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I. INTRODUCTION 
 
To protect data from exposure, it is desirable to encipher 
plaintext information under keys which allow users to send 
and receive messages over an insecure network. As a 
result, the users must find secure methods for exchanging 
the keys either by themselves or by means of a system key 
manager. Authentication protocols emerged from numerous 
works of computer scientists and their use has become 
common in the science and study of methods of 
exchanging keys. They are basically sequences of message 
exchanges, whose purpose is to assure users that 
communications do not leak confidential data. Indeed, 
there is a wide variety of protocols that have been specified 
and implemented, from protocols with trusted third party, 
to protocols with public key and, even more generally, 
hybrid protocols. The one drawback is that many of them 
have been shown to be flawed, from which one may 
explain the great deal of attention devoted to the formal 
verification of security properties of protocols. Examples of 
protocols can be found in [3]. 
 
In the literature, the most popular logic-based formal 
approach to the analysis of authentication protocols is 
perhaps the modal  BAN calculus introduced by Burrows, 
Abadi and Needham [2]. From the point of view of 
computer science, a virtue of BAN is that it allows static 
characterization of epistemic concepts. In spite of its 
success in finding flaws or redundancies in some well-
known protocols, the effectiveness of BAN as a formal 
method for the analysis of authentication protocols has 
been a source of debate, see [12] for details. The problem 

with the BAN logic is that it explicitly excludes time. On 
the other hand there is no way to represent actions 
performed by users. Communication, by its nature, refers to 
time, and its properties are naturally expressed in terms of 
actions like sending and receiving messages. When 
devising a protocol, we usually think of some property that 
we want the protocol to satisfy. We are mainly interested in 
the correctness of a protocol with respect to epistemic 
properties between two users like the arranging of a secret 
key known only to them. Therefore, our emphasis is on the 
interplay between knowledge and action. This leads us to 
consider a language that allows to express notions of 
knowledge and actions in a straightforward way: the 
language of modal logic. 
 
Many-dimensional modal logics are logics arising from the 
study of formal languages that are capable of characterizing 
different aspects of a domain, from time, to space, and, 
even more generally, intensional concepts like knowledge, 
action, obligation, etc. They form a part of the field of 
modal logic and have applications in artificial intelligence 
and computer science. Their study can be found in 
[1,6,7,11]. To illustrate the truth of this, many-dimensional 
modal logics allow an intuitive and attractive approach to 
the analysis of the behavior of multi-agent distributed 
systems by means of a formalism containing both epistemic 
operators and temporal operators, see [5] for details.  This 
paper uses epistemic operators and dynamic operators to 
develop a formalized language, focusing on the 
fundamental notions of knowledge and action. This paper 
presents what in our opinion constitutes the basis of 
authentication protocol verification. In section 2, we 
provide some necessary background on cryptography and 
data security. 
In addition to the basic definitions, we present the 
Needham-Schroeder public key protocol. A formalized 
language for the analysis of authentication protocols, 
proposed as an extension of the propositional epistemic 
logic by dynamic operators, is introduced in section 3. We 
also see examples illustrating its potential usefulness for 
the analysis of how knowledge evolves when protocols are 
executed. The semantical presentation, based on the notion 
of a global state is given in section 4. Here we show several 
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examples of protocol runs. In section 5 we give negative 
answer for the question of equivalent ordering of different 
modalities. Next in section 6 we list some problem and 
solve them. Finally, section 7 concludes the paper through 
a number of open questions. 
 

II. CRYPTOGRAPHY AND DATA SECURITY 
 
A cryptosystem or cipher system is a method of disguising 
messages so that only certain people can see through the 
disguise. Cryptography is the art of creating and using 
cryptosystems. The original message is called a plaintext. 
The disguised message is called a ciphertext. Encryption 
means any procedure to convert plaintext into ciphertext. 
Decryption means any procedure to convert ciphertext into 
plaintext. At symmetric encryption, we use the same key 
for encryption and decryption. At public key encryption 
there are pairs of keys. If we use one of the keys to encrypt 
then we can use the other key to decrypt and vice versa. 
Usually one of the keys is known only to the owner 
(private key) and the other is known to everybody (public 
key). In this article we denote by kAB the symmetric key 
shared by A and B whereas we denote by kA and kA

-1 the 
public and private key of user A, respectively. At the public 
key schemes, the encryption and the description is a very 
lengthy procedure, whereas symmetric key encryption can 
be done more efficiently, Hence the public key 
cryptosystems usually generate symmetric “session” keys 
and are using this key. We assume that users communicate 
over a network and hence they need to exchange the 
session key over the network. At this exchange we require 
that 

• After the exchange the sender and receiver can 
perform encryption and decryption using the 
session key. 

• Intruders cannot decrypt messages, only the 
receiver (confidentiality) 

• Receiver knows that the message was encrypted 
by a given entity and not someone else 
(authentication) 

• Intruders cannot modify messages (integrity) 
The cryptosystem consists of protocols. One protocol is an 
ordered list of messages. 
Let us see a famous example of a protocol: 
 

• A→B: kB(NA,A) 
• B→A: kA(NA,NB) 
• A→B: kB(NB) 

Needham-Schroeder public key protocol 
 
Here we have three messages, the sender of the first and 
last messages is A, and in these cases the receiver is B. At 
the second message the sender is B, and the receiver is A. 
The first message contains the name of the sender and a 
nonce NA. A nonce is a randomly generated number, and at 
the successive runs of a protocol nonces never get the same 
value. (Nonces can help to exclude several flaws, see 
[4,10].) The first message is encrypted with the public key 
of user B, so this ciphertext can be opened (decrypt) with 

the private key of B, and this is the secret of B. Hence only 
B can acquire the nonce NA. He send back this nonce to 
prove that he got the message and send a new nonce. This 
second message is encrypted with public key of A, so only 
A can decrypt and get the nonce NB. By sending back this 
nonce A can prove that he got B’s message. 
 

III. A FORMALIZED LANGUAGE 
 
When analyzing protocols run by users over a network that 
is vulnerable to many attacks, we want to focus on the 
communication aspects. As a result, the notion of message 
is basic. Suppose we fix a finite set USE of users' names, 
with typical member denoted i. We assume countably 
infinite sets VARt, VARk, VARn and VARc of text variables, 
key variables, nonce variables and ciphertext variables, 
respectively. We usually write text variables as xt, yt, zt, etc. 
We use suitable superscript for the other types, too. The set 
of all messages is inductively defined as follows: 

m := i | x | 〈m1,m2〉 | left(m) | right(m) | ki(m) | ki
-1(m) | 

E(xk,m). 
If we consider a countably infinite set Pt of plaintexts, with 
typical member denoted P, a countably infinite set Sk of 
symmetric keys, with typical member denoted k, a 
countably infinite set N of nonces, with typical member 
denoted n, and countably infinite set Ct of ciphertext, with 
typical member denoted c, then let M0, M1, … be sets 
defined as follows: M0=Pt∪Sk∪N∪Ct, Mi+1=Mi∪Mi×Mi for 
i≥0. Let M=M0∪M1∪... Now, a model based on Pt, Sk, N 
and Ct is a structure of the following form M=(Pt, Sk, N, 
Ct, σ, Iσ), where σ is a substitution of variables and Iσ is the 
function that satisfies the following conditions: 

• Iσ(i)=i∈Pt, Iσ(xt)=σ(xt)∈Pt, Iσ(xk)=σ(xk)∈Sk, 
Iσ(xn)=σ(xn)∈N, and Iσ(xc)=σ(xc)∈Ct. 

• Iσ(〈.,.〉):M×M→M, Iσ(left):M→M and Iσ(right): 
M→M are partial functions, such that  

o If m∈M0 then Iσ(left)(m) and Iσ(right)(m) 
are undefined. 

o Iσ(〈.,.〉)(m,m') =〈m,m'〉∈M 
o Iσ(left)( 〈m,m'〉)=m and 

Iσ(right)(〈m,m'〉)=m'. 
• Iσ(ki):M→M and  Iσ(ki

-1):M→M such that 
o Iσ(ki)(Iσ(ki

-1)(m))=m and Iσ(ki
-1)(Iσ(ki)(m)) 

=m. 
• If m∈M0\Ct then Iσ(ki)(m)∈Ct, Iσ(ki

-1)(m)∈Ct and 
Iσ(E)(k,m)∈Ct, 

• Iσ (E): Sk×M→M such that Iσ(E)(k,Iσ(E)(k,m))=m, 
where m, m'∈M and k∈Sk. 
 
During the execution of an authentication protocol like the 
Needham-Schroeder public-key protocol, interact by 
making actions. Within our framework, we will have to 
consider atomic actions like sending and receiving 
messages. Further actions with several atomic actions in 
sequence are typically described by means of dynamic 
constructs like sequential composition, nondeterministic 
choice, nondeterministic iteration and test. As a result, the 
set of all actions is inductively defined as follows: 
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α:=λ|exp?|text(xt)|key(xk)|nonce(xn)|send(m)|rec(m)| 
α1;α2| α1∪α2|α* 

where exp ranges over the set of all expressions to be 
defined later. λ is the nullary action “do nothing”. Roughly 
speaking, expressions allow us to reason about messages, 
users and the messages that users have. We formally 
defined them in this section. It must be remarked that 
programs are formed by starting with tests like exp?, 
atomic actions like text(xt), key(xk), nonce(xn), send(m) and 
rec(m), and closing off under dynamic constructs. With 
these definitions in hand, we can now define what it means 
for a user to execute an action: 

• When i performs the atomic action text(xt), it 
chooses an element in the plaintext space Pt  the 
value of which is given to xt. 

• When i executes the atomic action key(xk), it picks 
an element in the key space Sk the value of which 
is given to xk. 

• When i does the atomic action nonce(xn), it finds 
an element in the nonce space N the value of 
which is given to xn. 

• When i makes the action α1;α2, it performs α1 and 
then α2. 

• When i carries out the action α1∪α2, it makes 
either α1 or α2 nondeterministically. 

• When i performs the action α*, it repeats α some 
finite number of times. 

Remark that the dynamic constructs of our language come 
from the standard language of propositional dynamic logic 
[8,9]. As for test, when user i does the action exp?, it 
evaluates according to its own knowledge, whether the 
current global state satisfies exp. It continues if exp is 
known to be true, otherwise it fails. We define expressions 
in the following inductive way: 

exp := hasi(m) | m=m' | ¬exp|exp1∨exp2|Ki exp 
Atomic expression hasi(m) is interpreted to mean that user i 
can compute m from:  

• The pairing operators 〈.,.〉, left and right. 
• The public keys k1, …, kn. 
• Its private key ki

-1. 
• The plaintexts, the symmetric keys and the nonces 

he has already computed. 
• The messages it has already received. 

We read Ki exp as “user i knows that exp is true”. We 
should consider, for instance, the expression Kihasj(m) 
which represents the fact that user i knows that user j can 
compute m. Our language should allow us to express the 
notion of a user gaining knowledge over time as it receives 
messages from the network. To make this idea precise, we 
start with the primitive formulas Kiexp and we form more 
complicated formulas by closing off under negation, 
disjunction, and the dynamic operators [α1|| … ||αn]. This is 
expressed in one line as: 

ϕ:= Kiexp|¬ϕ|ϕ1ϕ2| [α1|| … ||αn]ϕ | Kiϕ  
with the formula [α1|| … ||αn]ϕ being read “after the 
parallel execution of actions α1, …, αn  ϕ is true” or  “after 
every terminating execution of actions α1, …, αn  in 
parallel, ϕ is true”.  

Now consider the following protocol: 1→2: k1
-1(k2(k12)), 

where user 1 sends k1
-1(k2(k12)) to user 2. We assume that 

k12 is a symmetric key picked by 1 in the key space SYM. 
As a result, 1 executes first the action key(xk), where xk is 
some key variable, and performs then the action       
send(k1

-1(k2(x
k)). As for user 2, it does not know in advance 

the symmetric key it will receive. As a result, user 2 does 
the action k1

-1(k2(y
k)). Thus, in this protocol, users 1 and 2 

are making respectively the actions β1 and β2:  
β1= key(xk); send(k1

-1(k2(x
k)))  

β2=rec(k1
-1(k2(y

k))) 
 

IV. SEMANTICAL PRESENTATION 
 
Now that we have described the syntax of our logic, we 
need a semantics to determine whether a given formula is 
true or false. Following the line of reasoning suggested by 
Fagin et al. [5], the first step consists of defining the notion 
of local state and the notion of global state. In our 
framework, a user's knowledge is determined by its local 
state whereas the global state describes the system at a 
given point of time. The user i's local state consists of two 
substitutions: θi and τi. Roughly speaking, θi is about the 
values given to variables by i when it executes atomic 
actions like text(x), key(x) or nonce(x), whereas τi is about 
the values given to variables by i when it executes the 
atomic action rec(m). Since a user's local state reflect the 
knowledge it has acquired, we assume that i's local state is 
getting longer over time. Once we associate a local state to 
each user, we have to associate to the whole system a 
global state. A global state, at a given point of time, must 
contain the n-tuple of users local states. It must also contain 
the list of all messages that has been sent up to this time 
point as well as markers indicating that part of the list such 
and such user has already received. 
Take the case of the global state: 


















21

)'()',()1,(

)/()'/(

)'/()/( 212 mkmmkmk

mzmy

mwmx
 

 
At this point of time, the above global state indicates that: 

• User 1 has given the value m to variable x while 
executing some atomic action like text(x), key(x) 
or nonce(x). 

• User 1 has given the value m' to variable y while 
receiving some message. 

• User 2 has given the value m' to variable w  while 
executing some atomic action like text(w), key(w) 
or nonce(w). 

• User 2 has given the value m to variable z while 
receiving some message. 

• Three messages have already been sent: k2(m,1), 
k1(m,m') and k2(m'). 

• User 1 has not read the third message yet, while 
user 2 has read all messages. 

Let Pt is a countably infinite set of plaintexts, Sk be a 
countably infinite set of symmetric keys, N be a countably 
infinite set of nonces, and Ct be a countably infinite set of 
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ciphertexts. Let M=(Pt, Sk, N, Ct, σ, Iσ) denote a model 
based on Pt, Sk, N and Ct. Consider an expression exp, a 
formula ϕ and a global state s. The relation “exp is true at 
global state s  with respect to a substitution σ”, denoted 
exp∈ TM(s, σ), and the relation “ϕ is true at global state s in 
model M”, denoted M,s|=ϕ, are defined inductively on the 
formation of exp and on the formation of ϕ as follows: 

• hasi(m)∈TM(s,σ) iff, according to the information 
it has at its local state si, user i can compute Iσ(m). 

• m=m'∈TM(s,σ) iff Iσ(m)=Iσ(m'). 
• ¬exp∈TM(s,σ) iff exp∉TM(s,σ). 
• exp∨exp'∈TM(s,σ) iff exp∈TM(s,σ) or 

exp'∈TM(s,σ). 
• Kiexp∈TM(s,σ) iff, for every global states t, if s≡it 

then exp∈TM(s,σ). 
• s|=Kiexp iff, for every global states t, if s≡it then 

exp∈TM(t, θi∪τi). 
• s|=¬ϕ iff s|≠ϕ. 
• s|=ϕ∨ψ iff s|=ϕ or s|=ψ. 
• s|=[α1|| … ||αn]ϕ iff, for all global states t, if    

sRα1|| … ||αnt then t|=ϕ. 
• s|= Kiϕ iff, for all available global states t, if s≡it 

then t|=ϕ. 
The definition of availability is given later in this section. 
The binary relations ≡i are the relations between global 
states defined by s≡is' iff: 

• θi =θ'i 
• τi =τ'i 
• User i has sent in l and l' the same messages in the 

same order. 
• User i has received in l and l' the same messages 

in the same order. 
where 



















= ls

n

n

ττ

θθ

...

...

1

1
 and 


















= '

'...'

'...'
'

1

1
ls

n

n

ττ

θθ
 

Remark that ≡i is an equivalence relation between global 
states for every user i. The binary relations Rα1…αn are the 
relations between global states defined by: 
Rα1,…,αi1∪αi2,…,αn = Rα1,…,αi1,…,αn∪Rα1,…,αi2,…,αn and 
Rπ1;α1,…,πn;αn = Rπ1,λ,…,λ°Rα1,…,πn;αn∪…∪Rλ,…,λ,πn°Rπ1;α1,…,αn, 
where πi are atomic actions, namely actions of the form 
text(.), key(.), nonce(.), send(.) or rec(.). sRλ,…,exp?,…,λt iff 
s=t and  t|=Kiexp. 



















l

n

n

ττ

θθ

...

...

1

1
Rλ,…,key(x),…,λ 


















l

cx

n

ni

ττ

θθθ

......

).../(...

1

1  

where c is some symmetric key in Sk. For the actions nonce 
and text we have a similar condition. 

 



















l

n

n

ττ

θθ

...

...

1

1
Rλ,…,send(m),…,λ 










∪








)(,

...

...

1

1
ii

n

n
ml τθ

ττ
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Here m(θi∪τi) is the result of applying substitutions for θI 
and τi to the term m. (m(θi∪τi) must be ground.)  
















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
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1
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
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
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






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1
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where the substitution µ(m,m') matches the message m to 
the message m'. 

Initial global state: s0= 
















n...1...

... λ

λλ

λλ
 

A global state s is said to be available when there exists 
programs α1, …, αn such that s0 Rα1|| … ||αn s. 
We have seen the program of the protocol: 1→2: k1

-

1(k2(k12)), where user 1 sends k1
-1(k2(k12)) to user 2. Let us 

see its running! Here at the beginning there are no 
substitutions and there are no messages. The initial global 
state with two agents is equal to: 


















12

λ

λλ

λλ
 

As user 1 executes the key(x) action and produces the key 
k,  the global state became the following: 


















12

)/( λ

λλ

λkx
 

In this step there are no messages yet. But when user1 send 
the message k1

-1(k2(k)), we move to the following global 
state: 




















12

(k))(kk)/(
2

-1
1

λλ

λkx
 

When user 2 receives this message, its marker moves 
forward, and user 2 realizes that the variable y gets the 
value k: 




















21

(k))(kk

)/(

)/(
2

-1
1

ky

kx

λ

λ
 

We are interested in users' knowledge, for example at this 
global state user 2 can deduce that user 1 knows (or using 
our terminology has) the key k. Because private key k1

-1 is 
known only by user 1, user 2 is sure that user 1 has the 
message k2(k), because user 1 is the only user able to 
produce k1

-1(k2(k)) from k2(k). In this case we have only 
two users, so user 2 knows that it cannot receive the 
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message k2(k) from a third user. Hence user 1 has 
generated k2(k) from k itself. And in this case user 1 really 
has the key k.  
What is the situation if we have more users, e.g. three, and 
user 2 executes its own program? Is it true that in each case 
user 1 has the key k? We can restate this question as: for all 
programs ζ1 and ζ3: s0|= [ζ1||β2||ζ3]K2has1(y)? It can be 
checked easily that with ζ1=rec(x);send(k1

-1(x) and 
ζ3=key(z);rec(k2(z)) we have a case where user 1 does not 
own the key. 
 

V. COUNTEREXAMPLES 
 
If we work with several different logical modalities, the 
following question arises: can we change the ordering of 
modalities? In other words, the resulting two formulae are 
equivalent or one of them is the consequence of the other 
formula? The following examples prove that the answer is 
no.  
If α=nonce(x);send(k1

-1(x)), β=rec(k1
-1(y)), and ϕ= 

K2has1(x) then s0|≠K1[α||β]ϕ⊃[α||β]K1ϕ. If α= 
nonce(x);send(k1

-1(x));rec(y), β=rec(k1
-1(z));send(k2

-1(z)), 
and ϕ=K1(x=k2(y)) then s0|≠[α||β]K1ϕ⊃ K1[α||β]ϕ. In this 
case there is only one way to execute parallel programs α 
and β, hence s0|≠[α||β]K1ϕ⊃K1〈α||β〉ϕ. 
 
 

VI. DECIDABLE PROBLEMS 
 
Let M=(Pt, Sk, N, Ct, σ, Iσ) be a model based on Pt, Sk, N 
and Ct. Let m be in M, where M is the union of the sets M0, 
M1, … defined in section 2. We define the computability of 
m for i as follows: 

• If x/m∈θi or (x/m'∈τi and Iσ(m)= Iσ(m')) then m is 
computable. 

• If m' and m''∈M are computable then 〈m',m''〉 is 
computable too. 

• If m'∈Sk and m''∈M are computable then 
Iσ(E)(m',m'') is computable too. 

• If m'∈M is computable thenIσ(kj)(m') and  
Iσ(ki

-1)(m') are computable too. 
• If m'∈M\M0  is computable then Iσ(left)(m') and 

Iσ(right)(m') are computable too. 
 
Let us define the function d on messages as: 

• If m∈M0 then d(m)=0. 
• d(ki(m))=d(ki

-1(m))=d(E(k,m))=d(left)(m)= 
d(right)(m)=d(m)+1, where k∈Sk. 

• d((m,m'))=1+max(d(m),d(m')). 
If θi =(x1/c1)…(xl/cl),  τi=(y1/m1)…(yk/mk) and we are 
interested that message m is computable for i  where 
e=max(d(m1), …, d(mk)) and f=d(m), then we need to check 
that there exist a message m', for which Iσ(m)= Iσ(m'), 
d(m')≤e+f, and m' does not contains variables but xj and yj. 
There is only finite such message m', so it is decidable, that 
a m is computable, or not. 
Problem 1. Given a global state s. Decide whether s is 

available or not. 

We can assume, that all the create actions (text, nonce, key) 
are executed before the send and receive actions. And now 
we go backward. At first we need to find that which user 
did the last action. Here we have maximum n possibilities. 
Let us assume that user i did. Next we need to find that was 
the last action. 

• If the last action was send(m), examine that m is 
computable for user i or not. If it is, move the 
pointer i left. 

• If the last action was rec(m), examine that m is 
computable for user i or not. If it is, delete the 
last element of τi and move the pointer i left. 

If user i cannot compute, then choose a different case 
(back-track). If there are no messages, i.e. the pointers are 
the leftmost position, and all the τi are empty list, the 
original state is available. 
Problem 2. Given “star-free” programs α1, …, αn and a 

“dynamic-free” formula ϕ of the form Ki1…Kilhasi(m), 

Ki1…Kil¬hasi(m) or Ki1…Kil(m=m'). Decide whether 

[α1||…||αn]ϕ  or not. 

Star-free programs do not contain the star (*) operator, and 
dynamic free formulae do not contain the [.||…||.] modality. 
 

Lemma. The previous problem is decidable. 

Proof. For any program β there exist a program β' such that 
 for any global state s and any programs γi: 
s|=[β||γ2||…||γn]ϕ if and only if s|=[β'||γ2||…||γn]ϕ, and β' is a 
nondeterministic choice of sequences of atomic programs, 
send and receive instructions: β' =(π11;…;π1j1) ∪ … ∪ 
(πu1;…;πujt). According the properties of the accessibility 
relation between global states, no generality is lost by 
assuming that the programs αi are sequences of atomic 
programs. If we assume that the sequences contains j1, … 

,jn atomic programs, then at most  
!...!

)!...(

11

1

jj

jj n

××

++
 different 

ordering of atomic programs is possible. From the ordering 
we can determine the final global state s. Now we need to 
answer, that for all such s, s|=K1ϕ holds, or not. This 
means, that for all global state t, such that s≡1t we need to 
check, that t|=ϕ or not. Unfortunately there are infinitely 
many such global states. But we do not need to check all of 
them. 
• If ϕ is m=m', then we can decide easily whether Iσ(m)= 

Iσ(m') or not. 
• If ϕ is has1(m) or if it is ¬has1(m), then t|=has1(m)  iff 

s|=has1(m). (s and t are equivalent states according to 
user 1), so we need to check only one state. 

• If ϕ is has2(m), user 2 knowledge does not decrese by 
reading new messages, so if s|=has2(m) then 
t|=has2(m),   where the pointer of user 2 in t is to the 
right  to the pointer of user 2 in s. The position of the 
pointers of the other users has no effect on knowledge 
of user 2. Hence we need to check the remaining cases, 
namely s and the available states where the pointer of 
user 2 in t is to the left to the pointer of user 2 in s. 
There are only finite such cases. 
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• If ϕ is ¬has2(m)  then we would like to know, that 
there exists some global state t, for which t|= has2(m). 
With other words: could the other users combine their 
knowledge to acquire the message m. Their own 
knowledge could increase, but their distributed 
knowledge not. So we need to test, that from their 
distributed knowledge (keys, nonces, messages) plus 
the messages sent by user 1 the message m is 
computable or not. 

• If ϕ=K2ϕ, then by definition s|=K1K2ϕ iff for all t, 
such that s≡it, t|=K2ϕ. From the previous points we 
know, that if ϕ is hasi(m), ¬hasi(m) or m=m', then we 
need to check only finite cases for all t, to test that 
t|=K2ϕ holds or not. If the pointer of user 2 in t is to 
the right to the pointer of user 2 in s, then s|=K2ϕ 
implies that t|= K2ϕ for this kind of formulae ϕ. Hence 
we need to check only finitely many state t. By similar 
reasoning the statement can be proved for longer 
sequences of epistemic modalities. 

First and last we need to test only finitely many cases, so 
the problem is decidable.  
 
  

VII. CONCLUSIONS 
 
In this paper, we have presented our formal language 
devoted to the verification of authentication protocols. 
Through the example of protocol, we have seen how the 
exchanges of messages between users can be expressed. 
The axiomatization and the decidability of the set of 
formulae true at all global states are open problems. 
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