Z(L).

(b) If the factor loop L]/ K (e) is isomorphic either to the group Lo or to a
loop Lz, then Mult(L) has a normal subgroup S containing K such that
the orbits S(e), K (e) coincide. The factor group Mult(L)/S is isomorphic

18



to the direct product Lo X Lo, if L/ K (e) = Lo, or to a Lie group F,, n > 4,
if L/K(e) & Lg.

The loop L contains a 2-dimensional normal subloop M with K(e) < M
and the group Mult(L) has a normal subgroup V' as in Theorem 16.

In particular, if K(e) = Z(L) and L/Z(L) is isomorphic to a loop Lg,
then L is centrally nilpotent.

Proof. The first assertion follows from Theorem 13. Denote by K a 1-
dimensional connected normal subgroup of the group Mult(L). By Lemma
6 (ii) the orbit K (e) is a normal subloop of L isomorphic to R because
Mult(K (e)) is a Lie subgroup of Mult(L). By Lemmata 6, 8 the nor-
mal subloop K (e) is different from {e}. The factor loop L/K (e) is a 2-
dimensional connected topological loop and the group Mult(L/K(e))is a
factor group of Mult(L) (see Lemma 6 (i)). Applying Lemma 10 d) for the
case N = K(e) assertions (a) and (b) are showed. According to Theorem
12 there exists a normal subloop M of L containing K (e) and the assertions
about the group V' follow from the proof of Theorem 16. If K(e) = Z(L)
and L/Z(L) is isomorphic to the group R?, then the loop L is centrally
nilpotent of class 2 (see case (a)). Using Lemma 11, if K(e) = Z(L) and
L/Z(L) is isomorphic to a loop Lz, then L has nilpotency class 3. This
proves the last assertion. ]

The next theorem deals with the case that the centre of the multiplica-
tion group Mult(L) of a 3-dimensional connected simply connected topo-
logical loop has dimension 2.

Theorem 18. If L is a proper connected simply connected topological loop
of dimension 3 having a solvable Lie group with 2-dimensional centre Z
as its multiplication group Mult(L), then L has nilpotency class 2. The
group Mult(L) is a semidirect product of the normal subgroup V = 7 x
Inn(L) = R™ by a group Q = R, where R? = Z = Z(L) and m =
dim(Mult(L)). For every 1-dimensional connected subgroup N of Z the
orbit N (e) is a connected central subgroup of L and the factor loop L /N (e)
is isomorphic either to R? or to a loop Lz. In particular, if the group
Mult(L) is indecomposable, then one has L/N(e) = Lx. If L/N(e) =
R?, then Theorem 17 (a) holds. If L/N(e) = Lz, then the group Mult(L)
contains a normal subgroup S with N < S. The factor group Mult(L)/S
is isomorphic to a Lie group F,, withn > 4.
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Proof. According to Lemma 10 a), b), ¢) the loop L has nilpotency class 2.
Hence the group Mult(L) is a semidirect product as in the assertion. As
N < Z the orbit N(e) is a 1-dimensional central subgroup of L. The mul-
tiplication group of the 2-dimensional connected simply connected factor
loop L/N (e) is a factor group of Mult(L). If the loop L/N(e) is isomor-
phic to R?, then by Lemma 10 d) (i) the group Mult(L) satisfies Theorem
17 (a). If L/N(e) would be isomorphic to £,, then by Lemma 10 d) (ii) the
group Mult(L) would have a proper factor group isomorphic to Lo X Lo. A
semidirect product V' x (), where V' is an abelian normal subgroup of codi-
mension 1 does not have such factor group. Hence this case is excluded. If
L/N(e) is isomorphic to a loop L, then the remaining part of the assertion
follows from Lemma 10 d) (ii). This case happens if the group Mult(L) is
indecomposable (cf. Proposition 2.6 in [17]). O

Our next aim is to determine the 6-dimensional solvable Lie groups
which are multiplication groups of 3-dimensional connected simply con-
nected topological loops.

Procedure of the classification:

1. step: For each 6-dimensional solvable Lie algebra g we have to find a
suitable linear representation of the corresponding connected simply con-
nected Lie group G.

2. step: As dim(L) = 3 we determine those 3-dimensional Lie subgroups
K of G which have no non-trivial normal subgroup of G and satisfy the
condition that the normalizer N (K) is the direct product K x Z, where Z
is the centre of GG (cf. Lemma 8).

3. step: We have to find left transversals S and 7" to K in G such that for
all s € Sandt € T one has s 't st € K and G is generated by S U T
(cf. Lemma 7).

3.1. Since the transversals .S and 7" are continuous, they are determined by
3 continuous real functions of 3 variables. The condition that the products
s 4 1st,s € Sandt € T, are in K is formulated by functional equations.
Solving these functional equations we obtain the possible forms of the left
transversals S and 7. The left transversals S and 7" are the set A(L) of all
left translations and the set P(L) of all right translations of L, respectively.
These sets play an important role for the construction of the loop multipli-
cation using the group Gy, respectively G, (cf. [29], p. 17-18).

3.2. We check whether the set S'U 7' generates the group G. If this is the
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case, then G is the multiplication group Mult(L) of aloop L and K is the
inner mapping group of L.

We use the following proposition to exclude those 6-dimensional solv-
able Lie algebras which are not the Lie algebras of the groups Mult(L) of
3-dimensional topological loops L.

Proposition 19. Suppose L is a proper connected simply connected topo-
logical loop of dimension 3 such that the Lie algebra of its multiplication
group is a 6-dimensional solvable Lie algebra g.

a) For all 1-dimensional ideals i of g the orbits I(e), where I is the simply
connected Lie group of i, are normal subgroups of L isomorphic to R. We
have one of the following possibilities:

(i) The factor loop L/I(e) is isomorphic to R% Then g contains the ideal
p = ¢ ® inn(L) = R* such that the commutator ideal g' of g lies in p and
c is a 1-dimensional subalgebra of the centre z of g.

(ii) The factor loop L/ I(e) is isomorphic either to the group Lo or to a loop
L. Then g has an ideal s such that i < s and the factor Lie algebra g/s
is isomorphic either to 15 @ 1y or to a Lie algebra f,,, n = 4, 5.

b) If a is an ideal of g such that dim(a) = 2, a < g’ and the factor Lie
algebra g/a is isomorphic neither to 15 ® 1y nor to £y, then the orbit A(e),
where A is the simply connected Lie group of a, is either a 2-dimensional
connected normal subloop M of L or the factor loop L/A(e) is isomorphic
to R,

(iii) Assume A(e) = M. Then there exists a 5-dimensional ideal v of g
such that the Lie algebra inn(L), the Lie algebra mult(M) and the ideal
g’ are subalgebras of v. Moreover, for all ideals b of g with dim(b) > 3
and a < b < g’ the orbit B(e), where B is the simply connected Lie group
of b, coincides with M. One has a N inn(L) = {0} and the intersection
b Ninn(L) has dimension dim(b) — 2.

(iv) If the factor loop L/A(e) is isomorphic to R?, then we have case (i).
c) If the Lie algebra g is indecomposable, then its centre z has dimension
< 1, the subalgebra c in case a) (i) coincides with z and the ideal p lies in
the nilradical n, ;.

d) If dim(n,,, ;) = 4, then the ideal p equals to n,, ;. Moreover, if n,,; is
not commutative or the centre z of g is trivial, then for each 2-dimensional
abelian ideal a of g such that the factor Lie algebra g/a is isomorphic nei-
ther to 15, & 15 nor to £y and for each nilpotent ideal s of g having dimension
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> 2 the orbits A(e), S(e), where A, S are the simply connected Lie groups
of a, s, respectively, are the same 2-dimensional normal subloop M of L.
There is a 5-dimensional ideal v of g with the same properties as in case
b) (iii). If g differs from the Lie algebra N o5 in Table Il in [41], p. 1349,
then the loop M is isomorphic to R2.

e) If dim(n,, ) = 5, then the factor loop L/I(e) in case a) is not isomor-
phic to the group L.

Proof. The simply connected Lie group I = exp(i) of the ideal i of g is a
1-dimensional connected normal subgroup of the multiplication group G.
By Lemmata 6 and 10 d) the orbit /(e) is a 1-dimensional normal subgroup
N of L isomorphic to R and the assertions (i) and (ii) in case a) follow from
Lemma 10 d).

Since dim(a) = 2, the orbit A(e) is a normal subloop of L having
dimension 1 or 2 (cf. Lemma 6).

If dim(A(e)) = 2, then one has A(e) = M. If dim(A(e)) = 1, then we
obtain that the factor loop L/A(e) = R? because the Lie algebra g/a is not
isomorphic to I, & 15 or to a Lie algebra f,,, n = 4, 5.

Since L/M is isomorphic to R, the Lie algebra of the normal subgroup
V" of the multiplication group of L in Theorem 16 is the ideal v in case (ii1).

Let b be an ideal of g such that dim(b) > 3, a < b < g’. The orbit
B(e) contains the loop M = A(e). Hence dim(B(e)) = 2 or 3. Since
a < b < g’ < v and the orbit V' (e) has dimension 2 we obtain that the
orbits A(e), V(e) and hence G’(e) and B(e) coincide with M.

As dim(a) = 2, the simply connected Lie group A of a has dimension
2 and acts sharply transitively on the 2-dimensional orbit A(e) homeomor-
phic to R%. Hence one has A N Inn(L) = {1}. Since dim(b) > 3 and
dim(B(e)) = 2, there is a subgroup of B of dimension dim(b) — 2, which
fixes the identity element e of L. This proves assertion (iii).

If A(e) is isomorphic to R and the factor loop L/A(e) is isomorphic to
IR2, then we have case (i). This proves assertion (iv).

If g is indecomposable, then by Theorem 20 its centre z has dimension
< 1. Therefore we have in case a) (i) that ¢ = z. Since the abelian ideal p
is nilpotent, it lies in the nilradical of g. This proves c).

If the indecomposable Lie algebra g has a 4-dimensional nilradical
N, 4. then in one has p = n, 4 in case a) (i). If the nilradical n,, 4 is not
abelian or g has trivial centre, then the commutator Lie algebra g’ coincides
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with the nilradical N4 (see Tables I, I1I, IV, V of [41], pp. 1347-1350).
Let a be a 2-dimensional abelian ideal of g. According to Lemma 6 the
orbit A(e) is a normal subloop of L of dimension 2. Therefore we have
A(e) = M. An analogous argument as in the proof of case b) (iii) shows
that the orbit S(e), where S is the simply connected Lie group of a nilpo-
tent ideal s of g having dimension > 2, equals to A(e) = M. Hence case
b) (iii) is satisfied. Since n.,q < v and dim(v) = 5, the intersection of
v with the complement of n,.,4 in g has dimension 1. Therefore v does
not contain a subalgebra isomorphic to 1, @ 1,. The nilradical of the Lie
algebras g which are different from N o5 is not the Lie algebra f;. Hence
one has M = V(e) = R2.

If the indecomposable Lie algebra g has a 5-dimensional nilradical
n., 4. then we obtain p < n,4. Moreover, these Lie algebras have only
one non-nilpotent basis element (cf. [25]). Hence they have no subalgebra
and no factor Lie algebra isomorphic to the direct sum 1, & 1. This fact
and Theorems 16 and 17 yield the assertion e). Hence the proposition is
proved. L

4 6-dimensional solvable Lie groups which are
not multiplication groups of 3-dimensional topo-
logical loops

In this Chapter, we focus our attention to the classes of the following 6-
dimensional solvable Lie groups:

* Indecomposable solvable Lie groups with 2-dimensional centre.

* Indecomposable solvable Lie groups such that their Lie algebras have
one of the following nilradicals: a 4-dimensional non-abelian nilpo-
tent Lie algebra, R°, a 5-dimensional indecomposable nilpotent Lie
algebra with exception of the Lie algebra [e3, e5] = ey, [e4, €5] = es.

» Solvable Lie groups with discrete centre.

We prove that the Lie algebras of the above listed Lie groups are not
the Lie algebras of the multiplication groups of 3-dimensional topological
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loops. Firstly in Theorem 20, we state that the at most 6-dimensional in-
decomposable solvable Lie algebras with 2-dimensional centre are not the
Lie algebras of the groups Mult(L) of 3-dimensional topological loops L.

Theorem 20. There does not exist any 3-dimensional proper connected
topological loop L having an at most 6-dimensional indecomposable solv-
able Lie group with 2-dimensional centre as the group Mult(L) of L.

Proof. We may assume that L is simply connected and hence homeomor-
phic to R? (cf. Lemma 9). The indecomposable solvable non-nilpotent Lie
groups of dimension < 5 are not the multiplication groups of 3-dimensional
topological loops (see [11]). The centre of the at most 6-dimensional inde-
composable nilpotent Lie groups which are the groups Mult(L) of L has
dimension 1 (see [17]). Hence it remains to deal with the 6-dimensional in-
decomposable non-nilpotent Lie groups. By Theorem 18 the group Mult(L)
has the form ) x V with the 5-dimensional abelian normal subgroup V.
Hence the Lie algebra mult(L) of Mult(L) has a 5-dimensional abelian
nilradical. The unique Lie algebra with 2-dimensional centre in the list
given in [36], p. 37, is the Lie algebra gg with @ = 0 = b defined
by the Lie brackets: [61, 66] = €1, [63, 66] = €9, [65, 66] = e4. A 1-
dimensional subalgebra n of the centre z = (e, e4) of gg ¢ has either the
formn, = (ea+aey), @ € R, or n = (ey). There does not exist any ideal s
of gg ¢ containing n,, or n such that the factor algebra gg ¢ /s is isomorphic
to a Lie algebra f,,, n = {4,5}. This contradiction to Theorem 18 proves
the assertion. O]

Now we show that the 6-dimensional solvable indecomposable Lie al-
gebras with 4-dimensional nilradical having trivial centre or non-abelian
nilradical are not the Lie algebras of the groups Mult(L) of 3-dimensional
topological loops L.

Proposition 21. Let g be a 6-dimensional solvable indecomposable Lie
algebra with 4-dimensional nilradical n,, ; such that n,, 4 is not commu-
tative or the centre of g is trivial. There does not exist any 3-dimensional
connected topological loop L having g as the Lie algebra of the multipli-
cation group of L.

Proof. We may assume that L is simply connected and hence it is home-
omorphic to R? (cf. Lemma 9). The 6-dimensional solvable indecom-
posable Lie algebras with 4-dimensional nilradical having trivial centre or
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non-abelian nilradical are listed in Tables I, III, IV, V of [41], pp. 1347-
1350. The Lie algebras Ng;, i = 4,7, 30,39, 40, have the ideal i = (ng).
The Lie algebras Ng;, i = 5,16, 17, have the ideal i = (n,). The Lie alge-
bras Ng;, i = 8,9, 10,13, 14, 28, 35, 36, 37, have the ideal i = (n;). There
does not exist any ideal s of the above Lie algebras Ng; which contains i
and the factor Lie algebras N, /s are isomorphic either to f; or to 1, & lo.
For + = 39, 40, the nilradical of Ng; is not abelian. Hence the factor loop
L/I(e) is not isomorphic to R?. By Proposition 19 a) d) these Lie alge-
bras are not the Lie algebras of the multiplication groups of 3-dimensional
topological loops. The Lie algebras Ng ;, j = 12,15,18,19, have no 1-
dimensional ideal. The unique 2-dimensional abelian ideal of N ;2, respec-
tively Ng 19, is 81 = (ng, n4), respectively s, = (ng, ny). The Lie algebras
Ng.15, Ng1s have two 2-dimensional abelian ideals s, and s3 = (11, n2).
None of the factor Lie algebras Ng12/s1, Neg19/S2, Noj/sk, J = 15,18,
k = 2,3, is isomorphic to f; or to 1, @ 1. Hence the orbits S;(e), where
S; = exp(si), i = 1,2,3, are 2-dimensional normal subloops of L (cf.
Proposition 19 d). If Ng;, j = 12,15,18,19, would be the Lie algebra
of the group Mult(L) of L, then L would have no 1-dimensional normal
subgroup. This contradiction to Theorem 12 excludes these Lie algebras.
The Lie algebras Ng;, i € {1,2,3,6, 11}, have trivial centre. Neither a
subalgebra nor a factor Lie algebra of Vg ; is isomorphic to an elementary
filiform Lie algebra. The Lie algebra /N ; depends on four real parameters
a, B, 7, d with a8 # 0,7 + 6% # 0. It has the ideals i, = (n3), io = (n4).
If Ng, is the Lie algebra of the group Mult(L) of L, then there are 2-
dimensional ideals s; of Ng; containing i;, 7 = 1,2, such that the factor
Lie algebras Ng1/s;, j = 1,2, are isomorphic to 1, & 1, (cf. Theorem 16
and Proposition 19 a) (ii). This is the case if and only if v = § = 0. This
contradiction excludes the Lie algebra N ;.
The Lie algebra Ng » depends on real parameters «, 3, v and the Lie algebra
N6 depends on «, 3. In both cases one has o 4+ 32 # 0. The Lie algebras
Ne 3, Ng,11 depend on the real parameter «v. The Lie algebra N o has the
ideals iy = (nq), i = (ng), i3 = (n4) and the Lie algebras Ng;, j =
3,6, 11, have theideals iy, k = 2, 3. If Ng ;, j = 2, 3,6, 11, would be the Lie
algebra of the group Mult(L), then applying Theorem 16 and Proposition
19 a) (ii) there are 2-dimensional ideals s of g ;, 7 = 2, 3,6, 11, containing
ir, K = 1,2,3, such that the factor Lie algebras Ny ;/s, j = 2,3,6,11,
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are isomorphic to 1y @ 1. For the ideals s; = (ny,n4), So = (ng,ny) of
Ng 2, respectively for the ideal s, of the Lie algebras N ;, j = 3,6, 11, the
factor Lie algebras Ngo/s;, @ = 1,2, respectively Ng j/sq, j = 3,6, 11, are
isomorphic to 1y @ 15 precisely if § = v = 0, respectively o = 0. Hence
we have to consider the Lie algebras Ngo with § = v = 0, a # 0, Ng j,
Jj = 3,11, with @ = 0 and Ng¢ with o = 0, B # 0. These Lie algebras
have the abelian ideals s3 = (nq,n3), sy = (ns, n4) such that the factor
Lie algebras Ng ;/s;, j = 2,3,6,11, [ = 3,4, are not isomorphic to 1, & l,.
The 3-dimensional abelian ideals s5 = (n1, 12, n4), S¢ = (N2, N3, N4), S7 =
(n1,n3,nyg) of Ngo and the ideals s,,, m = 5,6, of Ng j, j = 3,6, 11, are in
n., 4. According to Proposition 19 d) the orbits S;(e), where S; = exp(si),
[ € {3,4,5,6,7}, and the orbit N(e), where N is the simply connected
Lie group of n, 4, are the same normal subgroup M = R? of L. Since
ip C ng,q, k= 1,2,3, the group M contains the 1-dimensional normal
subgroups I (e) of L, where I} are the simply connected Lie groups of i,
k € {1,2,3}. The ideal v in Proposition 19 d) has one of the following
forms: vy = (ny,n2,n3, Ny, &1 + kxa), k € R, vo = (ny, na, ng, nyg, ).
For [ = 3,4 one has s; Ninn(L) = {0}, for m = 5,6, 7 the intersections
s, N inn(L) have dimension 1 and dim(n,q N inn(L)) = 2. Hence the
Lie subalgebra inn(L) of Ng ;, j = 2, 3,6, 11, has either the basis elements
by = na+aing, by = ny+asnz+aysng, where ajas # 0 or the basis elements
by = ni+aingtagny, by = no+agns+asny, where asaz # 0. In the second
case for the Lie algebra Ng» we have a; = 0. The third basis element of
inn(L) is either by = x5 + c1ng + cang o by, = x1 + kxo + cins + cany,
k,c1,co € R. Among the subspaces generated by the above basis elements
bi, i = 1,2,3, only the subspace (b1, b, b3 ;) of the Lie algebras Ng ;, j =
3,6, 11, forms a 3-dimensional Lie algebra. Then the subalgebra inn(L)
has the shape: inn(L)M4 = (ny+ a(1+ B)ny, ny + ang + agng, x1 + a),
where a # 0, ay € R, B # —1 for Ngg and 8 = 0 for Ny, j = 3,11.
Using the automorphism a(n;) = an;, a(z;) = x5, i = 1,2, a(ng) = ny,
a(ns) = n3 — “ny of the Lie algebras N ;, j = 3,6, 11, we can change the
Lie algebra inn(L),, , onto inn(L); = (ng + (1 + 8)n4, n1 +n3, 1 + x2)
such that for the Lie algebra N ¢ one has 3 # —1 and for the Lie algebra
Nej, 7 = 3,11 we have 8 = 0. Linear representations of the simply
connected Lie groups G; of Ng j, j = 3,6, 11, are given by: for Ngj?fo

9(931,$2,$3,5E4,$5,$6)9(yl,yzjy3,y4>y5ayﬁ) =
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g(x1 4 Y178, 9 + Y2e™® + x5Yy1€"0 13 + Yy3€”°,
Ty + ys€™ + y3w6€™, T5 + Y5, T6 + Ys)

for N¢T
g(x1 + 11", 29 + 126" + x51y1"0, T3 + ys3€™?,

T4 + ys€™® + Y35, T5 + Ys, Te + Yo)
for Ngfoﬁ#_l

g(x1 4+ Y178, 29 + Y2e™® + x6y1€™0, 23 + Yy3€”°,

Ty + ya€™ + y3(xs + Bre)e™, x5 + ys, Te + Ys)-

One has Inn(L) = {g(uy,us, uy, (1 + Bug, s, s);u;, s € R}, i = 1,2,
where 3 # —1 for the Lie algebra Ngg and 3 = 0 in the cases N j,
j = 3,11. Two arbitrary left transversals to the group Inn(L) in Gj,
j =3,6,11, are

S = {g<f1(k7lam):f?(kalam)akal?ma fg(k,l,TfL)),k,l,m € R}a

T = {g(hi(u,v,w), ho(u, v, w), u, v, w, hg(u,v,w)),u,v,w € R},

where f;(k,I,m) : R® — R and h;(u,v,w) : R® - R, i = 1,2,3, are
continuous functions with f;(0,0,0) = h;(0,0,0) = 0. For all s € S,
t € T the condition s~'t'st € Inn(L) holds if and only if in all three
cases the equation

e_h3(“’“’w)h1(u, v,w)(1 — e_f?’(k’l’m))—

e~ Bkbm) £ (B 1 m) (1 — e o)y = ye™(1 — e™™) — ke ™(1 — %),
(D

and for N3 the equation
e~halwvw) (] _ g falkbm)y (py (4 v, w) — why (u, v, w)

)_
e Jalkbm) (1 — e=hs(wvw)y (£, (k1 m) — mfyi(k, 1, m))+
e*fs(k’lvm)th(u”U’w) (mh1 ('Ll,, v, w) - wfl (kv lu m)

) =
e (1—e ™) (v—hs(u,v,w)u) —e (1 —e )1 — fs(k,I,m)k)+
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e " (fa(k, I,m)u — hg(u, v, w)k), (2)

for Ngfio the equation
) (1 L) (g a1, 0, 10) — i (1, v, )~
N(falk,l,m) —mfi(k,1,m))+

e~ fatebm)=hs(w:w) (1 by (4, 0, w) — w fy (k, 1, m)) =
e

e(1—e™)(v—wu)—e ™(1—e")(l—mk)+e ™ (mu—wk), (3)
Ngz0o

e—f3(k,l,m) (1 _ —h3(u v, W

for the equation

(1+p)[e —hs( ’“’“’)(1 — e_f3(k7l’m))(h2(u,v,w) — hg(u, v, w)hy (u, v, w))—

e~ (1 — et (fy (K, 1,m) — fu(k,1,m) fa(k, 1, m))+
e PRlmmRa O (fy (e, 1 m)ha (u, v, w) = h(u, v, w) fi(k, 1 m))] =
e (1 —e™)[v—u(w+ Bhs(u,v,w))]—
e ™1 —e )l — k(m+ Bfs(k,l,m))]+
e " [mu — wk + B(f3(k,l,m)u — hg(u,v, w)k)] 4)
are satisfied for all v, v, w, k,l, m € R. Equation (1) holds precisely if we

have hs(u,v,w) = w, hy(u,v,w) = u, fi(k,l,m) =k, fs(k,l,m) = m.
Putting these into equations (2), (3), (4) we obtain in case (4)

e (1—e ™) (v—(148)ha(u,v,w)) = e ™ (1—e" )= (14P) fo(k, I, m))
&)
and in cases (2), (3) we get equation (5) with 5 = 0. Equation (5) is satisfied
if and only if one has hy(u,v,w) = 3, f2(k,[,m) = ﬁ, where = 0
in the cases N§7°, j = 3,11, and 3 € R\ {—1} in the case Ngjgoﬁ#*l.
In all these cases S U 7" does not generate the group GG, 7 = 3,6,11. By
Lemma 7 the Lie algebras Ng ;, j = 3,6, 11, are not the Lie algebras of
groups Mult(L) of L.
The Lie algebras Ng ;, j € {29,31,32,33, 34,38}, have non-abelian nil-
radical and neither a subalgebra nor a factor Lie algebra of N ; are iso-
morphic to a Lie algebra f,, n > 4. The Lie algebras Ng3; and Ngf32
have the ideal i = (n;). Both Lie algebras contain the nilpotent ide-

als: s; = (nl,n3>, S2 = <n1,n4), 83 = <n1,n2), S84 = (711,712,”3),
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Sy = <n1,n2,n4>, Sg — <n1,n3,n4>, Nyag- If N&j, ] = 31,32, would
be the Lie algebra of the group Mult(L) of L, then by Theorem 16 and
Proposition 19 a) (ii) there exist 2-dimensional ideals s of N ;, 7 = 31, 32,
containing i such that the factor Lie algebras Ng ;/s, j = 31,32, are iso-
morphic to I, & 1. The factor Lie algebra Ng 31/s; is isomorphic to 1o & 15,
whereas the factor Lie algebras N6731/ si, ¢ = 2,3, are not so. The factor
Lie algebra Ng's,/s; is isomorphic to Iy @ I if and only if a = 0, but the
factor Lie algebras Ngf;o /si, i = 2,3, are not so. The factor Lie algebra
N§'3/83 is isomorphic to 1z @ 1z precisely if a = 1, whereas the factor
Lie algebras Ng@l /si, i = 1,2, are not so. Let S, respectively N be the
simply connected Lie groups of sy, k = 1,2, ..., 6, respectively n,., 4. For
Ne 31, N§35 the orbits S(e), i = 2,3,...,6, and N(e) are the same nor-
mal subgroup M = R? of L and for Ng'3;' we have S;(e) = N(e) := M,
J =1,2,4,5,6 (cf. Proposition 19 d). The subgroup M contains the nor-
mal subgroup /(e) = R, where [ is the simply connected Lie group of i,
of L. For m = 4,5, 6 the intersections s, N inn(L) have dimension 1 and
Neq N inn(L) has dimension 2 (see Proposition 19 d). Since for N 3;
and N§3; one has s; Ninn(L) = {0}, ¢ = 2,3 and for N¢3;' we have
s; Ninn(L) = {0}, j = 1, 2, the Lie algebra inn(L) contains the elements
b1 = 11+ aing, by = ng + agny + agny, aas # 0, in cases N 31 and N§'55
and the elements by = ny + aing, by = N3 + asny + asngy, ajasz # 0 in case
Ng;l. As in both cases [by, bs] = ainq, a; # 0, the Lie algebra inn(L)
would contain the ideal (n,) of Ng ;, j = 31,32. This contradicts Lemma
8.

The Lie algebras Ng 33, Ng s, Ng's, and Ngg% have the ideals i; = (n;),
i = (n4). The Lie algebras Ng;, i = 29, 38, have the nilpotent ideals s; =
<n1,n2>, Sg = <n1,n4>, S3 = <n1,n3>, S4 = <n1,n2,n4>, S5 = (nl,ng,n4>,
s¢ = (n1,M2,n3), N4, whereas the nilpotent ideals of Ny ;, j = 33,34,
are sy, So, Sy, S5, Ny, 4. Denote by I, S; and N the simply connected Lie
groups of the ideals iy, k = 1,2,s;,4 = 1,2,...,6 and n, 4. The factor Lie
algebras Ng . /sq, k € {29, 33,38}, are isomorphic to 1z & 15 and Ng 34/s9
is isomorphic to 1y @ I precisely if o = 0. If Ng;, j = 29,33, 34, 38,
would be the Lie algebra of the multiplication group of a 3-dimensional
topological loop, then the orbits I;(e), k = 1, 2, are normal subgroups of L
isomorphic to R and the factor loops L/Ix(e), k = 1,2, are isomorphic to
L, since the nilradical of N ; are not abelian (cf. Proposition 19 a) d).
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For j = 33, 34, the factor Lie algebras Vg ; /s are not isomorphic to 1o ® 1,.
By Proposition 19 d) the orbits S;(e), I = 1,4,5, and N(e) are the same
normal subgroup M = R? of L such that S; N Inn(L) = {1}, the intersec-
tions S; N Inn(L) have dimension 1, | = 4,5, and dim(N N Inn(L)) = 2.
For N 99 the factor Lie algebra Nog/s; is isomorphic to 1 & 1o precisely if
f = 0 and Nyg/s3 is isomorphic to Iy @ 1, if and only if & = 0. If o # 0,
respectively 5 # 0, the orbits S;(e), [ = 3,4,5,6, and N(e), respectively
the orbits Sy.(e), k = 1,4, 5,6, and N (e), are the normal subgroup M = R?
of L. For a # 0 one has S3 N Inn(L) = {1}, whereas for 5 # 0 we have
S N Inn(L) = {1}, for | = 4,5,6 the intersections S; N Inn(L) have
dimension 1 and N N Inn(L) has dimension 2 (cf. Proposition 19 d). Since
the factor Lie algebras Ng 3s/sk, £ = 1,3, are not isomorphic to 1y @ 1o,
the orbits S;(e), I = 1,3,4,5,6, and N(e) are the same normal subgroup
M = R? of L and for [ = 1,3, one has S; N Inn(L) = {1}, for [ = 4,5, 6,
the intersections S; N Inn (L) have dimension 1, and dim(NNInn(L)) = 2
(cf. Proposition 19 d). In all cases the normal subgroup I;(e), k = 1,2, are
in M. For j = 29,33, 34, 38, the Lie algebra inn(L) lies in one of the fol-
lowing 1deals: Vi = <TL1, Ng, N3, Ny, .I'l), Vo = <TL1, Ng, N3, Ny, Lo + kx1>,
k € R. If for Ng;, j = 33,34, the Lie algebra inn(L) would contain the
basis elements by = 1y +ayng +asng, by = n3+asng +asn;, and for Ng o9
either the basis elements b; = n; +ajnq, by = n3+asng+asn;, or the basis
elements by = nq + aing, by = ny + asny + azny with a; # 0 would be in
inn(L), then inn(L) would contain the ideal (n,) of Ny ;, 7 = 29,33, 34,
since one has [by,bs] = cny, ¢ # 0. This is a contradiction to Lemma 8.
Otherwise for Ng ;, j = 29,33, 34, 38, the Lie algebra inn(L) would con-
tain the basis elements either b} = ny + ajng, b, = ng + asng + asny,
by = x1 + cing + cany or Uy, b, bgjk = Ty + ka1 + cing + cong, where
araz # 0, k,c1, o, a3 € R. The subspaces (b7, b, by), (b}, by, by ;) are not
3-dimensional Lie algebras. This proves that none of the Lie algebras N ;,
Jj = 29,31,32,33,34,38, are the Lie algebras of the group Mult(L) of
L. O

Now we show that the 6-dimensional solvable indecomposable Lie al-
gebras having as nilradical either a 5-dimensional indecomposable nilpo-
tent Lie algebra with exception of the Lie algebra [e3, e5] = e, ey, e5] = ea,
or R, are not the Lie algebras of the groups Mult(L) of 3-dimensional
topological loops L.
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Proposition 22. There does not exist any 3-dimensional connected topo-
logical loop L such that the Lie algebra of the group Mult(L) is a 6-
dimensional indecomposable solvable Lie algebra having one of the fol-

lowing nilradicals: (a) [es,e4] = e3, ea,e5] = €1, es,e5] = ea; (b)
lea, €4] = €1, [es,e5] = €17 (c) [es, eq] = €1, [ea,e5] = €1, [e3,e5] = ea;
(d) [es,eq] = ey, [e2,€5] = €1, [e3,e5] = eq, [es,€5] = e3; (e) the Lie

algebra f5; (f) the Lie algebra R®.

Proof. We may assume that L is simply connected and hence it is homeo-
morphic to R? (cf. Lemma 9). The 6-dimensional solvable indecomposable
Lie algebras having nilradical as in cases (a) to (e) of the assertion are the
Lie algebras gg;, ¢« = 71,...,99, in [36], pp. 40-41. The Lie algebras
g ¢ € {71,...,99} \ {80,81}, have the 1-dimensional ideal i = (e;).
There does not exist any ideal s of gg; such that i < s and the factor
Lie algebras gg;/s are isomorphic to a Lie algebra f,, n € {4,5}. If gg,
i€ {71,...,99}\{80, 81}, would be the Lie algebra of the group Mult(L)
of L, then by Proposition 19 e) the orbit /(e) is isomorphic to R and the
factor loop L/I(e) is isomorphic to R?. In this case the nilradical would
contain a 4-dimensional abelian ideal of gs,;. None of the Lie algebras
864, ¢ = 71,...,99, have a 4-dimensional abelian ideal in their nilradical.
Hence these Lie algebras are excluded.

The Lie algebras gg¢'7*, i € {80, 81}, have trivial centre and the unique
minimal ideal s = (ey, e3). Let S be the simply connected Lie group of s.
By Proposition 19 ) and Theorem 16 the orbit S(e) is a normal subgroup of
L isomorphic to R such that the factor loop L/S(e) is isomorphic to a loop
Lz. Since the factor Lie algebras gg';* /s, i = 80,81, are not isomorphic
to the Lie algebra f;, we obtain a contradiction. Hence these Lie algebras
cannot be the Lie algebra of the group Mult(L) of L. This proves the
assertion in cases (a) to (e).

The 6-dimensional solvable indecomposable Lie algebras having R as
their nilradical are given in [36], p. 37. All these Lie algebras gg;, ¢ =
1,...,12, have the 1-dimensional ideal i = (e;). With the exception of
the Lie algebra ggjo there does not exist any ideal s of gs; containing i
such that the factor Lie algebras gs;/s are isomorphic to a Lie algebra
f,, n = 4,5. Let I be the simply connected Lie group of the ideal i. If
86 © = 1,...,12, would be the Lie algebra of the group Mult(L) of
L, then the orbit I(e) is isomorphic to R and the factor loop L/I(e) is
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isomorphic to R? (cf. Proposition 19 €). By Theorem 17 a) the orbit (e)
coincides with Z(L). By Proposition 19 a), c¢) the Lie algebra inn(L) of
the group /nn(L) lies in the 5-dimensional abelian nilradical of gg; which
contains p = z @ inn(L) = R* as a proper ideal. Then the normalizer
Ng, . (inn(L)), i = 1,...,12, is the nilradical of gs; which contradicts
Lemma 8.

If the Lie algebra ggjo would be the Lie algebra of the group Mult(L)
of L, then from the above discussion it follows that the factor loop L/Z(L)
is isomorphic to a loop Lz. In fact, for the ideal s = (ey, e5) the factor Lie
algebra g¢7°/s is isomorphic to the Lie algebra f;. Since the orbit S(e),
where S = exp(s), has dimension 1 we obtain that dim(s N inn(L)) = 1.
For the simply connected Lie group I = {exp(tes);t € R} of the ideal
iy = (e5) we obtain that the orbit I5(e) is a normal subgroup of L isomor-
phic to R. Hence one has i; Ninn(L) = 0. The abelian ideals a = (e1, e3),
b = (e1,e3,€3), 87" = (e1,e2,€3,¢5) of gg7” satisfy the conditions of
Proposition 19 b). Let A, B and N be the simply connected Lie group
of a, b and gg,. Since (e;) = z < a the orbit A(e) contains Z(L). If
dim(A(e)) = 1, then one has A(e) = Z(L). As the factor Lie algebra
g¢7"/a is not isomorphic to the Lie algebra f;, the factor loop L/Z(L) is
not isomorphic to a loop L.

According to Proposition 19 b) the orbit A(e) is a 2-dimensional con-
nected normal subloop M of L containing Z (L) and the orbits B(e) and
N(e) coincide with M. Therefore the Lie algebra inn(L) contains the
subalgebra (e3 + aje; + ases, e5 + biey), a;, by € R, i = 1,2, by # 0.
The ideal v in Proposition 19 b) has one of the following forms: v;;, =
(e1,€9,€e3,€5,64 + keg), k € R, vo = (€1, e, e3,€5,6e6). Therefore the
Lie algebra inn(L) has as generator either e; + keg + ci1e; + czep or
eg + cre1 + caea, k, c1,co € R. Only the subspace (e + ajeq + azes, e4 +
cre1 + caeo,e5 + breg) C n.,q is a 3-dimensional Lie algebra. Hence it
would be the Lie algebra inn(L). The normalizer Ngg=o (inn(L)) equals to
n., 4 which contains z ® inn(L) as a proper ideal. This is a contradiction
to Lemma 8. This prove the assertion in case (f). L]

In the next Proposition we wish to prove that the 6-dimensional solvable
decomposable Lie algebras with trivial centre are not the Lie algebras of the
groups Mult(L) of 3-dimensional topological loops L.
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Proposition 23. The 6-dimensional decomposable solvable Lie algebras
with trivial centre are not the Lie algebras of the multiplication groups of
3-dimensional topological loops L.

Proof. We may assume that the loop L is simply connected and hence it is
homeomorphic to R? (cf. Lemma 9). As the multiplication group Mult(L)
of L is a 6-dimensional decomposable solvable Lie group with discrete
centre for the Lie algebra mult(L) we have the following possibilities:
Leldl,gs, ®gs . lo® gk where g3, 85,4, 5 € {2,3,4,5}, are the
3-dimensional solvable Lie algebras with trivial centre (cf. §4 in [24], p.
119), g4 x. k = 2,4,5,6,7, 10, gfffg_l, gifgo are the 4-dimensional solvable
Lie algebras with trivial centre (see §5 in [24], pp. 120-121). These Lie
algebras have trivial centre and neither a subalgebra nor a factor Lie algebra
is isomorphic to a Lie algebra f,,, n = 4, 5.

The Lie algebras mult(L) = L, ® g4 5, k = 2,4,5,6,7,10, 1, & gfg*l,
1, @g{fgo, where 1, = (f1, f2), have the 1-dimensional ideal i = (f;). There
does not exist any ideal s of mult(L) such that i < s and mult(L)/s is
isomorphic to the Lie algebra 1, & ;. By Theorem 16 these Lie algebras
are not the Lie algebra of the group Mult(L).

Now we consider the Lie algebras g; ; = g3, @ g3; = (e1,€2,€3) B
(e4,€5,€6), 1,7 € {2,3,4,5}. Let be j = 5. The Lie algebra g3 5, respec-
tively g4 5, is defined by [e1, e3] = ey, [e2, €3] = hea, [e4, €5] = pes — e,
les, €] = €4+ pes, p > 0, where b = 1, respectively —1 < h < 1, whereas
the Lie algebra gs 5 is given by [e, e3] = €1, [e2, €3] = e1 + e, [e4, €6] =
pes — e, [es, €] = e4 + pes, p > 0. They have the 1-dimensional ideal
i = (e1). There does not exist any ideal s of g; 5, i = 2, 3,4, such thati < s
and g, 5/s is isomorphic to the Lie algebra 1, & 1,. This excludes the Lie
algebra g, 5,7 = 2, 3, 4. The Lie algebra g 5 defined by [e1, e3] = p1e; —ea,
le2, €3] = e1+Dpiea, [es, €6] = paes—es5, €5, €6 = €4+ paes With py, py > 0
has the minimal ideals s; = (eq, e2), 8o = (e4, e5). Let S;, i = 1,2, be the
simply connected Lie groups of s;. If g5 5 would be the Lie algebra of the
group Mult(L) of L, then by Theorems 12 and 16 at least one of the orbits
Si(e), i = 1,2, is a normal subloop of L isomorphic to R. For this orbit
the factor loop L/S;(e) is isomorphic to the group L£,. Since the factor Lie
algebras g5 5 /si, i = 1,2, are not isomorphic to the Lie algebra 1, & 1,, the
Lie algebra gy 5 is excluded (cf. Proposition 19 (i1)).

The Lie algebras g3 3, g5 4, 844 are defined by [e1, e3] = e, [ea, €3] =
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h1€2, [64, 66] = €4, [65, 66] = h2€5 such that for g3,3 one has hl = hg =
1, for g3 4 we have h; = 1, —1 < hy < 1 and for g4 4 one has —1 <
hi, hy < 1. The Lie algebra g, 5, respectively g5 4, is given by [eq, e3] = ey,
leg, €3] = €1 + ea, e, €s] = ey, [e5, 6] = haes, Where hy = 1, respectively
—1 < hy < 1. The Lie algebra g5 5 is defined by [e, e3] = ey, [e2, €3] =
e1 + eo, [e4,6] = ey, [e5,66] = e4 + e5. All these Lie algebras have
the ideals iy = (e1), ix = (e4). Additionally, the Lie algebra g3 3 has
the ideals i3 = (es + l1e1), iy = (e5 + laeq), l1,ls € R, the Lie algebra
g4.4 has the ideals i5 = (e3), is = (e5), the Lie algebra g, 5 has the ideal
is, the Lie algebra g, 4 has the ideal ig and the Lie algebra g3 4 has the
ideals i3, ig. All Lie algebras have the ideal s; = (e, e4) containing i;,
io, such that the factor Lie algebras g; ;/s1, i,j € {2,3,4} are isomorphic
to 1, @ 1. Furthermore, the Lie algebra gz 5 has the ideal s, = (es +
lie1, e5 + loey), the Lie algebra g, 4 has the ideal s; = (eq, e5), the Lie
algebra g, 5 has the ideal s, = (ey, e5 + l2ey), the Lie algebra gs 4 has the
ideal s5 = (ey, e5) and the Lie algebra g3 4 has the ideal s¢ = (es +[1€1, €5)
such that the factor Lie algebras g3 3/S2, 84.4/S3, 82.3/54, 82.4/S5, 83.4/S6
are isomorphic to 1, & 1o. If g; ;, 7,7 € {2,3,4} is the Lie algebra of the
group Mult(L) of a L, then the orbits I(e), k = 1,---,6, where [;, =
exp(ix), are 1-dimensional normal subgroups of L isomorphic to R and
the factor loops L/Ix(e) are isomorphic to £y (cf. Proposition 19 (ii)).
All Lie algebras g; ;, 1,7 € {2,3,4}, have the ideals s; = (e, e2), 853 =
(e4, e5) such that the factor Lie algebras g; ;/s;, [ = 7, 8, are not isomorphic
to 1, @ 1. Hence the orbits S;(e), where S; = exp(s;), [ = 7,8, are 2-
dimensional normal subloops of L and therefore one has s;Ninn(L) = {0},
| = 7,8 (cf. Proposition 19). All Lie algebras g; ;, 7,7 € {2, 3,4}, have the
commutator subalgebra g; ; = (e1, €a, €4, €5). Their 5-dimensional ideals
are v = (ey, ez, €4, €5, €3), Vo = (€1, €9, €4, €5, €6 + kes), k € R. Denote
by N the simply connected Lie group of g; ;. By Proposition 19 d) we
have Ni(e) = Si(e), [ = 7,8. Therefore the intersection g; ; N inn(L)
has dimension 2. Hence the Lie algebra inn(L) has the basis elements
r1 = e4+ a1eq + ases, ro = e5 + bieq + boesy such that at least one of aq, as
as well as by, by are different from 0 and a,by — asb; # 0.

All Lie algebras g; ;, 7,5 € {2,3,4}, have the ideals ny = (eq, e, e3),
n; = (es4,€5,65). As sy < ny and sg < ng, the orbits N;(e), where
N; = exp(n;), j = 2,3, has dimension 2 or 3. If S7(e) = Ny (e) or Sg(e) =
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Nj(e), then one has dim(n,Ninn(L)) = 1 ordim(nzNinn(L)) = 1. Hence
the Lie algebra inn(L) has the basis element either 73 = e3 + cie1 + e
or ry = eg + dieq + does, ¢;,d; € R, ¢ = 1,2. Since [ry, 73], respec-
tively [ro,7%], is a non-zero element of the ideal s;, respectively sg, the
subspaces (71,2, 73), (11,72, 7%) are not 3-dimensional subalgebras of g; ;,
i,j € {2,3,4}. This contradiction gives that Ny(e) = L and N3(e) = L.
As ny < vy and n3 < vgg, we obtain that No(e) = Vi(e) = Vap(e) =
Nj(e) = L. By Theorem 16 there exists a parameter £ € R \ {0} such that
V4 i (e) is the 2-dimensional normal subloop S7(e) = Sg(e). Hence one has
dim(vy; Ninn(L)) = 3. Therefore the Lie algebra inn(L) has the basis
element ry = eg + keg + lyeq + lsey for some k € R\ {0}, ; e R, i =1,2.

The subspace (rq,rq,r,4) is not a 3-dimensional subalgebra of the Lie
algebras g5 3, g2 4, g3,4. Hence these Lie algebras cannot be the Lie algebra
of the group Mult(L) of L.

The subspace (11,72, 74) forms a 3-dimensional subalgebra of gs o if
andonly if £ = 1, as = 0 and by = a; # 0. Hence the subalgebra inn(L) <
g2 has the forminn(L) = (es+ajeq, e5+bres+ajes, eg+es+lie+lzes),
ai 75 0, bl,li € R.

The subspace (r1,72,74) forms a 3-dimensional subalgebra of gs ; if
and only if £ = 1. Hence the subalgebra inn(L) < gs3 has the form
inn(L) = <€4+CL1€1 +aqgea, €5+b1€1 +b262, €6+€3+l1€1+l262> such that at
least one of ay, as as well as by, b, are different from 0 and a,by — asb; # 0.

The subspace (r1,72,74) forms a 3-dimensional subalgebra of g4 if
and only if one has either a; = 0 = by, k = hy = h—ll, orays = 0 = by,
k = 1, hy = hy. Therefore the subalgebra inn(L) < g44 has either
the form inn(L) = (ey + ageq, e5 + biey, eg + kes + lye; + laes) such
that asb; # 0, k = hy = h%’ or inn(L) = (e4 + ajeq,e5 + baes, e6 +
es + lie; + laes) such that a;by # 0, hy = hy. Using the automorphism
ple1) = %’ p(e2) = %, ¢(es) = ez — Lip(er) — lag(ea),
o(e;) = ei, i = 4,5, 6, of the Lie algebras g; ;, ¢ = 2, 3, 4, such that for g5 »
one has ay = 0, by = a1 # 0 and for g4 4 we have a; = b; = 0, hy = hy, we
can reduce inn(L) to inn(L); = (e4 + €1, €5 + €2, €6 + €3). Moreover, the

automorphism ¢(€1) = %61, gb(eg) = éeg, gb(@g) = €3 — hg—lllel — MGQ,

az
o(e;) = e;, 1 =4,5,6, of the Lie algebra g4 4 with hy = hll reduces inn(L)
to inn(L); = (eq + ez, e5 + €1,e6 + hileg>. Linear representations of the

simply connected Lie groups G ;, ¢ = 2, 3, 4, are given as follows: for G -
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one has

g('rla XLo,T3,T4,Ts, xﬁ)g(ylv Y2,Y3,Y4,Ys, 96) = g(ajl + (yl + I3y2>€x3a
Ty + Yoe™ w3 + ys, T4 + (Ys + Teys)e™, x5 + yse™®, 6 + Ys),
for G3 3, where hy = 1, and for G4 4 with hy = h; we have
g(x1 4 y1€™, 2 + y2™73 15 + Y3, T4 + ya€™®, x5 + Y5, 16 + Yo),

for G4 4, where hy = h—ll, one has

ze
g(z1 + 116", 29 + Y273 13 + Yz, T4 + ya€®, 5 + Yz, T + Ys).

We get that the subgroup Inn(L), of Goo, G533 and G4 4 with hy = h; has
the form Inn(L); = {g(u1, ug, us, uy, us, uz);u; € R}, 7 =1,2,3, and we
have Inn(L)y = {g(ug,ul,hilu3,u1,u2,u3);ui € R}, i =1,2,3 for Gyy
with hy = hil Two arbitrary left transversals to the groups Inn(L); and
Inn(L)yin G,;, 1 = 2, 3,4, are

S ={g(u,v,w, fi(u,v,w), falu,v,w), f3(u,v,w)) : u,v,w € R},

T ={g(k,l,m,q1(k,l,m),g2(k,l,m), g3(k,l,m)) : k,l,m € R},

where f;(u,v,w) : R® — R and g;(k,l,m) : R® — R, ¢ = 1,2,3, are
continuous functions with f;(0,0,0) = ¢;(0,0,0) = 0. Foralls € S,t € T'
the condition s~ 't st € Inn(L); holds if and only if in the cases Go 2,
G with by = 1 and G4 4 with hy = h; the equation

le™hm(1 — My pye=Mw(emmm 1) =
gz(k, l, m)e—h1gs(k,l,m)(1 _ 6—h1f3(u’v7w))+
folu, v, w)e—hlfa(uyv,w)(e—hlg3(k7l,m) —1), (6)
and for GGy the equation
el —e")k—=1Im)+e (e —1)(u—vw)+ (wl —mv)e " =
e’g3(k’l’m)(1 — e’f3(“’”’w))(g1(k;, l,m) — ga(k,1,m)gs(k,l,m))+
e_fg(%%w)(e_%(k’hm) - 1)(f1 (u’ v, ’LU) - f2(u7 v, w)f?»(u? v, 'LU))+
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(gQ(ka la m)f3 (U, v, U)) - f2(u7 v, w)g3(k7 l7 m))e—f:z,(um,w)—gs(k,l,m)7 (7)

for G3 3 with iy = 1 and for G4 4 with hy = h; the equation
keT™(1—e™™)+ue (e ™ —1)=

gl(kv l? m)e—gg(k,l,m) (1 - 6_f3(u’vjw)) + fl (U, v, w)e—fB(u,UﬂU) (e—gg(k,l,m) - 1)

3)
are satisfied for all k,1,m,u,v,w € R. The products s~'t~!st are con-
tained in Inn (L), if and only if the equations

le™hm(1 — =My pye=Mw(emhm 1) =

gl(k7 l7 m)eigs(k‘J’m) (1 - eifg(ufu,w)) —"_ fl (u7 U? w)eifg(u’/u’w) (6793(k7l7m) - 1)7
) . ©)
ke™™(1—e ") 4ue (e ™—1) = go(k, l,m)e_ﬂgg’(k’l’m)(1—6_Ef3(u’v’w))

+ fo(u, v, w)e_ﬁf?’(u’v’w)(e_ﬁgg’(k’l’m) —1) (10)

are satisfied for all u, v, w, k,[,m € R. Equations (6), respectively (9) are
satisfied precisely if one has f3(u, v, w) = w, fo(u,v,w) = v, g3(k,l,m) =
m, ga(k,l,m) = [, respectively f3(u,v,w) = hw, fi(u,v,w) = v,
g3(k,l,m) = hym, gi1(k,l,m) = I. Then S U T does not generate the

groups G, ;, i = 2,3, G4 4 with hy = hy and G4 4 with hy = h—ll By Lemma
7 the Lie algebras g; ;, ¢ = 2,3, g44 With hy = hy and with hy = hil, are
not the Lie algebras of the groups Mult(L) of L.

Hence it remains to deal with the Lie algebra g = Ldlo®ly = (fy, fo)®
(f3; f1) ® (f5, fo) given by the Lie brackets [f1, fo] = f1, [f3, ful = fs,
[f5, fs] = f5. The Lie algebra g has the 1-dimensional ideals i; = (f1),
iy = (fs), i3 = (fs). The ideals s1 = (f1, f2), s2 = (f3, fa), s3 = (f5, f5)
have the properties i; < s; and g/s;, j = 1,2, 3, are isomorphic to I, & l,.
If g is the Lie algebra of the multiplication group of L, then the orbits
I;(e), 7 = 1,2,3, where I; is the simply connected Lie group of i;, are
1-dimensional normal subloops of L such that the factor loops L/I;(e) are
isomorphic to the 2-dimensional non-abelian Lie group £L- (cf. Proposition
19 (ii)).

For the ideals a; = (f1, f3), a2 = (f1, f5), a3 = (f3, f5) the factor Lie
algebras g/a;, j = 1,2, 3, are not isomorphic to 1, & l,. Hence these ideals
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and the commutator ideal g = (fi, f3, f5) satisfy the condition of Propo-
sition 19 d). Therefore the orbits A;(e) and G'(e), where A;, respectively
(', is the simply connected Lie group of a;, j = 1,2, 3, respectively g’,
are the same 2-dimensional normal subloop M of L. Furthermore, one has
inn(L)Na; = {0} forall j = 1,2, 3, and dim(g'Ninn(L)) = 1. The com-
mutator subalgebra inn(L) of inn(L) is the intersection g’ N inn(L). As
every element of inn(L)’ is contained in one of the ideals a; and inn(L) N
a; = {0} for all j = 1,2, 3, the Lie algebra inn(L) is abelian. The 5-
dimensional ideals of g are:

Vi = (f1, f3, f5, fotkife, fathafe), Vo= (f1, fs, 5, fotksfa, fotkafa),

vy = (f1, fs. f5, 1+ ks fa, fo + ke f2), ki€R, i=1,...,6.

Each 3-dimensional abelian subalgebra of a 5-dimensional ideal v;, j =
1,2, 3, contains a non-trivial ideal of g. Hence the Lie algebra g = 1, &
1, @ 1, is not the Lie algebra of the group Mult(L). O

5 6-dimensional solvable multiplication group
having 1-dimensional centre

In this Chapter we determine the 6-dimensional solvable Lie groups with
1-dimensional centre which are the multiplication groups of 3-dimensional
topological loops L. In the class of the 6-dimensional indecomposable solv-
able Lie groups with 5-dimensional nilradical there are 7 families which
are the groups Mult(L) of L (cf. Theorem 24). We find that among the 6-
dimensional indecomposable solvable Lie groups with 4-dimensional nil-
radical only three families can be represented as the group Mult(L) of
L (ct. Theorem 25). Finally, there are 18 families of 6-dimensional de-
composable solvable Lie groups which are the groups Mult(L) of L (cf.
Theorem 26). In all these cases the loop L has 1-dimensional centre and
nilpotency class 2. Hence Theorem 15 is valid.

First we consider the case that the Lie algebra mult(L) of the multipli-
cation group of L is a 6-dimensional solvable indecomposable Lie algebra
with 5-dimensional nilradical.
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Theorem 24. Let L be a connected simply connected topological proper
loop of dimension 3 such that the Lie algebra of its multiplication group
Mult(L) is a 6-dimensional solvable indecomposable Lie algebra having
5-dimensional nilradical. Then L has nilpotency class 2 and the following
pairs (g, k) of Lie algebras are Lie algebra g of the group Mult(L) and
the subalgebra k of the subgroup Inn(L):

g1 = gi1s - [e2,€3] = e1 = [es, eq, [ea, 6] = €4, kiy = (e, €4+ €1, 5),
kio = (es,eq +e1,65);

g2 = o5 [ea,e3] = e = [es,eq] [e2,66] = €3, [es, 6] = €4, ky =
(e3, €4 —1—56_1, ei>,_

83 = g6,_1;’a_€_0-' lea,e3] = e1 = [es, e6), [e3,e6] = €4, [e5,e6] = €5,
k371 = <€3,64, €5 + €1>, k372 = <€2, €4, €5 + €1>,'

81 = o1 ¢ [er,e5] = €2, [ea,e5] = €1, [es,eq] = €3, [ea, 66] = cea,
ky = (€1 + ajes, e3 + €9, ¢€4), a1 € R;

g5 = gi5a s les,es] = e = [er,egl, [es,e5] = eo, [es,e6] = €5, ks =
<61 + €9, e3 + asgeéa, €4>, ag € R;

86 = 8igy: [es,e5] = e1 = [e1, eq), [es, €] = €3, [ea, €5] = €2 = [e4, €g),
k6 = <61 + €9, €3 + ag€9, 64), ay € R,’

g7 = g0 [ea,e3] = €1 = [en, e6), [ea, €] = €2, [es, 6] = €5, ky =

(1 + e5,e9 +ces5,e4), € =0, 1.
The multiplication groups Mult(L) and the inner mapping groups Inn(L)
of L are given by the multiplications on pages 46 —47 in cases i = 1,---, 7.

Proof. According to Lemma 9 we may assume that L is homeomorphic to
IR3. Firstly, we deal with the 6-dimensional solvable Lie algebras such that
their nilradical is isomorphic to the direct sum f3 & R2. These are listed
in [36], p. 38. The Lie algebra ggg;’b:‘szo has the centre i = (e5). For all
other Lie algebras g ;, 7 = 13, ..., 38, we consider the ideal i = (e;). With
exception of the Lie algebras gggg, 86,24 there does not exist any ideal s of
g6 such thati < s and the factor Lie algebras gg ; /s are isomorphic to a Lie
algebra f,, n = 4, 5. Let I be the simply connected Lie group of the ideal
i. If the Lie algebras g¢ ;, ¢ = 13, ..., 38, are the Lie algebras of the groups
Mult(L) of L, then the orbit I(e) is a normal subloop of L isomorphic
to R, the factor loop L/I(e) is isomorphic to R? and I(e) = Z(L) (cf.
Theorem 17 (a) and Proposition 19 a), e)). Hence the simply connected
loop L is a central extension of the group R by the group R2. This means
it has nilpotency class 2. By Proposition 19 a) (i) the Lie algebra gg ; has a
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4-dimensional abelian ideal p = z @ k, where dim(z) = 1 and k is the Lie
algebra of the group Inn(L). One has gg ; < p. According to Lemma 8 the
subalgebra k does not contain any non-zero ideal of g¢; and the normalizer
Ng, (k) of k in gg ; is p. Then for the triples (g ;, p, k) we obtain:

(a) The Lie algebras ggjo, i = 21,22,36, and g ;, j = 24,30, have the
centre z = (e1) and p is (eq, e3, €4, €5). The subalgebra k has the form:
Kay.az.as = (€3 —|— ajer, eq + aser, es + azer), a; € Ryi=1,23, such that
in the case g 21 :ag # 0, az # 0 since (e4) and (e5) are 1deals of g¢31,

in the case g¢55: as 7 0 because (e4) is an ideal of gg39,

in the cases gm, i = 24,30: a3 # 0 since (e5) is an ideal of g ;,

in the case gi50: az # 0 or ag # 0 because (ey, e5) is an ideal of g§30.
Using the automorphism a(e;) = €;, i = 1,2, a(eg) = e3 — areq, afey) =
asey, aes) = ages, afeg) = eg — ares for gg77, respectively a(es) = e5 —
asze; for ggjg, respectively a(ey) = eq —agey, aeg) = eg + azes — ajes for
86,24, respectively a(e;) = ase;, j = 4,5, for gg 50, the Lie algebra ky, 4, 45
reduces to k = (e3,eq + €1, e5 + €1), respectively k = (e3, e4 + €1, e5),
respectively k = (es, e4, e5+€1), respectively k., = (e3, e4+ageq, es+ey),
as € R.

Applying the automorphism a(e;) = ¢e;, i = 1,2, ales) = e3 — alel,
ale;) = aze;, j = 4,5, ales) = €6 — ares for the Lie algebra g3¢, if
as # 0, respectively a(ej) = agej, j = 4,5,if ap = 0 and ag # 0, we

can reduce K, 4, 45 t0 Koy = (€3, €4 + €1, €5 + azey), az € R, respectively
kal,O,a3 to k = <63, €4, €5 + €1>

(b) The Lie algebras gg75=" and g 0=1.0==0 have the centre z = (e;) and
the ideal p has one of the forms: p;; = (e1,es + kes, ey, €5), k € R,
and po = (ey,e3,¢€4,€5). With respect to the ideals p; x, p2 we obtain
the subalgebras k; , = (e2 + keg + aie1, eq + azeq, e5 + ager), k € R,
k, = <€3 + ajeq, eq + aser, es + ageq), a; € R, i = 1,2,3, such that for

gi75~" one has a, # 0, since (e,) is an ideal of gg75=°, and for ggj;a:‘fzo
we get a3 # 0 because (e5) is an ideal of gg,ﬁ“ *=0. The automorphism

ale;) = e, 1 = 1,6, aley) = ageq, afes) = e5 — ageq, afes) = eg —
kes — aje1, aesz) = es, respectively a(es) = es, aez) = ez — ajeq, of
g‘gjﬁzo maps the subalgebra ki, onto k = (ey, e4 + €1, €5), respectively
ky, onto k = (e3,eq + ey, e5). The automorphism a(e;) = e, ales) =
eq — agey, ales) = ases, a(eg) = e€g + agea, ales) = ea — aje; — kes,

afes) = es, respectively afes) = es — ajer, a(ey) = eq, of gg_m —e=0
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maps the subalgebra k; ; onto k = (eq, €4, €5 + €1), respectively ko onto
k = <637 €4, €5 + 61>

(c) The Lie algebras gg, and ggj(;v“:‘f:l have the centre z = (ey)
and the ideal p equals to (€1, €9, e4,€5). Hence the subalgebra k has the
form kg, 4,05 = (€1 + @164, €2 + asey, €5 + asey), a; € R, i = 1,23, such

that for gg <0070 e have a; # 0, ag # 0, since it has the ideals (e;),

(e5), and for g‘g,l‘;’“:s:l one obtains a; # 0 because it has the ideal (e;).
With the automorphism a(e;) = ase;, @ = 1,2, ale;) = e, j = 3,4,6,
ales) = ages of ggjizo’“#, respectively a(es) = ajes for g‘gj?’“:g:l, we
can change the subalgebra k,, 4, o, onto k,, = (€1 +e4, €2+ aseq, €5 +e4),
as € R, respectively k,, ., = (e1 + eq, 62 + aseyq, €5 + azey), as,az € R.
(d) The Lie algebras g¢T?, g.16, gg§5 . 6. 2% =0=0 have the centre z =
(e5) and their ideal p is (eq, €2, €4, €5). Therefore the subalgebra k has the
form kg, 4,0, = (€1 + @165, €2 + ages,eq + ases), a; € R, i = 1 2, 3.
For giT2 one has a; # 0, as # 0 since (e1), (e4) are ideals of g¢77. For
6, k, k = 16,25,27, we have a; # 0 because (e;) is an ideal of gg . For
giTs and gg 16 using the automorphism a(e;) = aye;, i = 1,2,4, a(e;) =
ej, 7 = 3,5,6, the subalgebra k,, 4, ., reduces to k,, = <61 + e5,e9 +
ases, €4 + ages). For gg;g=0 applying the automorphism «a(e;) = ¢;, i =
5,6, aer) = ajer, ales) = eq4 — ases, afez) = ages, alez) = oeg, if
ay # 0, respectively a(ey) = es, aes) = ajes, if ag = 0, we can change
the subalgebra k,, 4, 4, t0 k = (€1 + €5, €2 + €5, e4), respectively kg, 0.4, tO
k = (e;+es, €2, €4). The automorphism a(e;) = e;,7 = 5, 6 alej) = ae;,
j=1,2, a(e3) = e3 — asey, aes) = eq — ages of g’ P o= O maps Ka, ay.05
onto k,, = (e1 +e5, ea+ases, e4). Now we consider the exceptional cases:
8033 and gg o4 with its ideal s such that gg 24/s = f,. The Lie algebra g§33
has 2-dimensional centre. Hence it is excluded by Theorem 20.

The Lie algebra gg 24 has the centre z = (e;) and the ideals iy = (e5),
S = <€1, 65>, a = <€1,€4>, b = <€1, 63,64>, g/6,24 = <€1,€3,€4,€5>. Let Z,
I,, S, A, B, N be the simply connected Lie groups of z, is, s, a, b, gg,24 in
this order. The factor Lie algebra g 24 /s is isomorphic to the Lie algebra f;.
If gg 24 is the Lie algebra of the group Mult(L) of L, then from the above
discussion it follows that the factor loop L/Z(e) = L/S(e) is isomorphic
to a loop L. Since Z(e) = R = S(e), one has dim(s N inn(L)) = 1.
The orbit I5(e) is a normal subgroup of L isomorphic to R (cf. Proposition
19 a). As iy < s we have I(e) = S(e) and i; N inn(L) = 0. For the

o= a 0,a#£0

41



ideals a, b, gg’m the conditions of Proposition 19 b), e) are satisfied. Since
z < athe orbit A(e) contains the centre Z(e) of L. If dim(A(e)) = 1, then
A(e) = Z(e). As the factor Lie algebra gg 24/a is not isomorphic to the
Lie algebra f,, the factor loop L/Z(e) cannot be isomorphic to a loop L.
Hence one has dim(A(e)) = 2

According to Proposition 19 b) we obtain that A(e) = B(e) = N(e) =
M, where M is a 2-dimensional connected normal subloop of L such that
aNinn(L) = 0, b N inn(L) has dimension 1 whereas g ,, N inn(L)
has dimension 2 and Z(e) < M. For the ideal v in Proposition 19 b)
we obtain one of the following forms: vy, = (ey,e3, €4, €5, €2 + keg),
k € R, vy = (e, e3, €4, €5, €5). Hence the Lie algebra inn (L) has either the
generators by = ez +aje;+ageq, by = es+biey, by, = ea+keg+cre;+caey
or by, bs, b3 = ¢g + C1€1 + Cae4, a;, bl, k‘, ¢ €R, i = 1,2, b 7é 0. None of
the vector spaces (by, ba, b3 1), (b1, b, b3) are 3-dimensional Lie algebras.

Now we deal with the 6-dimensional solvable indecomposable Lie al-
gebras having nilradical isomorphic either to the direct sum f; @ R or to the
Lie algebra defined by [es, e5] = €1, [es, e5] = ea. These Lie algebras are
listed in [36], p. 39, and denoted by gs,, © = 39,...,70. The Lie algebra
670 has trivial centre and the unique minimal ideal i = (ej,e3). Let [
be the simply connected Lie group of i. By Theorems 12, 16 and Proposi-
tion 19 e) the orbit /(e) is a 1-dimensional normal subloop of L such that
the factor loop L/I(e) is isomorphic to a loop Lx. The factor Lie algebra
g6.70/1 is not isomorphic to the elementary filiform Lie algebra f;. Hence
the Lie algebra g is not the group Mult(L) of L.

All other Lie algebras have the ideal i = (e2). With the exception of the
Lie algebra g 52 there does not exist any ideal s of gg ;, 2 = 39, ..., 69, such
that i < s and the factor Lie algebras g ; /s are isomorphic to a Lie algebra
f., n € {4,5}. By Proposition 19 a) and e), if g;, ¢ = 39,...,69, would
be the Lie algebra of the group Mult(L) of L, then the simply connected
loop L has a 1-dimensional centre Z(L) = I(e) = R, where I = expli,
and the factor loop L/I(e) is isomorphic to R?. Hence L has nilpotency
class 2. According to Proposition 19 a) (i) and c¢) we seek for Lie algebras
g6.; such that the nilradical of gg; contains an ideal p = z @ inn(L) = R*
of ge; and g, lies in p. Here z is the 1-dimensional centre of gg;. By
Lemma 8 the Lie algebra k does not contain any non-zero ideal of g ; and
the normalizer Ng , (k) of k in gg ; is p. The following pairs (gg,;, k) have
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the above properties:
(a) The Lie algebra gg 49 has the centre z = (e3) and p = (e, €9, €3, €4).
Hence for the subalgebra k we obtain k,, 4, ., = (€1 +ai€3, €2+ azes, 4+
ases), az # 0, because (e2) is an ideal of gg 49 and a1, a3 € R. The au-
tomorphism «(e;) = age;, i = 1,2,4, ae;) = e, j = 3,5,6, maps the
subalgebra K, 4, 4, ONt0 Ky, 4, = (€1 + ares, €3 + €3, e4 + ages).
(b) The Lie algebras gg, k = 51,52, gi547", 8857, 8650, i3 have the
centre z = (ey) and the ideal p equals to (e, €9, €3,¢4). Hence the Lie
algebra k has the form k,, 4, 4, = (€1 + a1€2, €3+ aseq, €4+ azes), a; € R,
¢ = 1,2, 3, such that ay # 0 for the Lie algebras gs ., £ = 51,52, since
(eg) is their ideal, and a; # 0 for the Lie algebras gg x, k = 54, 57,59, 63,
because (e;) is their ideal. Applying the automorphism «(e;) = e;, ¢ =
1,2,5, afes) = ages, a(es) = eg — aseq, afeg) = eg for ge 51, respec-
tively a(eg) = es + age; for gg 5o, the subalgebra k,, 4,, reduces to
ko, = (e1 + a1ea, €3 + €3, €4). The automorphism a(e;) = e;, i = 2,5, 6,
ale;) = aej, j = 1,3, ales) = eq — ages for gep, b = 54,63, re-
spectively a(eg) = e + ageq for gg;, | = 57,59, maps K, 4.4, ONtO
ko, = (€1 + ea, e3 + aze, e4).
Now we consider the Lie algebra gg 52 with its ideal s such that the fac-
tor Lie algebra gg 52/s is isomorphic to f;. The Lie algebra gg 50 has the
centre z = (ey) and the ideals iy = (e3), s = (eq,e3), a = (eq,es),
b1 = <61,62,63>, b2 = <€1,62,64>, gé,52 = <€17€2,€3,64>. Denote by
Z, 15, S, A, B;, i = 1,2, and N the simply connected Lie groups of z,
i, s, a, b, 7 = 1,2, and ggm. If g6 52 would be the Lie algebra of the
group Mult(L) of L, then the above discussion yields that the factor loop
L/Z(e) = L/S(e) is isomorphic to a loop Ly, because gs52/s = f;. As
Z(e) =R = S(e), we have dim(sNinn(L)) = 1. Since the orbit I5(e) is a
normal subgroup of L isomorphic to R and i, < s, we obtain I5(e) = S(e)
and i; N inn(L) = 0. The ideals a, b;, i = 1,2, and g 5, have the prop-
erties as in Proposition 19 b). Since z < a, one has Z(e) < A(e). If
dim(A(e)) = 1, then we get A(e) = Z(e). Since the factor Lie algebra
g652/a is not isomorphic to the Lie algebra fy, the factor loop L/Z(e) is
not isomorphic to a loop Lz. Hence we get dim(A(e)) = 2.

If the orbit A(e) is a 2-dimensional connected normal subloop M of L,
then one has Bj(e) = By(e) = N(e) = M (cf. Proposition 19 b) such that
Z(e) < A(e). The ideal v in Proposition 19 b) has one of the following
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forms: vy = (e1,e9,€3,64,65 + keg), k € R, vo = (ey, €2, €3, €4, €6).
Therefore the Lie algebra inn(L) has either the basis elements b; = ez +
aieq, bg = e4 + b161 + b262, b37k = e5 + ]{?66 “+ c1e1 + coeq Or bl, bz,
bs = eg + c1e1 + coes, a1, b, k,c; € R, i = 1,2, a; # 0. The vector spaces
(by,ba, b3 k), (b1, b, bs) are not 3-dimensional Lie algebras. Hence the Lie
86 52 1 excluded.

Summarizing the above discussion the following 6-dimensional solv-
able indecomposable Lie algebras with 5-dimensional nilradical can occur
as the Lie algebra g of the group Mult(L) of L:
g1 = 81 15 ki1 = (ea,eq +e1,e5), kio = (e3,e4 + €1, €5);
g2 _gﬁzz»k2 (e3, €4+ €1,€5),
g3 == gm%a ~0 ks = (es,ea,65 + €1), kgp = (e2, €4, 65+ €1);
814:= 8¢5 51 L ky = (e1 + ares, €3+ €2, €4), a1 € R;
g5 = g6,54 =0, k5 = (61 + e, €3 + azen, e4), az € R;

86 = 86 o3- ko = (€1 + €2, €3 + azez, e4), az € R;

g7 = 815070 ky = (e1 + 5,62+ ce5,€4), 6 = 0,15

gs == giTn. ks = (€1 + €5, €2 + ages, e4 + ages), ag € R\ {0}, as € R;
8y = gSZ?’°<‘b‘§1, kg = (e3,e4 +e1,65 + €1);

810 = 86,24, K10 = (€3, €4, €5 + €1);

g11 '= 6,30, K11 = (€3, €4 + ager, e5 +e1), az € R;

812 = 8 32 020 kiog = (e3,eq,65 + €1), king = (e3,e4 + €1, €5 + azey),
as € R

813 1= ge,16» K13 = (€1 + €3, €2 + ages, e4 + ages), az, a3 € R;

a=1,b=6=0 .
814 = 827 ki = (e1 + e5,e2 + azes, eq), ag € R;

e=0,%+1 o .
815 = Cea9 - Kis = (€1 + ares, ea + e3,e4 + azes), ar, a3 € R;

=0,+1 .
816 = g@- 52 ki = <€1 + aqe9, €3 + €2, 64>, a; € R;

817 = g6,57, ki7 = (e1 + eg, €3 + azey, e4), a2 € R;
o oo=1 _ )
818 := 8¢ 59> kis = (e1 + ez, €3 + azeq, e4), az € R;

5==0,a0
819 = g6 1? o ,kig = (€1 + €4, €2 + asey, e5 + e4), az € R;

go0 = g6 13(1 e=1 kgg = <€1 + €4, €2 + g€y, 5 + CL3€4>, o, 03 € R.

In this list the Lie algebra k is the Lie algebra of the group Inn(L). Now
we determine a suitable linear reporesentation for the simply connected Lie
groups of the Lie algebras g;, 7« = 1,---,20. To obtain this we make the
following procedure. In [40] a single matrix M is established depending on

six variables such that the span of the matrices engenders the given Lie al-
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gebra in the list g;, « = 1, - - -, 20. To obtain the matrix Lie group G of the
Lie algebra g; we exponentiate the space of matrices spanned by the matrix
M. Simplifying the obtained exponential image we get a suitable simple
form of a matrix Lie group such that by differentiating and evaluating at the
identity its Lie algebra is isomorphic to the Lie algebra g;. In case of the
Lie algebras g;, j = 1,2,8,9, 16, we take in order the exponential image
of the matrices:

0 —S3  S9 0 —Sg 281
0O 0 0 O 0 s
o 0 0 0 0 s o
Ml_ O O O _56 0 S4 7SZ€R72—17 767

0O 0 0 0 0 2s3

0O 0 0 0 0 0

0 —s3 s9 0 —sg 28

0O 0 0 0 0 s

. 0 —Sg 0 0 0 S3 ' .
My = 0 0 0 —s5 0 s ,si€eRi=1,---,6,

0O 0 0 0 0 2s3

0O 0 0 O 0 0

—Sg —S3 —89 0 0 231

0 —Sg 0 0 0 S92

0 0 0 0 0 —ss o

M8_ 0 — S 0 — S 0 sS4 781'6]:&72_17'”767

0 0 —Sg 0 0 —S5

0 0 0 0 0 0

0 —S3 So 0 0 281

0O 0 0 0 0 59

0 —Sg 0 0 0 S3 .

My=| 0 0" 0 Zs o0 s | sERI=LG

0 0 0 0 —bSG S5

0O 0 0 0 0 0
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—Sg 0 0 0 0 S3
0 0 2s5 —esg €S4 259
0 0 0 Sg 0 —851 o
Mg = 0 0 0 0 s s |0 €R,e=0,=£1,
0 0 O 0 0 Sg
0 0 0 0 0 0

t =1,---,6. The simply connected Lie groups GG; and its subgroups K; of
the Lie algebras g; and its subalgebras k;, ¢ = 1, - - - | 20, are isomorphic to
the linear groups of matrices the multiplication of which are given in this
order by:

t=1: 9(5’3171’271’3;554;3357$6)g(y17y273/37y4ay573/6) =

9(1+y1+Toy3—T3Y2 — TeYs, To+Y2, T3+Y3, Tat+yse ™, T5+Ys, T +Ys),
K1 ={g(u1,us,0,u1,u2,0);u; € R,i =1,2,3},
K9 ={g(u1,0,u3, u1,u2,0);u; € Ryi=1,2,3},

i =2 g(x1, 02, 23, T4, T5, T6) 9 (Y1, Y2, Y35 Yas Y5, Ye) = 9(T1 + Y1 + Tays—

T3Y2 — T (Ys + Taya), T2 + Yo, T3+ Y3 — TeYa, Ta+Ya€™ ™, o5+ Ys, To + Ys),
Ky = {g(u1,0,us,us,us,0);u; € Ryi =1,2,3},

i =3:g(x1, 2, 3, T4, T5, T6) g (Y1, Y2, Y3, Y4, Ys, Ys) = 9(T1 + 11 — Teya+

1 —X
(556(?; + x3)Y2, T2 + Y2, T3 + Y3, Ta + Ya — TeYo, Ts + Yse ", Tg + Ys),

K3,1 - {g(u27u3707u17u270);ui S R7Z - 17273}7
Ko ={g(us,0,us,ur,us,0);u; € R0 =1,2,3},
i =4 g(x1, 2, 23, T4, 5, 26) 9 (Y1, Y2, Y3, Y4, Ys, Ys) = (1 + Y1 + T5Ya,

1 —X
To + Yo + TsY1 + €X4Ys + §x§y4, x3 + yse %, Ty + Y1, Ts + Y5, Te + Ys),

Ky = {g(uy,a1uy + us, us,u3,0,0);u; € R,i=1,2,3},a; € Re = +1,
i =5:g(v1, T2, 73, T4, Ts, T6) 9 (Y1, Y2, Y3, Y4, Y5, Yo) =
g1+ (Y1 +asys)e ™, rot+yo+5Ys, T3+yse O, Tyt Ya, Ts+Ys, Te+Ys),
K5 = {g(u1,us + asus, us, u3,0,0);u; € R,i=1,2,3},as € R,
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i =6 g(x1, 22,3, T4, 5, 26) G (Y1, Y2, Y3, Ya, Y5, Ys) =
g1+ (Y1 + ysxs)e ", wo + y2 — (5 + T6) Y,
T3+ yse ", Ty + Ys, Ts + Y5, T + Ys),
Kg = {g(uy,uys + agug, ug, uz,0,0);u; € Ry =1,2,3}, a2 € R,

i =T g(x1, 22,3, T4, T5, 26) G (Y15 Y2, Y3, Ya, Y5, Ys) =
g(r1+(y1+y2w3)e” ™, oty ™, X34+ys, Tatya, Ts+Ys — TaYs, To+Ys),
K7 = {g(u1,us,0,u3, ug + cug,0);u; € Ryi=1,2,3}, e =0,1,

i =8 g(w1, T2, T3, T4, T5, T6)9(Y1, Y2, Y3, Y4, Yss Vo) =
g(x1 + (y1 + yax3)e™™ — ysxa, Ta + Yae ", 13 + Y3,
s+ (Ya — Y2x6)e” ™, x5 + Y5 — TeYs, To + Yo),

Ks = {g(uy,us,0,us, uy + agug + asus,0);u; € Rji =1,2,3},
az € R\ {0},a2 € R,

i =9:g(v1, 72,73, T4, Ts, T6) 9 (Y1, Y2, Y3, Ya, Y5, Ys) = 9(T1 + Y1 + Tays—
(3 + T2m6) Y2, T2 + Y2, T3 + Y3 — Teyz, Ta + yae ", x5 + yse "0, 26+ o),
Ky = {g(uy + u2,0, us, uy,us,0);u; € R0 =1,2,3},

i =10 : g(z1, 29, ¥3, T4, T5, T6) (Y1, Y2, Y3, Y4, Y5 Ys) =

2 1 3
(1 + 1 — 2xeys + (v — T2)ys — | S5 — T2 — T3 | Y2, T2 + Yo,

w

1 —X
T3+ Y3 — TeY2, Ta + Y4 — TeYs + 55533427375 +yse ", T6 + o),
Ko = {g(uz,0,us,u1,u2,0);u; € R, i = 1,2,3},
i=11: 9(331’3327w?wx4’$57$6)9(3/17927937y4>y5,yﬁ) =

1
g(z1 + 1y + 22y3 — §$§y6,l‘2 + Y2, T3 + Y3 — T2Ys,

Ty + yse "6, x5 + yse S — T4ys, Te + Ys),

KH = {g(a2u1 + UQ,O,U3,U1,U2,O);UZ' - R,Z = 1,2,3},&2 - ]R,
i =12 g(w1, 9, T3, T, T5,76)9(Y1, Y2, Y3, Ya, Ys, Ys) =
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9(x1 + Y1 — T2y3 + y2 (23 + 2276), T2 + Yo, T3 + Y3 — TeYo,

—bxg —bxg

T4+ Yse cos Tg + Yse sin g,
T5 — yse "0 sin g + yse U0 cos g, Tg + Ys),
Ko7 = {g(u2,0,us,us,us,0);u; € R0 =1,2,3},
Koo = {g(u1 + asug, 0, us, uy, us,0);u; € Ry =1,2,3}, a3 € R,
i =131 g(71, T2, T3, T4, 5, T6)9 (Y1, Y2, Y3, Y4, Y5, Yo ) =

1 2 —Tg —Zg
g(xl + [yl — YsTe + y2(§x6 + 903)]6 — T2Y3, To + Yo2€ 7,

T3+ Y3, T4 + (Ya — YoTe)e ", Ts + Y5 — T6Y3, Te + Vo),
Ki3 = {g(u1, us,0, usg, uy + agug + agug,0);u; € Ryi=1,2,3},a; € R,
i =14 : g(x1, T2, T3, T4, Ts, T6)9(Y1, Y2, Y3, Y4, Us, Y) =
g(w1 +y1e” "™ + Tays, T2 + yae 0, w3 + Y3,

Ty +Ys — TeYs, Ts + Y5 — TeYa + %$§y37 T6 + Ys),
K4 = {g(u1,u2,0,us, u; + asus,0);u; € Rji=1,2,3}, a9 € R,
i =151 g(x1, T2, T3, T4, 5, 76) 9 (Y1, Y2, Y3, Ya, Ys, Ys) =
g(x1 + y1e”" + Tays, o + (Yo — 2eyaT6 — Y175)e " + (21 — T475)Ys,
T3+ Yz — T6Ys, Ta + Yae ", 5 + Ys, T + Yo),
K5 = {g(uy, ug, ajuy + us + agug, us,0,0);u; € Ryi = 1,2,3},
ai,az € Roe =0,41,
i =16 : g(z1, ¥2, T3, T4, T5, T6) (Y1, Y2, Y35 Y1, Y. Yo) = g(T1 + Y1+

1, 2 1s N
ToYa + 5T5Yer T2+ Yo + 225y1 + (12 — ew6)ya + (3905 +e(xy — T526)) Y6,

—T6

T3+ yse x4 + Y1 + T5Ys, Ts + Ys, Te + Vo),
Klﬁ = {g<u17a1u1 + u27u27u3a070);ui S Ral = 17273}a
a; € Re =0,41,

=17 9(9017352,553,5134,3357356)9(341792,y37y4>y5,y6) =
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1

g(x1 + (Y1 + 2s5y3)e” ", 2o + Yo + T5ys — §$§y6,

T3+ yse “C, Ty + Ys — TsYs, Ts + Ys, Te + Ys),
K17 = {g(ul,ul =+ (IQUQ,UQ,U?,,O,O);UZ' - R,Z = 1,2,3},a2 - R,
i =18 g(x1, 22, 23, T4, T3, T6) (Y1, Y25 Y35 Y4, Y5, Ys) =
. 1
g(z1 + (y1 + yszs)e %, 2o + Yo — (5 + T6)Ys — 5(355 + 26)°ys,

T3+ yse ", wq + ys + (5 + T6)Ys, Ts + Ys, Te + Ys),
Kis = {g(u1,uy + agug, ug, u3,0,0);u; € R0 =1,2,3}, a9 € R,

i =19: g<I17 T2,T3, T4, Ts, x6)9<y17 Y2,Y3, Y4, Ys, yﬁ) = g('xl + yle_a$6+
T3y, Ta + Y2, T3 + ys€ 0, Ty + Ys — TeY2, Ts + Ys€ ", To + Ys),
K19 = {g(uh 07 Uz, U1 + asuo + us, us, O)’ U; € Ra 1= ]-7 27 3}7
as € R,a € R\ {0},

i =20 g(21, 22, ¥3, T4, T5, T6) 9 (Y1, Y2, Y3, Ya, Y5, Ys) =
g(r1 + (Y1 — TeYs + yax3)e” ", Ta + Yoo,

T3 + Y3, T4 + Ya — T3Ye, Ts + Yse 0, Tg + Ys),

Ko = {g(u1,us,0,u1 + aguy + agus, us, 0);u; € R,i =1,2,3},a; € R.

Among these Lie groups only the group (7 has 2-dimensional com-
mutator subgroup and the groups G;, ¢ = 2,---,7, have 3-dimensional
commutator subgroup. We show that among the 6-dimensional solvable
indecomposable Lie groups with 5-dimensional nilradical precisely these
Lie groups GG;, ¢ = 1, - - -, 7, are the multiplication groups of 3-dimensional
connected simply connected topological loops. .

If L exists, then there exists its universal covering loop L which is
homeomorphic to R3. We prove that none of the groups G;, i = 8, - - -, 20,
satisfy the condition of Lemma 7, i.e. there does not exist continuous left
transversals S and 71" to K; in GG; such that for all s € S andt € T one
has s~'t~'st € K;. Hence the groups G, i = 8, - - -, 20, are not the groups

Mult(L) of L. Since no proper loop L exists, it follows that also no proper
loop L exists.
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Two arbitrary left transversals to the group K; in G; are:
For: =9,10,11, 12,

S ={g(u,v, hi(u,v,w), hs(u,v,w), hg(u, v, w),w);u,v,w € R},

T = {g(k‘,l,fl(k’,l,m),fg(k:,l,m),fg(k,l,m),m);k:,l,m S R}?
fori = 8,13, 14, 15,

S ={g(hi(u,v,w), ho(u,v,w), u, hg(u,v,w),v,w);u, v,w € R},

T= {g(fl(k7l’m)7 f2(k7lvm>7ka f3<k7lam)7lam); kylam € R})
fori = 16,17, 18,

S ={g(hi(u,v,w),u, ha(u,v,w), hs(u,v,w), v, w);u,v,w € R},

T= {g(fl(kﬂlvm)> ka fQ(ka lam)a f3<k7l7m)7l7m); k7lam € R}?
forz =19

S ={g(hi(u,v,w),u, ha(u,v,w),v, hg(u, v, w),w);u,v,w € R},

T = {g<f1<k7l7m)7 k?f2(k7 lam)u l? f3(k7l7m)7m); k7l7m € R}?
forz = 20

S =A{g(h1(u,v,w), ha(u,v,w),u,v, hg(u, v, w),w);u,v,w € R},

T - {g(f1<k7 l? m)? f2(k7 l7 m)7 ka l7 f3(k7 l7 m)7 m)? k? l7 m e R}?
where h;(u,v,w) : R® — R and f;(k,l,m) : R> - R, i = 1,2,3, are
continuous functions with f;(0,0,0) = h;(0,0,0) = 0. Taking in G;, i =
9,11, 12, the elements

s = ¢g(0,v,h1(0,v,0), ha(0,v,0), h3(0,v,0),0) € S,

= g(oaoafl(oaoam)af2(0707m)7f3(0707m)?m) € T

and in (G17 the elements

s = ¢g(h1(0,v,0),0,hs(0,v,0), h3(0,v,0),v,0) € S,
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t =9g(f1(0,0,m),0, f2(0,0,m), f3(0,0,m),0,m) € T

one has s~'t'st € K if and only if
fori =9

mU2 - 2Uf1(0, Ovm) = h?(ov v, 0)(1 - em) + hg(O,U, O)(]- - ebm)) (11)

fori =11 ]
Emv2 +vf1(0,0,m) + €™mhs(0,v,0) =

(em - 1)(h3(07 v, O) + a2h2(07 v, O))a (12)
for 7 = 12 and for K9

20£1(0,0,m) — mv* = (1 — €™ cosm)hs(0,v,0) — ™ sin mhy(0,v,0),
(13)
for i = 12 and for K99

20f1(0,0,m) — mv? = (1 — €™ cosm)(hy(0,v,0) + ashs(0,v,0))+

ebm sinm(hs(0,v,0) — aghs(0,v,0)), (14)
fori =17 1
—§mv2 —vf3(0,0,m) + e™v f2(0,0,m) =

(1 —€")[h1(0,v,0) + (a2 — v)ha(0,v,0)] (15)

is satisfied for all m,v € R. On the left hand side of equations (11), (12),
(13), (14), (15) is the term mwv? hence there does not exist any function
£:(0,0,m) and h;(0,v,0), 7 = 1,2, 3, satisfying these equations. Taking in
(19 the elements

s =g(0,v,h1(0,v,w), ha(0,v,w), h3(0,v,w),w) € S,

t =g(0,0, f1(0,0,m), f2(0,0,m), f3(0,0,m),m) € T,

respectively in G5 the elements
s = g(hl(oa v, UJ), 07 h2(07 v, 'lU), h’3(07 v, W), v, w) S Sa

t= g(fl(oaovm)voa fZ(OaO’m)va(Ovovm)70>m) € T7
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respectively in G the elements
s = ¢g(h1(0,v,0),0,hs(0,v,0), h3(0,v,0),v,0) € S,
t =g(f1(0,1,m),0, f(0,1,m), f3(0,1,m),l,m) € T
we obtain that s~*¢~'st € K; if and only if in case i = 10 the equation
e’ (1 —e™)hs(0,v,w) + e™(e” — 1)f3(0,0,m) =
(w? + 2v + 2maw) £1(0,0,m) 4+ 2w f2(0,0,m) — (m* 4+ 2wm)hy (0, v, w)—
2mhy (0, v, w) — m*wv — w*mv — mv? — 1vm?’, (16)

3
respectively in case ¢ = 18 the equation

e"(e” = 1)(f1(0,0,m) + a2 f>(0,0,m))+
e’ (1 — e™)[h1(0,v,w) + (ag — v)ha(0,v,w)] = ™™ v f5(0,0,m)+
(w +v) f3(0,0,m) — mhs(0,v,w) + v*m + %m% +wvm,  (17)
respectively in case ¢ = 16 the equation

L3

——v3m — v%lm — 17
3

Ly 2
vm — §alv m —em“v — avlm =

(1 — €m)h2(0, v, O) - 2lh1(0, v, 0)+
(P+2vl+ayl+2em)hs(0,v,0)+2v (0,1, m) — (v’ +2vl+a,v) £3(0, 1, m)
(18)

holds for all m, [, v, w € R. Substituting into (16)

f2(07 07 m) = fé(oa OJ m) - mfl(()? 07 m)7

ha(0,v,w) = Ry (0, v, w) — why(0,v,w),
respectively into (17)

fl(oa 07 m) = f{(07 07 m) - a2f2(07 07 m>7

hl(ovvv w) = hll(ov'Ua w) + (U - a2)h2(07'07 W),
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respectively into (18)

ha(0,0,0) = H;(0,0,0) + (v + Z)hs(0,2,0),

J1(0,8m) = F{(0,1,m) + (L 4+ 5 Jo(0, L m),
we get in case 1 = 10
e’ (1 —e™)hs(0,v,w) + e™(e” — 1)f3(0,0,m) =
(w? + 20) £1(0,0,m) — m?h1(0, v, w)+
2w f5(0,0,m) — 2mh4 (0, v, w) — m*wv — w?mv — mv* — %va’, (19)
respectively in case ¢ = 18

e™(e” —1)£1(0,0,m) — ™ vfy(0,0,m) + (1 — ™)} (0,v,w) =

1
(w4 v) £3(0,0,m) — mhs(0,v,w) + v*m + §mgv + wom, (20)
respectively in case ¢ = 16
(1 —€™ha(0,v,0) + (I* + 2em)h3(0,v,0)—

v? f3(0,1,m) — 2} (0,v,0) + 2vf(0,1,m) =
1 1
—§v3m — v%lm — Pom — —a1v*m — em®*v — avlm. 21

Since on the right hand side of (19), respectively (20), respectively (21),
there is the term —3vm?, respectively $m?v, respectively —iv%m, there is
no function f;(0,0,m) and h;(0,v,w), i = 1,2, 3, respectively f;(0,1,m),
i = 1,3, and h;(0,v,0), j = 1,2, 3, satisfying equation (19), respectively
(20), respectively (21).

Taking in G;, ¢ = 8, 13, 14, the elements

s = g(h1(0,0,w), hy(0,0,w),0, h3(0,0,w),0,w) € S,

= g(fl(k707m)af2<k70am)7k7f3(k70’m)707m) € Ta
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respectively in G'9 the elements
s = g(h1(0,0,w),0, hy(0,0,w), 0, h3(0,0,w),w) €S,

t = g(fl(k70>m)a ka f2(k707m)707 f3(k707m>?m) € T,

respectively in Gy the elements
s = g(h1(0,0,w), hy(0,0,w),0,0,h3(0,0,w),w) €S,

t= g(fl(k‘,(),m),fg(k, 0,771), k‘,O, fg(k:,O,m),m) & T

we have s~ 't~ 1st € K, precisely if for i = 8 the equation
wk = e"(1 —e™)[(az + asw)hz(0,0,w) + ashz(0,0,w) + hy(0,0,w)]+

e (e’ — 1)[(asm + as — k) fo(k,0,m) + a3 f3(k,0,m) + fi(k,0,m)]+
" azsw fo(k, 0,m) + (2k — agm)h (0,0, w)], (22)

for ¢ = 13 the equation

1
wk =e"(1 — em)[(§w2 + as + azw)hy(0,0,w) + (a3 + w)hs(0,0,w)+

h1(0,0,w)] 4+ e™(e” — 1)[(%7}12 — k4 agm + ag) fa(k,0,m)+
(m+as) fa(k, 0,m) + fi (k, 0, m)] + €™ [(m+ ag)w-+ %uﬂ) Falk, 0, m)+
(2k—%m2—(w+a3)m)h2(0,O,w)]—l—em“”(w Fo(k, 0, m) —mhs (0,0, w)),

(23)
for : = 14 the equation

1
iwzk + mwk + wf3(k,0,m) — mh3z(0,0,w) =

e’ (1 —e™)(h1(0,0,w) + ashs(0,0,w))+
em(ew - 1)(f1(k7 07 m) + a2f2(k7 07 m)) - €m+wkh2(07 07 w)v (24)

for ¢ = 19 the equation

wk = €“(1 —e™)h3(0,0,w) —e™(1 — ") f3(k,0,m)—
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et 0y (0,0, w) 4 e (1 — e¥™)(hy (0,0, w)+
a2h2(0’ 07 w)) - eam(l - 6aw)(f1<k7 07 m) + a2f2<k7 07 m))? (25)
for + = 20 the equation
—wk = ¢e"(1 —e™)(h1(0,0,w) + azh2(0,0,w) + (w + agz)h3(0,0,w))+
e™(1—e")((k — ag) fo(k,0,m) — fi(k,0,m) — (m + a3) f3(k,0,m))+
" (khy(0,0,w) — mhs(0,0,w) + wf3(k,0,m)) (26)
is satisfied for all &, m,w € R, as, az € R. Putting into (22)
h1(0,0,w) = h1(0,0,w) — (azw + as)h2(0,0,w) — azhs(0,0,w),
fl(ka Oa m) = f{(ka O7m) + (k — asm — a?)fZ(ka 07 m) - Clgfg(kf, Ovm)a
respectively into (23)

h1(0,0,w) = h}(0,0,w)—

1
(§w2 + azw + as)ha(0,0,w) — (ag + w)hs (0,0, w),
fl(k> 07m) = f{(k> Ovm)+
1
(k — §m2 — agm — az) fo(k,0,m) — (m + a3) f5(k,0,m),

f3(k7 07 m) - f{g(kv 07 m) - (m + a3)f2(k7 07 m)7
h3(0,0,w) = h5(0,0,w) — (w + az)h2(0,0,w),

respectively into (24)

h1(0,0,w) = h{(0,0,w) — azhy(0,0,w),

f3(k,0,m) = f5(k,0,m) —mk,

f1<k7 07 m) = f{(ka 07 m) - a’2f2<k7 07 m>7
respectively into (25)

hl(oa 07 w) = hll(oa 07 U)) - a2h2(0) 07w)7
fl(kvoam) = f{(kvoam) - a2f2(k707m)7
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respectively into (26)
h1(0,0,w) = R1(0,0,w) — azhs(0,0,w) — (w + a3)hs(0,0,w),
fi(k,0,m) = fi(k,0,m) + (k — az) f2(k,0,m) — (m + a3) f5(k, 0, m)
in order equations (22), (23), (24), (25), (26) reduce in case 7 = 8 to
wk = e”(1 —e™)h}(0,0,w) +e™(e” — 1) f1(k,0,m)+

" azw fo(k, 0,m) + (2k — azm)h (0,0, w)], 27

incase 7 = 13 to
wk = e*(1 —e™)h}(0,0,w)+

1
€m<€w - 1)f{(k7 0, m) + em+w[§w2f2(k> 0, m)+

(2% = L) a(0,0,) + wfih,0,m) — mbi(0.0.w)). @9

incase? = 14 to

1
§w2k +wf3(k,0,m) —mhs(0,0,w) = €“(1 —e™)h}(0,0,w)+

e (e —1)f1(k,0,m) — "™ khy(0,0,w), (29)
incase 7 = 19 to
wk = e®(1—e™)hs(0,0,w)—e™(1—e®) f3(k,0,m)— e ™) khy (0,0, w)
+e™ (1 — e} (0,0,w) — e (1 — ™) f{(k,0,m), (30)
and in case 7 = 20 to
—wk =€ (1 —e™)Rh}(0,0,w) +e™(e” — 1) f1(k,0,m)+

e (khy(0,0,w) — mhs3(0,0,w) +wf3(k,0,m)). (31)

Since on the left hand side of (27), (28), (30), (31), respectively of (29), is
the term wk, respectively 1wk, there is no function f;(k, 0,m), h;(0,0, w),
1 = 1,2, 3, such that equations (27), (28), (30), (31), respectively (29), are
satisfied.
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Taking in GG15 the elements
s = g(h1(0,0,w), ha(0,0,w),0,h3(0,0,w),0,w) € S,

= g(f1<07 l7 m)7 f2<07 l7 m)a 07 f3(07 l7 m)a l7 m) € T
the product s~'t~!st lies in K5 if and only if the equation

wl = e (1 —€e™)[h2(0,0,w) + (a3 + 2we)h3(0,0,w) + a1h1(0,0,w)]+

e (e’ — 1)[f2(0,1,m) + (I + a1) f1(0,1,m) + (ag + 2me) f3(0,1,m)]+
™ [2we f3(0,1,m) — 21h1(0,0,w) — (I + 2me + a1l)h3(0,0,w)] (32)
is satisfied for all m, [, w € R. Substituting into (32)

h'l (07 Oa w) = h’ll (07 Oa w) - %hi’)(O? 07 QU),

h2(07 Oa w) = hl2(07 Oa 'LU) - alhl(()? 07 w) - (a3 + 2w8)h3(07 07 w)>
f2(0,1,m) = f3(0,1,m) — (I + a1) f1(0,1,m) — (az + 2me) f3(0,1,m),
we obtain
wl = e"(1—€e™)hy(0,0,w) 4+ e™(e® — 1) f3(0,1,m)+

e [2we f3(0,1,m) — 21K (0,0,w) — (I* + 2me)h3(0,0,w)].  (33)

On the left hand side of equation (33) is the term w! hence there is no
function f;(0,1,m), i = 2,3, and h;(0,0,w), j = 1,2, 3 such that equation
(33) holds.
The sets
Sy ={g(k,1—¢em 1,me ™, 2l,m); k,l,m € R},

T = {g(uawauzveiw? 1- ew,w);u,v,w € R}a

respectively
So ={g(k,l,1 —€e™ me™™, =2l,m); k,l,m € R},

Ty = {g(u, v,w,~20e™,1 = ¢, w);u,v,w € R}
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are K ;-, respectively K o-connected left transversals in G;. The sets
S ={g(k,l,l,me™™, 1 =1+ €™,m); k,I,m € R},

T = {g(u,v, v, —we™ ", v? +1- ew’w>; U, U, W € R}
are K5-connected left transversals in (G5. The sets

1 1
Sy = {g(k, sz —,l,em—1— m(im2 —1),me ™, m); k,l,m € R},

1
T = {g(u, §w2 —v,v,1—¢€"— w(§w2 —v),—we ", w);u,v,w € R},

respectively

1
So = {g(k,1, §m2 +em—1,=lm+m,le ™ m);k,l,m e R},

1
Ty = {g(u,v, §w2 — eV + 1, —vw + w, —ve Y w);u,v,w € R},

are K3 -, respectively K3 o-connected left transversals in G's. The sets

1
S={g((l+a)(1—e™)+1, k, —e_m(512+5m), 1—e™ I,m); k,l,m € R},

1
T ={g((v+ay)(e®—1)+v,u, e_w(§1)2+€w), e’ —1,v,w);u,v,w € R}
are I -connected left transversals in (G4. The sets
S ={g(le™™ag — 14+ 1),m, —le ™™ 1 —1e" — " 1,k); k,1,m € R},

T ={g(ve ™(v—1—ay),w,ve " ve" +e* — 1,v,u);u,v,w € R}

are K5-connected left transversals in GG5. The sets
S={g((l —a)l+ (I +m)e™ k,l,e" —1,1,m);k,l,m € R},

T={g9((v—a)v—(v+w)e * uuv1—e" v,w)uv,we R}

are Kg-connected left transversals in (Gg. The sets

S={g((e = k)me™, —me " k,—ke™, l,m), k,l,m € R},
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T ={g((u—e)we ™ we™" u,ue”, v,w),u,v,w € R},

are K;-connected left transversals in G7. Foralli = 1,---,7, the sets .51,
T}, respectively So, 15, generate the group ;. According to Lemma 7 the
pairs (G;, K;), i = 1,---,7, are multiplication groups and inner mapping
groups of L which proves the assertion. ]

In the next theorem we consider the case that the group Mult(L) of a
3-dimensional connected simply connected topological proper loop L has
4-dimensional nilradical.

Theorem 25. Let L be a 3-dimensional connected simply connected topo-
logical proper loop such that its multiplication group Mult(L) is a 6-
dimensional solvable indecomposable Lie group having 4-dimensional nil-
radical. Then L has nilpotency class 2 and the following Lie groups are the
multiplication groups Mult(L) of L and the following subgroups are the
inner mapping groups Inn(L) of L:

1) Mult(L), is given by the multiplication

g(xb X2,X3,T4,Ts, xﬁ)g<y17 Y2,Y3,Y4, Ys, yG) =
g(1 + y1€7° cos(wg) — Yo" sin(xg), To + y2e™® cos(xg) + y1€™° sin(xg),
T3+ Y3, Ta + Ya + (a6 + 25)Y3, T5 + Ys, T6 + Ys), a € R,
Inn(L); is the subgroup

{g(uy, ua, us, e1uy + eoug + e3us, 0,0); uy, ug, uz € R},

er € {0,1}, k = 1,2, 3, such that €2 + 3 # 0.
2) The multiplication group Mult(L)s is defined by

T5+axe
)

9(z1, 22, 3, T4, 5, 76) G (Y1, Y2, Y3, Ya, Y5, Ys) = (21 + y1e

Ty + y2€", T3 + Y3, Ty + Ys + T5Ys3, Ts + s, Te + Ys), @ € R\ {0},

Inn(L)s is {g(uq, ug, ug, uy + ug + eus, 0,0); ug, ug, us € R}, e =0, 1.
3) The multiplication group Mult(L)s is given by

9(951,352,563,%4,3357376)9(3/1&27y3,y47y57y6) =

9(z1 + y1, 22 + Yo + T5y1, T3 + y3€”® cos(x5) — yae” sin(xs),
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T4 + yse” cos(xs) + yse®® sin(zs), x5 + ys, T6 + Yo),

Inn(L)3 is the subgroup
{9(ur, e1us + egug + e3u3, ug, u3,0,0); uy, ug, uz € R},
er €{0,1}, k = 1,2, 3, such that €3 + £3 # 0.

Proof. We may assume that L is homeomorphic to R? (see Lemma 9). Ac-
cording to Proposition 21 it remains to deal with the 6-dimensional solvable
indecomposable Lie algebras Ng;, 1 = 20, ...,27, with abelian nilradical
and 1-dimensional centre (cf. Table II. in [41], p. 1348). Foremost, by
Theorem 17 (a) we have to prove that there is a normal subgroup N = R
of L such that the factor loop L/N is isomorphic to R?. The Lie alge-
bra Ngé’o, a® + b? # 0, have the ideals iy = (ny), iy = (ng), i3 = (n3),
ig = (ng). If N&’é’o is the Lie algebra of the group Mult(L) of L, then the
orbits Ix(e), k € {1,2,3,4}, are normal subgroups of L isomorphic to R
(cf. Lemma 6). The Lie algebra Ng ’2b0 has no factor Lie algebra isomor-
phic to an elementary filiform Lie algebra. Hence the factor loops L/ I (e),
k € {1,2,3,4}, are isomorphic either to L, or to R? (cf. Proposition 19 a).
If all factor loops L/I;(e), k € {1,2,3,4}, are isomorphic to Lo, then by
Proposition 19 (ii) there are 2-dimensional ideals s;, £ € {1,2,3,4} such
that i, < s; and the factor Lie algebras Ng ’2b0 /sy, are isomorphic to 1y @ 1.
For the ideal s; = sy = (ny,ns) one has N&’é’o/sk L, k=12
The factor Lie algebra Ny b /{n1,n3) is isomorphic to 1, & 1, if and only
if a = 0 and N&§0/<n1,n4) is isomorphic to 1, & 1, precisely if b = 0.
This contradiction to a? + b% # 0 yields that at least one of the factor loops
L/Iy(e), k € {1,2,3,4}, is isomorphic to R?. For such k € {1,2,3, 4} the
orbit I;(e) is the requested normal subgroup N of L in Theorem 17 (a).

The Lie algebras N¢,;, Ny, Noos, N&’QI’F), N¢ 6. Ngor have the ideal
i = (n2) and the unique 1-dimensional ideal of the Lie algebra Ng; is
its centre i = (ny). There does not exist any ideal s of these Lie algebras
N, containing i such that the factor Lie algebras Ng;/s are isomorphic
either to I, @ 15 or to f4. If Ng,, ¢ = 21,...,27, is the Lie algebra of the
group Mult(L) of L, then the factor loop L/I(e) is isomorphic to R? (cf.
Proposition 19 (i)). Hence L has nilpotent of class 2. According to Propo-
sition 19 a) (i) and d) the Lie algebra g of the group Mult(L) has abelian
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nilradical n.,q = z @ inn(L), where dim(z) = 1. Hence inn(L) is a 3-
dimensional abelian subalgebra of g which does not contain any non-zero
ideal of g and the normalizer N, (inn(L)) coincides with n, 4 (cf. Lemma
8). From now on we use the following notation:

(a) g = N(i’é’o, ki = (ng + ny,n3 + ny,ng + nq).

(b) 82 := Ngo, 83 := N4, ko = k3 = (o + n1,ng + €11, ng + M),
€1 = O, 1.

(€) g4 := Ng,’2b5a g5 := Ngo ky = ks = (no + ny,ng + e1nq, ng + €9n4),
g; =0, 1,47 = 1,2, such that at least one of {¢;, &5} is different from 0.

(d) g6 := N§ o7, ke = (n1+e1n2, n3+eamn, nytesng), e, = 0,1,i = 1,2, 3,
such that at least one of {2, £5} differs from 0.

(e) g7 := N3, kr = (ny+e1n4, no+eong, n3+esny), e, = 0,1,1=1,2,3,
such that at least one of {e;, &5} is different from 0.

(f) g8 := Ng'pg, k3 = (1 414,02 + 14, 13+ 114), €1 = 0, 1. We compute
the 3-dimensional abelian subalgebras k of g;, ¢ = 1, ---, 8, which are the
Lie algebra inn(L) of L. The Lie algebras g;, i = 1, ..., 5, have the centre
z = (ny). For these Lie algebras the subalgebra k has the form

ka2,a3,a4 - <n2 + agny, ng + azng, ng + a4n1>7

such that in the case g;: asazay # 0, since (ns), (ns), (ny) are ideals of g,
in the cases g», g3: asayq # 0 because (n4) and (ny) are ideals of g;, i =
2.3,
in the cases g4, g5: as # 0 and at least one of the constants {a3, as} differs
from 0 since (ny) and (ns, ny) are ideals of g;, i = 4, 5. For the Lie algebras
g, i =1,...,5, using the automorphism «(n;) = ny, a(z;) = x;, i = 1, 2,
a(ng) = agne, a(n;) = a;n;, i = 3,4, if a; # 0, otherwise a(n;) = n;, we
can change k,, 4, o, Onto k = (ngy +ny,ng 4111, ny +2n1), such that ey,
respectively e is equal to 0 or 1, according whether ag, respectively ay, is
0 or # 0.

The Lie algebra gg has the centre z = (ns) and hence for the subalgebra
k one has kg, 4,4, = (1 + a1n2, n3 + asng, ng + agns), such that ag # 0
or ay # 0 because (ng,ny) is an ideal of gg. Using the automorphism
a(ng) = ng, a(x;) = x;, 0 = 1,2, a(n;) = ang, if a; # 0, otherwise
a(n;) = n; ¢ = 1,3,4, we can reduce the Lie algebra kg, 4,4, to k =
(ny + e1ng, ng + ang, ny + £3n9), €; = 0,1, 7 = 1,2, 3, such that at least
one of {e9, 3} is different from 0.
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The centre of the Lie algebras g;, i = 7,8, is (ny). For the subalgebra
k of g;, 2 = 7,8, we obtain

kal,ag,ag - <n1 + 1My, Mo + A2Myg, N3 + a3n4>7

such that in the case g7: a; # 0 or ay # 0, since (ny, no) is an ideal of g,
in the case gg: ajas # 0 because (n;) and (ny) are ideals of gg. For g;,
i = 7,8, using the automorphism «(ny) = ny, a(x;) = 2 1 = 1,2,
a(n;) = a;n;, if a; # 0, otherwise a(n;) = n;, i = 1,2, 3, we can change
Ko, 5,05 ONt0 kK = (ny 4 €114, Ny + £9ny, N3 + €3n4), such that ; is equal
to 0 or 1, according whether a; = 0 ora; # 0,7 = 1,2, 3.

The linear representations of the simply connected Lie groups G; of g;
are given in this order by

i=1: g(x1, 2,23, T4, Ts5, T6)9(Y1, Y2, Y3, Y4, Y5, Y6) =

axs+brg

g(x1 +y1 + x6Ys, T2 + Yoe , T3+ Y3€™®, 2y + yae™, T5 4 Y5, 6 + Ys),
i =2 g(x1, 79,3, T4, T5, 6)9(Y1, Y2, Y3, Y4, Y5, Yo) =

9(T1Hy1+26Ys, Totye™ T pytyse™, watyae™ +T3ys, TsHYs, ToHYs),
i=3: g(x1, 12,73, 24, T5, T6)9(Y1, Y2, Y3, Y4, Y5, Ys) =

9(z14+y1+T5Y6, To+1y2e™, T3+y3€™, Ta+yse™ + 15" Y3, T5+Ys, T6+Vs),
i =4 g(w1, 2, 03, T4, T5,76)9(Y1, Y2, Y3, Y4, Y5, Yo) =

azstbrs yo 4o cos(ys)eYs — x4 sin(ys)e’e,

g(z1 + y1 — x6Ys, T2 + yoe
Ys + x4 co8(ys5)e” + x3sin(ys)e¥, x5 + ys, T + Yo),
i =51 g(x1, 22,23, 24,25, 6)9(Y1, Y2, Y3, Y4, Y5, Yo ) =

azrs

g(x1 + y1 + xeYs, T2 + Y20, x5 + Y3 cos(x5)er™ + yy sin(x;)e™s,

w5 — ys sin(z5)e™, x5 + s, Te + Ys),

x4 + yyq cos(zs)e

i=6:c=0: g(x1,29,23,24,25 76)9(Y1, Y2, Y3, Ya, U5, ) =

9(w1 + Y1, T2 + Y2 + T5Y1, T3 + Y3e™® cos(w;) — yae™ sin(w;),
x4 + yse®® cos(xs) + ys3€*® sin(zs), x5 + ys, Te + Ys),

i=6:c=1:¢g(x1,22, 23,4, T5,%6)9(Y1, Y2, Y3, Y1, Y5, Y6) =
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1 2 Y6 Y6 o}
g(xl+y1+=T5967x2+y2+$5y1+§x5y67yS+x3e cos(ys) — x4€”® sin(ys),

Y1 + x4€%° cos(ys) + x3¥ sin(ys), x5 + ¥s, Te + Yo,
i=T:e=0: g(x1,29,23,24,25 76)9(Y1, Y2, Y3, Ya, U5, Y6) =
g(x1 + y1€7° cos(wg) — yoe™® sin(xg), To + y2e™® cos(xg) + y1€™° sin(xg),
T3 + Y3, Tg + Ys + (ax6 + 25)Ys, Ts + Ys, Te + Ys)»
i=T:e=1a=0: g(x, 2,23 24, 75,26)9(Y1, Y2, Y3, Y4, Ys, Ys) =

g(x1 + 11" cos(xg) + yoe™® sin(zg), ro + Y2 cos(xg) — y1€*° sin(xg),

1
T3+ Y3 + TsYe, Ta + Ys + Tsyz + §ZE§?JG, x5 + Ys, Te + Ys),
i=T:e=1,a#0: g(x1, 22, T3, Ts, 5, T6)g(Y1, Y2, Y3, Y4, Y5, Y6 ) =

g(x1 + y1€7° cos(wg) + yae™® sin(xg), T2 + y26*° cos(xg) — y1€™° sin(xg),

1
x3 + ys3 + (axe + T5)Ys, T4 + ya + (axe + T5)ys + 5(61566 + 375)2315;

T5 + Ys, Te + Vs,
i=8:e=0: g(x1, 22,13, T4, 5, 6)g(Y1, Y2, Y3, Yar Y5, Y6 ) =
g(x1 4 y1€770 1wy + y2€™ 13 + Y3, T4 + Ya + T5Ys, Ts + Ys, Te + Ys),
i=8:e=1: g(x1, 22,73, T4, T5,26) (Y1, Y2. Y3, Y45 Y5, Y6) =

1
g1 + 1™ 1y + y2€™ 13 + Y3 + Ty, Ta + Ya + Tsys + §$§yﬁ,

x5 + Ys, T + Ys)

(cf. [35], pp. 16-21). Using these linear representations the Lie groups of
the Lie algebras k; are

fori = 1: Inn(L) = {g(u1 +us +us, u1,uz,u3,0,0);u; € R}, j=1,2,3,
fori = 2,3: Inn(L) = {g(u1 + cua + ug, u1,u2,u3,0,0);u; € R}, j =
1,2,3,e=0,1,

for i = 4,5: Inn(L) = {g(u1 + e2us + 3us, u1,ug, u3,0,0);u; € R},
j=1,2,3,e, = 0,1, k = 2,3 such that at least one of {5, £5} is different
from 0,

fori = 6: Inn(L) = {g(u1, e1u1 + e2us + €3us, us, u3,0,0);u; € R},
j = 1,23, e, = 0,1, k = 1,2,3, such that at least one of {e9,e3} is
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different from 0,

fori = 7: Inn(L) = {g(u1,us, us, e1u1 + e2us + €3u3,0,0);u; € R},
j=1,2,3,e=0,1, k = 1,2,3, such that at least one of {¢1,e,} differs
from 0,

fori = 8: Inn(L) = {g(u1, uz, us, uy+us+cus,0,0);u; € R}, j =1,2,3,
e=0,1.

Two arbitrary left transversals to the group Inn(L) in G;,i = 1,...,5, are

S = {g<k7fl(k7lvm)7f2(kvl7m)7f3(k7lam)>lam)7k717m S R},

T = {g(u, hi(u,v,w), hae(u,v,w), hg(u, v, w),v,w),u,v,w € R},
those to the group Inn(L) in Gg are

S = {g<f1(k7lvm)>k?f?(kal7m)7f3(k7lam)>lam)>k7lam € R}a

T = {g(hi(u,v,w),u, he(u,v,w), hg(u, v, w),v,w),u,v,w € R},
those to the group Inn(L) in G;,i = 7,8, are

S = {g<fl(k7lam)>f2(kal>m)af3(k7lam)7k>lam)>k7lam S R}a

T = {g(h1<u7vvw)7 hg(u,U,w),hg(u,v,w),u,v,w),u,v,w € R}7

where fi(k,l,m) : R®> — R and h;(u,v,w) : R® = R, i = 1,2,3, are
continuous functions with f;(0,0,0) = h;(0,0,0) = 0. We prove that none
of the groups G;, 7 = 1,...,5, and ijzl,j = 6, 7,8, satisfy the condition
that for all s € S and t € T one has s™'¢"'st € Inn(L). By Lemma 7
these groups are not multiplication groups of L. Taking the elements

s =g(0, f1(0,0,m), f2(0,0,m), f3(0,0,m),0,m) € S,

t =g(0,h1(0,v,0), hy(0,v,0), h3(0,v,0),v,0) € T

in Gy, i = 1,3,4, 5, the products s~ 't~ !st are contained in Inn(L) if and
only if the equation

i=1:vm=(1—-e")hy(0,v,0)+ (e7” —1)f3(0,0,m)+
hi(0,v,0)e”* (1 — e ™) + £1(0,0,m)e "™ (e”™ — 1), (34)
i=3: —vm=(1—-e")h1(0,v,0) —ve " f5(0,0,m)+
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(f3(0,0,m) 4+ f2(0,0,m)) (e — 1), (35)
i=4: —vm = h(0,0,0)e" (1 — ™) + £1(0,0,m)e """ (e”™ — 1)+
(1 —e™)(e1h2(0,v,0) + £2h3(0,v,0))+
(cosv — 1)(e1f2(0,0,m) 4+ £2f3(0,0,m))+

sinwv(eg f2(0,0,m) — &1 f3(0,0,m)) (36)
i=5: vm=-¢e1e"[f2(0,0,m)(cos(v) — e™) — sin(v) f3(0,0,m)|+

gqe” “[sin(v) f2(0,0,m)+ f3(0,0,m)(cos(v) —e*”)]+h1(0,v,0)(1 —e™ ™)
(37)
holds for all m,v € R. On the left hand side of (34), (35), (36), (37) there
is the term vm hence there is no function h;(0,v,0), f;(0,0,m), i =1,2,3,
satisfying equations (34), (35), (36), (37).
Taking the elements s = ¢(0, f1(0,0,m), f2(0,0,m), f3(0,0,m),0,m) €
S, t = g(0,h1(0,v,w), he(0,v,w), h3(0,v,w),v,w) € T of G5 the prod-
ucts s~ !st are contained in Inn(L) if and only if the equation

mv =e " f5(0,0,m)v 4+ hy (0, v, w)e”" (1 — e )+

f1(0,0,m)e” ™ (e” " = 1) + (h3(0, v, w) +chg(0,v,w))e (1 —e ™)+
(f3(0,0,m) 4+ €f2(0,0,m))e " (e™ — 1) (38)

holds for all m, v, w € R. The left hand side is mv. But there does not exist
any function h;(0,v,w), f;(0,0,m), i = 1,2, 3, satisfying equation (38).
Taking the elements s = ¢g(f1(0,0,m),0, f2(0,0,m), f3(0,0,m),0,m) €
S, t = g(h1(0,v,0),0, he(0,v,0), h3(0,v,0),v,0) € T of G=, respec-
tively the elements

S = g(fl<0a07m)7f2<0>Ovm)7f3(0707m)70707m) € Sa

t = g(h1(0,v,0), hy(0,v,0), h3(0,v,0),0,v,0) € T
of G==""= and of G5=! the products s~'t~'st are contained in Inn(L) if

and only if in case G5! the equation

1
§v2m —vf1(0,0,m) = (1 — ™) (e2h2(0,v,0) + e3h3(0,v,0)) — e;vm+

(cos(v) — 1)(e2/2(0,0,m) + £3f3(0,0,m))+
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sin(v)(e3f2(0,0,m) — &3 f3(0,0,m)), (39)

. . =1,a=0 .
respectively in case G5~ “~ the equation

1
51}27” —vf3(0,0,m) =

(f1(0,0,m) — h1(0,v,0))e"" (1 cos(m) + 2 sin(m))+
(f2(0,0,m) — ha(0,v,0))e""(e9 cos(m) — ;1 sin(m))+
sin(m)(e1 f2(0,0,m) — 2£1(0,0,m))—
cos(m)(e1£1(0,0,m) 4+ €2 f2(0,0,m))+

e “(e1h1(0,v,0) + e2h2(0,v,0)) — ezvm, (40)
respectively in case G5~ the equation

1
§v2m —vf3(0,0,m) = h1(0,v,0)e” (1 —e ") + ha(0,v,0)(1 —e ™)+

f1(0,0,m)e” (™" — 1) — eum 41)

holds for all m,v € R. On the left hand side of equations (39), (40), (41)
there is the term %UQm. Hence there does not exist any function 4;(0, v, 0),
fi(0,0,m), i = 1,2, 3, satisfying equations (39), (40), (41).

The products s~ 1t~ 1st with

S = g(fl(ovl7m)vfQ(Ovl’m)vfS(Ovl’m)vovl7m)

t = g(h1(0,v,0),hy(0,v,0), h3(0,v,0),0,v,0)

in G27%°=! are contained in Inn(L) if and only if the equation

(vI* —v*l—a*vm?)+(am+1)h3(0,v,0)—v f3(0,1,m)—amv? = ezvam+

N | —

(f1(0,1,m) — hy(0,v,0))e """ (g1 cosm + g sinm) + e "g1h1(0, v, 0)+
(f2(0,1,m) — ha(0,v,0))e " (g5 cosm — ey sinm) 4+ e e2hy(0, v, 0)+

f2(0,1,m)e (e sinm + ey cosm) — f1(0,1,m)e " (easinm + 1 cosm)
(42)
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holds for all [, m,v € R, where ¢; € {0,1}, ¢ = 1,2,3, such that &; # 0
or €5 # 0. Since on the left hand side of (42) is the term —%UQZ and a # 0
there is no function f;(0,7,m), h;(0,v,0), ¢ = 1,2, 3, such that equation
(42) holds.
The set

S=T=

{g(% (e'(I4-am)(ecos(m) —egsin(m)) +sin(m))(1sin(m) +ezcos(m)),

;(el(l + am)(eysin(m) + eacos(m)) — sin(m)(g1cos(m) — eqcos(m)),

elcos(m) — 1,k,1,m); k,l,m € R},
where €1,e5 € {0,1} and 0 = €] + €3 # 0, is an Inn(L);-connected left
transversal in G5~ with the property GE=° = (S5).
The set
S ={g(0,le™ 1 —e " Kk I,m); k,l,m € R},
T = {g(_vev+aw7 07 e — 17 u,v, U}), u,v,w € R}

are Inn(L)g-connected left transversals in the group G5=° such that S U T'
generates G5=.

The sets
S=T={g(e ™cos(l) — 1, k,
%(lem(sgcos(l) —ezsin(l)) + sin(l))(e3cos(l) + easin(l)),
%(lem(egsm(l) + e3cos(l)) + sin(l)(e3sin(l) — eacos(l)), 1, m);

k,l,m € R},

with 9,65 € {0,1} and 6 = 3 + €3 # 0 is an Inn(L)s-connected left
transversal in G5~ which generates the group G5=°. This shows the asser-
tion. U

Now we study the 6-dimensional decomposable solvable Lie groups
with 1-dimensional centre which are the groups Mult(L) of 3-dimensional
connected simply connected topological loops L.
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Theorem 26. Let L be a connected topological loop of dimension 3 such
that its multiplication group Mult(L) is a 6-dimensional decomposable
solvable Lie group with 1-dimensional centre. Then L has nilpotency class
2. Moreover, the following Lie algebra pairs can occur as the Lie algebra
g of the group Mult(L) and the subalgebra k of the subgroup Inn(L):
If g has the formg = R® h = (f1) @ (e, eq, €3, €4, €5), where h is a 5-
dimensional solvable indecomposable Lie algebra with trivial centre, then
one has:

g = R gl [ese5] = e, [er,e5] = er, [ea,e5] = e,
leg, 5] = Pes, ke = (e1 + fi,ea +efi,ea+ f1), € = 0,1,

go =R g?f,;g-' leg, e3] = e1, [e1, e5] = e1, [ea, e5] = €, [e4,€5) =
e1 +ey, ko= (e1+ freo+efi,eat+asfi), as € R, e=0,1,

gz = RO 85,27 [62763] = €y, [61765] = €y, [63765] = e3 + ey,
leq,e5) = e1 +es, ks = (e1 + f1,e3,ea +azfr), a3 € R,

g =R& g?,?z?’ [ea, €3] = ey, [e1,e5] = ey, [e3,e5] = ez + ey,
[647 65] = €4, k4 = <€1 + a’lflu €3, €4 + fl)) ay € R\{O})

gs = R@g5,325 [627 64] = e, [63, 64] = €2, [61, 65] = ey, [62, 65] = €,
[63765] = he; +e3, ks = (61 + fi,ea +asfi,es), h,as € R,

gs =R® 5,33 [61764] = €y, [63764] = fes, [62765] = €9, [63765] =
yes, 52 + 72 # 0, kg = <€1 + fi,ea+ f1,es+ f1>,

g7 = R® gs34- [e1, 4] = ey, [e2,e4] = €9, [e3,e4] = €3, [e1,65] =
e1, [es, e5] = e, k7 = (e1 + f1,e2 + f1,e3+ asf1), a,a3 € R,

gs =R 85,35 [61, 64] = hey, [62764] = €9, [63764] = €3, [61, 65] =
aey, [ea, e5] = —es, €3, e5] = €9, B + a* £ 0, kg1 = (e1 + fi,ea +
fi.es+asfi), as € R kso = (e1 + f1,e2,e3 + f1).

If g is the Lie algebra ly, ® n = (f1, f2) ® (e1, €2, €3, €4), where n is a 4-
dimensional solvable Lie algebra with 1-dimensional centre (e1), then we

have:

g0 = L @ gu1: [f1,fo] = f1, [ea,eq] = €1, [e3,e4] = €2, kg =
(fi +e1,e0+ aseq,e3), az € R,
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®* 810 = I, ® 84,3 [fl,fz] = f1, [61764] = €1, [63764] = ey, ki =
<f1 +62761 +62763>'

If g is one of the following Lie algebras f3 ® g3, and l; ©R © g3, © =
2,3,4,5, where the centre of 5 = (e1, ea, €3) is (e1) and gs3; = (e, es, €6)
is a 3-dimensional solvable Lie algebra with trivial centre, then one has:

* g1 = f5 @ gsar [ea,e3] = €1, [ea,e6] = ey, [e5,66] = €4 + €5,
ki11 = (e2,e4 + €1,5), k12 = (€3, e4 + €1, €5),

* g1o = f5 B gssr [ea,e3] = €1, [es,e6] = €4, [e5,e6] = €5, kio1 =
(€g,€e4 +e1,65 +e1), kioo = (e3,e4 + e1,65 + €1),

e g3 =13 D g34” [62763] = €1, [64,66] = €4, [65766] =hes, =1 < h <
L h#0, kig1 = (ea,eqs +e1,65+e€1), kiso = (e3,e4 + €1, €5+ €1),

o g1y =3B 8357 [e2, €3] = ey, [eq, €] = pes — €5, [es, €] = e + pes,
p >0 kig1 = (e2,ea+e1,e5+aser), kigo = (e3,e4+e1, e5+asey),
az € R\{0}, kis3 = (€2, €4, €5+ €1), kiaa = (€3, €4, 5 + €1),

* g5 = LORD 32 [fi1, o] = [, [ea, e6] = €4, [e5,66) = €4 + €5,
kis = (f1 +es,e4 +e3,¢€5),

* g6 = LBR®gss: [f1,fo] = fi, [ea,e6] = eq, [e5,66] = es,
kig = (f1 + es,eq + €3,65 + €3),

* g1 = LBAR® g4 [f1, fo] = f1, [ea,e6] = eu, [e5,e6] = hes,
—1<h<1,h#0kiz=(f1 +es eq+ese5+e3),

® 818 = L R @ 835 [f1;f2] = fl, [64766] = p€y — €5, [65766] =
es +pes, p > 0, kigs = (fi + e3,e4 + 3,65 + ages), ag € R,
kiso = (fi +es, 4,65 + €3).

Proof. By Lemma 9 we may assume that the loop L is simply connected
and hence it is homeomorphic to R3. Every 6-dimensional decomposable
solvable Lie algebra with 1-dimensional centre has one of the following
forms: R @ h, I, ® n, f3 ® g3;, and 1, @ R @ g3,, where h, n, g3;
are described in the assertion. For h we have the following possibilities:
g5 ¢ = 7,9,11,12,13,16,17,18,21, 23,24, 27, 31, 32, 33, 34, 35, 36, 37
and ggfg, gg‘jo,j =19, 20, 28, gg’fco, k = 25, 26, g?}fﬁ. For n one has the
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following Lie algebras g4 ,,1 = 1, 3, gffg_l, gZEO and for the 3-dimensional

solvable Lie algebras with trivial centre we have g3 ;, 7 = 2, 3,4, 5 (cf. [24],
§4, §5, and [25], §10, p. 105-106).

To prove the first assertion we have to show that L has a normal subloop
N isomorphic to R such that the factor loop L/N is isomorphic to R? (cf.
Theorems 12 and 17). Assume firstly that the Lie algebra g of the group
Mult(L) of L has the form R & h = (f;) @ (e1,e2,€3,€e4,¢5). If h #
gs.i, © = 33, 34, then there does not exist any ideal s containing the centre
z = (f1) of g such that the factor Lie algebras (R & h)/s are isomorphic
tof,,n =4,50rtol, ®1y. According to Proposition 19 a) the factor loop
L/Z(e), where Z = exp(z), is isomorphic to R? and the orbit Z(e) is the
normal subloop N.

The Lie algebras R @ g5;, ¢« = 33,34, have no factor Lie algebras
isomorphic to f,,, n = 4, 5. The Lie algebra R & g5 34 has the ideal i = (ey).
None of the factor Lie algebras R & g5 54/s, where s is any ideal containing
i, is isomorphic to 1y @ 1. Therefore the orbit I(e), where [ is the simply
connected Lie group of i, can choose as the normal subloop V.

The Lie algebra R & g5 33, 3% + 7* # 0, have the ideals i; = (f1),
iy = (e1), i3 = (e2), is = (e3). If R & g5 33 is the Lie algebra of the
group Mult(L) of L, then the orbits [;(e), j € {1,2,3,4}, are normal
subgroups of L isomorphic to R. The factor loops L/I;(e), j € {1,2, 3,4},
are isomorphic either to £, or to R? (cf. Proposition 19 a). If all factor
loops L/I;(e), j € {1,2,3,4}, are isomorphic to L,, then by Proposition
19 (ii) there are 2-dimensional ideals s;, j € {1,2,3,4}, such thati; < s;
and the factor Lie algebras R & g5 33/s; are isomorphic to 1, & I,. For the
ideal s; = s4 = (f1,e3) onehas R @ gs33/s) = Ly 1, | = 1,4. The
factor Lie algebra R @ g5 33/(f1, €1) is isomorphic to 1o @ 1, if and only if
v = 0and R @ gs533/(f1,e2) is isomorphic to 1, & 1, precisely if 5 = 0.
This contradiction to 3% +~2 # 0 yields that at least one of the factor loops
L/I;(e), j € {1,2,3,4}, is isomorphic to R?. For such j € {1,2,3,4}
the orbit /;(e) is the requested normal subgroup N of L. Hence L has
nilpotency class 2.

By Proposition 19 (i) the Lie algebra R & h has a 4-dimensional abelian
ideal p = z ® k, where z = (f;) and k is the Lie algebra of the group
Inn(L) and p contains the commutator subalgebra of R & h. According to
Lemma 8 the subalgebra k does not contain any non-zero ideal of g and the
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normalizer Ng (k) of k in g is p. The commutator subalgebra of R & h co-
incides with the commutator subalgebra h’ of h. The intersection of z and
h' is trivial. Since h’ < p the Lie algebra h has a 3-dimensional abelian
commutator subalgebra. Then for the triples (g, p, k) we obtain:
(a) For the Lie algebras R @ gg7°, j = 19,20, we have p = (f1, €1, €3, €4).
The subalgebra k has the form: kg, 4, o; = (€1+ a1 f1,e2+aaf1,es+asf1),
a; € R, i =1,2,3, such that for j = 19 one has a; # 0, a3 # 0 since (e;)
and (e4) are ideals of R @ gg 7y,
for j = 20 we have a; # 0 since (e) is an ideal of R @ g¢5¢. Applying
the automorphism ¢(f1) = f1, ¢(e1) = arer, dle2) = €2, d(e3) = are,
¢(es) = ases, ¢(es) = e5 for the Lie algebra R @ gg7g, if a; = 0, re-
spectively ¢(es) = ases, P(e3) = ftes, if ay # 0, we can reduce Ko, a; a4
to k., where € equals to 0, respectively to 1. Using the automorphism
¢(fi) = = fi. ¢les) = e, i = 1,2,3,4,5, for the Lie algebra R & gg5,
if ay = 0, respectively ¢(f1) = f1, ¢(e;) = arej, § = 1,4, ¢p(ez) = azes,
¢(e3) = ttes, dles) = e5if az # 0 the Lie algebra ky, 4, o, reduces to ko,
where € is equal to 0, respectively to 1.
(b) For the Lie algebras R&® g o7 and R@ggﬁg we have p = (f1, e1, €3, €4),
the subalgebra k has the form: kg, 4, oy = (€14 a1 f1, €3+ aaf1,e4+asf1),
a; € R,i=1,2,3, such that if ; = 27 one has a; # 0, since (e;) is an ideal
of R & g5 27,
if j = 28 one has ajas # 0 since (e1) and (e4) are ideals of R @& g7y
Using the automorphism ¢(f1) = f1, ¢(e;) = are;, i = 1,4, ¢(e;) = e,
Jj =2,5, ¢(e3) = ajes + aqe; for R @ g5 o7, respectively ¢(eq) = ajazes,
d(ea) = ajes, d(es) = ases + ageq, d(eq) = agey for R & gg§§ we can
reduce kg, 4,4, t0 ks, respectively to ky in the assertion.
(c) For the Lie algebras R®gs ;, ¢ = 32, 33, 34, 35, we get that the ideal p =
(f1,e1, e, e3), the subalgebra k has the form: K, 4,45 = (€1 + a1f1, €2 +
a2f1,€3 + a3f1>, a; € R, 1= 1,2,3, such that lfj = 32 we have ay 7é 0
since (e;) is an ideal of R & g 3o,
if j = 33 we have ajasas # 0 since (e;), (e5) and (e3) are ideals of
R @ g5 33,
if j = 34 we have ajay # 0 since (e1), (es) are ideals of R @ g5 34,
if j = 35 we have a; # 0 and at least one of {a», a3} is different from 0
since (e;) and (eq, e3) are ideals of R & gj 35.
The automorphism ¢(f1) = fi, ¢(e;) = are;, @ = 1,2, ¢(e3) = ares +
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aze; and ¢(e;) = e, j = 4,5 for R @ gs 30, respectively ¢(ez) = age,
¢(e3) = ases for Rgs 33, respectively ¢(e;) = ages, s = 2, 3, for RBgs 54
reduces the Lie algebra k,, ,, 4, to ks, respectively to kg, respectively to ky
in the assertion. Applying the automorphism ¢(f1) = fi, ¢(e1) = ajes,
P(e;) = age;, i = 2,3 and ¢(e;) = e, j = 4,5, for the Lie algebra
R @ g5 35 if a1ag # 0, respectively ¢(es) = ases, s = 2,3, if ajaz # 0 and
ay; = 0 we can reduce Kg, 4,4, t0 kg1, respectively K, .4, to kg in the
assertion.

Secondly, assume that the Lie algebra of the group Mult(L) of L has
the shape: 1, &n = (f1, f2) ® (e1, €2, €3, €4) as in the assertion. If n # gy 1,
then there does not exist any ideal s containing the ideal i = (f;) such that
the factor Lie algebras (1, ®n) /s are isomorphic to f,,, n = 4,5 orto L, B L.
The Lie algebra 1, & g4 1 has the centre i = (e;), but it has no factor Lie
algebra isomorphic to 1, & 1,. None of the factor Lie algebras 1, & g41/s,
where s is any ideal containing i, are isomorphic to f,,, n = 4, 5. Hence in
both cases the orbit /(e), where I is the simply connected Lie group of i,
is a normal subgroup of L isomorphic to R and the factor loop L/I(e) is
isomorphic to R? (cf. Proposition 19 a). According to Lemma 10 a) and
Theorem 17 in both cases the orbit /(e) coincides with the centre Z (L) of
L and L has nilpotency class 2.

Moreover, the Lie algebra 1 ¢ n has a 4-dimensional abelian ideal p =
z @k, where z is the 1-dimensional centre of I, ®n and k is the Lie algebra
of the group Inn(L), such that p contains the commutator subalgebra of
1, @ n. The commutator subalgebra of 1, ® g4, 7 = 1,3, 8,9, is the direct
sum (f1) @ g} ;, where g ; is the commutator subalgebra of g, ;. Since the
commutator subalgebras g;j, j = 8,9, are not abelian, the Lie algebras
Il ® g4, 7 = 8,9, are excluded. Hence we have to deal with the Lie
algebras 1y © ga 1, k =1, 3.

(d) The Lie algebra 1, & g4 has the centre z = (e;) and one has p =
(f1,e1, e, e3). The subalgebra k has the form: k, 4, 0, = (f1 + @161, €2 +
aser, ez + ager), a; € R, i = 1,2,3, such that a; # 0 since (f;) is an
ideal of 1, @ g4 ;. The centre of the Lie algebra I, & g3 is z = (eq)
and the ideal p is again (fi, e, e, e3). The subalgebra k has the form:
kal,az,ag = <f1 + aies9,e1 + asea, 3 + CL362>, a; € R, 1 = 1,2,3 such
that a; # 0 and ay # O since (f1) and (e;) are ideals of 1, & g4 3. The
automorphism ¢(f1) = a1 f1, ¢(f2) = fo, ¢les) = e3 — azer, P(e;) = e,
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i =1,2,4, of 1 ® g4 1, respectively ¢(e1) = agey, ¢(e3) = e3 — azes of
1, @ g 3, reduces the Lie algebra k,, 4, o, t0 ko, respectively to ko, in the
assertion.

Finally, for the Lie algebras f; & gs; = (e, €2, e3) @ (e, €5, e), re-
spectively b @R @ g3; = (f1, f2) ® (e3) ® (ea, €5, €6), 1 = 2,3,4, 5, there
does not exist any ideal s, respectively so, containing the ideal i; = (e1),
respectively io = (f1), such that the factor Lie algebras f3 © g3 ;/s1, respec-
tively I, & R & g3 ;/s,, are isomorphic to f,,, n = 4,5, or to 1, & 1,. Hence
iffsdgs;orly DR D gz, @ = 2,3,4,5, is the Lie algebra of the group
Mult(L) of L, then the orbits I;(e), ¢ = 1,2, are the centre of L such that
the factor loops L/I;(e), i = 1,2, are isomorphic to R? (cf. Lemma 10 a)
and Theorem 17). Hence L is centrally nilpotent of class 2.

According to Proposition 19 (i) we have to find an ideal p = zk =~ R*
of the Lie algebras fs @ g3, and l, DR @ g3, ¢ = 2, 3,4, 5, where z is their
1-dimensional centre, p contains their commutator subalgebra and k is the
Lie algebra of the group Inn(L) satisfying the assertion of Lemma 8.

(e) The Lie algebras f3 & g3, i = 2,3,4,5, have the centre z = (e;)
and the ideal p has one of the forms : p, = (e1,e2 + res, eq,e5), 7 € R,
and p = (ey,e3,€eq,€5). With respect to the ideals p,, p we obtain the
subalgebras k, = (es + res + ajer, eq + asey, 5 + azer), Koy ap.05 = (€3 +
ajer, eq + aseq, es + aser), r,a; € R, i = 1,23, such that in the case
f5 @ g3 2 one has as # 0 since (e4) is an ideal of f5 & g3 o,

in the cases f3 & g3, i = 3,4, we have asaz # 0 since (e4), (e5) are ideals
of f3 @ g3,

in the case f5 @ g3 5 one has ay # 0 or a3 # 0 since (ey, €5) is an ideal
of f3 @ g3 5. The automorphism ¢(ez) = ex — res — ajey, ¢(es) = asey,
d(es) = agses + aszeq and ¢(e;) = e;, 7 = 1,3,6, respectively ¢(ey) =
es, ¢(e3) = es — areq, of f5 @ g3 o maps the subalgebra k, onto ki 1,
respectively K., 4,4, 0nto ki1 2. The automorphism ¢(es) = ea—res—agey,
d(eq) = asey, d(e;) = ases and ¢(e;) = e;, j = 1,3,6, respectively
d(e2) = eg and ¢(e3) = ez — azey, of g31 @ &34, @ = 3,4, maps the
subalgebra k, onto ko1 = ki3, respectively kg, 4, 4, Onto k129 = ki3,
in the assertion. For the Lie algebra f5 & gs 5 the automorphisms ¢(ez) =
ea —reg —arey, P(ej) = azej, j = 4,5, ¢(e;) = e;, 1 = 1, 3,6, respectively
p(e2) = e, p(es) = e3 — aqey, if ag # 0, reduce k, to ki, 1, respectively
Ko, 49,05 t0 K142. Moreover, if ag # 0 and ay = 0, then the automorphisms
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P(es) = ea —res — arer, ¢(ej) = asej, j = 4,5, ¢p(e;) = e;, 1 = 1,3,6,
respectively ¢(ey) = es, ¢(e3) = e3 — ajeq, change the Lie algebra k, to
k43, respectively K, 4,45 t0 K144, in the assertion.

The centre of the Lie algebras I, ® R @ g3 ; with¢ = 2,3,4,5,1s z =
(e3) and their ideal p is (f1,e4, €5, e3). The subalgebra k has the form:
Koy asas = (f1 + ares, eq + ases, e5 + azes), a; € R, i = 1,2, 3, such that
in the case I, & R @ g3 » we have ajas # 0 since (f;) and (e,4) are ideals of
l, DR D g3,
in the cases I, & R & g3 ;, ¢ = 3,4, one has ajasas # 0 since (f1), (e4) and
(e5) are ideals of I, ® R & g3,
in the case 1, @ R @ g3 5 we have a; # 0 and at least one of {as, a3} is
different from 0 since (f;) and (e4, e5) are ideals of 1, & R & g3 5. Using
the automorphism ¢(f1) = alfl, Qb(fg) = fg, ¢(64) = @964, ¢(65> =
ases + aszey and ¢(e;) = ej, j = 3,6, for I & R & g3, respectively
o(e5) = ase; forly R @ g3 4, @ = 3, 4, the Lie algebra k,, 4, 4, reduces to
k5, respectively to kig = ky7. Applying the automorphism ¢(f1) = a4 fi,
¢(f2) = fo, d(ea) = azeq, ¢(e5) = azes and ¢(e;) = e;, j = 3,6, for
l, ® R @ gs5, if ajay # 0, respectively ¢(eq) = aszeq and ¢(e5) = ases, if
ajaz # 0 and as = 0, we can reduce Kk, 4, o t0 ks 1, respectively k, 0,45
to kg 2. This proves the assertion. ]

Using ([39], §4) we obtain:

Lemma 27. The simply connected Lie group G; and its subgroup K; of the
Lie algebra g; and its subalgebra k;, i = 1,...,18, given in Theorem 26
is isomorphic to the linear group of matrices the multiplication of which is
given by:
fori=1

9(1’1,3527333, 1’473?57%6)9@17?/2, Y3, Y4, Ys, yﬁ) = g(l’1 + (y1 - $3y2)€x5,

Ty + 2™, (w3 + y3)e™ Y, kg + ya€”™, 5 + ys, 76 + Ys),
Ky ={g(u1,u2,0,u3,0,u; + eus + us);u; € R,i = 1,2, 3},
beR\{0},e=0,1,
fori =2

9(931,$2,£U3,5E4,$5,f6)9(yl,y27?/3,y4>y5ayﬁ) =
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g(x1 + (Y1 — x3ya + T5Y4) €™, T2 + Y2,

(23 + y3)e™ 5, x4 + y4e™, 25 + Y5, T6 + Ys),
Ky ={g(u1,u2,0,us,0,u1 + eus + agus);u; € R, =1,2,3},
e=0,1,a3 € R,
fori =3

9(951,332,373,$4,$57~’U6)9(y17y2ay3,y47y5ay6) =

1 1 1
g1+ (y1 +5ys+ 5(2@ +22)y3)e”™, (Ta+yo+T5Ys5+ 51/52) + §$§)€$5+y5,

w3+ y3e, xy + (Y4 + 5Y3)€™®, 5 + Y5, Te + Ys),
K3 = {g(u1,0,ug,u3,0,u; + azusz);u; € Ryi =1,2,3},a3 € R,
fori =4

9(x1, o, 23, T4, 5, T6) g (Y1, Y2, Y3, Y4, Us, Ys) = g(z1 + (y1 + 22y3)e™,

(22 + y2)e™ Y w3 + yse™, x4 + (ys + x5y3)e”™, T5 + Y5, T6 + o),
K4 = {g(ul,(),u2,u3,0,a1u1 + u3);u,- S R,Z = 1, 2,3},&1 € R\{O},
fori =15

9($1,I2,$3,904%5@6)9(917?927?/3,y4,y5a3/6) =

1
g(x1 + (1 + zay2 + azsys + §$421y3)6x57 Ty + (Y2 + T4y3)e™,

T3+ y3€™, (24 + ya)e™ T x5 + Y5, 26 + Y6), @ € R,
KS = {g(u17u27u370707u1 + &2u2);ui S sz = 17273}7&2 S Ra
fori =26

g(xb T2, T3, T4, Ts, «T6)g<y17 Y2,Y3, Y4, Ys, yG) =

g(z1 + y1€™, oo + yoe™®, w3 + y3e T 2y 4 Y4, 25 + Y5, Te + Vo)
K = {g(u1,us,u3,0,0,u1 +ug +ug);u; € Ryi =1, 2,3},@2 + b2 £0,
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fori =17

ar4+s

g(l‘l, T2, T3, T4, Ts, Iﬁ)g(yh Y2,Y3, Y4, Ys, y6> = 9(1’1 + € )

Ty + (Yo + T5Y3)€™, T3 + ys€™, Tg + ys T (25 + y5)e™ T 16 + yg),
K7 = {g(uy,us,u3,0,0,u; + us + azuz);u; € Ryi =1,2,3},a,a3 € R,
fori =28

azrs+bry
)

g(wla To,T3,T4,Ts, x@)g(yla Y2,Ys3, Ya, 95>y6) = g($1 + 1€

To + (yocos(x5) — yssin(zs))e™, x3 + (yscos(xs) + yosin(xs))e™,

Ty + Y1, Ts + Y5, To + Yo), a° + b> # 0,
Ks1 = {g(ur,u2,us,0,0,u; + us + asus);u; € Ryi =1,2,3}, a3 € R,
Kgso = {g(u1,us,us,0,0,u; + ug);u; € Ryi =1,2,3},
fori =9

g($17x27a73ax47x57x6)g(y17y27y3ay47y57y6) =

1
g(z1+m +x4y2+§wiys, To+Yo+T4Ys, T3+Ys, Ta+Ys, T5+Ys€™®, To+Ys),

Ko = {g(u1 + agus, ug, us, 0,u1,0);u; € Rii=1,2,3}, a2 € R,
fori =10

9(931,952,533,374,3357556)9(91,y27y3,y4>y57y6) =

(1 +y1e™, 2o+ Yo + Tays, T3 + Y3, Ta + Y, Ts + Y5, 6 + Ys),
Klo = {g(ulaul +U3,U2,0,U3,0);ui € Ral = 17273}7
fori =11

9(x1, X, 23, T4, 5, T6)9(Y1, Y2, Y3, Y4, Us, Ys) = 9(T1 + Y1 + 22y3,

Ty + Y2, 3 + Y3, Ta + (Ys + TeYs)e™, 25 + yse™®, x6 + Ys),
Kll,l - {9(”%“1707“2’“370);%‘ € R)l = 17273}7
K11,2 = {g(U;Q,O,UhUQ,Ug,O);UZ‘ € R7Z = 17 2a 3}7
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fori =12
g($1,$27$3,I47$57$6)9(y1,y2ay3,y4ay5;y6) =

g(z1 + y1 + 22y3, T2 + Y2, T3 + Y3, Ta + ya€™, T5 + y5™°, T + Y5),
K12,1 = {9(U2 + U’37u1707u27u370);ui € R,Z = 17273}7
K12,2 - {g(UQ + Uus, O,Ul,UQ,Ug,O);Ui € Ral = 17273}a

fori =13

9(x1, o, 23, T4, 5, T6)g(Y1, Y2, Y3, Y4, Us, Ys) = g(T1 + Y1 + 22y3,
To + Yo, T3 + Y3, Ta + Y™, T5 + Y5, 26 + y5), —1 < h < 1,h # 0,

K13,1 = {g(uZ + U3,U1,O,UQ,U3,0);UZ' € R7Z = 17253}7
K13,2 = {g(UQ + us, O)u17u27u3)0);u7§ € Ral = 17273}7

fori =14

g(xh T2, T3, T4, Ts, x6)g<y17 Y2,Y3, Y4, Ys, yG) =

g(x1 + y1 + xays, T2 + Yo, T3 + Y3, T4 + (yacos(xg) + yssin(xg))eP™e,
x5 + (yscos(ze) — yasin(ws))e’™, x6 + ys),p > 0,

K41 = {g(ua + agus, uy, 0, ug, u3, 0);u; € Ry =1,2,3, }, a3 € R\{0},
K40 = {g(ua + asus, 0, uy, ug, us, 0);u; € R,i =1,2,3, }, a3 € R\{0},
Kiy3 = {g(us,u1,0,us,us,0);u; € R;i =1,2,3},

Kiy4 = {9(us,0,u1,us,us3,0);u; € R,i =1,2,3},

fori =15

9(951,%27173,$4’$57$6)9(y17y2ay3,y4yy5ay6) =

g(x1+ 11", o+ Y2, T3 +ys3e™, x4 + (Ys + Toys)e™, x5 + yse™, 6 + o),
K5 = {g(u1,0,uq + ug, us, u3,0);u; € Ryi =1,2,3},
fori =16

9(931,$2,£U3,164,%5,556)9(91,yzj?/3,y4>y5a?/6) =
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g(z1 + y1€™, 20 + Y2, T3 + Y3, T4 + Y1, x5 + ys€”, 16 + Ys),
K6 = {g(u1,0,u1 + ug + us, ug, usz,0);u; € R,1 =1,2,3},
fori =17

9($1,$2,$3, Ty, 965,%6)9(91,927@3, Ya, Ys, yﬁ) = g(xl + 116",

To + Yo, X3 + yz€™?, Xy + yse™®, x5 +y5ehm6,x6 +ys), -1 <h<1l,h#0,
K17 = {g(U1,0,U1 + ug + u37u2au370);ui € Ral = 17 273}a
fori =18

9(901@2@3,$47$5,$6)9(yl>y2793,y4,y57?/6) =

g(r1 + y1€%, o + Yo, T3 + y3€*2, x4 + (yscos(xg) + yssin(xg))el™,
x5 + (yscos(ze) — yasin(ws))e’™, x6 + ys),p > 0,
Kig1 = {g(u1,0,u; + ug + asus, uz, us,0);u; € R, =1,2,3}, a3 € R,
Kigo = {g(u1,0,u; + us, us, us,0);u; € R,i =1,2,3}.
Proposition 28. There does not exist any 3-dimensional connected topo-

logical proper loop L such that the Lie algebra g of the group Mult(L) is
one of the Lie algebras g;, 1 = 14,18, with p = 0.

Proof. We may assume that L is simply connected and hence it is home-
omorphic to R? (cf. Lemma 9). We prove that none of the groups Gj,
1 = 14,18, with p = 0 allow the existence of continuous left transver-
sals S and T to K; in (G; such that for all s € S and ¢ € T one has
s 4 1st € K; and S U T generates ;. Hence Lemma 7 yields that the
groups G;, i = 14,18, with p = 0 are not the multiplication group of a
loop L. This proves the assertion. Two arbitrary left transversals to the
subgroups K4, % = 1,3, in G4 are:

S = {g(u,fl(u,v,w),v,fg(u,v,w),f3(u,v,w),w);u,v,w € R},

T = {g(k’gl(k7 l7m)7 l7g2(k7l7m)7g3(ka l7m)am)7 kalam S R}7
those to the subgroups K14 ;, 7 = 2,4, in G4 are:

S = {g<u>U7 fl(u,v,w),fg(u,v,w),fg(u,v,w),w);u,v,w € R},
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T = {g(kJ l?.gl(k?l7m>792(k7l7m)7g3(k7 l7m)am)7 kvlam S R}?
and those to the subgroups K3 ;, j = 1,2, in G5 are:

S = {g<f1(uav7w>7u7U?fQ(uvvaw)af?)(u7v7w)7w>;uav7w € R}a

T = {g(gl(ka lam)a ka l7g2<k7l7m>7g3(k7 l>m)am)7 k7lam € R}?

where fi(u,v,w) : R* = Rand g;(k,l,m) : R* - R, = 1,2, 3, are con-
tinuous functions with £;(0,0,0) = ¢;(0,0,0) = 0. The products s~ 't st,
s € S,t €T, are elements in K141, respectively in /149, respectively in
Kig1, if and only if

(cos(m) — 1)(fo(u, v, w)(cos(w) + azsin(w)))+
(cos(m) — 1)(fs(u, v, w) (ascos(w) — sin(w)))+
(cos(w) —1)(gs(k, I, m)(sin(m) — azcos(m)))—
(cos(w) — 1)(ga(k,1,m)(cos(m) + azsin(m)))
sin(m)(f2(u, v, w)(sin(w) — azcos(w))+

f3(u, v, w)(cos(w) + azsin(w)))+
sin(w)(gs(k,l,m)(cos(m)+assin(m))+ga(k,l,m)(sin(m)—agcos(m)))
fi(u, v, w)l — g1(k, 1, m)v, (43)

respectively
= q(k,l,m)v — fi(u,v,w)l, (44)

respectively
=e "1 —e")(filw,v,w) —v) — e M1 =) (gu(k, l,m) = 1), (45)

are satisfied for all k, [, m,u,v,w € R, with ag € R. Moreover, the prod-
ucts st !st, s € S, t € T, are elements in K14 3, respectively in K144,
respectively in Kg o, precisely if

(cos(m) — 1)(fa(u, v, w)sin(w) + f3(u, v, w)cos(w))—
(cos(w) — 1)(go(k, 1, m)sin(m) + g3(k,l, m)cos(m))+

sin(m)( fo(u, v,w)cos(w) — f3(u,v, w)sin(w))+
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sin(w)(gs(k, 1, m)sin(m) — ga2(k, 1, m)cos(m))
= fi(u,v,w)l — g1(k,l,m)v, (46)

respectively
= q(k,l,m)v — fi(u,v,w)l, (47)

respectively
=e “(1— e_k)(fl(u,v, w) —v) — e_k(l —e g1k, l,m)—1) (48)

hold for all k,l, m,u,v,w € R. The equations (43), (44), (45), (46), (47)
and (48) are satisfied precisely if their left hand side as well as their right
hand side are zero. The right hand side of these equations is zero if and
only if fi(u,v,w) = v and g;(k,l,m) = [. In that case the set S U T" does
not generate (G4, respectively Gs. ]

Theorem 29. Let L be a connected simply connected topological proper
loop of dimension 3 having a 6-dimensional solvable decomposable Lie
group with 1-dimensional centre as its multiplication group. Then the pairs
of the Lie groups (G;, K;), i = 1,---,18, given in Lemma 27, such that for
i = 14,18, one has p # 0, are the multiplication groups Mult(L) and the
inner mapping groups Inn(L) of L.

Proof. Taking into account Theorem 26 and Proposition 28 it remains to
find for each group G;, i = 1,---,18, in Lemma 27, such that for ; =
14,18, one has p # 0, K;-connected left transversals S;, T; (cf. Lemma 7).
The sets

Sio={g(1 —¢" —ue’(1 —e™™), e’ (1 —e™),
w,ue”™ " v, w); u, v, w € R},
Tip= {9(1 —e - kel(e —1)e (eibl —1),

k, —ke"= 1,m); k,l,m € R},

respectively
Sii={g9(1—e"(2+u—e (1 +u),e'(l—e),
w, ue? ™V, v, w);u, v, w € R},
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Ty, ={g9(1— el(e_bl + ke b — k), el(e_bl - 1),
k,—ke" ' 1,m); k,l,m € R},

are K o-, respectively K ;-connected left transversals, in Glféo. The set
So=Tao = {g(v* —u?® — azv + " — 1, u,u,v,v,w); u,v,w € R},

respectively

Soq =Ty = {g(v* —u? —u —azv + €' — 1,u,u,v,v,w);u,v,w € R},

as € R, are Ky, respectively K ;-connected left transversals, in G'o. The
set

1 1
Sy3=T3={g(e’"— 1+ (v—a3)v(l+u+asv— 51}2) + (u+azv — 51;2)2,

1 1
U, U+ azv — 5212,11(1 +u + azv — §v2),v,w);u,v,w € R}, a3 € R,
respectively Sy =Ty =

{g(—w,u,aru+v,1 =€’ +ayw+ (aru+v),v,w);u,v,w € R}, a; #0,

are K3-connected, respectively K -connected left transversals, in GJ, re-
spectively in G4. The set

1 1
S5 =T5 = {g(1 — e’ + 2auv — a2(§u2 + av — uay), av + §u2 — uas,
u,u,v,w);u,v,w € R} ag € R,

is K5-connected left transversal in G¢. The sets
SG — {g(eu o eufcwfbu’ el — evfuj eaerbufv o e(erlm7 u,v, ?,U), w, v, w E R},

T6 — {g<ek . ek—l7 el—al—bk’ . el7 eal-‘r-bk - eal-‘r—bk—k’ k, Lm)’ k, l, m e R}

2 2
are Kg-connected left transversals in G 70 The set
Sy =Tr = {g(ve™™ " 1 —e" — (ag —v)(e" — e*" ™),

et — "M w,v,w);u,v,w € R} az € R,
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is K7-connected left transversal in G5. The set

1
Ss1=Ts1 = {g(e“”+b“_“sin(v), g(e“(l — e_‘w_b“)(sin(v) + azcos(v))+

(" — cos(v))(cos(v) — azsin(v)), 1((6“ — cos(v))(sin(v) + ascos(v))

u—av—bu)(

—(e" —e cos(v) — agsin(v)),u, v, w);

u,v,w € R}, a3 € R, & =1+ a3,

respectively
Sgo = Tso = {g(esin(v), (e* — "~ ")cos(v) — (e* — cos(v))sin(v),

(e — e~ ") sin(v) + (" — cos(v))cos(v), u, v, w); u,v,w € R},

. . 2,312
are Ky -, respectively Ky o-connected left transversals, in Gg 0 The
sets

1
So={g(u,v+(1—e")(az+v), 1 —e ™ v, —5026w,w),u,v,w € R},

1
T9 = {g(l{?,l + (e_m - 1)(@2 + l)’e—m - 17l7 §l2€m7m)7 k7l7m € R})
as € R, respectively
Slo = {g(ve”,u, 1-— eiw7vvew - ew*’l),w)’u’,v,w € R}7

T = {g(el —em ket —1,1, —le™ m),k,l,m € R},

are Ky-connected, respectively Kjp-connected left transversals, in Gy, re-
spectively in G'1o. The sets

St = {g(u, —we ", v, e" + vwe® — 1,ve”, w),u,v,w € R},

Ti1={glk,me ™ 1™ —mle™ — 1,—le™, m), k,l,m € R},

respectively

Si12 = {g(u,v,we™, e + vwe” — 1,ve”, w),u,v,w € R},
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T2 ={g(k,l,—me ™, ™ —mle™ — 1, —1le™, m), k,l,m € R},
are K(y; 1-, respectively /i o-connected left transversals, in G'1;. The sets
Si21 ={g(u,e™ — 1,v,ve” — u,u, w),u,v,w € R},

Tioq ={g(k,1 —e ™ 1,—le™ — k,k,m),k,l,m € R},

respectively
Si22 ={g(u,v,1 —e ", ve” — u,u,w),u,v,w € R},
Tioo =A{g(k,l,e™ —1,—le™ — k,k,m),k,l,m € R},
are K9 1-, respectively K o-connected left transversals, in G'12. The sets
Siz1 ={g(u,1 —e", v,—ve” e — e 2 w);u,v,w € R},
Tis1 ={g(k,e ™ —1,1,e™ — e*™ le™™ m); k,l,m € R},
respectively
Siz0 = {g(u,v,e” — 1, —ve®”, e ™ — e ** w);u,v,w € R},

T1372 = {g(k7 [,1—e ™ e" - €2m7l€fm’m); k,l,m e R}a

are K3 -, respectively K3 o-connected left transversals, in Gﬁs: ~1 and the
sets

Siz3={g(u,1 —e ™, v, e" — eV e w);u,v,w € R},
Tis3 = {g(k, e hm 1.1, lem, e — ehm_m,m); k,l,m € R},

respectively

hw

Siza = {g(u,v,e™ —1,e" — eV _pe ,w)u,v,w € RY,

Tiz4={g(k,1,1— e_hm, le™, ehm — ehm_m,m); k,l,m e R},

are K3 1-, respectively K3 o-connected left transversals, in Gl_31<h<1. The
set
Sia1 = Tis1 = {g(u, e Psin(w),v,
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%(e”wv(sm(w) — agcos(w)) + (cos(w) — e’ (cos(w) + azsin(w))),

%(epwv(agsin(w) + cos(w)) + (cos(w) — e*)(agcos(w) — sin(w))), w);
u,v,w € R}, 0 =a3 +1,

respectively
Siag = Thaz = {g(u, v, —e sin(w),

%(epwv(sm(w) — agcos(w)) + (cos(w) — e’ (cos(w) + azsin(w))),

é(epwv(agsm(w) + cos(w)) + (cos(w) — €’)(aszcos(w) — sin(w))), w);

U,U,MER},CLg?é0,0':(Ig—'—l,

are Ky41-, respectively /(i42-connected left transversals, in G’l’ffo, and the
set

S1as = Tias = {g(u, e P sin(w),v, sin(w)(cos(w) — ") —

e’ vcos(w), e’ vsin(w) + cos(w)(cos(w) — eP), w); u,v,w € R},

respectively
Siaa = Tiaa = {g(u, v, —e " sin(w), sin(w)(cos(w) — ") —

e’ veos(w), e’ vsin(w) + cos(w)(cos(w) — ), w); u,v,w € R},

are K4 3-, respectively K4 4-connected left transversals, in Gﬁ’ffo. The sets
Sis = {g(e" ™ —e" +v,u,v,e” — """ + w?, w,w),u,v,w € R},

Tis = {g(e* — ™ 41,k 1, e™ ™ — ™ 4 m? m,m), k, I, m € R},

are K5-connected left transversals in (G15. The set
Si16 =Tie = {g(e" +v—1Lu,v,e’ —u—1,u,w),u,v,w € R}
is Kg-connected left transversal in (1. The sets

517 — {g(eufhw — et 4 U,U,U,Gw o 6w7u7€hw o 6hw7w’w);u7v’w c R},
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T = {g(e" =™ 4+ 1k 1, em — em=hm ehm=k _ehm ). k.1, m € R},

are K{7-connected left transversals in GG 1_71§h<1. The set

Sis1=Tig1 = {g(e" +v—1,u,v,

%((cos(w) — e)(azsin(w) + cos(w)) — sin(w)(agcos(w) — sin(w)),
%((cos(w) —eP")(azcos(w) — sin(w)) + sin(w) (agsin(w) + cos(w)), w);
u,v,w € R}, a3 € R, & =1+ a3,

respectively

Siso =Tigo = {g(e"+v—1,u,v, sin(w)(e’” —cos(w)) — cos(w)sin(w),

sin(w)? + cos(w)(e” — cos(w)),w); u, v, w € R},

are K3 1-, respectively K5 o-connected left transversals, in G’f?o.
Foralli =1,---,18, the set .S; UT; generates the group GG;. By Lemma
7 the assertion is proved. ]

6 6-dimensional solvable multiplication group
having 2-dimensional centre

In this Chapter we determine the at most 6-dimensional solvable Lie groups
with 2-dimensional centre which can be represented as the multiplication
groups Mult(L) of 3-dimensional connected simply connected topological
proper loops L. These Lie groups are decomposable (cf. Theorem 20) and
the corresponding loops have a 2-dimensional centre Z(L) isomorphic to
R? such that the factor loop L/Z (L) is isomorphic to R. These loops are
centrally nilpotent of class 2.

Theorem 30. Let L be a connected simply connected topological proper
loop of dimension 3 such that its multiplication group is an at most 6-
dimensional decomposable nilpotent Lie group. Then the loop L is cen-
trally nilpotent of class 2 and the groups R x F,, R X F5 are the multipli-
cation groups of L.
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Proof. Each nilpotent Lie group has a centre of dimension > 1. If the group
Mult(L) is decomposable and nilpotent, then it has a 2-dimensional centre
and the loop L has nilpotency class 2 (cf. Lemma 10, a), b)). According
to the list of the Lie algebras in [24], §5, and [25], p. 100, the Lie algebra
of the group Mult(L) is either the direct sum f3 & f3 or R @ f,,, n = 4,5,
or R® gs;, i = 4,5,6. By Lemma 10 c) the Lie algebra of Mult(L)
has a 5-dimensional abelian ideal containing its centre and its commutator
subalgebra. Since there does not exist any such ideal for the Lie algebras
fs o fsand R @ g5, 7 = 4,5, 6, these Lie algebras are excluded. Now the
assertion follows from Proposition 5.1. in [10] , pp. 400-406. ]

Theorem 31. Let L be a 3-dimensional connected simply connected topo-
logical loop which has a 6-dimensional solvable non-nilpotent Lie algebra
with 2-dimensional centre as the Lie algebra g of its multiplication group.
Then L has nilpotency class 2 and the following Lie algebra pairs (g, k)
are the Lie algebra g of the group Mult(L) and the subalgebra k of the
subgroup Inn(L):

Ifgi=R*®n; = (f1,fo) ® (e, ,eq), 1 = 1,---,4, where nis a 4-
dimensional solvable indecomposable Lie algebra with trivial centre, then
one has

*n = gfzéo-' le1,e4] = e, [ea, e4] = e, [es,e4] = €2 +e3 ki =
(e1 + fi,e2a+ fi,e3),

* Ny = Zyq4q- [61,64] = €1, [62764] = e1 + e, [63,64] =ey+e3 ko =
(e1+ fi1,e2 +asfi,es +asfi), az,a3 € R,

—1<y<B<1YB#D,

t 3= B :ler,ed] = e1,[ea, e4] = PBea, [es,e4] = e,
ks = (e1 + fi,e2 + fi,es + f1),
° ng = gi%o,cﬁéo; [61, 64] = ey, [627 64] = pey — €3, [637 64] = e+ pes,

ky1 = (e1+fi,ea+f1,estasfi), as € R kyo = (e1+f1, €2, €3+ f1).

Ifg; = R® h; = (fi) ® (e1,e2,€e3,e4,€5), where hj, j = 5,---,8, is
a 5-dimensional solvable indecomposable Lie algebra with 1-dimensional
centre, then we have

* hy = gg,é'”'gl: [62765] = 61,[63765] = 63,[64765] = 7€y, k5,e =
(e2+€fi,es+er,eat+e1), e=0,1,
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* hg = 85,107 [62, 65] = €1, [63, 65] = €9, [64, 65] = €4, k6,e = (62, es +
efi,ea+er), € =01, ko = (ex + b1 fi,e3 + bafi,eq + fi + aer),
bl,bz € R, a;«éO,

* h; = gé’f’fi: [ea, 5] = e1,[es,e5] = pes — ey, [es, e5] = e3 + pey,
kre = (e2 + €fi,e3 + e1,e4 + azer), € = 0,1, a3 € R, kyy =
(ea+0f1,e3,ea+e1), 0 =0,1,

* hy = gl 13 [er,e5] = en,[ea 5] = €1+ ea,[ea 5] = €3 ks =
<€1 +637€2a64+€f1>: 0, 1.

Proof. By Lemma 9 we may assume that the loop L is simply connected
and hence it is homeomorphic to R?. As the centre of group Mult(L) of L
has dimension 2, the loop L has nilpotency class 2 (cf. Lemma 10 a), b)).
By Theorem 20 the group Mult(L) is decomposable. Hence for the Lie
algebra of Mult(L) we have the following possibilities: R? @& n, R & h,
1, R®f;, and 1,B1,®R2, where n and h are characterized in the assertion.
By [24], §5, n is one of the following Lie algebras g4,,7 = 2,4,5,6, 7, 10,
gff? ' g%o. Moreover the Lie algebras g5j, j = 8 10,22, 29, 38, 39,

P70 - - :
514> g5 15, g5 19 > g5 20 > gs 28 > g5 25’ g5 2 26 ¢ and g5 30 ? can consider as h

(cf. [25], §10, p. 105- 106)

If these Lie algebras would be the Lie algebra of the multiplication
group of L, then they have a 5-dimensional abelian ideal containing their
commutator ideal and their centre (cf. Lemma 10 ¢)). Since the Lie alge-
bras, R fs, L d L, OR2, R2 P gy, 5 = 7,10, R2® g}# ! R2 gl
Rogdy ' r=1920,28 Regk’ | =2526Rog5"% R gs,
p = 22,29, 38,39, do not contain any 5-dimensional abelian ideal, these
Lie algebras are not the Lie algebra of the group Mwult(L) of L. Hence it

remain to deal with the Lie algebras g;, 7 = 1, - - -, 8, in the assertion. None
of the Lie algebras g;, 7 = 1, - - -, 8, have a factor Lie algebra isomorphic to
L, 1.

The 1-dimensional central subalgebras of g;, 7 = 1,2, 3,4, are i; = (f5)
and iy = (fi + af2), a € R, those of g;, j = 5,6,7, are i3 = (f1 + bey),
b € R, and iy = (e1), whereas those of gg are i5 = (f; + ce3), ¢ € R, and
ig = (e3). With the exception of the Lie algebra gg for every ideal s of the
Lie algebras g;, © = 1,---, 8, such that s contains a 1-dimensional central
subalgebra of g;, the factor Lie algebras g; /s are not isomorphic to f;. The
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Lie algebra gg has the ideal s = (f; + bey, e4) containing iz such that the
factor Lie algebra gg/s is isomorphic to fj.

According to Lemma 10 d) the simply connected Lie groups G; of g;,
¢t =1,---,8, has a 1-dimensional connected central subgroup C' such that
the orbit C'(e) is isomorphic to R and the factor loop L/C/(e) is isomorphic
to R2. By Proposition 19 (i) the Lie algebras g;, i = 1,---,8, have a 4-
dimensional abelian ideal p = ¢ & k, where c is a 1-dimensional central
subalgebra of g; and k is the Lie algebra of the group Inn(L) of L such
that g < p and k has the properties as in Lemma 8. Then for the triples
(g, p, k) we obtain:

(a) For the Lie algebras g;, « = 1,2, 3,4, the ideal p has one of the

following forms p, = (f1 + afs, €1, €2,€3), a € Rand p = (fs, €1, €2, €3).
Hence for the subalgebras k one has k, = (e; + a1 (f1 + afs), ea + as(fi +
afs),es+az(fi+afs)),a € Randk = (e1 + a1 f2, €2 + asfo, €3 + az fa),
where a; € R, j = 1,2, 3. Using the automorphism ¢(f1) = f2, ¢(f2) =
fi+afs, ¢(e;) = e;, 1 = 1,2,3, 4, the Lie algebra k reduces to k,. So it
remains to consider the subalgebra k, of g;, 7 = 1,2, 3,4, such that
if i = 1, then: ajay # 0 since (e;) and (e3) are ideals of g;,
if i = 2, then: a; # 0 because (e;) is an ideal of gs,
if i = 3, then: ajasaz # 0 since (e1), (es) and (e3) are ideals of g3,
ifi = 4, then: a; # 0 and at least one of {as, as} is different from 0 because
(e1) and (ey, e3) are ideals of gy.
Using the automorphism ¢(f1) = fi — afa, ¢(f2) = fo, ¢(e1) = ayen,
d(ea) = ages, d(ez) = ages + azep and ¢(ey) = ey for gy, respectively
o(e;) = arej, j = 2,3, for gy, respectively ¢(e3) = ages for gs, the Lie
algebra k, reduces to ki, respectively ko, as, a3 € R, respectively ks, in
the assertion. Applying the automorphism ¢(f;) = fi — afa, ¢(f2) = fo,
d(e1) = arer, ¢lej) = agej, 7 = 2,3 and ¢(ey) = ey for gy, if ax # 0,
respectively ¢(e;) = ase;, j = 2,3, if a; = 0 and a3 # 0, we can reduce
k, to k41, as € R, respectively to ky 9, in the assertion.

(b) For the Lie algebras g;, 7 = 5,7, the ideal p has one of the fol-
lowing shapes p, = (e, f1 + aeq, e3,e4), a € R\{0}, p = (e1, €2, €3, €4).
Hence the subalgebras k are k, = (f; + aes + ajeq, e3 + azeq, e4 + agey),
a € R\{0}, and k= (e + ajeq, e + aser, eq + ager), a; € R, i =1,2,3,
such that
for g5: asas # 0 since (es), (e4) are ideals of gs, and
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for g;: as # 0 or ag # 0 because (e3, e4) is an ideal of g.

The automorphism ¢(f1) = fi, ¢(e;) = e, i = 1,5, ¢(ea) = ey — ayeq,
¢(e3) = azes and ¢(eq) = azeq, respectively ¢(f1) = afi — arer, P(ez) =
eq, of g5 map the subalgebra k onto kj, respectively the subalgebra k,
onto ks 1, in the assertion. If as # 0, then the automorphism ¢(f;) = fi,
ole;) = e, 1 = 1,5, ple2) = e2 — areq, ¢p(e;) = agey, j = 3,4, respec-
tively ¢(f1) = afi — aje, ¢(ea) = eq, of the Lie algebra g; reduces the
subalgebra k to k7 . with € = 0, respectively the subalgebra k, to k7 . with
e = 1, in the assertion. If ay = 0 and a3 # 0, then using the automorphism
o(f1) = fi. (&) = €5, i = 1,5, ¢(e2) = e2 —arer, P(e;) = ase;, j = 3,4,
respectively ¢(f1) = afi — ajeq, ¢(es) = e, of g7 we can change the
subalgebra Kk to k7 5 with 6 = 0, respectively the subalgebra k, to k7 5 such
that 6 = 1, in the assertion.

(c) For the Lie algebra gg the ideal p has one of the following forms
p = (e1,€2,e3,€4), Po = (€1, 62, €3, f1 + aey), a € R\{0}. Therefore for
the subalgebras k one has k = (e1 + ajes, ex + ases, eq + azes), k, =
(14 ares, ea + ases, f1+aeqs+azes), a € R\{0},a; € R,i =1,2,3, such
that a; # 0 since (e1) is an ideal of gs. The automorphism ¢(f;) = fi,
d(ei) = e, i = 3,5, p(er) = arer, P(ez) = ajes — ageq, and P(ey) =
eq — ages, respectively ¢(f1) = afi —ases, ¢(es) = ey, map the subalgebra
k onto ks o, respectively k, onto kg ;, of the assertion.

(d) If the Lie algebra g is the Lie algebra of the group Mult(L) of
L, then the factor loop L/I4(e), where I, = exp(is), is isomorphic to
R2. Hence the Lie algebra k of the group Inn(L) of L is a subalgebra
of the ideal p having one of the following forms p = (e1, €2, €4, €3), Py =
(e1, €3, €4, f1 + aes), a € R\{0}. Therefore we obtain the subalgebras k =
(ea+arer, e3+aser, estaser), ky = (ea+arer, fi+aes+aser, es+azer),
where a € R\{0},a; € R, i = 1,2, and a3 # 0, since (e4) is an ideal of gg.
With the automorphism ¢(f1) = f1, ¢(e;) = e;,1 = 1,5, p(e2) = ea—ayey,
o(e3) = e3—ajea—asge; and ¢(ey) = azey, respectizely o(f1) = afr—ageq,
¢(e3) = e3 — ajea, we can change the subalgebra k onto kg o, respectively
k, onto kg ;, in the assertion.

Since for the ideal s = (f;+beq, eq), b € R, of gg, the factor Lie algebra
g6 /s is isomorphic to f;, the factor loop L/I5(e), where I3 = exp(is), is
isomorphic to a loop Lz. The orbit S(e), where S = exp(s), coincides
with I3(e) (cf. Lemma 10 d (ii)). Hence the Lie algebra k contains the
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basis element e4 + a3(f1 + aey), a3 € R\{0}. Since k is a 3-dimensional
subalgebra of the 5-dimensional abelian ideal v = (fi, e1, e, €3, €4), it has
the formk = <€2—|—blf1+a161, €3+b2f1—|—a261, e4+a3(f1+a61)), a, a;, bl €
R, 7 = 1,2,3, aaz # 0. Using the automorphism ¢(f;) = fi1, ¢(e;) = e;,
i =1,5, ¢(e2) = €2 — arer, P(es) = €3 — aren — azey and P(es) = agey,
the subalgebra k reduces to kg o = (es + by f1,e3 + baf1,e4 + f1 + aeq).
This proves the assertion. L

Applying ([39], §4) we obtain:

Lemma 32. The linear representation of the simply connected Lie group G;
and its subgroup K; of the Lie algebra g; and its subalgebrak;, 1 =1, ..., 8,
in Theorem 31 is given by the multiplication: fori =1

9(961,932,333,x4,$5,$6)9(y1,y2,y3,y4,y5,y6) =

g(z1+y1e"™ ot (yo+xays)e™, w3+yse™, Ta+ya, T5+Ys, T6+Ys), a # 0,
K1 = {g(ul, Ug, U3, 0, Ul + Usg, O), U; € R,’L = 1, 2, 3},
fori =2

9($1,$27$3,147$57$6)9(y17y2793,y4>y5a?/6) =

1 2 o T4
g(x1 4+ (g1 + 24y + §x4y3)e , Ty + (Y2 + T4y3)e™,

x3 + yse™, T4 + Y, Ts + Ys, Te + Ys),
Ky = {g(u1,u2, us, 0, us +asus +azus, 0);u; € R, =1,2,3}, a2,a3 € R,
fori =3

g(xb X2,T3,T4,Ts, x6)g(yl> Y2,Y3,Y4, Ys, y()) =

g(z1 + 16", 29 + Yoe™™, T3 + Y3 T4 + Ya, T5 + Ys, T6 + Ys),
Ky = {g(u17u27u3707u1 +ug + u370);ui eRi=1,2, 3}7

—1<a<b<1l,ab#0,
fori =4

9(z1, 22, 23, T4, 5, 6)9(Y1, Y2, Y3, Y4, Y5, Ys) = g(x1 + y1€°™,
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Ty + (yacos(x4) + yssin(xy))e?™, x5 + (yscos(xy) — yasin(xy))e?™,
Ty + Y1, T5 + Y5, Te + Yo), a # 0,0 > 0,
Ky1 = {g(ur,uz,us, 0,u1 +ug + asus,0);u; € R,i =1,2,3}, a3 € R,
Kyo = {g(u1,us,u3,0,us +us,0);u; € R,i=1,2,3},
fori =25

g(xb T, T3, T4, Ts, «T6)g<y17 Y2,Y3, Y4, Ys, yG) =

9(T1+y1+T5Y2, Tatya, T3+yze™, Tatyse™?, w5 +ys, ve+ys), 0 < |cf < 1,
Ks.e = {g(ua + us, uy, ug, us, 0, euq);u; € Ryi=1,2,3},e=0,1,
fori =26

g(xh T, T3, T4, Ts, xﬁ)g<y17 Y2,Y3, Y4, Ys, yG) =

1
g(x1+y +x5y2+§w§y3, To+Yo+T5Y3, T3+Ys, Ta+yae™, T5+Ys, Te+Ys),

Kﬁ,e — {g(u37U17U27U370;€U2)5Uz' S R7l - 17 273}76 - 07 ]-7
Kgo = {g(aus, uy, ug, us, 0, byuy + boug +uz);u; € Ry =1,2,3},
b1, bs ER,(I%O,
fori =17

9(931,$2,£U3,5E4,$5>556)9(yl,yzjy3,y4>y5ayﬁ) =

g(w1 + Y1 + T2ys, T2 + Y2, T3 + (y3cos(w5) — yasin(ws))el”,
T4 + (yacos(ws) + yzsin(xs))e’™, x5 + ys, 16 + Yo ), p 7 0,
K7 . = {g(ustasug, uy, us, us, 0, euq );u; € R,i=1,2,3},e=0,1,a3 € R,
K75 ={g(usg,ur,us,us,0,eur);u; € Ryi=1,2,3}4,0 =0,1,
fori =38

9($1,l‘27I37$4,$5,$6)9(yhy27y3,y4ay5ayﬁ) =

g(z1+ (y1 +y2x5)e™, xo + y2™, T3+ Y3 + T5Ys, Ta + Ya, T5 + Y5, Te + Ys),
KS,e = {g(U1>U27U17U3>07€U3);Uz‘ S R7Z = 17 2a 3}76 = 07 1a
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Proposition 33. There does not exist any 3-dimensional connected topolog-
ical proper loop L having g as the Lie algebra of its multiplication group
and the Lie algebra K¢ 5 as the Lie algebra of its inner mapping group.

Proof. We may assume that L is simply connected. Therefore it is home-
omorphic to R? (cf. Lemma 9). We show that the Lie group G does not
allow continuous left transversals S and 7" to the subgroup Kj o such that
forall s € S,t € T one has s~ 't 'st € K¢ and the set S U T generates
Gﬁ.

Two arbitrary left transversals to the group K o in G are:
S ={g(u, hi(u,v,w), ha(u,v,w), hs(u,v,w), v, w);u,v,w € R},

T = {g(k7gl(k7 l7m)7g2(k7l7m)7g3(k7lam)7lam); k7l7m S R}?

where h;(u,v,w) : R® — R and g;(k,l,m) : R® - R, i = 1,2, 3, are con-
tinuous functions with 4;(0,0,0) = ¢;(0,0,0) = 0. The products s~ ¢~ 1st,
s € S,t €T, are elements of K - if and only if the equations

a(gs(k,l,m)e (1 —e™") — ha(u,v,w)e (1 —e™)) =

vgr(k,1,m) — vlga(k,l,m) — lhi(u,v,w) + lvhy(u, v, w)+

1 1

51 ha(u,v,w) = Sv*ga(k, 1 m), (49)
g3(k7 l7 m>€_l(1 - e_v) - h3(u7 v, w)e_v(l - e_l) -

bilha(u, v, w) — byvge(k,l, m) (50)

are satisfied for all &k, [, m,u,v,w € R. Applying equation (50) equation
(49) reduces to

1
vg1(k,l,m) + abjvgs(k,l,m) — vigy(k,l,m) — §v2gg(l§,l,m) =

1
Lhy(u, v, w) + abylhe(u, v, w) — lvhs(u, v, w) — §l2h2(u, v,w). (51)

Using the new functions

gi(kja lam) = gl(k7lam) + aleQ(kvlvm) - lg?(k7lam)7
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R (u,v,w) = hy(u,v,w) + abrhe(u, v,w) — vhe(u, v, w)

equation (51) reduces to
/ 1 2 / 1 2
vgy(k,l,m) — 3V g2(k,1,m) = b} (u,v,w) — §l ho(u,v,w).  (52)

Equation (52) holds precisely if the functions ¢ (k,,m) and g2(k,l,m),
respectively A/ (u, v, w) and hs(u, v, w), are polynomials of [, respectively
of v, with order at most 2. Using this, equation (50) is satisfied if and only
if its left hand side and its right hand side are 0. This holds precisely if one
has g3(1) = c(e! — 1) and h3(v) = c(e” — 1), where c is a real constant. In
this case the set S U T does not generate the group GGg. Hence by Lemma
7 the group G and the subgroup K 5 are not the multiplication group and
the inner mapping group of L. This proves the assertion. [

Theorem 34. Let L be a connected simply connected topological proper
loop of dimension 3 such that its multiplication group is a 6-dimensional
solvable non-nilpotent Lie group having 2-dimensional centre. Then the
pairs of the Lie groups (G;, K;), i = 1,---,8, given in Lemma 32 are the
multiplication groups Mult(L) and the inner mapping groups Inn(L) of
L with the only exception (Gg, K 2).

Proof. By Theorem 31 the pairs (G;, K;), i = 1,---,8, in Lemma 32 can
occur as the group Mult(L) and the subgroup Inn(L) of L. According to
Proposition 33 the pair (G, Kg2) is excluded. In all other cases we give
continuous left transversals S;, T; to the subgroup K;, 7 = 1,---,8, which
fulfill the requirements of Lemma 7.

Appropriate K;-connected left transversals in the group GY are: for
a < —1 and for a > 1 the sets

Sia={g(e™(e™ —1),e"(1 —e ) + u?, u,u, v, w); u, v, w € R},

Tig={g(e™(1—e ), k> — " (1 —e ™),k k,l,m); k,l,m € R},
for 0 < a < 1 and for —1 < a < 0 the sets
Sio2={g(—ue™ " 1 —e" 4+ ue" (1 —e ),

e — e M v, w);u, v, w € RY,
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Tio = {g(ke™ % 1—ef4-kek (e 1), e —e* k. 1,m); k,I,m € R},

for a = 1 the sets
Si3={g(w,e" —1—w—+ uz,u,u,v,w);u,v,w € R},

Tis={g(* " —1 -1+ k" kK 1,m);k 1,m¢eR},

for a = —1 the sets
Sia={g(ue " e" — 1 —ue" + ue®™, e* — e, u,v,w);u,v,w € R},
Tia={g(—ke ™ e* — 1+ ke* — ke®* eF —e** k,1,m); k,1,m € R}.

Appropriate K,-connected left transversals in G are the sets

3
Sy ={g(e* —1—u’+ §a2u2 + u(az — a3),

2
Az = Su ,—Uu, U, v, w);u,v,w € RY

3
T = gek—1+k3——k2a2—|—ka2—a3,
5 2

;k2 — ask, k,k,l,m);k,l,m € R}, as,a3 € R.

Appropriate K3-connected left transversals in vab are: for -1 <a =0 <
1 the sets

Ss1 = {g(e"(e™™ —=1),e™(1 —e™") —w,w,u,v,w); u,v,w € R},
Ts1 = {g(e"(1 — e ™), e (e — 1) —m,m, k,Il,m); k,I,m € R},
for —1 < a < b <1 the sets
Sag = {g(e"™ — eumbu e — goumu gbumu oty g w);u,v,w € RY,
Ty = {g(ek—0F — ehmak eok—k _gak cbb _ b=k 1 )k 1 m e RY,

where ab # 0. An appropriate K4 ;-connected left transversal in GZ’b is the
set
Sip =Ty = {g(eau_busm(u)7
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(" — e~ (sin(u) — ascos(u))+

e’ — cos(u))(cos(u) + assin(u))),

(" — €™~ (agsin(u) + cos(u))+

e — cos(u))(agcos(u) — sin(u))),
u,v,w);u,v,w € R}, a3 € R.

An appropriate /{4 o-connected left transversal in GZ’b is the set
Sio = Tyo = {g(e™ "sin(u),

(ebuma — e"Ycos(u) + sin(u)(e™ — cos(u)),

bu (ebufau

cos(u)(e™ — cos(u)) — — e"Ysin(u), u, v, w); u,v,w € R},

a # 0,b > 0. Appropriate K5 .-connected left transversals in G§ with
e = 0,1 are: for ¢ = 1 the sets

St ={g(u, 1 — e u,ve’ — u, v, w);u,v,w € R},
7"56:1 — {g(k7€_l - 17 k:7 _lel - k? l7m)’ k7l7m e R}’
for ¢ # 1 the sets
ST = {g(u, e — ™, —ve®, ve®, v, w); u,v, w € R},

T5C7£1 _ {g(k‘,e_d _ e—l’ lel, —led, l,m); k,l,m e R}

Appropriate K .-connected left transversals in G, where € = 0, 1, are the
sets

1
SG = {g(u7 11— Uz - e—U, -0, 51}261}7 v, 'UJ), u,v,w S R}7

1
Ts = {g(k,1 + 512 —le7l 1 —e —leh l,m); k,[,m € R}.

An appropriate K7 .-connected left transversal in G@’éo with e = 0,1 is the
set

Sy =1T7 = {g(u, e P’ sin(v),
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1

m(emv(sin(v) + azcos(v)) + (e — cos(v))(cos(v) — azsin(v))),

) (ePv(agsin(v) — cos(v)) + (eP¥ — cos(v))(azcos(v) + sin(v))),

v,w);u,v,w € R}, az € R.
An appropriate K7 s-connected left transversal in G’f&o, where 0 = 0,1, is
the set

S =Tr = {g(u,e P sin(v), e’ vcos(v) + sin(v)(e’” — cos(v)),

ePPvsin(v) — cos(v)(e?’ — cos(v)),v,w); u, v, w € R}.

Appropriate Kg .-connected left transversals in G's with € = 0, 1 are the sets
Ss = {g(ve’ +v* v,u,1 —e ¥, v,w);u,v,w € R},

Ty = {g(I> — 1", 1, k,e”" — 1,1,m); k,1,m € R}.

Hence the assertion follows from Lemma 7. ]

Corollary 35. All solvable decomposable Lie groups of dimension 6 which
are the groups Mult(L) of 3-dimensional connected topological loops have
1- or 2-dimensional centre and 3-dimensional commutator subgroup.

Proof. If L has 1-dimensional centre, then the assertion follows from The-
orem 26. If L has 2-dimensional centre, then Theorem 31 yields the asser-
tion. ]

Corollary 36. Each solvable Lie group of dimension 6 which is realized as
the multiplication group Mult(L) of a 3-dimensional connected topologi-
cal proper loop L has 1- or 2-dimensional centre and 2- or 3-dimensional
commutator subgroup.

Proof. If L has a 6-dimensional solvable indecomposable Lie group as its
multiplication group, then the assertion is proved in Theorems 24, 25. If L
has a 6-dimensional solvable decomposable Lie group as its multiplication
group, then Corollary 35 gives the assertion. ]
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7 Summary

In this dissertation we consider connected topological proper loops L such
that their multiplication groups Mult(L) are solvable Lie groups. In [29]
topological loops L having a Lie group as the group G, generated by all
left translations of L are consistently studied. The multiplication group
Mult(L) of aloop L is the group generated by all left and right translations
of L. The stabilizer of the identity element e € L in the group Mult(L)
is called the inner mapping group Inn(L) of L. One of our aims is to
prove relations between nilpotence and solvability for topological loops and
the associated multiplication groups. Another goal of our investigation is
to determine the at most 6-dimensional solvable Lie groups which can be
realized as the group Mult(L) of a connected simply connected topological
loop L having dimension 3. In Chapter 1 we collect notions, tools and
results, which we use in the dissertation. For our study the concepts of
solvability and central nilpotency for loops play an important role. Normal
subloops and factor loops of a loop L are defined analogously as in group
theory. A normal subloop N of L is said to be central in L and abelian in
Lif [N, L], = {e} and [N, N|;, = {e}, respectively. The centre Z(L) of a
loop L is the normal subloop of L consisting of all elements z € L which
satisfy the identities zx = z2, 20 -y =2 -2y, T Yz =Y - 2, TZ - Yy =
x-zyforall x,y € L. Aloop L is classically solvable if there is a series
{e} = Ly < Ly < ... < L, = L of subloops of L such that L; ; is
normal in L; and the factor loop L;/L;_; is an abelian group for all i =
1,2,---,n. Aloop L is called congruence solvable if there exists a chain
{e} = Ly < L; < ... < L, = L of normal subloops of L such that every
factor loop L;/L; 4 is abelian in L/L; . If we put Zy = {e}, Z; = Z(L)
and Z;/Z;_1 = Z(L/Z;_), then we obtain a series of normal subloops of
L. If Z,,_; is a proper subloop of L but Z,, = L, then we say that L is
centrally nilpotent of class n. The centrally nilpotent loops are congruence
solvable. Every congruence solvable loop is classically solvable. From
the nilpotency of the group Mult(L) it follows that the loop L is centrally
nilpotent (see [4]). In this case the inner mapping group Inn(L) of L is
commutative. For finite loops it was proved in [42] that the solvability of
the group Mult(L) forces the classical solvability of the loop L. Chapter
2 is devoted to investigate the two solvability properties for 3-dimensional
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connected simply connected topological loops. Our main results are:

Theorem 37. If L is a 3-dimensional connected simply connected topologi-
cal loop such that its multiplication group is a solvable Lie group, then L is
classically solvable. The loop L has a 1-dimensional normal subgroup N
isomorphic to R. For each 1-dimensional normal subgroup N there exists
a normal series {e} = Lo < N = Ly < M = Ly < L = L3 of L such that
every factor loop L;/L;_1, i = 1,2,3, is the group R. Moreover, the loops
M and L/N are isomorphic either to a 2-dimensional simply connected
Lie group or to a loop L.

Congruence solvable loops are loops obtained by iterated abelian ex-
tensions (see [38]).

Theorem 38. Let L be a 3-dimensional connected simply connected topo-
logical proper loop with a solvable Lie multiplication group. The loop L is
congruence solvable if and only if L has one of the following properties:

* the centre of L has dimension 1 or 2,

* L has discrete centre and L is an abelian extension of a normal sub-
group N = R by the factor loop L/N isomorphic either to the group
Lo orto aloop L.

The following example shows that the class of congruence solvable
loops is a proper subclass of the class of classical solvable loops also for
topological loops. For finite loops it was illustrated in Exercise 10 in [18]
and Construction 9.1 and Example 9.3 in [37].

Example 2. Let (Q,-,1) be a topological loop of dimension n having a
normal subloop ()1 such that the factor loop QQ/Q; is isomorphic to the
group R. Let ¢ : (Q,-) — (R,+) be a homomorphism. We consider a
one-parameter family of loops Ty : R X R — R, (a,b) — T'y(a,b) = a* b,
t € R, suchthat T'y(a,b) = a+band Ty is not commutative for some t € R.
Suppose that for all t € R the loops I'; have the same identity element 0.
We denote by Ai(a,b) : R x R — R the right division map (a,b) —
Ay(a,b) = a/ib, t € R, of the loop T'y. For the loops T, t # 0, we can
take loops defined by the sharply transitive section oy : PSLy(R)/Ly —

—_——

PSLs(R) determined by the functions f(u) = exp[ sin®t cos u(cos u—1)]
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and g(u) = (f(u)™' — f(u)) cot u (see Proposition 18.15 and its proof in
[29], pp. 244-245). All loops Ty, t # 0, are proper and hence they are not
commutative (cf. Corollary 18.19. in [29], p. 248). The multiplication

(z,a) 0 (y,0) = (2 -y, Uy(ay)(a, )

on @ x R defines a loop L4 which is an extension of the group R by the loop
Q. The loop Ly has the identity element (1, 0) since one has (1,0)o(y,b) =
(¥, Tp)(0,0)) = (y,b) = (y,b) o (1,0). Hence the loop Ly is an Albert ex-
tension of the group R by the loop (Q, -) given by the one-parameter family
I'; of the loop multiplications on R (see [28], p. 4). Let x be an element of
Q such that ¢(z) # 0. For the inner map T(z,a) = p~'(x,a)\(z,a) we
obtain T'(x,a)(1,¢c) = ((x,a) o (1,¢))/(x,a) = (z,Ty@m)(a,c)/(x,a) =
(1, Apz)(Lg(xy (@, ¢), a)). This expression is not independent of a € R be-
cause the loop Ty, is not commutative. Hence the normal subgroup R
is not abelian in the loop Ly (see Proof of Theorem 4.1 in [38], p. 377).
In particular, if the loop (Q,-) is the group Ly or a loop Lz, then this
construction yields a 3-dimensional connected topological loop, which is a
non-abelian extension of the group R by the loop (Q, -).

Applying the classification of the solvable Lie algebras of dimension
< 6 (cf. [25], [36], [41]) in Chapters 3, 4, 5, 6 we deal with the determina-
tion of the connected simply connected 6-dimensional solvable Lie groups
G and their subgroups K which are the multiplication groups Mult(L)
and the inner mapping groups Inn(L) of 3-dimensional connected simply
connected topological loops L. Taking into account this restriction for the
dimension of the group Mult(L) we obtain:

Theorem 39. If L is a connected topological proper loop of dimension < 3
such that its multiplication group Mult(L) is an at most 6-dimensional
solvable Lie group, then L has nilpotency class 2.

To prove Theorem 39, we describe the structure of the 3-dimensional
connected simply connected topological loops and their groups Mult(L),
if Mult(L) is a solvable Lie group. In Theorem 40 the group Mult(L) has
discrete centre.

Theorem 40. Let L be a proper connected simply connected topological
loop of dimension 3 having a solvable Lie group with discrete centre as
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its multiplication group Mult(L). The loop L is classically solvable. It
has a connected normal subgroup N isomorphic to R and the factor loop
L/N is isomorphic either to the group Lo or to a loop Lr. One has
dim(Mult(L)) < 6 and the group Mult(L) has a normal subgroup S
containing Mult(N) = R such that the factor group Mult(L)/S is iso-
morphic to the direct product Lo X Lo, if L/N = Lo, or to a group F,,
n >4, if L/N = Lx. For each normal subgroup N of L the loop L has a
normal subloop M isomorphic either to R? or to Ly or to a loop Lx such
that N < M and L/M is isomorphic to R. The group Mult(L) contains
a normal subgroup V such that Mult(L)/V = R and the orbit V (e) is the
loop M. The inner mapping group Inn(L) of L, the multiplication group
Mult(M) of M and the commutator subgroup of Mult(L) are subgroups
of V. The normalizer Nypuury(Inn(L)) equals to the group Inn(L).

In Theorem 41 the centre of the group Mult(L) has dimension 1.

Theorem 41. Let L be a 3-dimensional proper connected simply connected
topological loop such that its multiplication group Mult(L) is a solvable
Lie group with 1-dimensional centre Z. Then the loop L is congruence
solvable. The orbit K (e), where K is a 1-dimensional connected normal
subgroup of Mult(L), is a normal subgroup of L isomorphic to R. More-
over, one of the following possibilities holds:

(a) If the factor loop L/K (e) is isomorphic to R?, then L has nilpotency
class 2 and the orbit K (e) coincides with the centre Z(L) of L. The con-
nected simply connected group Mult(L) is a semidirect product of the
abelian normal subgroup P = Z x Inn(L) by a group QQ = R? and the
orbit P(e) is Z(L).

(b) If the factor loop L] K (e) is isomorphic either to the group Ly or to a
loop Ly, then Mult(L) has a normal subgroup S containing K such that
the orbits S(e) and K (e) coincide. The factor group Mult(L)/S is iso-
morphic to the direct product Lo X Lo, if L/ K (€) = Lo, or to a Lie group
Foon >4 if L/K(e) = Lg. Inparticular, if K(e) = Z(L) and L/ Z(L) is
isomorphic to a loop L, then L is centrally nilpotent of class 3.

The loop L contains a 2-dimensional normal subloop M with K (e) < M
and the group Mult(L) has a normal subgroup V' as in Theorem 40.

In Theorem 42 we consider the case that the centre of Mult(L) has
dimension 2.
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Theorem 42. If L is a proper connected simply connected topological loop
of dimension 3 such that its multiplication group Mult(L) is a solvable
Lie group with 2-dimensional centre Z, then L has nilpotency class 2. The
group Mult(L) is a semidirect product of the normal subgroup V = 7 x
Inn(L) = R™! by a group Q = R, where R? = Z = Z(L) and m =
dim(Mult(L)). For every 1-dimensional connected subgroup N of Z the
orbit N (e) is a connected central subgroup of L and the factor loop L /N (e)
is isomorphic either to R? or to a loop Ly. In particular, if the group
Mult(L) is indecomposable, then one has L/N (e) = L.

If L/N(e) = R? then Theorem 41 (a) holds. If L/N(e) = Lz, then the
group Mult(L) contains a normal subgroup S with N < S. The factor
group Mult(L)/S is isomorphic to a Lie group F,, withn > 4.

To classify the groups Mult(L) and Inn(L) of 3-dimensional con-
nected simply connected topological loops L we proceed in the following
way. The steps of the procedure are based on the result of [33].

1. step: For each 6-dimensional solvable Lie algebra g we have to find a
suitable linear representation of the corresponding connected simply con-
nected Lie group G.

2. step: As dim(L) = 3 we determine those 3-dimensional Lie subgroups
K of G which have no non-trivial normal subgroup of GG and satisfy the
condition that the normalizer N¢(K) is the direct product K x Z, where Z
is the centre of G (cf. Lemma 8).

3. step: We have to find left transversals S and 7" to K in G such that for
all s € Sandt € T one has s™'t~'st € K and G is generated by S U T
(cf. Lemma 7).

3.1. Since the transversals .S and 7" are continuous, they are determined by
3 continuous real functions of 3 variables. The condition that the products
st !st,s € Sandt € T, are in K is formulated by functional equations.
Solving these functional equations we obtain the possible forms of the left
transversals S and 7'. The left transversals S and T are the set A(L) of all
left translations and the set P(L) of all right translations of L, respectively.
These sets play an important role for the construction of the loop multipli-
cation using the group Gy, respectively G, (cf. [29], p. 17-18).

3.2. We check whether the set S U T generates the group G. If this is the
case, then G is the multiplication group Mult(L) of aloop L and K is the
inner mapping group of L.
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In Chapter 4 we prove that some classes of 6-dimensional solvable
Lie algebras are not the Lie algebras of the multiplication groups of 3-
dimensional connected topological loops. These Lie algebras have one of
the following properties:

* they have discrete centre,
* they are indecomposable and have 2-dimensional centre,

* they are indecomposable and have 4-dimensional non-abelian nilrad-
ical,

e they are indecomposable and their nilradical is either R or a 5-
dimensional indecomposable nilpotent Lie algebra with exception of
the Lie algebra [es, e5] = e1, [ey, e5] = eo.

Every 6-dimensional indecomposable solvable Lie algebra has 4- or 5-
dimensional nilradical. In the class C; of the 6-dimensional solvable inde-
composable Lie algebras g having 5-dimensional nilradical only those can
be represented as the Lie algebra of the group Mwult(L) of a 3-dimensional
connected simply connected topological loop L whose nilradical is isomor-
phic either to the direct sum of the 3-dimensional Heisenberg Lie algebra
and R? or to the direct sum of the 4-dimensional elementary filiform Lie al-
gebra and R or to the 5-dimensional indecomposable Lie algebra such that
its 2-dimensional centre coincides with its commutator ideal. We prove that
there are seven families of Lie algebras in C'; which are the Lie algebras
of the groups Mult(L) of L. Among the 40 classes of the 6-dimensional
indecomposable solvable Lie algebras with 4-dimensional nilradical only
three families can be realized as the Lie algebra of the group Mult(L) of
L. All of them have 1-dimensional centre and abelian nilradical. They
have 3-dimensional abelian commutator subalgebras and their nilradical
has an abelian complement in the Lie algebra g. In the class C; of the 6-
dimensional solvable decomposable Lie algebras g having 1-dimensional
centre there is 18 families of Lie algebras which are the Lie algebras for the
groups Mult(L) of 3-dimensional connected simply connected topological
loops L. These Lie algebras have 3-dimensional commutator subalgebra.
In the class C;5 of the at most 6-dimensional solvable Lie algebras having a
2-dimensional centre nine families can be represented as the Lie algebra the
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group Mult(L) of L. These Lie algebras are decomposable. Among them,
the 6-dimensional Lie algebras have 3-dimensional commutator subalge-
bra. In the following theorems we give the list of the solvable Lie algebras
g of dimension < 6 which are the Lie algebras of the groups Mult(L) of L.
To formulate these theorems we use the notation given in [24], [26], [36],
[41].

Theorem 43. Let L be a connected simply connected topological proper
loop of dimension 3 such that the Lie algebra of its multiplication group
Mult(L) is a 6-dimensional solvable Lie algebra g having 1-dimensional
centre. Then L is centrally nilpotent of class 2. Moreover, for the Lie
algebra g we obtain:

* If g is an indecomposable Lie algebra having 5-dimensional nilrad-

ical, then the Lie algebra g is one of the following: g, = ggjff:b,
_ =0 _ o 0=l,a=0=¢ _ ge=*1 _ =0=b _ =0

82 = 8622 83 = 817 81 = 8651 > 85 = 8654 » 86 = B6o3>
_ a=0=b

87 = 86,25

» Ifgis an indecomposable Lie algebra with 4-dimensional nilradical,
then for the Lie algebra g we get one of the following: g1 = Ngos,
a & R, go = N&QZ’ a e R\{O}, g3 = N6727.

* If g is a decomposable Lie algebra, then for the Lie algebra g we
have one of the following: g = R & g?fg U g =R g?;é’,
g3 =R®Dgsor, 8a=RD g?,?é)’ g5 = RD gs32 86 = RD gs33,
g7 = RDgs531, 88 = RDgs35 8 = Lo D a1, G0 = b © g3,
g =f50830 2o =fDgs3 3 =13Dg34 gu=F0 gé’fr,o,
gis = LOR®DgEs2 816 =L ORDgs3 817 = L R D g34,

gis=LOR® gé’,?“-

Theorem 44. Let L be a 3-dimensional connected simply connected topo-
logical proper loop having an at most 6-dimensional solvable Lie algebra
g with 2-dimensional centre as the Lie algebra of the multiplication group
Mult(L) of L. Then L is centrally nilpotent of class 2 and for the Lie
algebra g we have the following possibilities:

1 The nilpotent Lie algebras: R @ fy, R @ f.
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2 The solvable, non-nilpotent Lie algebras: g, = R?> @ gfff;o, g, =R?2®
gos 1= gs =R @ g5.10, 87 = R® gl75, s = R gl 7.

In the dissertation we find linear representations of the associated con-
nected simply connected Lie groups G. These groups are multiplication
groups Mult(L) of 3-dimensional connected simply connected topological
loops L. We determine also in all cases the inner mapping groups Inn(L)
of L.
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