

1

Some decidability result for logic constructed for checking user

authentication protocols

László Aszalós* and Philippe Balbiani **
* Department of Computer Science,

University of Debrecen, Faculty of Informatics,
PoBox 12, 4010 Debrecen, Hungary, aszalos@inf.unideb.hu

* * Institut de recherche en informatique de Toulouse
Irit-CNRS, Université Paul Sabatier

118 route de Narbonne, 31062 Toulouse Cedex 4, France balbiani@irit.fr

Abstract –The core of our paper is a general purpose

logical system for reasoning about user authentication

protocols. Proposed as an extension of the propositional

epistemic logic by dynamic operators, the potential

usefulness of our calculus for protocol verification is

illustrated with examples.

Keywords: authentication protocol, modal logic, dynamic

logic

I. INTRODUCTION

To protect data from exposure, it is desirable to encipher
plaintext information under keys which allow users to send
and receive messages over an insecure network. As a
result, the users must find secure methods for exchanging
the keys either by themselves or by means of a system key
manager. Authentication protocols emerged from numerous
works of computer scientists and their use has become
common in the science and study of methods of
exchanging keys. They are basically sequences of message
exchanges, whose purpose is to assure users that
communications do not leak confidential data. Indeed,
there is a wide variety of protocols that have been specified
and implemented, from protocols with trusted third party,
to protocols with public key and, even more generally,
hybrid protocols. The one drawback is that many of them
have been shown to be flawed, from which one may
explain the great deal of attention devoted to the formal
verification of security properties of protocols. Examples of
protocols can be found in [3].

In the literature, the most popular logic-based formal
approach to the analysis of authentication protocols is
perhaps the modal BAN calculus introduced by Burrows,
Abadi and Needham [2]. From the point of view of
computer science, a virtue of BAN is that it allows static
characterization of epistemic concepts. In spite of its
success in finding flaws or redundancies in some well-
known protocols, the effectiveness of BAN as a formal
method for the analysis of authentication protocols has
been a source of debate, see [12] for details. The problem

with the BAN logic is that it explicitly excludes time. On
the other hand there is no way to represent actions
performed by users. Communication, by its nature, refers to
time, and its properties are naturally expressed in terms of
actions like sending and receiving messages. When
devising a protocol, we usually think of some property that
we want the protocol to satisfy. We are mainly interested in
the correctness of a protocol with respect to epistemic
properties between two users like the arranging of a secret
key known only to them. Therefore, our emphasis is on the
interplay between knowledge and action. This leads us to
consider a language that allows to express notions of
knowledge and actions in a straightforward way: the
language of modal logic.

Many-dimensional modal logics are logics arising from the
study of formal languages that are capable of characterizing
different aspects of a domain, from time, to space, and,
even more generally, intensional concepts like knowledge,
action, obligation, etc. They form a part of the field of
modal logic and have applications in artificial intelligence
and computer science. Their study can be found in
[1,6,7,11]. To illustrate the truth of this, many-dimensional
modal logics allow an intuitive and attractive approach to
the analysis of the behavior of multi-agent distributed
systems by means of a formalism containing both epistemic
operators and temporal operators, see [5] for details. This
paper uses epistemic operators and dynamic operators to
develop a formalized language, focusing on the
fundamental notions of knowledge and action. This paper
presents what in our opinion constitutes the basis of
authentication protocol verification. In section 2, we
provide some necessary background on cryptography and
data security.
In addition to the basic definitions, we present the
Needham-Schroeder public key protocol. A formalized
language for the analysis of authentication protocols,
proposed as an extension of the propositional epistemic
logic by dynamic operators, is introduced in section 3. We
also see examples illustrating its potential usefulness for
the analysis of how knowledge evolves when protocols are
executed. The semantical presentation, based on the notion
of a global state is given in section 4. Here we show several

2

examples of protocol runs. In section 5 we give negative
answer for the question of equivalent ordering of different
modalities. Next in section 6 we list some problem and
solve them. Finally, section 7 concludes the paper through
a number of open questions.

II. CRYPTOGRAPHY AND DATA SECURITY

A cryptosystem or cipher system is a method of disguising
messages so that only certain people can see through the
disguise. Cryptography is the art of creating and using
cryptosystems. The original message is called a plaintext.
The disguised message is called a ciphertext. Encryption
means any procedure to convert plaintext into ciphertext.
Decryption means any procedure to convert ciphertext into
plaintext. At symmetric encryption, we use the same key
for encryption and decryption. At public key encryption
there are pairs of keys. If we use one of the keys to encrypt
then we can use the other key to decrypt and vice versa.
Usually one of the keys is known only to the owner
(private key) and the other is known to everybody (public
key). In this article we denote by kAB the symmetric key
shared by A and B whereas we denote by kA and kA

-1 the
public and private key of user A, respectively. At the public
key schemes, the encryption and the description is a very
lengthy procedure, whereas symmetric key encryption can
be done more efficiently, Hence the public key
cryptosystems usually generate symmetric “session” keys
and are using this key. We assume that users communicate
over a network and hence they need to exchange the
session key over the network. At this exchange we require
that

• After the exchange the sender and receiver can
perform encryption and decryption using the
session key.

• Intruders cannot decrypt messages, only the
receiver (confidentiality)

• Receiver knows that the message was encrypted
by a given entity and not someone else
(authentication)

• Intruders cannot modify messages (integrity)
The cryptosystem consists of protocols. One protocol is an
ordered list of messages.
Let us see a famous example of a protocol:

• A→B: kB(NA,A)
• B→A: kA(NA,NB)
• A→B: kB(NB)

Needham-Schroeder public key protocol

Here we have three messages, the sender of the first and
last messages is A, and in these cases the receiver is B. At
the second message the sender is B, and the receiver is A.
The first message contains the name of the sender and a
nonce NA. A nonce is a randomly generated number, and at
the successive runs of a protocol nonces never get the same
value. (Nonces can help to exclude several flaws, see
[4,10].) The first message is encrypted with the public key
of user B, so this ciphertext can be opened (decrypt) with

the private key of B, and this is the secret of B. Hence only
B can acquire the nonce NA. He send back this nonce to
prove that he got the message and send a new nonce. This
second message is encrypted with public key of A, so only
A can decrypt and get the nonce NB. By sending back this
nonce A can prove that he got B’s message.

III. A FORMALIZED LANGUAGE

When analyzing protocols run by users over a network that
is vulnerable to many attacks, we want to focus on the
communication aspects. As a result, the notion of message
is basic. Suppose we fix a finite set USE of users' names,
with typical member denoted i. We assume countably
infinite sets VARt, VARk, VARn and VARc of text variables,
key variables, nonce variables and ciphertext variables,
respectively. We usually write text variables as xt, yt, zt, etc.
We use suitable superscript for the other types, too. The set
of all messages is inductively defined as follows:

m := i | x | 〈m1,m2〉 | left(m) | right(m) | ki(m) | ki
-1(m) |

E(xk,m).
If we consider a countably infinite set Pt of plaintexts, with
typical member denoted P, a countably infinite set Sk of
symmetric keys, with typical member denoted k, a
countably infinite set N of nonces, with typical member
denoted n, and countably infinite set Ct of ciphertext, with
typical member denoted c, then let M0, M1, … be sets
defined as follows: M0=Pt∪Sk∪N∪Ct, Mi+1=Mi∪Mi×Mi for
i≥0. Let M=M0∪M1∪... Now, a model based on Pt, Sk, N
and Ct is a structure of the following form M=(Pt, Sk, N,
Ct, σ, Iσ), where σ is a substitution of variables and Iσ is the
function that satisfies the following conditions:

• Iσ(i)=i∈Pt, Iσ(xt)=σ(xt)∈Pt, Iσ(xk)=σ(xk)∈Sk,
Iσ(xn)=σ(xn)∈N, and Iσ(xc)=σ(xc)∈Ct.

• Iσ(〈.,.〉):M×M→M, Iσ(left):M→M and Iσ(right):
M→M are partial functions, such that

o If m∈M0 then Iσ(left)(m) and Iσ(right)(m)
are undefined.

o Iσ(〈.,.〉)(m,m') =〈m,m'〉∈M
o Iσ(left)(〈m,m'〉)=m and

Iσ(right)(〈m,m'〉)=m'.
• Iσ(ki):M→M and Iσ(ki

-1):M→M such that
o Iσ(ki)(Iσ(ki

-1)(m))=m and Iσ(ki
-1)(Iσ(ki)(m))

=m.
• If m∈M0\Ct then Iσ(ki)(m)∈Ct, Iσ(ki

-1)(m)∈Ct and
Iσ(E)(k,m)∈Ct,

• Iσ (E): Sk×M→M such that Iσ(E)(k,Iσ(E)(k,m))=m,
where m, m'∈M and k∈Sk.

During the execution of an authentication protocol like the
Needham-Schroeder public-key protocol, interact by
making actions. Within our framework, we will have to
consider atomic actions like sending and receiving
messages. Further actions with several atomic actions in
sequence are typically described by means of dynamic
constructs like sequential composition, nondeterministic
choice, nondeterministic iteration and test. As a result, the
set of all actions is inductively defined as follows:

3

α:=λ|exp?|text(xt)|key(xk)|nonce(xn)|send(m)|rec(m)|
α1;α2| α1∪α2|α*

where exp ranges over the set of all expressions to be
defined later. λ is the nullary action “do nothing”. Roughly
speaking, expressions allow us to reason about messages,
users and the messages that users have. We formally
defined them in this section. It must be remarked that
programs are formed by starting with tests like exp?,
atomic actions like text(xt), key(xk), nonce(xn), send(m) and
rec(m), and closing off under dynamic constructs. With
these definitions in hand, we can now define what it means
for a user to execute an action:

• When i performs the atomic action text(xt), it
chooses an element in the plaintext space Pt the
value of which is given to xt.

• When i executes the atomic action key(xk), it picks
an element in the key space Sk the value of which
is given to xk.

• When i does the atomic action nonce(xn), it finds
an element in the nonce space N the value of
which is given to xn.

• When i makes the action α1;α2, it performs α1 and
then α2.

• When i carries out the action α1∪α2, it makes
either α1 or α2 nondeterministically.

• When i performs the action α*, it repeats α some
finite number of times.

Remark that the dynamic constructs of our language come
from the standard language of propositional dynamic logic
[8,9]. As for test, when user i does the action exp?, it
evaluates according to its own knowledge, whether the
current global state satisfies exp. It continues if exp is
known to be true, otherwise it fails. We define expressions
in the following inductive way:

exp := hasi(m) | m=m' | ¬exp|exp1∨exp2|Ki exp
Atomic expression hasi(m) is interpreted to mean that user i
can compute m from:

• The pairing operators 〈.,.〉, left and right.
• The public keys k1, …, kn.
• Its private key ki

-1.
• The plaintexts, the symmetric keys and the nonces

he has already computed.
• The messages it has already received.

We read Ki exp as “user i knows that exp is true”. We
should consider, for instance, the expression Kihasj(m)
which represents the fact that user i knows that user j can
compute m. Our language should allow us to express the
notion of a user gaining knowledge over time as it receives
messages from the network. To make this idea precise, we
start with the primitive formulas Kiexp and we form more
complicated formulas by closing off under negation,
disjunction, and the dynamic operators [α1|| … ||αn]. This is
expressed in one line as:

ϕ:= Kiexp|¬ϕ|ϕ1ϕ2| [α1|| … ||αn]ϕ | Kiϕ
with the formula [α1|| … ||αn]ϕ being read “after the
parallel execution of actions α1, …, αn ϕ is true” or “after
every terminating execution of actions α1, …, αn in
parallel, ϕ is true”.

Now consider the following protocol: 1→2: k1
-1(k2(k12)),

where user 1 sends k1
-1(k2(k12)) to user 2. We assume that

k12 is a symmetric key picked by 1 in the key space SYM.
As a result, 1 executes first the action key(xk), where xk is
some key variable, and performs then the action
send(k1

-1(k2(x
k)). As for user 2, it does not know in advance

the symmetric key it will receive. As a result, user 2 does
the action k1

-1(k2(y
k)). Thus, in this protocol, users 1 and 2

are making respectively the actions β1 and β2:
β1= key(xk); send(k1

-1(k2(x
k)))

β2=rec(k1
-1(k2(y

k)))

IV. SEMANTICAL PRESENTATION

Now that we have described the syntax of our logic, we
need a semantics to determine whether a given formula is
true or false. Following the line of reasoning suggested by
Fagin et al. [5], the first step consists of defining the notion
of local state and the notion of global state. In our
framework, a user's knowledge is determined by its local
state whereas the global state describes the system at a
given point of time. The user i's local state consists of two
substitutions: θi and τi. Roughly speaking, θi is about the
values given to variables by i when it executes atomic
actions like text(x), key(x) or nonce(x), whereas τi is about
the values given to variables by i when it executes the
atomic action rec(m). Since a user's local state reflect the
knowledge it has acquired, we assume that i's local state is
getting longer over time. Once we associate a local state to
each user, we have to associate to the whole system a
global state. A global state, at a given point of time, must
contain the n-tuple of users local states. It must also contain
the list of all messages that has been sent up to this time
point as well as markers indicating that part of the list such
and such user has already received.
Take the case of the global state:

21

)'()',()1,(

)/()'/(

)'/()/(212 mkmmkmk

mzmy

mwmx

At this point of time, the above global state indicates that:

• User 1 has given the value m to variable x while
executing some atomic action like text(x), key(x)
or nonce(x).

• User 1 has given the value m' to variable y while
receiving some message.

• User 2 has given the value m' to variable w while
executing some atomic action like text(w), key(w)
or nonce(w).

• User 2 has given the value m to variable z while
receiving some message.

• Three messages have already been sent: k2(m,1),
k1(m,m') and k2(m').

• User 1 has not read the third message yet, while
user 2 has read all messages.

Let Pt is a countably infinite set of plaintexts, Sk be a
countably infinite set of symmetric keys, N be a countably
infinite set of nonces, and Ct be a countably infinite set of

4

ciphertexts. Let M=(Pt, Sk, N, Ct, σ, Iσ) denote a model
based on Pt, Sk, N and Ct. Consider an expression exp, a
formula ϕ and a global state s. The relation “exp is true at
global state s with respect to a substitution σ”, denoted
exp∈ TM(s, σ), and the relation “ϕ is true at global state s in
model M”, denoted M,s|=ϕ, are defined inductively on the
formation of exp and on the formation of ϕ as follows:

• hasi(m)∈TM(s,σ) iff, according to the information
it has at its local state si, user i can compute Iσ(m).

• m=m'∈TM(s,σ) iff Iσ(m)=Iσ(m').
• ¬exp∈TM(s,σ) iff exp∉TM(s,σ).
• exp∨exp'∈TM(s,σ) iff exp∈TM(s,σ) or

exp'∈TM(s,σ).
• Kiexp∈TM(s,σ) iff, for every global states t, if s≡it

then exp∈TM(s,σ).
• s|=Kiexp iff, for every global states t, if s≡it then

exp∈TM(t, θi∪τi).
• s|=¬ϕ iff s|≠ϕ.
• s|=ϕ∨ψ iff s|=ϕ or s|=ψ.
• s|=[α1|| … ||αn]ϕ iff, for all global states t, if

sRα1|| … ||αnt then t|=ϕ.
• s|= Kiϕ iff, for all available global states t, if s≡it

then t|=ϕ.
The definition of availability is given later in this section.
The binary relations ≡i are the relations between global
states defined by s≡is' iff:

• θi =θ'i
• τi =τ'i
• User i has sent in l and l' the same messages in the

same order.
• User i has received in l and l' the same messages

in the same order.
where

= ls

n

n

ττ

θθ

...

...

1

1
 and

= '

'...'

'...'
'

1

1
ls

n

n

ττ

θθ

Remark that ≡i is an equivalence relation between global
states for every user i. The binary relations Rα1…αn are the
relations between global states defined by:
Rα1,…,αi1∪αi2,…,αn = Rα1,…,αi1,…,αn∪Rα1,…,αi2,…,αn and
Rπ1;α1,…,πn;αn = Rπ1,λ,…,λ°Rα1,…,πn;αn∪…∪Rλ,…,λ,πn°Rπ1;α1,…,αn,
where πi are atomic actions, namely actions of the form
text(.), key(.), nonce(.), send(.) or rec(.). sRλ,…,exp?,…,λt iff
s=t and t|=Kiexp.

l

n

n

ττ

θθ

...

...

1

1
Rλ,…,key(x),…,λ

l

cx

n

ni

ττ

θθθ

......

).../(...

1

1

where c is some symmetric key in Sk. For the actions nonce
and text we have a similar condition.

l

n

n

ττ

θθ

...

...

1

1
Rλ,…,send(m),…,λ

∪

)(,

...

...

1

1
ii

n

n
ml τθ

ττ

θθ

Here m(θi∪τi) is the result of applying substitutions for θI
and τi to the term m. (m(θi∪τi) must be ground.)

i

m

n

n '......

...

...

1

1

ττ

θθ
Rλ,…,rec(m),…,λ

i

m

mm ni

ni ...'...

)...',(...

......

1

1

τµττ

θθθ

where the substitution µ(m,m') matches the message m to
the message m'.

Initial global state: s0=

n...1...

... λ

λλ

λλ

A global state s is said to be available when there exists
programs α1, …, αn such that s0 Rα1|| … ||αn s.
We have seen the program of the protocol: 1→2: k1

-

1(k2(k12)), where user 1 sends k1
-1(k2(k12)) to user 2. Let us

see its running! Here at the beginning there are no
substitutions and there are no messages. The initial global
state with two agents is equal to:

12

λ

λλ

λλ

As user 1 executes the key(x) action and produces the key
k, the global state became the following:

12

)/(λ

λλ

λkx

In this step there are no messages yet. But when user1 send
the message k1

-1(k2(k)), we move to the following global
state:

12

(k))(kk)/(
2

-1
1

λλ

λkx

When user 2 receives this message, its marker moves
forward, and user 2 realizes that the variable y gets the
value k:

21

(k))(kk

)/(

)/(
2

-1
1

ky

kx

λ

λ

We are interested in users' knowledge, for example at this
global state user 2 can deduce that user 1 knows (or using
our terminology has) the key k. Because private key k1

-1 is
known only by user 1, user 2 is sure that user 1 has the
message k2(k), because user 1 is the only user able to
produce k1

-1(k2(k)) from k2(k). In this case we have only
two users, so user 2 knows that it cannot receive the

5

message k2(k) from a third user. Hence user 1 has
generated k2(k) from k itself. And in this case user 1 really
has the key k.
What is the situation if we have more users, e.g. three, and
user 2 executes its own program? Is it true that in each case
user 1 has the key k? We can restate this question as: for all
programs ζ1 and ζ3: s0|= [ζ1||β2||ζ3]K2has1(y)? It can be
checked easily that with ζ1=rec(x);send(k1

-1(x) and
ζ3=key(z);rec(k2(z)) we have a case where user 1 does not
own the key.

V. COUNTEREXAMPLES

If we work with several different logical modalities, the
following question arises: can we change the ordering of
modalities? In other words, the resulting two formulae are
equivalent or one of them is the consequence of the other
formula? The following examples prove that the answer is
no.
If α=nonce(x);send(k1

-1(x)), β=rec(k1
-1(y)), and ϕ=

K2has1(x) then s0|≠K1[α||β]ϕ⊃[α||β]K1ϕ. If α=
nonce(x);send(k1

-1(x));rec(y), β=rec(k1
-1(z));send(k2

-1(z)),
and ϕ=K1(x=k2(y)) then s0|≠[α||β]K1ϕ⊃ K1[α||β]ϕ. In this
case there is only one way to execute parallel programs α
and β, hence s0|≠[α||β]K1ϕ⊃K1〈α||β〉ϕ.

VI. DECIDABLE PROBLEMS

Let M=(Pt, Sk, N, Ct, σ, Iσ) be a model based on Pt, Sk, N
and Ct. Let m be in M, where M is the union of the sets M0,
M1, … defined in section 2. We define the computability of
m for i as follows:

• If x/m∈θi or (x/m'∈τi and Iσ(m)= Iσ(m')) then m is
computable.

• If m' and m''∈M are computable then 〈m',m''〉 is
computable too.

• If m'∈Sk and m''∈M are computable then
Iσ(E)(m',m'') is computable too.

• If m'∈M is computable thenIσ(kj)(m') and
Iσ(ki

-1)(m') are computable too.
• If m'∈M\M0 is computable then Iσ(left)(m') and

Iσ(right)(m') are computable too.

Let us define the function d on messages as:

• If m∈M0 then d(m)=0.
• d(ki(m))=d(ki

-1(m))=d(E(k,m))=d(left)(m)=
d(right)(m)=d(m)+1, where k∈Sk.

• d((m,m'))=1+max(d(m),d(m')).
If θi =(x1/c1)…(xl/cl), τi=(y1/m1)…(yk/mk) and we are
interested that message m is computable for i where
e=max(d(m1), …, d(mk)) and f=d(m), then we need to check
that there exist a message m', for which Iσ(m)= Iσ(m'),
d(m')≤e+f, and m' does not contains variables but xj and yj.
There is only finite such message m', so it is decidable, that
a m is computable, or not.
Problem 1. Given a global state s. Decide whether s is

available or not.

We can assume, that all the create actions (text, nonce, key)
are executed before the send and receive actions. And now
we go backward. At first we need to find that which user
did the last action. Here we have maximum n possibilities.
Let us assume that user i did. Next we need to find that was
the last action.

• If the last action was send(m), examine that m is
computable for user i or not. If it is, move the
pointer i left.

• If the last action was rec(m), examine that m is
computable for user i or not. If it is, delete the
last element of τi and move the pointer i left.

If user i cannot compute, then choose a different case
(back-track). If there are no messages, i.e. the pointers are
the leftmost position, and all the τi are empty list, the
original state is available.
Problem 2. Given “star-free” programs α1, …, αn and a

“dynamic-free” formula ϕ of the form Ki1…Kilhasi(m),

Ki1…Kil¬hasi(m) or Ki1…Kil(m=m'). Decide whether

[α1||…||αn]ϕ or not.

Star-free programs do not contain the star (*) operator, and
dynamic free formulae do not contain the [.||…||.] modality.

Lemma. The previous problem is decidable.

Proof. For any program β there exist a program β' such that
 for any global state s and any programs γi:
s|=[β||γ2||…||γn]ϕ if and only if s|=[β'||γ2||…||γn]ϕ, and β' is a
nondeterministic choice of sequences of atomic programs,
send and receive instructions: β' =(π11;…;π1j1) ∪ … ∪
(πu1;…;πujt). According the properties of the accessibility
relation between global states, no generality is lost by
assuming that the programs αi are sequences of atomic
programs. If we assume that the sequences contains j1, …

,jn atomic programs, then at most
!...!

)!...(

11

1

jj

jj n

××

++
 different

ordering of atomic programs is possible. From the ordering
we can determine the final global state s. Now we need to
answer, that for all such s, s|=K1ϕ holds, or not. This
means, that for all global state t, such that s≡1t we need to
check, that t|=ϕ or not. Unfortunately there are infinitely
many such global states. But we do not need to check all of
them.
• If ϕ is m=m', then we can decide easily whether Iσ(m)=

Iσ(m') or not.
• If ϕ is has1(m) or if it is ¬has1(m), then t|=has1(m) iff

s|=has1(m). (s and t are equivalent states according to
user 1), so we need to check only one state.

• If ϕ is has2(m), user 2 knowledge does not decrese by
reading new messages, so if s|=has2(m) then
t|=has2(m), where the pointer of user 2 in t is to the
right to the pointer of user 2 in s. The position of the
pointers of the other users has no effect on knowledge
of user 2. Hence we need to check the remaining cases,
namely s and the available states where the pointer of
user 2 in t is to the left to the pointer of user 2 in s.
There are only finite such cases.

6

• If ϕ is ¬has2(m) then we would like to know, that
there exists some global state t, for which t|= has2(m).
With other words: could the other users combine their
knowledge to acquire the message m. Their own
knowledge could increase, but their distributed
knowledge not. So we need to test, that from their
distributed knowledge (keys, nonces, messages) plus
the messages sent by user 1 the message m is
computable or not.

• If ϕ=K2ϕ, then by definition s|=K1K2ϕ iff for all t,
such that s≡it, t|=K2ϕ. From the previous points we
know, that if ϕ is hasi(m), ¬hasi(m) or m=m', then we
need to check only finite cases for all t, to test that
t|=K2ϕ holds or not. If the pointer of user 2 in t is to
the right to the pointer of user 2 in s, then s|=K2ϕ
implies that t|= K2ϕ for this kind of formulae ϕ. Hence
we need to check only finitely many state t. By similar
reasoning the statement can be proved for longer
sequences of epistemic modalities.

First and last we need to test only finitely many cases, so
the problem is decidable.

VII. CONCLUSIONS

In this paper, we have presented our formal language
devoted to the verification of authentication protocols.
Through the example of protocol, we have seen how the
exchanges of messages between users can be expressed.
The axiomatization and the decidability of the set of
formulae true at all global states are open problems.

ACKNOWLEDGMENTS

The research of the first author is partly supported by the
French ministry of education whereas the research of the
second author is supported by the COST action “Theory
and Applications of Relational Structures as Knowledge
Instruments”.

REFERENCES

[1] Ágnes Kurucz, Combining modal logics, Handbook of

Modal Logic, eds.: J. van Benthem, P.Blackburn, F. Wolter,
Studies in Logic and Practical Reasoning, Volume 3.
Elsevier, 869-924. 2007.

[2] Michael Burrows, Martín Abadi, and Roger Needham. A
logic for authentication. In Proceedings of the Royal Society
of London, volume 426, pages 233-271, 1989.

[3] John Clark and Jeremy Jacob. A survey of authentication
protocol literature. unpublished

[4] Dorothy Elizabeth and Robling Denning. Cryptography and
Data Security. Addison-Wesley Pub Co, 1982.

[5] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and
Moshe Y. Vardi. Reasoning about knowledge. MIT Press,
Cambridge, MA, 1995.

[6] Dov M. Gabbay, Ágnes Kurucz, Frank Wolter, and Michael
Zakharyaschev. Many-Dimensional Modal Logics: Theory
and Applications. Studies in Logic and the Foundations of
Mathematics, Volume 148. Elsevier, 2003.

[7] Dov M. Gabbay and Valentin B. Shehtman. Products of
modal logics. {I}. Logic Journal of the IGPL. Interest
Group in Pure and Applied Logics, 6(1):73-146, 1998.

[8] Robert Goldblatt. Logics of Time and Computation, volume
7 of Lecture Notes. Center for the Study of Language and
Information, 1987.

[9] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic
Logic. MIT Press, 2000.

[10] Gavin Lowe. An attack on the Needham-Schroeder public-
key authentication protocol. Information Processing Letters,
56:131-136, 1995.

[11] Maarten Marx and Yde Venema. Multi-dimensional modal
logic, volume 4 of Applied Logic Series. Kluwer Academic
Publishers, Dordrecht, 1997.

[12] Aviel D. Rubin and Peter Honeyman. Formal methods for
the analysis of authentication protocols. unpublished

