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Abstract

We previously found higher level of endothelial cell (EC) activation in patients who suffered

from in-stent restenosis after bare-metal stenting compared to subjects who underwent

drug-eluting stenting (DES) showing no complications. Here we investigated the potential

transcriptional and post-transcriptional regulatory mechanisms by which everolimus attenu-

ated EC activation after DES. We studied the effect of everolimus on E-selectin (SELE) and

VCAM1 mRNA levels when human coronary artery (HCAECs) and human umbilical vein

ECs were challenged with recombinant TNF-α (100 ng/mL) for 1–24 hours in the presence

or absence of everolimus using 0.5 μM concentration locally maintained by DES. EC activa-

tion was evaluated via the levels of IL-1β and IL-6 mRNAs with miR-155 expression by RT-

qPCR as well as the nuclear translocation of nuclear factor kappa beta (NF-κB) detected

by fluorescence microscopy. To investigate the transcriptional regulation of E-selectin and

VCAM-1, TNF-α-induced enhancer RNA (eRNA) expression at p65-bound enhancers in

the neighboring genomic regions of SELE and VCAM1 genes, including SELE_-11Kb and

VCAM1_-10Kb, were measured in HCAECs. Mature and precursor levels of E-selectin and

VCAM-1 repressor miR-181b were quantified to analyze the post-transcriptional regulation

of these genes in HCAECs. Circulating miR-181b was analyzed in plasma samples of

stented subjects by stem-loop RT-qPCR. TNF-α highly elevated E-selectin and VCAM-1

expression at transcriptional level in ECs. Levels of mature, pre- and pri-miR-181b were

repressed in ECs by TNF-α, while everolimus acted as a negative regulator of EC activation

via inhibited translocation of NF-κB p65 subunit into cell nuclei, lowered eRNA expression at

SELE and VCAM1 genes-associated enhancers and modulated expression of their post-

transcriptional repressor miR-181b. Significant negative correlation was observed between

plasma miR-181b and soluble E-selectin and VCAM-1 in patients. In conclusion, everolimus
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attenuates EC activation via reduced NF-κB p65 translocation causing decreased E-selectin

and VCAM-1 expression at transcriptional and post-transcriptional level after DES.

Introduction

The expanding application of drug-eluting stents (DES) has dramatically decreased the inci-

dence of in-stent restenosis (ISR) compared to bare metal stents (BMS) [1]. These stents are

covered with an anti-proliferative drug, such as everolimus that slows down the endothelializa-

tion in stented coronary arteries [1]. Early ISR is primarily caused by subsequent endothelium

dysfunction and activation and uncontrolled neo-intimal proliferation [2, 3]. It has previously

been reported that percutaneous coronary intervention (PCI) could cause endothelial cell

(EC) activation accompanied with enhanced E-selectin [4] and vascular cell adhesion mole-

cule-1 (VCAM-1) plasma concentrations [5, 6]. Both adhesion receptors are expressed on acti-

vated ECs stimulated by tumor necrosis factor α (TNF-α) or other inflammatory cytokines in

large part via increased transcriptional regulation, and then involved in leukocyte migration to

ECs [7]. Furthermore, BMS-induced restenosis was associated with higher soluble VCAM-1

and TNF-α levels in a clinical study [8]. Recently, our group has compared the effect of BMS

and DES on the degree of endothelium and platelet activation in the light of incidence of ISR

in stable angina patients [6]. We described that 20% of BMS subjects suffered from ISR devel-

oped after 1–3 months of intervention compared to DES individuals. Based on soluble E-selec-

tin and VCAM-1 concentrations measured at 1 month follow-up samples, there was more EC

activation in BMS patients with ISR compared to DES subjects without any complication [6].

Everolimus is an inhibitor of mammalian target of rapamycin (mTOR) and is currently

used as an immunosuppressant to prevent rejection of organ transplants. However, this drug

has an anti-proliferative effect via blocking the cell cycle in the G1 phase to inhibit prolifera-

tion, such as in vascular smooth muscle cells (VSMC) [9], and has recently showed a potent

anti-inflammatory effect in neutrophils reducing the release of IL-8 and decreasing TNF-α-

induced adhesion of neutrophils to ECs [10]. In parallel, rapamycin (sirolimus) antagonized

VCAM-1 levels induced by TNF-α in human umbilical vein endothelial cells (HUVECs) via

inhibiting mTORC2 activity and potentiated ERK1/2 [11]. However, no studies have investi-

gated the potential transcriptional and post-transcriptional regulatory mechanisms by which

everolimus can decrease EC activation.

MicroRNAs (miRNA) have recently been introduced as post-transcriptional fine regulators

in various pathophysiological processes, such as in vascular disorders [12]. For instance, miR-

133a, miR-155, and miR-126 have been connected with different cellular and inflammatory

responses of the vessel wall acting as potential biomarkers in cardiovascular diseases [13, 14].

PCI-related ISR was also associated with altered miRNA expression, i.e. plasma miR-21 was

overexpressed in subjects with ISR [15], while overexpression of endothelial miR-126 pre-

vented vascular restenosis in a rat balloon injury model [16]. In addition, EC activation-depen-

dent VCAM-1 and E-selectin were modulated by miR-181b [17].

To date, limited pieces of evidence are available about transcriptional and post-transcrip-

tional regulatory mechanisms of E-selectin and VCAM-1 expression upon the development of

enhanced EC activation as well as its inhibition by everolimus. Thus, we here analyzed E-selec-

tin and VCAM-1 expression at transcriptional level in two types of EC cultures. In addition,

we measured the mature and precursor forms of E-selectin/VCAM-1 post-transcriptional

regulator miR-181b in EC cultures stimulated with TNF-α in the presence or absence of evero-

limus in vitro. Furthermore, the levels of miR-181b were also investigated and correlated with
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the concentrations of these related soluble adhesive receptors in plasma samples of patients

who underwent BMS or DES implantation with or without ISR.

Materials and methods

Culturing endothelial cells with or without everolimus

Human coronary artery endothelial cells (HCAEC, Cell Applications Inc, San Diego, CA,

USA) were cultured in ready-to-use MesoEndo Cell Growth Medium (Cell Applications) at

37˚C, 5% CO2. In parallel, HUVECs were specifically isolated for this study and were removed

from human umbilical veins by exposure to dispase and cultured in medium 199 (M199,

Gibco, Grand Island, NY, USA) containing 15% fetal bovine serum (Gibco), antibiotic, anti-

mycotic solution (1%, Sigma), heparin (5 U/mL, Merckle GmbH, Blaubeuren, Germany) and

endothelial growth supplement (7.5 ug/mL, Sigma) as described in our previous study [18].

For subculturing, cell density was set to 5,000 cells per cm2 in both cell cultures.

HCAEC and HUVEC cells (3x105/well) were treated in 6-well plates with recombinant

TNF-α (100 ng/mL, Gibco) for 1–24 hours to generate cellular inflammatory conditions as an

in vitro model of stent-induced EC inflammation. In parallel, the effect of everolimus on EC

activation was studied using everolimus (0.5 μM, dissolved in DMSO, Sigma) in the presence

of TNF-α for the same time period above. After treatment, cells were washed once with sterile

Hanks’ Balanced Salt solution (Sigma), then lysed in 750 μL TRI reagent (Molecular Research

Center INC, Cincinnati, OH, USA) and stored at -20˚C before RNA isolation.

Total RNA was then extracted for the quantification of E-selectin and VCAM-1 mRNAs as

well as miR-181b using RT-qPCR. The purity and the concentration of separated RNA samples

were verified by a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

Total RNA samples were stored at -70˚C before quantitative analysis.

RT-qPCR analysis of mRNAs, pre-miRNAs and pri-miRNAs

cDNA synthesis was performed with High-Capacity cDNA Reverse Transcription Kit

(Applied Biosystems, ABI, Foster City, CA, USA) according to the manufacturer’s recommen-

dation with minor modifications. Initial amount of RNA in case of ECs was 500 ng per reac-

tion. Quantitative PCR was performed using LC-480 instrument (Roche Diagnostics GmbH,

Mannheim, Germany) with LightCycler 480 SYBR Green I Master mix (Roche Diagnostics)

and gene specific primers (10 μM, Integrated DNA Technologies Inc, IDT, Leuven, Belgium).

The reactions were incubated at 95˚C for 10 min, followed by 40 cycles of 95˚C for 10 sec and

60˚C for 1 min. For normalization, we used the reference gene RPLP0 (36B4). Sequences of

these primers are listed in S1 Table.

Measurement of soluble E-selectin and VCAM-1 levels in supernatants of

EC cultures

The concentrations of E-selectin and VCAM-1 were determined in the supernatants of HCAEC

cultures by using commercially available enzyme-linked immunoassays (ELISA) (R&D Systems,

Minneapolis, MN, USA) according to the manufacturer’s instructions. Before performing

ELISA, samples were centrifuged at 10,000 g for 1 min to obtain cell free supernatants.

Investigation of the effect of everolimus on inflammatory response to TNF-

α via measuring IL-1β and IL-6 expression in ECs

To determine if TNF-α-induced EC activation was modulated at transcriptional level by

everolimus, HCAECs were treated with recombinant TNF-α (100 ng/mL) with or without
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everolimus (0.5 μM) for 1 and 4 hours, then IL-1β and IL-6 mRNA levels as sensitive inflam-

mation biomarkers were quantified by RT-qPCR as shown above. Sequences of primers for IL-

1β and IL-6 mRNAs are listed in S1 Table.

Detection of nuclear factor kappa B (NF-κB) activation in ECs

The p65 staining was performed based on our previous publication [19]. Briefly, HCAEC cells

were seeded onto sterile uncoated microscope slides at a density of 5 x 104 cells/slide and cul-

tured for 2 days. HCAECs were stimulated with TNF-α (100 ng/mL) for 1 hour in the absence

or presence of everolimus (0.5 μM) or DMSO, and were then fixed with ice-cold methanol-

acetone (50 v/v %) for 10 min. Non-specific antibody binding sites were blocked with FBS for

15 min. For primary labelling of NF-κB p65 subunit, rabbit anti-human p65 (100 μg/ml, Santa

Cruz Biotechnology, AB_632037) was used followed by secondary staining with Alexa Fluor

488-conjugated goat-anti-rabbit IgG (Invitrogen, Carlsbad, CA, USA). Cell nuclei were labeled

with Hoechst 33342 (Invitrogen). Samples were observed by Zeiss Axio Scope.A1 fluorescent

microscope (HBO 100 lamp) (Carl Zeiss Microimaging GmbH, Göttingen, Germany). Images

were analyzed with ZEN 2012 v.1.1.0.0. software (Carl Zeiss Microscopy GmbH, Göttingen,

Germany), and for the NF-κB staining the ratio of nuclear and perinuclear fluorescence inten-

sity was calculated. The specificity of immunostaining was checked by incubating the cells

with the secondary antibody only, and no background staining was found.

Investigation of TNF-α and everolimus-mediated transcriptional

regulation of VCAM-1 and E-selectin by ChIP-seq

Processed ChIP-seq data were downloaded from the NCBI GEO depository (GEO accession

number: GSE53998). Integrative Genomics Viewer (IGV2.3, Broad Institute) was used for

data browsing [20] and creating representative snapshots. We reanalyzed the unstimulated

and TNF-α-treated HUVEC cells-derived publicly available NF-κB transcription factor sub-

unit p65, RNA Polymerase II (RNAPII), active histone mark H3K27Ac, and active transcrip-

tion start site mark H3K4m3-specific ChIP-seq data sets. The method how enhancer RNAs

(eRNA) were analyzed, was previously described by Brown et al. [21]. We wanted to identify

TNF-α-activated transcription factor-bound enhancers in the neighboring genomic regions of

VCAM-1 and E-selectin genes. HCAECs were then treated with TNF-α (100 ng/mL) with or

without everolimus (0.5 μM) for 1 hour, and we then quantified the levels of two selected

eRNAs (SELE_-11Kb and VCAM1_-10Kb) by RT-qPCR.

MiRNA specific stem-loop RT-qPCR analysis

The expression of miRNAs was quantified in both types of EC cultures as well as in plasma

samples by Universal ProbeLibrary (UPL)-probe based stem-loop RT-qPCR assay as we

recently described [22]. The qPCR assays were designed by the software developed by Czim-

merer et al. [23], and oligonucleotides used in this study are listed in S1 Table. This tech-

nique included two steps: 1) miRNAs (10 ng total RNA) were transcribed into cDNA via

miRNA specific reverse transcription using miRNA-specific stem loop-RT primer (500 nM,

IDT) and TaqMan1 MicroRNA1 Reverse Transcription Kit (ABI), and 2) miRNA quantifi-

cation was performed by RT-qPCR using designed universal reverse primer (100 μM,

Sigma-Aldrich), miRNA-specific forward primer (100 μM, IDT) and UPL probe #21

(10 μM, Roche Diagnostics) with Taq polimerase (5 U/μL, Thermo Scientific) and dNTPs

(2.5 mM, Thermo Scientific). The reactions were incubated at 95˚C for 1 min, followed by

40 cycles of 95˚C for 15 sec and 60˚C for 30 sec. All measurements were done in triplicates

on a QuantStudio 12 K Flex qPCR instrument (ABI). Plasma miR-24 was found to have the
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most stable expression in patient samples, thus, this was applied for normalization of mature

miRNAs as a reference gene throughout RT-qPCR analyses. For cell culture analyses, RNU-

43 was used for normalization.

Transfection of HCAECs with miR-181b mimic

The transfection of ECs with specific miR-181b mimic was performed based on the manufac-

turer’s instructions. Briefly, HCAECs were treated with TNF-α (100 ng/mL) for 1 hour in

MesoEndo medium, and Opti-MEM I Reduced Serum Medium (Gibco) with 3% FBS, 100 U/

ml Penicillin and 100 μg/ml Streptomycin was added to the cells for transfection. The overex-

pression of miR-181b was done using mirVana1 miR-181b mimic (25 pmol, Ambion, Austin,

TX, USA) with Lipofectamine RNAiMAX1 Transfection Reagent (Invitrogen) for 24 hours at

37˚C and 5% CO2. In parallel, negative control samples were treated with mirVana1 miRNA

mimic negative control (NEG-01, 25 pmol, Ambion). After transfection, total RNA was

extracted and this miRNA with SELE and VCAM1 mRNAs were quantified as described

above.

Quantification of pre-miRNAs and pri-miRNA levels in ECs exposed to

TNF-α with or without everolimus treatment

We also studied the regulatory mechanisms how the expression of inflammation-specific miR-

155 and E-selectin/VCAM-1 regulator miR-181b were modulated upon TNF-α stimulation

of ECs in the presence or absence of everolimus. We analyzed the levels of both precursors of

these miRNAs using RT-qPCR in HCAECs under the same experimental settings with TNF-α
(100 ng/mL) and everolimus (0.5 μM) for 1 hour described above.

Subjects

Subjects were previously characterized in our previous clinical study [6]. Briefly, 28 individuals

were treated with BMS and 21 received everolimus-eluting stents. Six BMS subjects had ISR,

while no complication was observed in the DES cohort in the first 6 months of stenting. These

age- and gender-matched patient groups were comparable based on their baseline demo-

graphic and clinical parameters. The same regimen of aspirin and clopidogrel was adminis-

tered in all patients until 1 month of follow-up period when these plasma samples were

obtained. Thus, there was no clinical circumstances that might modify EC activation level and

the RNA profile.

Analysis of TNF-α levels in plasma samples

Plasma TNF-α concentrations were measured using commercially available ELISA kits (R&D

Systems) according to the manufacturer’s instructions. Before performing the analysis, plasma

samples were thawed and then centrifuged at 10,000 g for 1 min.

Plasma samples for total RNA isolation

Venous blood samples collected into Vacutainer1 tubes containing 0.105 M sodium citrate

(Becton Dickinson, San Jose, CA, USA) were subsequently centrifuged at 170 g for 15 min at

room temperature (RT) to obtain platelet-rich plasma (PRP) samples, which were further cen-

trifuged at 1500 g for 15 min to obtain platelet-poor plasma (PPP). These samples had been

stored at -70˚C before total RNA was extracted. Prior to RNA isolation, PPP samples were

thawed once and 750 μL TRI reagent (MRC) was added into 250 μL PPP, and total RNA was

isolated according to the manufacturer’s recommendations.
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Ethics statement

This study was approved by the Regional Ethics Committee of the University of Debrecen

(permit number: 4102/2014) in accordance with the Declaration of Helsinki. All participants

gave their written informed consent.

Statistical analyses

Data are expressed in mean ± standard error of the mean (SEM). Comparison of multiple

groups was performed using ANOVA or Kruskal-Wallis with post hoc test, while t-test was

performed to compare two groups of data. The Kolmogorov-Smirnov test was used for

the evaluation of the normality of the data. Pearson’s correlation coefficient (r) was used to

explore relationship between the levels of soluble adhesive receptors and circulating miR-181b.

P�0.05 probability level was regarded as statistically significant. Analyses were performed

using GraphPad Prism, version 6.01 (GraphPad Software, La Jolla, CA, USA).

Results

Elevated E-selectin and VCAM-1 mRNA levels induced by TNF-α were

downregulated by everolimus in ECs in vitro
There was a higher EC activation level in BMS patients with ISR compared to DES subjects

without any complication [6]. Thus, we first investigated whether elevated expression of EC

activation dependent adhesion molecules E-selectin and VCAM-1 could be observed in EC

cultures under inflammatory conditions with or without everolimus in vitro. Our aim was to

study the potential regulatory mechanisms of EC activation that might be caused by distinct

coronary stents. E-selectin and VCAM-1 mRNA levels were analyzed in HCAECs and

HUVECs after treatment with TNF-α in the presence or absence of everolimus. TNF-α stimu-

lation resulted in a robust elevation in both mRNA levels compared to baseline sample. In con-

trast, everolimus in the presence of TNF-α significantly, however not completely lowered these

mRNA levels in HCAECs (P<0.001) (Fig 1A and 1B) and in HUVECs (P<0.001) as well (S1A

and S1B Fig). No alteration in these mRNA levels was found by everolimus alone or by vehicle

(DMSO) with TNF-α vs. untreated baseline samples.

To provide further evidence about the effect of everolimus on the expression of these adhe-

sive receptors, their concentrations were also determined by ELISA in the supernatants of

HCAEC samples after treatment by TNF-α in the absence and presence of everolimus. Inflam-

mation-raised E-selectin and VCAM-1 concentrations were significantly decreased by everoli-

mus (P = 0.001, P<0.001, respectively) (Fig 1C and 1D) in agreement with their altered

mRNA levels in ECs above. Hence, these in vitro results provide some explanation about the

lower level of EC activation with less E-selectin/VCAM-1 in DES individuals.

Everolimus lowered EC inflammation via lowered IL-1β and IL-6

expression in ECs

To investigate if everolimus downregulates adhesive molecule expression via modulating a

global inflammatory response in ECs, HCAECs were treated with TNF-α that caused a robust

elevation in IL-1β and IL-6 mRNA levels already by 1 hour (Fig 2A and 2C), and further

increased by 4 hours (Fig 2B and 2D). In contrast, everolimus moderately but significantly

lowered IL-1β (P = 0.002) and IL-6 mRNAs (P = 0.039) already after 1 hour, which were more

obvious after 4 hours of treatment (P = 0.002, P = 0.004, respectively). Based on these results,

TNF-α-induced EC inflammation could be interrupted by everolimus.
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Effect of everolimus on TNF-α-induced NF-κB nuclear translocation in

HCAECs

Translocation of the p65 NF-κB subunit into the cell nuclei reliably evaluates the degree of an

inflammatory reaction at cellular level [19]. To further analyze the direct effect of everolimus

in inflammation-stimulated ECs, early NF-κB p65 nuclear translocation was studied in

HCAEC cultures after stimulation with cell culture medium, or TNF-α (100 ng/mL) in the

absence or presence of everolimus (0.5 μM) or with its solvent for 1 hour. The nucleus/cytosol

intensity of p65 staining was studied in these cells. We found that compared to TNF-α stimu-

lated cells, everolimus treatment in the presence of TNF-α significantly decreased the p65

staining in the cell nucleus (P<0.001). In contrast, TNF-α+DMSO sample did not show alter-

ation in p65 staining (Fig 3A and 3B). Accordingly, everolimus was shown to directly influence

EC activation via interrupting NF-κB pathway.

Fig 1. Analysis of E-selectin and VCAM-1 expression at mRNA and protein levels in HCAECs after TNF-α stimulation.

HCAEC cells were treated with recombinant TNF-α (100 ng/mL) for 1–24 hours to generate cellular inflammatory conditions.

Elevated E-selectin (SELE) (A) and VCAM-1 mRNA levels (B) induced by TNF-α already after 1 hour were downregulated by

everolimus in HCAECs in vitro. In parallel, soluble E-selectin (C) and VCAM-1 concentrations (D) were measured by ELISA

in the supernatants of ECs and were also significantly decreased after 4 and 24 hours, respectively. Mean ± SEM, n = 4-8/

group.

https://doi.org/10.1371/journal.pone.0197890.g001
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Transcriptional regulation of E-selectin and VCAM-1 expression

contributed to everolimus effects

The expression of E-selectin and VCAM-1 are transcriptionally regulated in ECs in an inflam-

matory signaling dependent manner, induced by e.g. lipopolysaccharides (LPS) [24]. For fur-

ther investigation of potential TNF-α and everolimus-modulated transcriptional regulation

of E-selectin and VCAM-1 expression, we here re-analyzed the unstimulated and TNF-α-

treated HUVEC-derived publicly available NF-κB transcription factor subunit p65, RNA Poly-

merase II (RNAPII), active histone mark H3K27Ac, and active transcription start site mark

H3K4m3-specific ChIP-seq data sets [20]. As we expected, TNF-α-induced RNAPII binding

was observed at both SELE and VCAM1 gene bodies (S2A and S2B Fig). In addition, two

enhancers were identified in the neighboring genomic regions of both genes associating with

TNFα-induced p65 and RNAPII binding (Fig 4A, S2A and S2B Fig). Recent studies showed

that eRNA expression is a good marker of enhancer activity and is regulated in similar manner

Fig 2. Everolimus decreased EC inflammation via lowered IL-1β and IL-6 expression in ECs. HCAECs were treated

with TNF-α (100 ng/mL) with or without everolimus (0.5 μM) for 1 and 4 hours, and then IL-1β and IL-6 mRNA levels

were quantified by RT-qPCR. This effect was observed already after 1 hour (A, C), while was more pronounced after 4

hours (B, D). Mean ± SEM, n = 4-8/group.

https://doi.org/10.1371/journal.pone.0197890.g002
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as the neighboring genes in many cell types by different signals [20, 25–27]. Therefore, we

measured the eRNA expression at one-one selected TNF-α-activated p65 transcription factor-

bound enhancers in the neighboring genomic regions of both genes including SELE_-11Kb

and VCAM1_-10Kb in unstimulated, TNF-α as well as TNF-α and everolimus-treated

HCAECs using RT-qPCR method. TNF-α induced eRNA expression at both enhancers com-

pared to the baseline sample. However, the TNF-α-augmented eRNA expression was signifi-

cantly reduced by everolimus treatment (P = 0.036, P = 0.030, respectively) (Fig 4B and 4C).

Overall, we suppose that everolimus inhibits EC activation via altering the TNF-α-induced

transcription of EC activation-related genes, such as SELE and VCAM1.

Fig 3. Immunohistochemical staining and analysis of NF-κB activation in TNF-α and everolimus treated

endothelial cells. HCAEC cells were treated for 1 hour with MesoEndo Medium (Baseline), 100 ng/ml TNF-α with or

without 0.5 μM everolimus or cytokine with the solvent of everolimus (TNF-α+DMSO). Nuclear localization of the

NF-κB p65 subunit was monitored by immunostaining. Green: p65 staining; blue: cell nuclei. Scale bar: 20 μm (A).

Ratio of the fluorescence intensity of the NF-κB immunostaining in cell nuclei and cytosol was analyzed (B).

Mean ± SEM, n = 6-8/group.

https://doi.org/10.1371/journal.pone.0197890.g003
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TNF-α induced EC inflammation was associated with decreased miR-181b

Although E-selectin and VCAM-1 expression were found to be highly regulated at transcrip-

tional level in this experimental system, we sought to study the role of post-transcriptional regu-

lator of these receptors upon EC inflammation. Since miR-181b modulated VCAM-1 and E-

selectin expression in HUVECs among in vitro conditions [17], we here analyzed the levels of

this miRNA in TNF-α-stimulated ECs with or without everolimus as their potential key effec-

tor. Both HCAECs and HUVECs were treated by recombinant TNF-α for 1–4 hours to analyze

miR-181b expression along with inflammation-specific miRNAs [25]. As expected, miR-155

and miR-146a as well as the biomarker of EC dysfunction miR-185 [28, 29] were elevated by

TNF-α compared to untreated sample in both EC cultures (Fig 5A and S3A and S3B Fig). How-

ever, everolimus caused significantly decreased miR-155 and miR-146a levels, with lower miR-

185 expression (data not shown). Importantly, the level of miR-181b was downregulated by the

inflammatory stimulus (P<0.001) and the treatment with everolimus restored their expression

in both EC cultures (P = 0.042, P = 0.049) (Fig 5B and S3C Fig). As control, we checked that the

vehicle (DMSO) with TNF-α and everolimus alone were unable to alter these miRNAs.

Precursors of miRNAs were also altered by everolimus in ECs

We subsequently studied whether altered levels of these mature miRNAs above were due to

their abnormal transcriptional regulation. Therefore, the levels of pre- and pri-miR-155, and

both precursors of miR-181b were quantified by RT-qPCR in HCAECs stimulated with TNF-

α with or without everolimus (Fig 5C–5F). We found that the levels of these miRNA precur-

sors were altered in the same manner as seen in mature miRNAs. These findings suggest that

miR-155 (C, E) and miR-181b (D, F) expression were modulated at transcription level by

TNF-α stimulation and everolimus in ECs.

Endothelial cell miR-181b regulates the SELE and VCAM1 expression

Despite some former available data revealed in HUVECs [17], we wanted to confirm the rela-

tionship between miR-181b and SELE and VCAM1 in HCAECs stimulated with TNF-α by

Fig 4. Analysis of transcriptional regulation of SELE and VCAM-1 genes in unstimulated and TNF-α-treated HUVECs using

publicly available ChIP-seq data sets and the measurement of eRNA expression at two selected enhancers including SELE_-11Kb

and VCAM1_-10Kb in HCAECs. The p65, RNAPII, H3K27Ac and H3K4m3-specific ChIP-seq signals at the selected VCAM1 and

SELE-associated enhancers were visualized by the Integrative Genomics Viewer (A). Accordingly, HCAECs were then treated with

TNF-α (100 ng/mL) with or without everolimus (0.5 μM) for 1 hour, and one-one eRNA expression at SELE_-11Kb (B) and

VCAM1_-10Kb eRNAs (C) were quantified by RT-qPCR. TNF-α-augmented expression of eRNAs was significantly reduced by

everolimus treatment. Mean ± SEM, n = 4-8/group.

https://doi.org/10.1371/journal.pone.0197890.g004
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Fig 5. Quantification of TNF-α induced miR-155 and miR-181b levels with the analysis of their precursors in the

presence of everolimus upon EC inflammation in vitro. HCAECs were treated by recombinant TNF-α for 1–4 hours

to analyze miR-181b expression along with the inflammation-specific miR-155. First, miR-155 was elevated by TNF-α
compared to untreated sample, however, everolimus caused significantly decreased miR-155 levels (A), while miR-

181b was downregulated by the inflammatory stimulus and the treatment with everolimus restored their expression in

both EC cultures (B). Levels of pre- and pri-miRNA were altered in the same manner as seen in mature miR-155 (C, E)

and miR-181b (D, F), respectively. Mean ± SEM, n = 4-8/group.

https://doi.org/10.1371/journal.pone.0197890.g005
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using transfection of specific miR-181b mimic. The overexpression of miR-181b was produced

by its specific mimic (Fig 6A), however, the levels of other miRNAs, e.g. miR-155, were not

affected (data not shown). As a consequence, SELE (P = 0.006) and VCAM1 mRNA levels

(P<0.001) were significantly decreased in the coronary endothelial cells versus control samples

transfected with the NEG-01 control mimic (Fig 6B). Based on these results, we confirmed

that miR-181b targets E-selectin and VCAM-1 in HCAECs.

Impaired plasma miR-181b correlates with increased plasma levels of

related soluble E-selectin and VCAM-1 concentrations

BMS patients with ISR showed higher level of EC activation in contrast to those who received

everolimus eluting coronary stent [6]. Former data on soluble E-selectin and VCAM-1 were

re-analyzed for this study and depicted in S4A and S4B Fig. There was significantly elevated

soluble E-selectin concentrations in BMS subjects with ISR (P = 0.032) (S4A Fig), while

VCAM-1 levels were markedly higher (P = 0.160) in comparison with DES cohort without any

clinical complication (S4B Fig). Furthermore, to gain more direct evidence about the distinct

effect of BMS and DES on vascular inflammation, we determined the level of TNF-α levels

in the plasma samples of our stented patients by ELISA. We found that TNF-α levels were sig-

nificantly lower in those subjects with DES compared to individuals with BMS having ISR

(P = 0.049) (S5 Fig). Alterations in these receptor expressions and the level of pro-inflamma-

tory cytokine indicated more EC activation when ISR was developed by BMS without the pro-

tective effect of everolimus.

The circulating level of miR-155, miR-185 and miR-181b were quantified by RT-qPCR in

the plasma samples of the entire patient population. We sought to investigate if these plasma

miRNAs were changed in the same way as seen in ECs in vitro, and to support our findings

about abnormal concentrations of soluble adhesive molecules and EC inflammation/dysfunc-

tion in case of ISR. First, plasma miR-155 (P = 0.006) and miR-185 (P<0.001) were signifi-

cantly upregulated in BMS patients with ISR compared to BMS and DES subjects without any

complication (Fig 7A and 7B). These results revealed the presence of EC inflammation and

Fig 6. Overexpression of miR-181b altered the levels of SELE and VCAM1 mRNA in HCAECs. The direct association between

miR-181b and SELE/VCAM1 was investigated in HCAECs after stimulation with TNF-α by using transfection of mirVana1 miR-

181b mimics (25 pmol) with Lipofectamine RNAiMAX1 Transfection Reagent for 24 hours. In parallel, negative control samples

were treated with mirVana1 miRNA mimic negative control (NEG-01, 25 pmol). After transfection, miR-181b with SELE and

VCAM1 mRNAs were quantified by RT-qPCR. Highly increased miR-181b levels (A) resulted in significantly lowered SELE and

VCAM1 mRNAs compared to NEG-01 control samples (100%, B). ��P = 0.006, ���P<0.001 based on t-test. Mean ± SEM, n = 4/

group.

https://doi.org/10.1371/journal.pone.0197890.g006
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dysfunction with typical miRNA alterations in those with ISR. Of note, we found some differ-

ence between distinct types of stent showing lower inflammation-specific miRNAs in DES

subjects. Furthermore, the levels of VCAM-1 and E-selectin repressor miR-181b were signifi-

cantly lower in BMS+ISR as compared to other BMS (P = 0.035) or DES implantation without

complication (P = 0.034) (Fig 7C). MiR-34a and miR-126 being considered as key miRNAs in

vascular inflammation [16,30], were also measured as ‘control miRNAs’ in these plasma speci-

mens and showed lower levels in ISR versus DES individuals (P<0.001, P = 0.036, respectively)

(S6A and S6B Fig), which were comparable to former results by others [16, 30]. These data

supported the validity of our patient samples representing pathological vascular conditions

after coronary stenting. Finally, correlation tests were performed to study the relationship

between plasma VCAM-1 or E-selectin concentrations and miR-181b levels in the pooled

patient samples. In accordance with the former data of Sun et al. [17] and the effect of miR-

181b on SELE/VCAM1 we detected (Fig 6), plasma miR-181b expression showed a significant

negative correlation with VCAM-1 and E-selectin concentrations (r = -0.441, P = 0.019; r =

-0.375, P = 0.049, respectively) (data not shown).

Based on all these data, we propose a model where everolimus acts as a negative regulator of

EC activation via inhibiting NF-κB p65 subunit translocation resulting in altered E-selectin

and VCAM-1 mRNA levels with their post-transcriptional repressor miR-181b at transcrip-

tion level (Fig 8). These cellular events may occur in the early phase of DES implantation

showing a beneficial protective effect of everolimus as compared to bare-metal stenting with-

out any drug elution.

Discussion

Despite recent development in coronary stenting, ISR associated with VSMC proliferation and

EC injury still represent a major clinical issue in those who undergo such intervention [1], and

is often associated with enhanced platelet activation with increased amount of microparticles

as well [31]. The introduction of DES coated with different drugs, e.g. mTOR inhibitors, has

substantially reduced the risk for complications, such as ISR in contrast to BMS in the early

phase of stenting [1, 2]. Sirolimus during angioplasty prevented VSMC proliferation in an ani-

mal model [32], and antagonized VCAM-1 levels induced by TNF-α in cultured HUVECs via

inhibiting mTORC2 activity and potentiated ERK1/2 [11]. However, no studies have investi-

gated the potential transcriptional and post-transcriptional regulatory mechanisms by which

Fig 7. Quantification of circulating miR-155, miR-185 and miR-181b by RT-qPCR in plasma samples of BMS and DES patients. After total RNA isolation, the

expression of circulating miRNAs was quantified in plasma samples by UPL-probe based stem-loop RT-qPCR assay. Plasma miR-155 (A) and miR-185 (B) were

significantly upregulated in BMS patients with ISR compared to BMS and DES subjects without any complications, while miR-181b levels (C) were lower in those

with ISR versus others without complication. (All DES: n = 21, all BMS: n = 28, ISR: n = 6).

https://doi.org/10.1371/journal.pone.0197890.g007
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everolimus can decrease EC activation. Of note, these drugs may result in late in-stent throm-

bosis after 1–2 years of intervention [1, 33], which may be due to the upregulation of plasmino-

gen activation inhitor-1 by ECs [34].

Recently, higher level of EC activation was described with elevated soluble E-selectin and

VCAM-1 levels after BMS intervention versus in DES individuals [4–6, 8]. Moreover, TNF-α
levels were significantly lower in our subjects with DES compared to individuals with BMS

having ISR (S5 Fig). These results were in agreement with the paper of McNair et al. [8]. Adhe-

sion receptors are expressed on activated ECs stimulated by TNF-α and other inflammatory

cytokines, and then involved in leukocyte attachment to ECs [7]. DES displays a beneficial

effect to prevent or at least slow down the development of EC activation/dysfunction leading

to ISR via locally maintained everolimus concentration of cc. 0.5 μM in stented vessels [35].

This anti-proliferative drug has also showed a substantial anti-inflammatory effect in neutro-

phils reducing the release of IL-8 and decreasing TNF-α-induced adhesion of neutrophils to

ECs [10]. However, no data are available by which mechanisms everolimus can lower EC acti-

vation, such as after DES stenting. Hence, in this study, we have systematically investigated the

potential transcriptional and post-transcriptional regulatory mechanisms of everolimus.

We first investigated the contribution of transcriptional regulatory mechanisms to the

TNF-α and everolimus-dependent regulation of EC activation-linked genes, such as E-selectin

and VCAM-1. Cultured HCAECs and HUVECs were challenged with 100 ng/ml concentra-

tion of recombinant TNF-α—similarly to Palmieri et al. [36]—to investigate vascular inflam-

mation in the presence or absence of everolimus after stenting. Initially, we applied HCAECs

as reliable cell culture for the investigation of RNA levels in arterial endothelium [37], while

results were also confirmed in HUVECs, which is a fundamental cell culture model to analyze

endothelial responses to distinct challenges [18, 38].

To analyze the direct effect of everolimus on EC function upon inflammation, we added

this drug to the medium of EC cultures in the presence of TNF-α. Everolimus substantially

decreased the NF-κB pathway via prevention of p65 translocation into cell nuclei and partially

or completely inhibited the TNF-α-dependent effects on E-selectin and VCAM-1 transcription

indicating that it effectively antagonized EC activation. Concentrations of VCAM-1 and E-

selectin showed similar alterations in the supernatants of ECs in vitro upon inflammation and

everolimus treatment. We also assessed very low (0.05 μM) and high (5 μM) concentration of

Fig 8. Schematic figure about the model to demonstrate the regulatory mechanisms of everolimus on E-selectin (SELE) and

VCAM-1 expression. Everolimus decreases EC activation via suppressing the NF-κB pathway with decreased p65 translocation into

cell nuclei causing the modulation of E-selectin and VCAM-1 expression as well as miR-181b level at transcriptional and post-

transcriptional level, respectively. EC: endothelial cell, TNF-α: tumor necrosis factor alpha, SELE: E-selectin, VCAM-1: vascular cell

adhesion molecule-1, RISC: RNA-induced silencing complex.

https://doi.org/10.1371/journal.pone.0197890.g008
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everolimus during the setting of these experiments. No difference in RNA levels was observed

at low concentration, however, its high concentration resulted in the apoptosis of ECs (data

not shown). In agreement with our results, LPS-induced EC activation was also downregulated

by rapamycin via mTOR/NF-κB pathway in HUVECs [38]. Our current RT-qPCR-based mea-

surements and the re-analysis of publicly available ChIP-seq data sets of HUVECs showed that

these genes and SELE_-11Kb and VCAM1_-10Kb eRNAs are activated in ECs by TNF-α con-

firming their TNF-α-dependent transcriptional regulation. Importantly, everolimus decreased

the levels of these eRNAs. Others recently described the NF-κB binding site in the -1643 and

-1652 regions of miR-99a promoter by ChIP assay, and this miRNA modulated EC inflamma-

tion in HUVECs [38].

MiRNAs play a major role in the post-transcriptional regulation of EC activation-depen-

dent events in coronary artery disease [12, 39]. MiR-223 and miR-141 suppressed ICAM-1

expression in EC cultures in vitro [40, 41], while NF-κB mediated inflammation was regulated

by elevated expression of miR-146a and miR-155 [25, 39]. Moreover, PCI-induced plaque rup-

ture was associated with increased miR-155 levels [42]. A number of miRNAs are involved in

the development of EC dysfunction, such as upregulated miR-185 in response to high glucose

milieu [28], miR-99a in LPS-stimulated [38], and miR-149 in TNF-α-induced EC dysfunction

through p38MAPK [36]. These previous data revealed a functional role of these miRNAs in

the regulation of various pathological cellular events during vascular inflammation at post-

transcriptional level. In our study, TNF-α enhanced miR-146a, miR-155 and miR-185 expres-

sion in both EC cultures indicating the cellular inflammatory response and dysfunction as

seen earlier [41]. Importantly, we also observed that miR-181b targeted SELE and VCAM1

mRNAs, and TNF-α transcriptionally repressed miR-181b expression suggesting that TNF-α
may enhance E-selectin and VCAM-1 at post-transcriptional level. MiR-181b inhibits impor-

tin-α3 expression and NF-κB-responsive VCAM-1 and SELE genes [17]. In other experiments,

TNF-α treatment in HUVECs resulted in decreased miR-141 levels causing enhanced ICAM-1

expression [41], while miR-149 was also decreased due to the same response affecting IL-6 and

metalloproteinase-9 expression in EC cultures [38]. Overall, these miRNAs do not only repre-

sent a new layer of regulation but may act as new biomarkers in cardiovascular diseases [15].

Here, Pearson’s correlation tests demonstrated a significant reverse correlation between

plasma miR-181b levels and plasma VCAM-1 and E-selectin concentrations in our stented

patient cohort supporting the relationship between the levels of this post-transcriptional regu-

lator and the expression of these adhesive proteins. Based on our data, decreased plasma miR-

181b level may be useful to indicate stent-induced EC activation with enhanced VCAM-1 and

E-selectin expression. In apolipoprotein E-deficient/NF-κB-luciferase transgenic mice miR-

181b significantly inhibited atherosclerotic lesion formation, pro-inflammatory gene expres-

sion and the influx of lesional macrophages and CD4+ T cells in the vessel wall suggesting the

central role of this miRNA in vascular inflammation during atherosclerosis [43].

Our study has some limitations. The number of patients with ISR was relatively small in

our former clinical study [6], which was obviously due to the fact that it was a single center

study with a limited number of eligible patients per year. Thus, more data are needed to

observe the relationship of miR-181b level with soluble E-selectin/VCAM-1 concentrations as

a potential biomarker of EC activation and ISR.

We here described for the first time the transcriptional regulatory effects of everolimus

on EC inflammation in details. These transcriptional (p65-bound eRNAs SELE_-11Kb and

VCAM1_-10Kb) and post-transcriptional regulators (miR-181b) may represent potential ther-

apeutic targets upon EC dysfunction. However, further studies are required to prove the func-

tional role of these regulators in vivo. Similarly, neo-intimal formation and ISR development

were effectively modulated by anti-miR-21 [44], or by the overexpression of miR-23b [45]
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based on the results of animal models. These data propagate to introduce novel ‘drug’-eluting

stents for patients in the near future. As such, a stent system that eluted miR-126 exhibited sig-

nificant inhibition of neointimal formation in a rabbit model of restenosis [46].

Conclusions

We provide some pieces of evidence that everolimus acts as a negative regulator of EC activa-

tion via suppressed NF-κB pathway with lower p65 translocation into cell nuclei, the modula-

tion of the expression of SELE and VCAM-1 and their post-transcriptional repressor miR-181b

at transcription level. These data may explain how the level of EC activation can be lowered by

everolimus when DES is used for coronary intervention in contrast to BMS implantation.

Supporting information

S1 Table. Sequences of primers for the analysis of mature and precursor miRNAs as well

as mRNAs and eRNAs.

(XLSX)

S1 Fig. Measurement of E-selectin and VCAM-1 mRNAs in HUVECs after treatment with

TNF-α. HUVECs were treated with recombinant TNF-α (100 ng/mL) for 4 hours to generate

cellular inflammatory conditions. Elevated E-selectin (SELE) (A) and VCAM-1 mRNA levels

(B) induced by TNF-α were downregulated by everolimus in HUVECs in vitro. Mean ± SEM,

n = 4-8/group.

(TIF)

S2 Fig. Analysis of the p65, RNAPII, H3K27Ac and H3K4m3-specific ChIP-seq signals at

the genomic loci of VCAM1 and SELE visualized by the Integrative Genomics Viewer. The

unstimulated and TNF-α-treated HUVEC-derived publicly available NF-κB transcription fac-

tor subunit p65, RNA Polymerase II (RNAPII), active histone mark H3K27Ac, and active tran-

scription start site mark H3K4m3-specific ChIP-seq data sets were reanalyzed. The identified

TNF-α-activated p65-bound enhancers in the neighboring genomic regions of SELE (A) and

VCAM1 (B) genes were indicated by red arrows.

(TIF)

S3 Fig. Quantification of TNF-α induced miR-146a, miR-155 and miR-181b levels upon

inflammation in HUVECs in vitro. HUVECs were treated with TNF-α (100 ng/mL) with or

without everolimus (0.5 μM) for 1 and 4 hours, and then these miRNA levels were quantified by

RT-qPCR. Everolimus caused significantly decreased miR-146a (A) and miR-155 levels (B). The

level of miR-181b (C) was downregulated by the inflammatory stimulus and the treatment with

everolimus restored their expression in these EC cultures as well. Mean ± SEM, n = 4-8/group.

(TIF)

S4 Fig. Re-analysis of soluble E-selectin and VCAM-concentrations in plasma samples of

BMS and DES subjects with or without ISR. There were significantly higher E-selectin (A)

and markedly elevated VCAM-1 levels in those who had ISR (n = 6) compared to other BMS

(n = 22) and DES (n = 21) individuals [6]. Mean ± SEM.

(TIF)

S5 Fig. Investigation of TNF-α concentrations in plasma samples of patients underwent

BMS or DES. There were significantly higher plasma levels of TNF-α in those subjects who

received BMS and showed ISR (n = 6) compared to individuals with DES (n = 21). Mean ± SEM.

(TIF)
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S6 Fig. Analysis of plasma miR-34a and miR-126 expression in the presence or absence of

ISR in BMS and DES patients. After total RNA isolation, the expression of circulating miR-

NAs was quantified in plasma samples by UPL-probe based stem-loop RT-qPCR assay. These

miRNAs were significantly lower in those with ISR compared to BMS and DES subjects with-

out such complication. Mean ± SEM. (All DES: n = 21, all BMS: n = 28, ISR: n = 6).

(TIF)
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Funding acquisition: István Édes, János Kappelmayer.
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Writing – original draft: Zsolt Fejes, Béla Nagy, Jr.
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