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Abstract

Strictly finite-range (SFR) potentials are exactly zero beyond their finite range. Single-particle

energies and densities as well as S-matrix pole trajectories are studied in a few SFR potentials

suited for the description of neutrons interacting with light and heavy nuclei. The SFR potentials

considered are the standard cut-off Woods–Saxon (CWS) potentials and two potentials approaching

zero smoothly: the SV potential introduced by Salamon and Vertse [1] and the SS potential of Sahu

and Sahu [2]. The parameters of these latter were set so that the potentials may be similar to the

CWS shape. The range of the SV and SS potentials scales with the cube root of the mass number of

the core like the nuclear radius itself. For light nuclei a single term of the SV potential (with a single

parameter) is enough for a good description of the neutron-nucleus interaction. The trajectories

are compared with a bench-mark for which the starting points (belonging to potential depth zero)

can be determined independently. Even the CWS potential is found to conform to this bench-mark

if the range is identified with the cutoff radius. For the CWS potentials some trajectories show

irregular shapes, while for the SV and SS potentials all trajectories behave regularly.

PACS numbers: 21.10.Pc,25.40.Dn,87.57.uk
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I. INTRODUCTION

We call the potentials that are exactly zero beyond a certain distance strictly finite-range

(SFR) potentials. The conventional nuclear potentials are in principle not SFR potentials,

but in practice, if the radial Schrödinger equation is solved numerically as is usual, a cutoff

at a finite range is implied. Indeed, beyond this range Rmax the numerical solution is to be

matched at a finite distance r = Rmatch(≥ Rmax) with the exact solution of the free-particle

(or of the Coulomb) problem.

For instance, the most often quoted Woods–Saxon (WS) potential goes to zero in infinity,

but, in numerical calculations, cut-off WS (CWS) potentials are used invariably. A disad-

vantage of the CWS potential is that the positions of the resonance poles do depend on the

cutoff distance [1], which is an unphysical parameter of the calculation. To avoid this, a new

form was introduced by Salamon and Vertse (SV) [1], which contains two terms, with one

range parameter for each, and a relative strength of the two terms. The SV potential goes

to zero smoothly. Its parameters can be adjusted so as to get a good fit to the WS shape

except in the tail region, where they are necessarily different.

There is another motivation of using SFR potentials. It has been observed recently by

Sahu and Sahu [2] that a faster approach of the nuclear potential to zero improves the barrier

behavior of the interaction potential between heavy ions. They modified the form of the

SV potential by introducing a diffuseness parameter as to one of its terms. Here we shall

refer to this potential as SS potential. The SS potential was found to describe the elastic

scattering and the fusion below the Coulomb barrier with the same parameters, while a WS

form requires two different sets for these two processes [2].

However, the asymptotic density of the matter of nuclei is exponential, and the nucleon-

nucleon interaction has a Yukawa tail. This physically substantiates the numerically un-

tractable exponential falloff of the WS potential, and casts some doubt on the use of the

convenient tails of the SV and SS potentials. In this paper we will examine the effect of

the unphysical tail behavior of the SV potential, and further study the trajectories of the

S-matrix poles. The SV potential is a special case of the SS potential with as = 1, and we

extend the studies to as 6= 1. In fact, for very light nuclei the derivative term in the SV

potential can be omitted, and the SS form becomes identical to an SV form, which has a

single parameter, the range ρ0.
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In this work we consider nucleon potential problems. Since we disregard the Coulomb

interaction, we can say that we deal with neutrons. We perform bound-state and resonance

calculations, with an eye to scattering problems, but we need no absorptive terms. We shall

study the cases of light nuclei with mass number AT < 20 as well as nuclei with much larger

AT values. Light nuclei are important in fusion reactions taking place in the Sun. The

nucleon optical potential of light nuclei is an ingredient of the description of the reactions

producing the nuclides used in positron emission tomography (PET) [17].

II. FUNCTIONAL FORMS OF THE POTENTIALS CONSIDERED

The real term of the optical potential is almost exclusively of CWS form, and the spin-

orbit part contains the derivative of a CWS form.

The CWS potential can be written as

V CWS(r, R, a, Rmax) = −V0f
CWS(r, R, a, Rmax) , (1)

with

fCWS(r, R, a, Rmax) =
(

1 + e
r−R
a

)

−1

θ(Rmax − r) , (2)

where the Heaviside step function θ(x) is unity for positive x and zero otherwise. The CWS

form factor fCWS(r, R, a, Rmax) has two physical parameters, the radius R and the diffuseness

a. The third parameter, the cutoff radius Rmax, should have no physical significance, but, due

to the jump at the finite Rmax, its derivative does not exist there, and that has implications.

It was shown earlier [1] that the positions of broad resonances in a CWS potential do

depend on the value of the cutoff radius Rmax. Certain sections of the pole trajectories

(mainly the starting regions) have been found to be sensitive to the value of Rmax [3, 4].

Thus the cutoff radius Rmax is an important, though non-physical, parameter of the CWS

form.

The SV potential [1] recommended by two of us instead of the CWS potential has the

form [3]

V SV(r) = −V0f
SV(r, c, ρ0, ρ1) , (3)

in which V0 ≥ 0 and fSV(r, c, ρ0, ρ1) is a linear combination of the function

f(r, ρ) = e
r2

r2−ρ2 θ(ρ− r) , (4)

4



and a term containing the derivative, with respect to r, of the first factor,

f ′(r, ρ) = −
2rρ2

(r2 − ρ2)2
e

r2

r2−ρ2 θ(ρ− r) . (5)

Note that the function in Eq. (4) is a variant of the well-known functions of compact support,

C∞, defined in the book by Bremmermann [5] and sometimes called bump functions. The

radial factor thus contains three adjustable parameters,

fSV(r, c, ρ0, ρ1) = f(r, ρ0)− cf ′(r, ρ1) , (6)

in which ρ0 and ρ1 need not be the same, and, for the second term to be attractive, the

coefficient c is non-negative. The potential V SV(r) goes to zero smoothly, and, if ρ0 > ρ1,

it vanishes at ρ0; furthermore, for r ≥ ρ0, it is zero, together with all its derivatives. Thus

the SV potential has the attractive mathematical property that its derivative exists in the

whole r ∈ (0,∞) region. A drawback is, however, that it is not analytic because at ρ0 the

Taylor series is not equal to the function. Nevertheless, it has turned out to be useful in

quantum electrodynamics, too, as a compactly supported smooth regulator function [6].

The formula of the SS potential [2] is analogous to Eq. (6):

fSS(r, c, ρ0, ρ1, as) = f(r, ρ0)− cf ′(r, ρ1, as) , (7)

where

f ′(r, ρ1, as) = −
2rρ21

(r2 − ρ21)
2
e

asr
2

r2−ρ2
1 θ(ρ1 − r) , (8)

with as being the extra diffuseness parameter. When as = 1, the SS form coincides with the

SV potential (3). By using as 6= 1, one naturally has more freedom in choosing the shape of

the potential. With the usual choice ρ0 > ρ1, the range of the SS potential is also ρ0. The

SS form has the same attractive mathematical features as the SV potential.

Let us return for a while to the original SV form. If we want the shape of the SV form

to be similar to the WS shape as much as possible, we should fit its parameters to the CWS

shape fCWS. To this end, we can minimize
∫ ρ0

0

[

fSV(r, c, ρ0, ρ1)− fCWS(r, R, a, Rmax)
]2
dr . (9)

The integration in Eq. (9) can be performed by a quadrature of m equidistant mesh-points

ri = ih over the range of the integration, so that what is minimized is

∆(ρ0, ρ1, c) =

m
∑

i=1

[

fSV(ri, c, ρ0, ρ1)− fCWS(ri, R, a, Rmax)
]2

. (10)
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III. GLOBAL PARAMETER SETS FOR OPTICAL POTENTIALS

In this section we construct SV potentials that approximate the real parts of some well-

known global nucleon optical model potentials, and test their performance. The real parts

of all global potentials are of CWS shape. Their geometrical shapes are generally fixed, and

their energy dependence is restricted to the strength parameters. The spin-orbit part for a

particle with spin s = 1
2
~ is:

V CWS
so (r, Rso, aso, Rmax) = V CWS

so hCWS(r, Rso, aso, Rmax) 2(l · s) , (11)

with a radial form

hCWS(r, R, a, Rmax) = −
1

r
f ′

CWS(r, R, a, Rmax) , (12)

in which the derivative of the central potential,

f ′

CWS(r, R, a, Rmax) = −
e

r−R
a

a
[

1 + e
r−R
a

]2 θ(Rmax − r) , (13)

appears.

The spin-orbit term of the SV potential may be defined analogously:

V SV
so (r, c, ρ0, ρ1) = V SV

so hSV(r, c, ρ0, ρ1) 2(l · s) , (14)

with

hSV(r, c, ρ0, ρ1) = −
1

r
f ′

SV(r, c, ρ0, ρ1) . (15)

The mass-number dependence of the global potentials is borne generally by the radii such

that Rα = rα,0A
1/3
T , where α labels any of the potential terms.

Classical nucleon potential sets were given by Perey [7] and by Becchetti and Greenlees [8]

long time ago, and they are relied on in recent studies [9] as well. A recent attempt for the

derivation of a new α-nucleus potential was made by Mohr and coworkers [10]. In this

work, however we restrict ourselves to the Perey and Becchetti–Greenlees parameters for

simplicity.

To construct global SV potentials, we search for the minimum of the squared deviations

in Eq. (9) as a function of the mass number AT and calculate the best-fit SV parameters

as a function of AT . For medium-heavy and heavy nuclei, the SV potential reproduces the
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FIG. 1: Dependence of the mixing coefficient c on the target mass-number AT for two global

parameter sets.

CWS shape quite well, and its AT dependence is regular. The mixing coefficient c decreases

with decreasing AT as seen in Fig. 1. In the region of light nuclei, however, the best-fit SV

form has a strange, irregular shape. We can avoid this by requiring that the derivative of

the SV form be similar to the derivative of the WS shape:

∆(ρ0, ρ1, c) =

m
∑

i=1

[

fSV(ri, c, ρ0, ρ1)− fCWS(ri)
]2
+λ

[

fSV′

(ri, c, ρ0, ρ1)− fCWS′(ri)
]2

. (16)

The Lagrange multiplier λ was determined empirically. (Here we suppressed the parameters

of the CWS potential, which were kept fixed.) With a value of λ = 25 fm2, the fitted SV

potential became reasonably smooth and similar to the CWS shape we want to approximate.

The range ρ0 of the SV potential scales with A
1/3
T , while the difference ρ0 − ρ1 is propor-

tional to the diffuseness a of the CWS potential. The parameters of the Perey potential [7]

are r0 = 1.25 fm, and a = 0.65 fm, and the best-fit SV parameters are ρ0 = 1.85A
1/3
T fm,

ρ0 − ρ1 = 3.2a, c = −0.051 + 0.0051AT − 3.9 × 10−6A2
T , thus for small AT , c becomes

very small. For the Becchetti–Greenlees [8] geometry (r0 = 1.17 fm and a = 0.75 fm), the

best-fit SV parameters relate to the CWS parameters very similarly, namely their values are

ρ0 = 1.86A
1/3
T fm, ρ0 − ρ1 = 2.8a, c = −0.055 + 0.003AT − 7.0× 10−7A2

T .

As a light system, let us consider 18F+n. For the Perey geometry, the best-fit SV param-

eters are ρ0 = 5.084 fm, ρ1 = 3.244 fm, and c = 0.040, while for the Becchetti–Greenlees
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geometry, we get ρ0 = 4.957 fm, ρ1 = 2.728 fm, and c = 0.011. This again shows that for

light nuclei c is practically zero, and it is reasonable to take c = 0.
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FIG. 2: Radial shapes of Perey’s WS and the SV (c = 0) potentials and their derivatives for 18F+n.

Derivatives appear in the spin-orbit terms in Eqs. (12) and (15).

In Fig. 2 we compare the shape of Perey’s WS potential and its derivative with the SV

potential (with c = 0) and its derivative for the 18F+n system. The WS parameters are

listed in Table I. The ratio ρ0/A
1/3
T is almost constant with a value of ∼ 1.6r0. One can see

that the radial shape of the WS potential is approximated reasonably well by the first term

of the SV form with a single adjustable parameter, ρ0. Now ρ0 must play the role of both

the radius and the diffuseness of the WS potential. Of course, the SV curves deviate most

from the WS curves at large distances.

TABLE I: Geometrical parameters of the WS and the SV potentials for 13N, 15O and 18F. All

distances are in units of fm.

AT r0=R/A
1/3
T R a ρ0/A

1/3
T ρ0

13N 1.25 2.94 0.65 2.037 4.79

15O 1.25 3.08 0.65 2.031 5.01

18F 1.25 3.28 0.65 2.022 5.30
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IV. SINGLE-PARTICLE ENERGIES FOR LIGHT NUCLEI

It is interesting to see how the differences between the potentials influence the single-

particle energies. In Table II we show the neutron single-particle energies ǫnlj calculated

for the core nucleus 18F, with Perey’s WS geometry (V CWS
0 = 60 MeV, r0 = 1.25 fm,

a = 0.65 fm, Rmax = 15 fm, and V CWS
so = 28 MeV). For the fitted SV potential we used

two values for the spin-orbit strength. In the first case the spin-orbit term (14) was used

with V SV
so = V CWS

so = 28 MeV. But, as is seen in Fig. 2, the shape of the derivative differs

somewhat from that of the standard form. Therefore, to achieve similar spin-orbit splitting,

in the second case we used a bit stronger (V SV
so = 30 MeV) value for the spin-orbit strength.

TABLE II: 18F+n single-particle energies (in MeV) in the CWS potential and in the fitted SV

potential with one central term.

i = {n, l, j} ǫi(CWS) ǫi(SV)

V SV
so = 28 MeV V SV

so = 30 MeV

0s1/2 −38.926 −38.119 −38.119

0p3/2 −23.998 −23.568 −23.611

0p1/2 −22.067 −21.729 −21.640

0d5/2 −8.985 −8.962 −9.049

1s1/2 −7.697 −7.699 −7.699

0d3/2 −5.779 −5.901 −5.770

One can see that, with the larger spin-orbit strength, the SV energies are pretty close to

the CWS energies. The differences are largest for the deepest orbits. Similar behaviors were

found for the other two residual nuclei. In Table III we present the calculated single-particle

energies for 13N+n, in which the d3/2 orbit is very close to the threshold.

We can conclude that for light nuclei the one-term SV potential is a good phenomeno-

logical form, which reproduces the spectra obtained with the conventional WS potentials,

although the shape of its derivative is somewhat different from that of the CWS potential.

The wave functions produced by the two potentials are most conveniently compared
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TABLE III: 13N+n single-particle energies (in MeV) in the CWS potential and in the corresponding

SV potential with one central term and V SV
so = 30 MeV.

i = {n, l, j} ǫi (CWS) ǫi (SV)

0s1/2 −35.045 −36.746

0p3/2 −18.620 −20.368

0p1/2 −16.318 −17.958

0d5/2 −3.067 −4.247

1s1/2 −3.400 −3.400

0d3/2 −0.003 −0.548

through the neutron densities

ρ(r) =
∑

i

v2i

[

ui(r)

r

]2

, (17)

where i = {ni, li, ji} runs over the occupied orbits, ui(r) denotes the single-particle radial

wave functions, and v2i is the occupation number. It is assumed that the lowest-lying orbits

are fully occupied, i.e., v2i = 2ji + 1. In Fig. 3 we compare the neutron densities calculated

for the nucleus 18F in CWS and in SV potentials. The difference between the two densities

is largest at the peak of the densities produced by the two deeply bound orbits, where the

energies are deeper in the CWS potential. In the surface, where the CWS and SV potentials

do differ appreciably, the two densities do not differ significantly. For r > 4 fm, the two

curves can hardly be distinguished because the tail of the density is mostly determined by

the single-particle energies being close to the Fermi level, which are very similar in the two

potentials.

V. THE CWS POTENTIAL IMITATED BY THE SS FORM

The SS modification only matters for heavier systems, and we consider 208Pb+n. First

we show the effect of as 6= 1 on a potential whose SV parameters ρ0, ρ1 and c were adjusted

to the CWS shape [3, 4]. In Fig. 4 we can see that as > 1 smooths the SV potential in the

region around ρ1, where the SV curve shows a bend, while as < 1 sharpens the bend, and
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FIG. 3: Radial shapes of the neutron densities for the nucleus 18F in CWS and in SV potentials.

even an extra minimum shows up. Such an extra minimum (a pocket) was needed for the

description of α decay from Ra isotopes in Ref. [11].
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FIG. 4: Radial shapes of the CWS and SS potentials with different as values for 208Pb+n.

To determine the SS form that approximates the CWS potential best, we should fit all

the four parameters of the SS potential simultaneously. We minimized the function

∆(ρ0, ρ1, as, c) =

m
∑

i=1

[

fSS(ri, c, ρ0, ρ1, as)− fCWS(ri)
]2
+λ

[

fSS′(ri, c, ρ0, ρ1, as)− fCWS′(ri)
]2

,

(18)
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with λ = 25 fm2. The two potentials are shown in Fig. 5, and the parameters are given in

the caption. The agreement is remarkable in spite of the SS potential having a minimum.

0 5 10 15
r     [fm]

-1.2
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-0.6

-0.4

-0.2

0

f(
r)

CWS
SS

FIG. 5: Best-fit SS shape to the CWS shape for 208Pb+n. WS parameters: r0 = 1.27 fm, a = 0.7

fm. SS parameters: ρ0 = 10.75 fm, ρ1 = 8.94 fm, c = 1.528, as = 1.4.

VI. POLE TRAJECTORIES IN SFR POTENTIALS

Having indicated some practical aspects of using SFR potentials in nuclear problems,

we now discuss the problem of pole trajectories. We remind the reader that it is the pole

trajectories, especially in the region of broad resonances, that make the use of truncated

potentials dangerous. Pole trajectories can be labeled conveniently by n, the number of

nodes of the wave function defined where the pole belongs to a bound (or anti-bound) state.

However, the trajectories can be found more easily at the other extreme, where the potential

strength is nearly zero (at the “starting point”). Here the states are resonances with complex

radial wave functions, whose real as well as imaginary parts have infinite numbers of zeros.

Orbits with low n values are important in nuclear structure calculations and in low-energy

nucleon scattering. In heavy-ion reactions larger n values occur. In the present work we

restrict ourselves to the s-wave case. Analytical results are available for the square-well

potential in the work of Nussenzweig [12] as was discussed by some of us recently [4]. Since,

however, we are concerned with less special potentials, which cannot be treated analytically,
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we re-consider approximate analytical formulae for the starting points of the trajectories

given in the literature. We are interested in where these are valid and how they can be

treated numerically.

A. Formulae for the starting points

The l = 0 states in the SFR potential

V (r) = V0 θ(R− r)[(R− r)σ + . . .] (19)

are discussed by R. G. Newton in his book [13] [see Eq. (12.98) on p. 361 there]. Here

σ > 0, θ(x) denotes the Heaviside step function, and the square bracket contains a truncated

expansion in terms of R− r. In Eq. (12.102) on p. 362 Newton gives the real and imaginary

parts of the starting point kn = kR
n − ikI

n of the trajectory of the nth pole of the S-matrix

as follows:

kR
n =

nπ

R
+O(1) , (20)

and

kI
n =

σ + 2

2R
ln(n) +O(1) . (21)

The starting point of the pole trajectory is in the fourth quadrant of the k-plane, and, by

definition, it belongs to V0 = 0. Equations (20), (21) are especially useful for large n values,

where the O(1) terms in the equations can be neglected, but it is interesting to see how they

are fulfilled for lower n. Eq. (20) depends linearly on n with a slope

A1 =
π

R
. (22)

Regge pointed out [14] that a relation similar to Eq. (20) is valid for the moduli of the

starting wave number values:

|kn| =
nπ

R
+O(1) = A1n +O(1) . (23)

B. Test with Newton’s potential

For a potential of the form of (19), the asymptotic expressions (20),(21) and (23) offer

convenient tests of our numerical procedure for very large n values. Inaccuracies may come
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from approximating V0 = 0 by a small finite value, from truncation errors in the numerical

integration of the differential equation, and from rounding errors throughout the numerical

calculations. We reduced the rounding errors by using extended precision floating-point

arithmetics. We used Ixaru’s method [15] for the numerical integration of the radial equation,

and we calculated the position of the pole of the S-matrix using the computer code ANTI

[16].

We chose a potential of the form of Eq. (19) with σ = 1:

V (r) = −V0 θ(R− r)(R− r) , (24)

which is attractive if V0 > 0, and chose V0 = 0.005 MeV and R = 10 fm.

We calculated the starting values kn for the n = 1, . . . , 98 trajectories, and fitted the kR
n

values by a first order polynomial of n, i.e.,

y(n) = a0 + a1n . (25)

Since in Eq. (20) we have an unknown O(1) term (the actual value of this is reflected by

a0), we applied a lower cut value ns in our data and performed the fitting for a number of

n ∈ {ns, ns + 1, . . . , nu} with nu = 98 fixed and ns varied. We can thus estimate the value

of a1 for each ns and compare it with A1 = π/R = 0.31416 fm−1 obtained from Eq. (22).

In Fig. 6 the ordinate shows the deduced slope, with the horizontal line A1 = π/10 fm−1, to

which the fitted values of a1 should converge for large ns. The dashed line connects the a1

values resulting from the fit to kR
ns
. It is seen that the estimate for the range has 3 accurate

digits even for ns = 1.

To check the validity of Eq. (23), we fitted a linear function to the moduli of the starting

wave number values calculated, and followed a procedure similar to that for kR
n . The dotted

line in Fig. 6 shows the slopes obtained as a function of ns. Now the fitted slope a1 approaches

the horizontal line from below and yields an estimate of similar accuracy. The results of

these tests show that the small final value of V0 we use provides a reasonable estimate for

the starting value of the pole trajectory.

To check Eq. (21) for the imaginary part of kn, we introduce the variable x = ln(n) and

fit kI
n = a1x + a0 for the same sets of n = ns, . . . , 98 points, with ns = 1, . . . , 97. From the

slope a1 obtained, we can calculate σ = 2a1R− 2 as a function of ns using the actual value

of R. Figure 7 shows that this σ converges to 1 as it should, but rather slowly.
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FIG. 6: Dependence of the slope of the fitted line on the lower cut value of the node number ns

for a potential in Eq. (24) with a range of R = 10 fm.
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FIG. 7: Convergence of the fitted σ to the exact value (dotted line) obtained by using the lower

cut value of the node number ns for a potential of Eq. (24).

C. Cut–off Woods-Saxon form

The trajectories of the S-matrix poles were calculated for two SFR potentials for a heavy

nucleus 208Pb in Refs. [3, 4]. Certain features found in Ref. [4] indicate that the relation-

ship (20) might hold for the CWS and even for the SV potentials.
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The asymptotic behavior of the CWS potential for r < Rmax may be approximated by a

Taylor series around r = R = Rmax cut after the first term:

− V0f
CWS(r, R, a, Rmax) ≈ D + (Rmax − r)

D

a
, (26)

where D = −V0e
(R−Rmax)/a. The second term corresponds to a σ = 1 version of Newton’s

potential studied before, but now we have an additional first term, which does not depend on

r. Thus not even an approximation to the CWS potential has exactly the form of Eq. (19).

But, with the usual choice of Rmax ≥ R + 6a, the value of the constant |D| ≤ 0.0025× V0,

thus the first term is not very large.

Since for a heavy nucleus, a crucial difference has been observed between the pole trajec-

tories of the continuous SV potential and the discontinuous CWS potential [3, 4], here we

extend these calculations to light nuclei and to the SS potential.

For 208Pb, it has been found [4] that the starting points of the l = 0 resonant trajectories

follow Newton’s rule in Eq. (20) approximately if the n value is not very small even though

the asymptotic behavior of the potential (26) differs slightly from Eq. (19). Figure 8 shows

the trajectories of a few poles of the 18F+n system in the CWS well with parameters r0 = 1.25

fm, a = 0.65 fm, and Rmax = 15 fm. The results are similar to those for 208Pb even in that

there is a loop in the n = 1 trajectory but nowhere else. Figure 9 shows the straight line

fitted to kR
n for node numbers n = 1, . . . , 8. From its slope Eq. (22) predicts R = 14.67 fm,

which agrees reasonably well with the cutoff radius used, Rmax = 15 fm (|D| = 1.4×10−8V0).

We studied the behavior of the trajectories further by setting the cutoff radius shorter,

Rmax = 10 fm (|D| = 3.2 × 10−5V0). In Fig. 10 we examine the validity of Eqs. (20) and

(23) for the CWS potential by a test similar to that shown in Fig. 6. Now the two curves do

not converge smoothly into a constant. The agreement of the slope a1 with the exact value

is reduced to 2 decimal digits, and, as a function of n, it oscillates around π/Rmax. Thus

we can still state that Eqs. (20) and (23) are approximately satisfied by a CWS potential as

well. The relationship for the imaginary part, Eq. (21), however, is not satisfied at all. There

is no region where the deduced σ would be more or less constant. It looks that Eq. (26) is

too approximate to cause Eq. (21) to be fulfilled.
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FIG. 8: Pole trajectories for a CWS potential with Rmax = 15 fm for l = 0 and n = 1, . . . , 8 for

18F. The full circles denote the starting points of the trajectories with V0 = 0.005 MeV.
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FIG. 9: The line is the linear function fitted to the kRn values (dots) of the pole trajectories with

node numbers n = 1, . . . , 8 for a CWS potential for 18F. These values correspond to the abscissae

of the full circles in Fig. 8. The fit results in a range R = 14.67 fm.

D. Pole trajectories in SV and in SS potentials

The pole trajectories for the SV potential behave absolutely regularly, with no loops and

ripples (Fig. 11), in contrast to the CWS potential. The starting values kR
n can be fitted
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FIG. 10: Dependence of the slope of the fitted line on the lower cut value of the node number ns

(ns = 1, . . . , nu − 1, and nu = 48) for a CWS potential with Rmax = 10 fm.

very well by a straight line as seen in Fig. 12. From its slope and Eq. (20) one can derive

R = 5.17 fm, which is just a bit less than the value of the range parameter ρ0 = 5.3 fm.

Similar behavior was found before for 208Pb in Ref. [4]. We conclude that the relation in

Eq. (20) is fulfilled approximately for SV and SS potentials in spite of their asymptotic

0 1 2 3 4
Re(k)     [fm

-1
]

-1.5

-1

-0.5

0

Im
(k

) 
   

 [
fm

-1
]

n = 1
n = 2
n = 3
n = 4
n = 5

FIG. 11: Pole trajectories for a SV potential with ρ0 = 5.3 fm for l = 0 and n = 1, . . . , 5 for 18F.

The full circles denote the kn points calculated with V0 = 0.005 MeV.
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behavior being different from Eq. (19). Thus Eq. (20) is still useful for estimating the pole

positions. Remember that the SV and SS potentials the Taylor expansion at ρ0 is not equal

to the function, because all derivatives are zero at that point.
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n
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1

2

3

4

k nR
   

  [
fm

-1
]

FIG. 12: Fit to the kRn values of the full circles in Fig. 11, with node numbers n = 1, . . . , 5 for a

single-term SV potential for 18F. The range deduced from the slope a1 is R = 5.17 fm.

For two-term SV potentials (c 6= 0), the starting values of the pole trajectories were

studied in Ref. [3] for 16O and for 208Pb [18]. Now these studies may be extended to the

SS potentials of various as. If the SS potential obeyed Newton’s relation (19), the starting

regions should be independent of as and should coincide with the SV trajectory. Since,

however, Eq. (19) does not hold even for the SV potential, we expect a dependence.

We consider a heavy core, where the derivative term is important: the case of 208Pb+n.

We choose l = 0, analyze the SV potential that approximates the CWS potential of param-

eters R = 7.525 fm and a = 0.7 fm (ρ0 = 10.963 fm, ρ1 = 8.328 fm, and c = 0.997), and

repeat the calculation for SS potentials of as = 0.6 and 1.6 (Fig. 13). One can see that the

three curves belonging to the same n do not coincide, and nor do their starting points, but

they slightly depend on as. This weak dependence may be attributed to departures from

Eqs. (20) and (21) for low n.

We calculated the starting kn values for the best-fit SS shape to the same CWS shape

for 208Pb+n. (WS parameters: r0 = 1.27 fm, a = 0.7 fm. SS parameters: ρ0 = 10.75 fm,

ρ1 = 8.94 fm, c = 1.528, as = 1.4). Although we know that the SS potential does not
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FIG. 13: Pole trajectories in SS potentials with different as values. The value as = 1.0 corresponds

to the SV potential. The full circles denote the kn values calculated with V0 = 0.005 MeV.

follow Newton’s form [Eq. (19)], we can still fit our kn values by first-order polynomials

of the variable n and ln(n), respectively, to check the validity of Eqs. (20), (23) and (21).

Equations (20) and (23) seem to be valid approximately in the n-range shown in Fig. 14 for

as ≥ 1. For σ = 0.6, which produced a pocket in Fig. 4, the relation breaks down beyond

ns ≈ 12.

Test calculations show that the kI
n values weakly depend on as, and the σ, defined by

Eq. (21), does not seem to converge. That is not surprising as neither the SV nor the SS

potential satisfies Eq. (19). Just as for the SV potential, the kI
n values show an almost

linear slow increase with n. This offers practical recipes for finding suitable starting values

in searches for S-matrix poles.

VII. CONCLUSION

The conventional nuclear potentials do not tend to zero at finite distances, but are set to

zero artificially. Consequently, they have unpleasant mathematical and numerical properties,

which cause appreciable errors in broad resonances. Their SFR substitutes have pleasant

mathematical and numerical properties, but their tails are unphysical. Here we examined

the properties of a family of SFR potentials related to the WS potential, with an emphasis
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FIG. 14: Slope a1 of the straight line fitted to the starting kn values (ns = 1, . . . , nu − 1, and

nu = 20) for SS potentials of different as, with as = 1.0 belonging to the SV potential; A1 = π/11

fm−1. Slopes belonging to as = 1.0 and as = 1.6 are hardly distinguishable in the given scale.

on the effect of the tail and on the pole trajectories belonging to broad resonances.

We concentrated on the SV potential, which consists of a term exp[(r2/(r2 − ρ20)] (r <

ρ0) and a term like the derivative of that but with a different parameter ρ1 (≤ ρ0). We

constructed parameters that fit the real parts of the global Perey–Perey and Becchetti–

Greenlees optical potentials best. The best-fit range ρ0 of the SV potential is found to scale

by A
1/3
T for both geometries, and the difference of the two ranges, ρ0 − ρ1, is positive and it

is three to four times of the diffuseness of the WS potential. The admixture of the derivative

term tends to zero with decreasing mass number.

In fact, it was found that, for light nuclei, the phenomenological neutron potential can be

approximated reasonably well by a single-term SV potential, and the single-particle energies

and densities calculated in the cut-off WS potential are also reproduced. In this case the

form factor of the potential has a single parameter, its range ρ0. The tail of the density is

pretty reasonable since it is determined primarily by the energies, and those are reproduced

well by the SV potential.

The new potential form (SS) introduced by Sahu and Sahu [2] can be considered as a

generalization of the SV form. The extra diffuseness parameter may smooth or roughen the

potential in the region around ρ1 depending on whether as > 1 or as < 1.
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The range of the SFR potentials determines approximately the starting points of the

pole trajectories belonging to potential strength zero. The problem of the S-matrix poles

becomes ill-defined in a potential with strength V0 ≈ 0, thus it is important to see whether

the computer code is able to solve the problem for small V0. A check is provided by potentials

of the form of −V0(R − r) (r ≤ R), for which these starting points are approximately

determined apart from an additive constant. This check has shown that our calculations are

remarkably accurate.

It is more surprising that even though the CWS and the SV potentials are very different

in the neighborhood of the cutoff, the pole trajectories of the SV potentials bear out some of

the properties of those of the −V0(R− r) potentials, especially for large node numbers. For

some low values of the node number, the CWS trajectory shows strange shapes, while the

SS and SV potentials behave absolutely regularly. The pole trajectories of the SS potential

depend weakly on the extra diffuseness parameter.

In conclusion, the present results are reassuring concerning the use of the SFR potentials.

The starting points of the pole trajectories seem to have some approximate universality

properties, which can be used to estimate the values of these starting points.
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