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Chapter 1

Introduction

In modern medicine, imaging has become a crucial tool. Technologies
such as X-ray, ultrasound, computed tomography, magnetic resonance
imaging, positron emission tomography, and medical photography are
used extensively in clinical practice to confirm, assess, and document
the course of numerous diseases and to evaluate the response to treat-
ment.

Today, medical images – along with various omics (e.g., genomics
and proteomics) data – make up the majority of data that needs to be
processed and analyzed in healthcare. However, the manual examina-
tion of the acquired images is a labor-intensive process and subject to
human error. In addition, the performance of an observer may depend
on factors such as the level of experience, reading strategy, or fatigue.
Therefore, as the number of imaging examinations started to increase,
the demand for reliable automated methods to assist physicians also
started to grow.

This need has given rise to the interdisciplinary research field of
Medical Image Analysis that relies on image processing, pattern recog-
nition, machine learning, and medicine to develop methods to extract
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clinically relevant information from medical images in a reproducible
and objective manner.

Because the procedures related to medical diagnosis are critical,
it is usually not possible to rely on individual algorithms for their
implementation. While a single algorithm may work well in general, it
may fail in more difficult or infrequently encountered situations. For
example, a lesion segmentation algorithm may perform differently on
images acquired with different settings, which is a major problem when
images from heterogeneous sources, e.g., from multiple sites, need to
be processed. Or in the case of classification, the model of an algorithm
may not be general enough to correctly classify all unknown instances,
e.g., to classify all segmented lesion candidates.

To address these shortcomings, an ensemble of algorithms is often
considered (see, e.g., [1–5]). Ensembles are constructed from such al-
gorithms (members) that are based on different principles, models, etc.
to solve a specific problem [6]. The diversity of the members allows the
ensemble to respond more flexibly to various conditions [7]. The basic
idea of the ensemble methodology is that by combining the outputs of
multiple algorithms using an appropriate aggregation rule [8,9], a sys-
tem can be created that outperforms each of its constituent members
if certain conditions on their diversity and individual performance are
met [10,11].

A critical issue with ensembles is that using the individually opti-
mal parameter setting of the members may not necessarily maximize
the performance of the ensemble itself. For this reason, parameter
optimization at the ensemble level is required, which can lead to a
large-scale problem depending on the number and range of the param-
eters of the members. Even if the individual members have only a
few parameters that can take values from limited ranges, the search
space of the possible parameter settings of the ensemble can still be
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very large. Accordingly, using exhaustive search to find the optimal
parameter setting quickly becomes impractical.

To solve such large-scale combinatorial optimization problems, sto-
chastic search methods are commonly used. These methods can be
divided into instance-based and model-based ones. The main differ-
ence between these two groups is that instance-based methods, such
as simulated annealing (SA) [12] and the genetic algorithms [13], gen-
erate new candidate solutions based on the current solution(s), while
model-based methods, such as ant colony optimization [13] and the
cross-entropy method [14], generate candidate solutions through more
expensive, adaptive stochastic mechanisms.

Stochastic approaches can efficiently find good solutions to large-
scale problems by sacrificing some accuracy for a substantial reduction
in search cost. However, even a stochastic search can be very expensive
if the evaluation of a solution is itself expensive, e.g., due to the high
complexity of the objective function or the large size of the dataset,
which latter is often necessary to avoid parameter overfitting.

One way to reduce the cost of stochastic optimization is to use
partial data at each iteration, i.e., to approximate the value of the ob-
jective function instead of determining it exactly. A similar principle is
applied in the stochastic gradient descent (SGD) [15] and mini-batch
gradient descent (MGD) [16] algorithms, which are widely used in ma-
chine learning tasks.

SGD is a method for the optimization of differentiable objective
functions. Unlike the classic gradient descent (GD) method, which
computes the gradient at each iteration using the entire dataset, SGD
estimates the gradient using a single random example from the dataset.
This approach reduces the cost per iteration at the expense of a lower
convergence rate. While SGD generally progresses quickly at the be-
ginning, the variance of the gradient estimates deteriorates the conver-
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gence rate as the optimum is approached [17]. That is, SGD requires
more iterations to converge. However, for large datasets, the overall
cost is still likely to be less than in the case of GD.

MGD estimates the gradient at each iteration as an average with
respect to a random subset (mini-batch) of the dataset. It has been
shown to be an efficient optimization method for large-scale machine
learning problems, as it reduces the cost of optimization compared
to GD while providing solutions that are usually superior to those
produced by SGD considering the same overall cost. MGD uses a
constant batch size, typically determined by empirical analysis. The
batch size has a significant impact on the convergence of MGD, as it
affects the variance of the gradient estimates. Combined with back-
propagation, MGD is the most commonly used method for training
deep neural networks [18]. In these applications, the batch size of MGD
is usually small (e.g., 32, 64, or 128), which is expected to lead to better
generalization ability due to the noise of the gradient estimates [19].
In recent years, however, the use of large batch sizes in MGD has also
been actively investigated [20–22] to reduce the number of parameter
updates required during training.

Note that in both SGD and MGD, the gradient estimates become
noisier as the solutions approach the optimum. For this reason, con-
vergence is facilitated by a decreasing learning rate [23], which results
in an increased overall cost of optimization.

In our preliminary studies [24, 25], we have successfully applied an
approach similar to that of MGD to reduce the cost of parameter op-
timization of image processing ensembles by using partial data in each
iteration. For our studies, we chose the metaheuristic SA, which is
widely used to solve both discrete and continuous optimization prob-
lems due to its simplicity and appealing properties. Namely, we pro-
posed methods based on SA that evaluate the objective function using
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a subset of the dataset obtained at each iteration by random sampling.
First, the effect of using fixed-size samples of the dataset at each iter-
ation was investigated using the parameter optimization problem of a
lesion detector ensemble. It was found that even for more complex ob-
jective functions, it is possible to find a fixed sample size that leads to
good solutions. It was also confirmed that the considered lesion detec-
tor ensemble performs better when using the parameters obtained with
ensemble-level optimization than when using the individually optimal
parameters of the members. However, the determination of the sample
size required to obtain good solutions was heuristic and problem depen-
dent. We also found that more optimization runs were required due to
the uneven quality of the achievable solutions caused by the noise of the
objective function estimates originating from the sampling. Therefore,
we also tested a simple scheduled increase in the sample size during
the search, which improved the average quality of the solutions. The
above preliminary results led us to the conclusion that to effectively
use reduced data for parameter optimization of ensembles with SA, the
noise must be controlled during the search to maintain convergence of
the method.

The goal of this research was to develop methods for the efficient
parameter optimization of ensembles performing medical image anal-
ysis tasks. In this dissertation, three stochastic methods are proposed
for this purpose, all of which are based on SA and use noisy evaluation
in different ways to reduce the overall cost of the search. Different
approaches are presented to approximate the value of the objective
function with partial training data to evaluate solutions, i.e., the per-
formance of the ensemble at a given parameter setting. Of course, the
noise introduced by using partial training data may cause the search
method to consider an inferior solution as superior due to the inaccu-
rate value of the objective function and vice versa. For this reason,
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appropriate strategies have been developed for each method to control
the noise during the search process by the amount of data used for
evaluation in order to maintain the achievable solution quality.

The main contributions of this dissertation can be summarized as
follows (including the related publications):
• Optimization with dataset sampling

1. An efficient stochastic method is proposed for the parameter op-
timization of ensembles on large training sets that uses sampling-
based objective function evaluation [P4, P8, P14, P16, P18].

2. A closed-form equation is given to determine the minimum sam-
ple size required to evaluate a solution at a given iteration in
order to maintain the convergence of the method in probability
[P4, P16, P18].

• Optimization with image downscaling

3. An efficient stochastic method is proposed for the parameter opti-
mization of image processing (segmentation) ensembles that uses
increasingly higher resolution levels of a pyramid representation
of the images in the training set to evaluate the objective function
during the search [P4, P11].

4. A strategy is proposed to select the highest scaling level that
can be used to evaluate a solution at a given iteration in order
to maintain the convergence of the method in probability for a
given pyramid representation of the images. [P4, P11].

• Optimization with combined noisy evaluation

5. A stochastic method is proposed for accelerating the parame-
ter optimization of image processing (segmentation) ensembles
that combines dataset sampling with image downscaling for the
evaluation of the objective function [P1, P4, P11].
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The rest of this dissertation is organized as follows. Chapter 2 de-
scribes the theoretical background of the research conducted. First, SA
is briefly introduced, focusing on its convergence properties in the case
of using imprecise measurements to evaluate solutions and the design
choices necessary for its implementation. Then, the basic concepts and
notations used in this dissertation are defined. In Chapter 3, a method
is presented for the parameter optimization of ensembles on large (im-
age) datasets. This method accelerates the search by evaluating the
solutions using subsets of the dataset obtained by random sampling.
As another approach to accelerating parameter optimization, Chapter
4 presents a method that uses increasingly higher resolution levels of
a pyramid representation of the dataset images to evaluate solutions
during the optimization process. In Chapter 5, a method that com-
bines the previous two approaches is discussed. It is shown that by
using optimal combinations of sample size and scaling level, the search
can be further accelerated when the cardinality of the dataset is below
a problem-specific value.
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Chapter 2

Background

2.1 Simulated annealing

SA is a local search algorithm that was introduced by Kirkpatrick et
al. [12] and independently by Černý [26] to address difficult combina-
torial optimization problems. Simulated annealing is inspired by the
physical annealing process in metallurgy, in which a metal is heated
and then slowly cooled until it reaches its lowest lattice energy state
and is thus free of crystal defects. If cooling is sufficiently slow, the final
configuration results in a metal with improved structural integrity.

The main feature of SA is the capacity to escape from local optima
by accepting non-improving moves with a probability that depends
on the difference in the objective function (energy) values between
the current and candidate states, and a decreasing control parame-
ter (temperature). The method applied to generate the sequence of
temperature levels is called a cooling schedule, and its choice strongly
influences the performance of SA.

The simplicity and general applicability of SA have resulted in this
procedure being used widely to address both discrete and continuous
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optimization problems. For a comprehensive discussion of the theory
and application of SA, see [27].

2.1.1 Implementation of SA

The general operation of SA is represented in Algorithm 1.

Algorithm 1 Simulated Annealing

Input: Initial state πinit
Initial temperature T (0)

1: k ← 0
2: π ← πinit
3: E ← calculate_energy(π)
4: while outer-loop criterion satisfied do
5: while inner-loop criterion satisfied do
6: πcand ← generate_neighbor(π)
7: Ecand ← calculate_energy(πcand)
8: r ← rand([0, 1])
9: if accept(E, Ecand, T (k), r) then

10: π ← πcand
11: E ← Ecand
12: end if
13: end while
14: T (k+1) ← update_temperature(T (0), k)
15: k ← k + 1
16: end while
17: return π

As it can be seen, a number of design choices must be made to im-
plement SA. In particular, we have to specify the energy function, the
neighborhood function, the acceptance criterion, the cooling schedule,
the thermal equilibrium criterion, and the termination criterion:
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• Input – Initial state πinit: The search starts from the initial state
πinit, which is typically selected at random from the search space.

• Input – Initial value of the control parameter T (0): The initial tem-
perature T (0) should be determined to allow virtually all state transi-
tions to be accepted. Kirkpatrick et al. [12] suggested that a suitable
value should result in an initial acceptance probability χ0 of about
0.8. For instance, using the acceptance criterion defined by (2.3), we
can calculate T (0) as

T (0) = −∆Emax
ln(χ0)

, (2.1)

where ∆Emax is the maximum possible energy difference between
any two states.

• Lines 3 and 7 – Energy function calculate_energy: The ob-
jective function of the optimization, typically formulated to suit the
minimization approach of SA. That is, the algorithm seeks a solution
with minimal energy.

• Line 4 – Termination criterion outer-loop criterion: When the
temperature falls below the final value Tfinal, the search is stopped.
At the final temperature Tfinal, the acceptance probability χfinal
should be almost 0. In a similar manner to the initial temperature,
the final temperature is calculated as:

Tfinal = − ∆Emin
ln(χkfinal)

, (2.2)

where ∆Emin is the minimum possible non-zero energy difference
between any two states.

• Line 5 – Thermal equilibrium criterion inner-loop criterion:
Each iteration of the inner loop generates a new state that is ac-
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cepted or rejected depending on the function accept. The loop
ends when “thermal equilibrium” is reached, i.e., when the inner-
loop criterion is satisfied. This criterion usually uses either a
maximum number of states to be generated, a maximum number of
acceptances, or a combination of the two. Implementations often
omit this criterion and execute the inner loop statements once.

• Line 6 – Neighborhood function generate_neighbor: The meth-
od of generating a neighbor state depends strongly on the optimiza-
tion problem. For black-box energy functions, a general approach is
to randomly select states from a neighborhood whose size decreases
as the search progresses. Note that the algorithm explores the state
space by random sampling when the neighborhood is large, while it
focuses on specific regions when the neighborhood is small.

• Line 9 – Acceptance function accept: The acceptance function
decides whether a move from the state π to πcand is accepted based
on the probability χπ,πcand , which is determined by an acceptance
criterion using the current temperature T (k), the energy E of the
current state, and the energy Ecand of the candidate state. A move
is accepted if χπ,πcand is greater than a uniform random number r ∈
[0, 1) generated by the function RAND. The most commonly used
acceptance criteria are the following.

• Metropolis criterion:

χπ,πcand =

{
exp

(
E−Ecand
T (k)

)
, if Ecand > E,

1, otherwise.
(2.3)

When using the Metropolis criterion, the acceptance probability of a
move to a non-inferior candidate state is 1. However, to avoid being
stuck in local optima, moves to inferior candidate states may also be
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accepted. To this end, exp
(
(E − Ecand)/T (k)

)
gives the acceptance

probability of the move, which decreases as the temperature T (k)

decreases.

• Barker criterion:

χπ,πcand =
1

1 + exp
(
Ecand−E
T (k)

) . (2.4)

When using the Barker criterion, even superior states may be re-
jected if they do not significantly improve the energy. As the tem-
perature T (k) decreases, superior states are more likely to be ac-
cepted unless the energy difference is negligible, while inferior states
are more likely to be rejected, as when using (2.3).

• Line 14 – Temperature function update_temperature: One of
the most important design decisions in the implementation of the
algorithm is the selection of an appropriate temperature function.
When the time budget of the search is limited, using a slow cooling
schedule will result in a failed search, while using a schedule that
is too fast may result in the search being stuck in a local optimum.
The temperature function together with the initial temperature T (0)

form a cooling schedule that is used to systematically decrease the
temperature, thus decreasing the probability of accepting moves to
states with worse energy values. The most commonly used temper-
ature functions are the following.

• Exponential temperature function:

T (k) = T (0) αk with 0 < α < 1. (2.5)

13



• Linear temperature function:

T (k) = T (0) − αk with 0 < α. (2.6)

• Logarithmic temperature function:

T (k) =
T (0)

1 + α ln(1 + k)
with 1 < α. (2.7)

Note that the logarithmic temperature function is based on the
asymptotic convergence condition of SA [28], but includes the factor
α that allows practical application of the schedule.

2.1.2 Convergence of SA in presence of noise

Originally, SA was designed based on the assumption that the energy of
a state can be calculated exactly, but the evaluation of a state is often
subject to noise in practical problems. As a consequence, a number
of studies have investigated the convergence properties of SA in noisy
environments.

The first study of this topic by Kushner [29] involved asymptotic
analysis of SA under suitable conditions based on the theory of large
deviations while assuming Gaussian noise.

By considering discrete search spaces and assuming that the noise is
normally distributed with mean 0 and variance

(
σ(k)
)2
> 0 in the k-th

(k ∈ N) iteration, Gelfand and Mitter proved [30] that SA converges
to the global optimum in probability using noisy evaluation in the
same manner as using exact energy values if the standard deviation
σ

(k)
d of the noise in the k-th iteration for each k is dominated by the
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temperature T (k), i.e., when

σ
(k)
d = o

(
T (k)

)
, (2.8)

where o is a Bachmann–Landau symbol that expresses a stronger re-
quirement on the asymptotic behavior of a function than O (for further
details, see [31]).

Assuming the same noise properties for a specific annealing sched-
ule, Gutjahr and Pflug [32] proved that SA converges in probability to
the globally optimal solution if the standard deviation of the noise is
at least inversely proportional to the number of iterations, i.e., when

σ(k) = O
(
k−γ
)
with some γ > 1. (2.9)

They generalized the proof of convergence to an arbitrary noise distri-
bution that is symmetric and more peaked around 0 than the Gaussian
distribution.

2.2 Basic concepts and notations

This section introduces the basic concepts and notations used in this
dissertation, which will be supplemented in subsequent chapters in
relation to the methods discussed.

Let D = {D1, D2, . . . , DM} be an ensemble of M ∈ N member al-
gorithms and Λ the set of images. The output of the algorithm Di

(i = 1, 2, . . . ,M) is denoted by Di(λ) for an image λ ∈ Λ and, where
applicable, the pixel value of the output at the coordinates (x, y) by
Di(λ)(x,y). The output D(λ) of the ensemble for λ is determined by ap-
plying an aggregation rule to the individual outputs of the algorithms
D1, D2, . . . , DM .
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In the case of a classification problem, let Ω = {ω1, ω2, . . . , ωJ}
be a set of finite class labels. The classifier Di assigns the support
values Di(λ) = (di,1(λ), . . . , di,J(λ)) to λ, which describes the opinion
of the classifier in terms of the degree to which λ should be labeled by
ω1, . . . , ωJ , respectively.

The simple majority voting-based ensemble classifier can be derived
by restricting the support of the individual classifiers with di,j(λ) = δrj,
where j = 1, 2, . . . , J if the classifier Di assigns the class ωr to λ. The
final labeling by the ensemble is based on determining the class that
receives the largest support in terms of the number of votes.

Different parameter settings can be considered for the member al-
gorithms, so we let Πi denote the parameter domain and πi ∈ Πi a
given parameter of the algorithm Di (i = 1, 2, . . . ,M). Furthermore,
let π ∈ Π = Π1 × Π2 × . . . × ΠM denote a given parameter vector of
the ensemble. Then, the ensemble with a specific parameter setting π
will be denoted by D(π).

In our applications, λ ∈ ΛN ⊂ Λ, where ΛN is a set of N ∈ N im-
ages, and the ensemble members are medical image analysis algorithms,
whose outputs are aggregated using majority voting-based rules.
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Chapter 3

Optimization with Dataset
Sampling

3.1 Introduction

In this chapter, we present a method for accelerating parameter opti-
mization of ensembles on large image datasets. Namely, we propose
an efficient sampling-based evaluation method for SA that considers
only the minimum required portion of the dataset in each iteration to
accelerate the search while maintaining its convergence properties.

The development of this method was motivated by our previous
research [24, 25], in which we successfully tested the evaluation of the
objective function over only a certain subset of the dataset prepared in
every search step by random sampling of the dataset images; however,
our approach was heuristic regarding the level of sampling applied
during the search process.

The main contribution of our approach is the correspondence of
dataset sampling to the noisy evaluation of the objective function.
The sample sizes required during the search process are theoretically
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determined by adapting the convergence results for noisy evaluation in
SA.

To assess the applicability of the method, we prepared and opti-
mized two ensembles for diabetic retinopathy (DR) pre-screening based
on microaneurysm (MA) detection with convolutional neural network-
based and traditional object detectors. Our experimental results indi-
cate that the proposed method substantially reduces the time required
for the search without compromising the quality of the solution.

The remainder of this chapter is organized as follows. In Section
3.2, we describe our sampling strategy and give the SA-based search
algorithm incorporating it. Our main result regarding the determi-
nation of the minimum sample size required during the search is also
formulated in this section as Theorem 1. In Section 3.3, we present
an application to retinal image analysis. Our experimental findings
regarding the classification of retinal images according to DR are pre-
sented in Section 3.4. Detailed results are provided in terms of the
computational time reductions obtained using the proposed method
while also maintaining the solution quality. We also showed that an
efficient ensemble of MA detectors can be prepared for pre-screening
DR. Besides, we demonstrated that the proposed method can also be
used to optimize the detector ensemble for the accurate localization of
MAs. Finally, we present our conclusions in Section 3.5.

3.2 SA with sampling-based evaluation

Next, we describe an evaluation method for SA that maintains the
quality of the achievable solution while reducing the runtime for en-
ergy functions commonly used to evaluate the average performance
of object detectors and classifiers on datasets. For this, we propose
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a sampling strategy that is based on the convergence results for the
noisy evaluation of the energy function.

3.2.1 Noise originating from sampling

To consider noisy evaluation of the energy, the ensemble D(π) with
accuracy pD(π) ∈ [0, 1] is a discrete random variable XD(π) with mean
E(XD(π)) and variance Var(XD(π)), where E(XD(π)) = pD(π) . Further-
more, let xiD(π) denote the i-th realization of XD(π) (i = 1, . . . , N).

Definition 3.1. The energy Eπ used to evaluate the performance of
the ensemble D(π) for a given parameter setting π is determined as the
empirical mean value of XD(π), i.e., the mean µND(π) of N realizations:

Eπ = µND(π) =
1

N

N∑
i=1

xiD(π) . (3.1)

Calculating the energy can be computationally expensive when con-
sidering large populations, so we estimate it using sampling.

Definition 3.2. Let Λn be a random sample of size n taken from the
finite population ΛN , i.e., Λn ⊆ ΛN (0 < n ≤ N). The energy estimate
ÊΛn,π to estimate the performance of the ensemble D(π) for a given
parameter setting π using Λn is determined as the sample mean x̄Λn

D(π):

ÊΛn,π = x̄Λn
D(π) =

1

n

∑
j:λj∈Λn

xjD(π) . (3.2)

If the parameter setting π is fixed, then we use the brief notations E
and ÊΛn instead of Eπ and ÊΛn,π, respectively.

As a special case, in a binary classification problem, the ensemble
D(π) with classification accuracy pD(π) is a random variable XD(π) from
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a Bernoulli distribution with

P (XD(π) = 1) = pD(π) , and P (XD(π) = 0) = 1− pD(π) , (3.3)

where XD(π) = 1 and XD(π) = 0 denote correct and incorrect classifi-
cation by D(π), respectively. In this case, for the theoretical mean and
variance of the variable XD(π) from a Bernoulli distribution, we have

E(XD(π)) = pD(π) , and Var(XD(π)) = pD(π)(1− pD(π)). (3.4)

Assuming that calculating each value xiD(π) (i = 1, . . . , N) has the
same computational cost, then calculating ÊΛn is n/N times less com-
putationally expensive than calculating E, but using ÊΛn introduces
noise in the evaluation.

Definition 3.3. For a sample Λn, the noise dΛn originating from the
sampling is determined as follows:

dΛn = ÊΛn − E = x̄Λn
D(π) − µND(π) . (3.5)

3.2.2 Sampling strategy and its algorithmic real-
ization

Because of the noisy evaluation of the energy function, SA may consider
an inferior state to be superior and vice versa. That is, the noise makes
the search more random and usually lowers the quality of the solution
that can be reached after a given number of steps.

According to (2.8), to ensure the convergence of SA in the pres-
ence of noise, a sampling strategy must be applied that is suitable for
controlling the standard deviation of the noise σdΛn

regarding the tem-
perature T during the search by selecting an appropriate sample size
in each search step. Thus, we must determine the maximum allowed
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value σ(k)
dn

of each σdΛn
for the current temperature T (k) in order to

find the minimum sample size required. We state Lemma 1 for this
purpose. Naturally, the standard deviation of the noise will be smaller
when the sample size n is closer to the population size N .

Lemma 1. A sufficiently simple general form of σ(k)
dn

that maximizes
its value at the temperature T (k) can be given as follows:

σ
(k)
dn

& T (k)(1− ε)k, 0 < ε� 1. (3.6)

Proof. Derived from (2.8),

lim
k→∞

σ
(k)
dn

T (k)
= 0 (3.7)

must hold to preserve the convergence of the method in probability. To
maintain the limit in (3.7), the sequence

{
σ

(k)
dn

}
has to be decreasing

such that lim
k→∞

σ
(k)
dn

= 0 and σ(k)
dn

< T (k) for each k ∈ N. Based on these

conditions, a sufficiently simple general form of σ(k)
dn

that maximizes its
value can be given as (3.6).

Example 1. As an application of Lemma 1, by considering the expo-
nential cooling schedule with

T (k) = T (0) αk with 0 ≤ α ≤ 1, (3.8)

the maximum value of σ(k)
dn

can be approximated as

σ
(k)
dn
≈ T (0) αk(1− ε)k with 0 ≤ α ≤ 1, and 0 < ε < 1. (3.9)

A similar derivation can be applied for other cooling schedules as well.
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Now we can formulate our main theoretical contribution regarding
how to determine the sample size during the search.

Theorem 1. For an arbitrary cooling schedule, the minimum sample
size n(k) required at the k-th iteration to maintain the convergence of
the method in probability can be estimated as

n(k) ≈ Nσ2
max

(N − 1)σ
(k)
dn

2
+ σ2

max

, (3.10)

where σmax is the worst-case, maximum value of the population stan-
dard deviation σD(π)

N , and σ(k)
dn

can be derived using Lemma 1.

Proof. The noise defined in (3.5) is actually the difference between
the sample mean and its expected value (the population mean), so its
standard deviation is equal to the standard deviation of the sampling
distribution of the mean, i.e., the standard error of the mean σ

x̄
D(π)
n

.
Therefore, the standard deviation of the noise can be calculated as
follows:

σdn = σ
x̄
D(π)
n

=
σ
D(π)
N√
n

√
N − n
N − 1

, (3.11)

where σD(π)
N is the population standard deviation and

√
(N−n)
(N−1)

is the
finite population correction factor.

In (3.11), the population standard deviation σD(π)
N is unknown, but

it can be estimated using its worst-case (maximum) value σmax. It
should be noted that in this case, it is not possible to estimate the
population standard deviation with the sample standard deviation be-
cause the required sample size is not yet known.

Using the maximum value of the population standard deviation,
the minimum required sample size n(k) at the k-th iteration can be
determined as (3.10).
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Example 2. For example, considering the exponential cooling schedule
given in (3.8) and σmax = 0.5, the minimum sample size in the k-th
iteration can be given as

n(k) =
N

4 (N − 1) (T (0) αk(1− ε)k)2
+ 1

. (3.12)

As a numeric demonstration for the example given above, let us con-
sider T (0) = 5, k = 1000, α = 0.99, and N = 2000. For this setup,
during the SA search, the maximum values allowed for the standard
deviation of the noise σ(k)

dn
and the corresponding required sample sizes

n(k) are shown in Fig. 3.1(a) and 3.1(b), respectively.
One technical issue should be noted: for every temperature value

T (k), a minimum required sample size n(k) must be used; therefore,
the energy estimate of the current state should be recomputed over a
sufficiently large sample in every iteration, i.e., when the temperature
decreases, in order to compare the quality of the current and candidate
states. However, recomputing this value would be time consuming and
the evaluation would become less effective than the complete evalu-
ation after at least half of the population is included in the sample.
Therefore, in each iteration, we normalize the energy estimate of the
current state using the ratio of the minimum required sample sizes at
the previous and current temperatures as

Ênorm = Ê
Λ

(k−1)
n
· (n(k−1)/n(k)), (3.13)

where n(k−1) is the sample size at which the energy estimate Ê
Λ

(k−1)
n

of the current state is calculated and n(k) is the sample size at which
the energy of the neighbor state will be calculated. It should be noted
that the factor used for correction becomes gradually less significant
as the search proceeds. As a secondary technical issue, we consider
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Figure 3.1. Example of the sampling strategy in SA search with an
exponential cooling schedule: (a) maximum standard deviation of the
noise and (b) minimum required sample size.
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that minimum sample size should be n ≥ 50 in order to make a rea-
sonable assumption regarding the Gaussian distribution of the noise
dn by following the general recommendations (see [33].)

Our approach for finding the optimal parameter setting for an en-
semble using the proposed sampling strategy is formally described in
Algorithm 2. We refer to this algorithm as SA with Sampling-based
Evaluation (SA-SBE) in the following. The algorithm contains several
tunable parameters and functions, which must be selected according
to the desired application. The setup corresponding to our object de-
tection task is described in Section 3.3.3.

3.3 Application: DR pre-screening

DR is a complication of diabetes mellitus caused by progressive damage
to the blood vessels in the retina, which is the light-sensitive lining
in the back of the eye. DR is one of the leading causes of vision
loss worldwide, but the risk of blindness can be significantly reduced
through early diagnosis and timely treatment [34]. Therefore, patients
with diabetes mellitus should undergo regular DR screening, but the
manual grading of cases is resource-demanding and prone to human
error. Consequently, over the last two decades, considerable efforts
have been made to establish reliable automated methods to facilitate
the mass screening of DR using color retinal photographs and various
working principles, such as red and bright lesion detection [35, 36],
feature extraction and classification [37,38], and deep learning [39,40].

3.3.1 DR screening based on MA detection

Several of the methods mentioned above aim to assign grades to in-
put retinal images according to the severity of DR. However, even the
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Algorithm 2 Simulated Annealing with Sampling-based Evaluation
(SA-SBE)

Input: An ensemble D = {D1, . . . , DL} with free
parameters Π = Π1 × · · · × ΠL.
A population for classification ΛN .
Maximum standard deviation σmax of the energy.
Initial parameter setting πinit ∈ Π.
Initial temperature T (0).

1: k ← 0
2: π ← πinit
3: n← sample_size(T (0), k, σmax)
4: Λn ← take_sample(ΛN , n)
5: ÊΛn,π ← calculate_energy(π, Λn, D)
6: while outer-loop criterion satisfied do
7: nprev ← n
8: n← sample_size(T (0), k, σmax)
9: ÊΛn,π ← energy_normalization(ÊΛn,π, nprev, n)

10: while inner-loop criterion satisfied do
11: πcand ← generate_neighbor(π)
12: Λ′n ← take_sample(ΛN , n)
13: ÊΛ′n,πcand ← calculate_energy(πcand, Λ′n, D)
14: r ← rand([0, 1])
15: if accept(ÊΛn,π, ÊΛ′n,πcand , T

(k), r) then
16: π ← πcand
17: ÊΛn,π ← ÊΛ′n,πcand

18: end if
19: end while
20: T (k+1) ← update_temperature(T (0), k)
21: k ← k + 1
22: end while
23: return π
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Figure 3.2. MAs in a retinal image.

seemingly simpler problem of classifying retinal images into healthy
and diseased categories is not yet considered to have been solved. Au-
tomatically selecting and prioritizing cases with a higher likelihood
of disease could significantly facilitate the detection of DR in a mass
screening scenario because only approximately 35% of patients with
diabetes mellitus have DR [34].

MAs are tiny swellings in the blood vessels (see Fig. 3.2) and the
earliest clinical signs of DR, where the number of MAs is strongly
correlated with its severity [41]. Consequently, the accurate detection
of MAs is crucially important for recognizing DR, especially in its early
stage.

Several methods have been developed to directly screen for DR
based on the presence of MAs. The method proposed by Hipwell et
al. [42] is based on the results reported by Cree [43] and it can de-
tect MAs using red-free retinal images. After removing variation in
the background intensity, small round objects are extracted as candi-
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dates. Each MA candidate is then classified using intensity and size
features. Fleming et al. [44] proposed a method that uses contrast nor-
malization and vessel removal to improve MA detection, and they also
evaluated their method for image classification. The method devel-
oped by Bhalerao et al. [45] is based on filtering using complex-valued
circular-symmetric filters and morphological analysis of the candidate
regions to reduce the false positive rate. In particular, they aimed
to detect severe, sight-threatening DR. Giancardo et al. [46] proposed
a method that discards the background areas, before calculating the
Radon transform and extracting a feature vector, which is subsequently
classified using principal component analysis and a nonlinear support
vector machine.

The results obtained by the methods mentioned above confirm that
MA detection is a reasonable approach for DR pre-screening. For fur-
ther details of the performance of MA-based DR classification methods,
see Section 3.4.4.

A possible approach for further increasing the accuracy of MA de-
tection involves creating an ensemble of detectors based on different
working principles and models. To demonstrate the efficiency of the
proposed method, in our case study application, we considered two
ensembles for the binary classification of retinal images into healthy or
diseased categories based solely on the presence of MAs.

Next, we describe the members of our ensembles, the steps in the
ensemble creation process, and the design choices required to imple-
ment the stochastic search method.

3.3.2 Ensemble creation method

We considered two MA detector ensembles with nine and ten mem-
bers, respectively. The nine members of Ensemble 1 were based on
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traditional object detector methods [25]. This ensemble was extended
to Ensemble 2 by adding one more detector based on the fusion of two
deep convolutional neural networks (DCNNs).

Member algorithms

The traditional MA detectors in our ensembles were formed as 〈prepro-
cessing method, candidate extractor〉 pairs (〈PP, CE〉) as recommended
in a previous study [2]. A 〈PP, CE〉 pair applied the PP to the input
retinal image and the CE to its output; thus, a 〈PP, CE〉 pair extracted
a set of MA candidates by acting as a single detector algorithm. The
individual 〈PP, CE〉 detectors comprised the following components:

• PPs: Contrast limited adaptive histogram equalization (CLAHE)
[47]; Illumination equalization (IE) [47]; Vessel removal with in-
painting (VR) [48] [49]; Walter-Klein (WK) [50]; No preprocess-
ing (NP).

• CEs: Lázár et al. [51]; Walter et al. [52]; Zhang et al. [53].

To extend our former 〈PP, CE〉 ensemble [25] with a member based
on deep neural networks, we employed the method proposed by Ha-
rangi et al. [54], which organizes two DCNNs into a single architecture
by connecting them in a shared fully connected layer in order to rec-
ognize MAs in retinal images. The advantage of this approach is that
the combined architecture can be trained as a single neural network,
where the training of both DCNNs is affected by the predictions of
each, thereby improving the detection accuracy. The input retinal im-
age was divided into subimages to provide the required input for the
combined DCNN. An input image was labeled as diseased if the pres-
ence of an MA was predicted in any of the subimages at a confidence
level threshold of 0.5 to 0.95, depending on its parameter.
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It should be noted that MAs are dot-like lesions (especially in lower
resolution retinal images), so the MA detector components of our en-
sembles were implemented to extract the MA centers (i.e., the coordi-
nates of a pixel) as candidates instead of image sub-regions.

Table 3.1 summarizes the members of the two ensembles used in
our study. Ensemble 1 comprised nine MA detectors D1, . . . , D9 with
the indicated 〈PP, CE〉 pairs (see also [25]), and Ensemble 2 included
an additional DCNN member D10.

Table 3.1. Members of the ensembles.

Comp. PP CE Parameter domain

D1 NP Lázár et al. Π1 = {1, 2, . . . , 20}
D2 CLAHE Lázár et al. Π2 = {1, 2, . . . , 20}
D3 IE Lázár et al. Π3 = {1, 2, . . . , 20}
D4 VR Lázár et al. Π4 = {1, 2, . . . , 20}
D5 NP Walter et al. Π5 = {1, 2, . . . , 30}
D6 CLAHE Walter et al. Π6 = {1, 2, . . . , 30}
D7 NP Zhang et al. Π7 = {1, 2, . . . , 10}
D8 VR Zhang et al. Π8 = {1, 2, . . . , 10}

E
ns

em
bl

e
1 {

D9 WK Zhang et al. Π9 = {1, 2, . . . , 10}

E
ns

em
bl

e
2 {

D10 NP Harangi et al. Π10 = {0, 1, . . . , 5}

The detectors listed in Table 3.1 have various numbers of parame-
ters. However, to make the optimization problem more tractable, we
considered only that parameter for each detector that had the most
significant effect on the output.

In particular, the parameters π1, . . . , π4 control thresholds for the
scores assigned to the MA candidates, π5 and π6 control size thresh-
olds for the diameter closing results, π7, . . . , π9 control thresholds for
the correlation map of the image used to extract candidates, and π10

controls the confidence threshold for MA candidates. The possible set-
tings for each πi ∈ Πi (i = 1, . . . , 10) are shown in Table 3.1. Overall,
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there are 204 × 302 × 103 and 204 × 302 × 103 × 6 possible different
parameter settings for Ensembles 1 and 2, respectively.

Aggregation method

In order to fuse the MA candidates identified by the individual detec-
tors D(π1)

1 , . . . , D
(π10)
10 for a given image λ via D(π)(λ) = ∪10

i=1D
(πi)
i (λ),

we need to define a confidence measure to describe the agreement of the
members regarding the candidates. To this end, we first introduce a
proximity relation ∼= to decide whether or not two candidates indicate
the same MA object.

Definition 3.4. Let c1 and c2 be two MA candidates. We say that
c1 and c2 indicate the same MA object, denoted as c1

∼= c2, if their
Euclidean distance is below a predefined threshold.

Definition 3.5. The confidence of the ensemble conf D(π)(c) regarding
any of its candidates c ∈ D(π)(λ) is defined as

conf D(π)(c) = |{D(π)
i ∈ D(π) : ∃c′ ∈ D(π)

i (λ) : c ∼= c′}|/|D(π)|. (3.14)

That is, conf D(π)(c) for a candidate c is calculated by dividing the num-
ber of ensemble members that have a candidate c′ in their respective
output that indicates the same object by the total number of members.

The ensemble candidates D(π)(λ) are classified based on the degree
of confidence for the subsequent labeling of the image.

Definition 3.6. The α–level candidates of D(π) are defined as(
D(π)(λ)

)
α

= {c ∈ D(π)(λ) : conf D(π)(c) ≥ α}, (3.15)

where 1/|D(π)| ≤ α ≤ 1.
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3.3.3 SA design choices

The SA-related design choices were made according to the description
in Section 2.1.1. We adjusted and implemented the corresponding
components of Algorithm 2 as follows.

• Input – Initial state πinit: For each member of the ensemble, a valid
parameter value is randomly selected to form an initial state.

• Input – Initial value of the control parameter T (0): By using (2.1),
we calculate T (0) as

T (0) = −∆Emax
ln(χ0)

= − 1

ln(0.8)
≈ 4.5, (3.16)

where we note the maximum possible energy difference between any
two states ∆Emax = 1 because the energy lies in the interval [0, 1]

in our case (see Section 3.4).

• Line 6 – Termination criterion outer-loop criterion: The al-
gorithm stops when the temperature falls below its final value Tfinal.
By using (2.2), we calculated the final temperature as

Tfinal = − ∆Emin
ln(χfinal)

with ∆Emin =
N − 1

N
. (3.17)

If we set χfinal = 10−1000 and consider that in the case of a large
population N−1

N
≈ 1, we obtain:

Tfinal = − 1

ln(10−1000)
≈ 0.00043. (3.18)
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• Line 10 – Thermal equilibrium criterion inner-loop criterion:
This criterion is omitted in our implementation. The statements in
the inner loop are executed once.

• Line 11 – Neighborhood function generate_neighbor: We define
a neighborhood with a size that decreases linearly in inverse propor-
tion to the number of search iterations. For each parameter of the
ensemble, a maximum distance is determined within which a new
valid parameter value is randomly selected in each iteration. This
distance is the length of the range of the parameter multiplied by (1
– the ratio of the index of the current search step and the maximum
number of search steps).

• Line 15 – Acceptance function accept: We employ the Metropolis
criterion defined by (2.3), adapted to our maximization problem,
because of its widespread use and attractive properties [27].

• Line 20 – Temperature function update_temperature: We use
the exponential temperature function defined by (2.5) to form a cool-
ing schedule. The factor α is determined so that the search has
exactly kmax = 1000 iterations:

α =

(
Tfinal
T (0)

) 1
1000

≈ 0.997. (3.19)

3.4 Experimental results

In this section, we present the methods and results of our experiments.
First, we describe the datasets employed, then discuss the assessment
of the proposed method by performing parameter optimization of our
ensembles for DR pre-screening and MA detection and provide the cor-
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responding experimental results. Finally, we give some implementation
details.

3.4.1 Datasets

Parameter optimization was performed for the ensembles using the
publicly available dataset e-ophtha-MA [55] and the test part of the
dataset provided by EyePACS for a DR grading competition held by
Kaggle [56]. We will refer to the latter dataset as Kaggle EyePACS
in the following. The contents of the two datasets are described as
follows.

• e-ophtha-MA: The e-ophtha-MA dataset comprises 381 color retinal
images with four different resolutions ranging from 1440 × 960 to
2544 × 1696 pixels, where 233 images depict healthy retinas (R0
class) and 148 images show various severity levels of DR (R1–R4
classes) containing a total of 1306 MAs. We used this dataset mainly
because it contains precise MA ground truth data for the images.

• Kaggle EyePACS : The Kaggle EyePACS dataset comprises 35 126
color retinal images with various resolutions ranging from 400 × 315
to 5184 × 3456 pixels, where 25 810 images are labeled as healthy
(R0), 2443 as mild DR (R1), 5292 as moderate DR (R2), 873 as
severe DR (R3), and 708 as proliferative DR (R4). The images in
this dataset were acquired under various imaging conditions using
different models and types of cameras. Furthermore, as stated in the
dataset description [56], some images are labeled incorrectly, affected
by artifacts, out of focus, underexposed, or overexposed (see Fig.
3.3). According to previous studies using this dataset (e.g., see [57])
approximately 20–30% of the images are of poor quality or have
incorrectly assigned labels. We used this dataset mainly because to
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.3. Sample images from the Kaggle EyePACS dataset show-
ing typical artifacts and imaging errors: (a) camera artifacts, (b) lens
condensation, (c) dust, (d) blur, (e) reflection, (f) underexposure, (g)
overexposure, and (h) no artifacts.
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the best of our knowledge, this is the largest freely available dataset
that contains DR severity label ground truth data for the images.

Despite the known issues with Kaggle EyePACS, we used the im-
ages from this dataset as provided and did not perform any resource-
demanding data cleaning steps (e.g., manually filtering the gradable
images) because our main aim was to show that the proposed evalua-
tion method can preserve the achievable solution quality while reducing
the runtime. Clearly, due to the high proportion of poor quality or in-
correctly labeled images, a lower diagnostic efficiency can be expected
for Kaggle EyePACS than e-ophtha-MA using either the standard SA
or the proposed method.

The contents of the datasets used in the experiments described in
Sections 3.4.2 and 3.4.3 are summarized in Table 3.2 and Fig. 3.4.

Table 3.2. Contents of the datasets.

Dataset Subset Healthy Diseased Total
R0 R1 R2 R3 R4 R1-R4

e-ophtha-MA

148 - - - - 233 381

training 100 - - - - 100 200

test 48 - - - - 48 96

not used - - - - - 85 85

Kaggle
EyePACS

25810 2443 5292 873 708 9316 35126

training 6211 1629 3528 582 472 6211 12422

test 3105 814 1764 291 236 3105 6210

not used 16494 - - - - - 16494
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Figure 3.4. Visual overview of the datasets and the main evaluation
approaches used in our experiments.
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3.4.2 DR pre-screening

For DR pre-screening, the aim of the optimization process was to find
the parameter setting π that maximizes the performance of the en-
semble D(π) in terms of the diagnostic efficiency, i.e., maximizing the
proportion of correctly classified images.

The output of the ensemble was a Bernoulli distributed random
variable, where XD(π) = 1 for correct classification and XD(π) = 0 for
incorrect classification.

We considered that an image λ was classified correctly if it was
annotated as positive in the ground truth and |

(
D(π)(λ)

)
α
| ≥ 1 (true

positive), or annotated as negative and |
(
D(π)(λ)

)
α
| = 0 (true neg-

ative). By contrast, λ was classified incorrectly if it was annotated
as positive in the ground truth and |

(
D(π)(λ)

)
α
| = 0 (false negative

case), or annotated as negative and |
(
D(π)(λ)

)
α
| ≥ 1 (false positive

case). The candidates for the ensembles were extracted at the confi-
dence level of α = 0.5, i.e., we used simple majority voting for this
aim. The ensembles considered that an image was diseased if at least
one MA was detected.

To optimize the DR pre-screening performance of the ensembles,
we used the energy estimate ÊΛn defined in (3.2) corresponding to this
implementation. It should be noted that in this case, the energy is
equivalent to the accuracy (ACC ) measure given as

ACC =
number of true hits
number of all images

=
TP + TN

TP + TN + FP + FN
, (3.20)

where TP , TN , FP , and FN are the numbers of true positive, true
negative, false positive, and false negative hits, respectively.
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Furthermore, we calculated the sensitivity (SE ) and specificity (SP)
measures as

SE =
TP

TP + FN
, SP =

TN

TN + FP
. (3.21)

For further details of ACC , SE , and SP , please refer to [58].
To evaluate the proposed method, we conducted 10-times cross-

validation with repeated random subsampling of the datasets. For
each round of the cross-validation process, we created new training
and test subsets from the datasets described in Section 3.4.1, with a
training to test ratio of approximately 2:1 (see Fig. 3.4). In the case of
e-ophtha-MA, 85 randomly selected images from the R1–R4 classes in
the dataset were excluded from each round in order to ensure that we
had the same number of images in the R0 and R1–R4 classes. Next,
100 images were randomly selected from each of the R0 and R1–R4
classes for the training subset and the remaining 48 in each were used
for testing. In the case of Kaggle EyePACS, 16494 randomly selected
images from the R0 class in the dataset were excluded in each round for
the same reason explained above for e-ophtha-MA. Next, 6211, 1629,
3528, 582, and 472 images were randomly selected from the R0, R1,
R2, R3, and R4 classes, respectively, for the training subset and the
remaining 3105, 814, 1764, 291, and 236 images were used for testing.

The optimal parameter settings obtained in each round of the cross-
validation process using a training subset were evaluated using the
corresponding test subset.

The main results obtained in these experiments are summarized
in Tables 3.3 and 3.4. In these tables, we present the average ACC ,
average SE , and average SP values, as well as the average runtimes t (in
seconds) and the corresponding standard deviations calculated based
on the results of the 10-times cross-validation using the e-ophtha-MA

39



and the Kaggle EyePACS datasets, respectively. The runtimes for the
test subsets are omitted because only single evaluations were needed.

Table 3.3. DR pre-screening – Results of the 10-times cross-validation
using the e-ophtha-MA dataset.

Subset ACC SE SP t (sec)

E
ns
em

bl
e
1 SA

training 0.862
(±0.014)

0.831
(±0.027)

0.893
(±0.021)

773.6
(±100.5)

test 0.8125
(±0.0339)

0.7625
(±0.0486)

0.8625
(±0.0529) -

SA-SBE
training 0.858

(±0.0127)
0.847
(±0.019)

0.869
(±0.0342)

187.3
(±53.1)

test 0.8115
(±0.0347)

0.7833
(±0.0458)

0.8396
(±0.0618) -

E
ns
em

bl
e
2 SA

training 0.8925
(±0.014)

0.883
(±0.029)

0.902
(±0.0426)

1586.5
(±189.7)

test 0.8448
(±0.0359)

0.825
(±0.0792)

0.8647
(±0.0545) -

SA-SBE
training 0.896

(±0.0089)
0.889
(±0.0262)

0.903
(±0.0329)

591.4
(±151.8)

test 0.8813
(±0.0256)

0.8833
(±0.0468)

0.8791
(±0.0445) -

Tables 3.3 and 3.4 clearly suggest that the proposed method pre-
served the quality of the solution obtained using the standard SA but
with significantly lower time requirements. In addition, SA-SBE ex-
hibited stable behavior in terms of the standard deviations of ACC ,
SE , and SP , and also when compared to the standard SA. It should
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Table 3.4. DR pre-screening – Results of the 10-times cross-validation
using the Kaggle EyePACS dataset.

Subset ACC SE SP t

E
ns
em

bl
e
1 SA

training 0.6516
(±0.0047)

0.5697
(±0.022)

0.7336
(±0.0243)

11936.2
(±932.9)

test 0.6441
(±0.0125)

0.5622
(±0.0319)

0.726
(±0.0249) -

SA-SBE
training 0.6488

(±0.0064)
0.5643
(±0.0249)

0.7334
(±0.0299)

1685.4
(±710)

test 0.6396
(±0.0041)

0.5556
(±0.0282)

0.7236
(±0.0314) -

E
ns
em

bl
e
2 SA

training 0.6701
(±0.0068)

0.5556
(±0.0307)

0.7846
(±0.0251)

87198.2
(±9111.4)

test 0.6649
(±0.0079)

0.5511
(±0.0250)

0.7787
(±0.0215) -

SA-SBE
training 0.6672

(±0.0074)
0.5476
(±0.0212)

0.7869
(±0.0216)

9611.4
(±3567.2)

test 0.6580
(±0.006)

0.5415
(±0.0282)

0.7745
(±0.0231) -
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be noted that the average ACC was lower using Kaggle EyePACS
than e-ophtha-MA because of the artifact issues discussed in Section
3.4.1. However, there were no significant differences between the av-
erage ACC values obtained with the two optimization methods. The
differences in the performance of SA and SA-SBE are also highlighted
in Table 3.5.

Table 3.5. Comparison of SA and SA-SBE in terms of the average
solution quality and runtime based on 10-times cross-validation.

e-ophtha-MA
(training)

Kaggle EyePACS
(training)

ACC t (sec) ACC t (sec)

E
ns
.
1

SA 0.862 773.6 0.6516 11 936.2

SA-SBE 0.858 187.3 0.6488 1685.4

Difference -0.004
(-0.46%)

-586.3
(-75.79%)

-0.0028
(-0.43%)

-10 250.8
(-85.88%)

E
ns
.
2

SA 0.8925 1586.5 0.6701 87 198.2

SA-SBE 0.896 591.4 0.6672 9611.4

Difference 0.0035
(0.39%)

-995.1
(-62.72%)

-0.0029
(-0.43%)

-77 586.8
(-88.98%)

We also checked the contribution of the DCNN member to the en-
semble. Table 3.6 shows the individual performance of the DCNN ap-
proach together with those of the ensembles using the results obtained
from the 10-times cross-validation with SA-SBE. With e-ophtha-MA,
the individual performance of the DCNN was higher than that of the
traditional image processing-based Ensemble 1. However, their com-
bined performance (Ensemble 2) was better, especially considering the
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more balanced SE and SP values. With Kaggle EyePACS, the DCNN
component still performed better than Ensemble 1, and Ensemble 2 ob-
tained the highest performance with an improvement in SP , although
the performance gain was less remarkable with this dataset.

Table 3.6. Comparison of the DR pre-screening performance of the
ensembles and the DCNN member.

e-ophtha-MA
(test)

Kaggle EyePACS
(test)

ACC SE SP ACC SE SP

Ensemble 1 0.8115 0.7833 0.8396 0.6396 0.5556 0.7236

DCNN 0.8427 0.7458 0.9396 0.6536 0.6577 0.6496

Ensemble 2 0.8813 0.8833 0.8791 0.6580 0.5415 0.7745

3.4.3 MA detection

In Section 3.4.2, we presented evaluations of our sampling-based search
strategy via the optimization of our ensembles for DR pre-screening.
Next, we demonstrate that the same ensembles can also be optimized
using our approach for the accurate detection of MAs. We used the
whole e-ophtha-MA dataset in these experiments.

The α–level candidates of an ensemble extracted using the parame-
ter setting π for an image λ

(
D(π)(λ)

)
α
were compared with a set of MA

centers (which were extracted from the ground truth masks provided
for the image) using a method similar to that described for the fusion
of MA candidates in Section 3.3.2. If the Euclidean distance between
the centers of a candidate and a manually annotated MA was less than
a given threshold, it was considered a true positive, otherwise a false
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positive. Furthermore, each missed annotated MA was considered a
false negative. The threshold was set to 5 pixels for our experiments,
where this value was selected according to the average MA size in the
images.

First, we optimized the parameter settings for our ensembles to
maximize the mean positive predictive value PPV (see [58]) over a set
of n images, i.e., the average percentage of true MAs in the output of
the detector ensemble:

PPV =
1

n

n∑
i=1

TPλi

TPλi + FPλi

, (3.22)

where λi is the i-th image, and TPλi and FPλi are the numbers of true
positive and false positive MA candidates, respectively, in the output
of the ensemble for the image λi.

We repeated the parameter optimization process four times with
both ensembles. Table 3.7 shows the best lesion-level performance
obtained with Ensemble 1 and Ensemble 2 for PPV at α–level = 0.5.
Our conclusion based on these results is similar to that for the image-
level results where significant reductions in the computational time
were achieved with SA-SBE while the quality of solution obtained with
the standard SA was preserved.

Table 3.7. MA detection performance of the ensembles using the e-
ophtha-MA dataset.

Ensemble 1 Ensemble 2

PPV t (sec) PPV t (sec)

SA 0.9921 1451 0.9974 6743

SA-SBE 0.9895 172 0.9974 238
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PPV is useful for optimizing our ensembles for a DR pre-screening
approach based solely on the presence of MAs because a low number
of false positives is a desirable characteristic of this type of system.
However, PPV only considers the ratio of the number of true positives
relative to the number of all positives, whereas the number of false
negatives is ignored. Thus, if the ensemble finds some true positives in
each image and no false positives, then PPV is 1, even if the ensemble
misses numerous MAs in the images. Therefore, it would be mislead-
ing to use PPV only to assess the MA detection performance of the
ensembles.

Thus, we also performed optimization for the mean F1–score (F1)
over a set of n images. F1 was considered an appropriate measure for
our study because it is the average harmonic mean of PPV and SE

calculated as

F1 =
1

n

n∑
i=1

2TPλi

2TPλi + FPλi + FN λi

, (3.23)

where the previously defined notations apply and FN λi denotes the
number of false negative MA candidates on λi. Fig. 3.5 shows examples
of true positive, false positive, and false negative MA candidates.

Based on the optimization results obtained for F1, Fig. 3.6 shows
the respective free-response receiver operating characteristic (FROC)
curves [59] for Ensemble 1 and Ensemble 2, where SE is plotted against
the average number of false positives per image (FPI ). To measure the
SE at different average FPI levels, we looped the α–level confidence
value of the ensembles from 0.1 to 1 with a step size of 0.1 and re-
peated the optimization process accordingly. The higher performance
of Ensemble 2 compared with Ensemble 1 is clearly visible in Fig. 3.6.
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Figure 3.5. Examples of true positive, false positive, and false negative
MA candidates found in an image from the e-ophtha-MA dataset by
Ensemble 2.
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Figure 3.6. MA detection performance – FROC curves obtained for
Ensemble 1 (blue) and Ensemble 2 (red).

3.4.4 DR classification at different confidence levels

In an additional experiment, we evaluated the DR classification per-
formance of our ensembles at different confidence levels.

In this experiment, we repeated the parameter optimization process
four times with both ensembles for ACC using the whole e-ophtha-
MA dataset and α–level = 0.5. Using the parameter setting with the
highest ACC value in the four tests, we measured ACC , SE , and SP at
α–levels ranging from 0.1 to 1 with a step size of 0.1. The corresponding
results are provided in Table 3.8. Furthermore, the fitted receiver
operating characteristic (ROC) curves obtained for the ensembles are
presented in Fig. 3.7, which again showed that Ensemble 2 performed
better than Ensemble 1.

Finally, Table 3.9 gives the DR classification performance of Ensem-
ble 2 at α–level = 0.5 and those of the methods described in Section
3.3.1. The reported performance levels are not directly comparable be-
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Figure 3.7. DR classification performance – ROC curves obtained
for Ensemble 1 (blue) and Ensemble 2 (red) using the e-ophtha-MA
dataset.
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Table 3.8. DR classification performance of the ensembles at different
α–levels using the e-ophtha-MA dataset.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
ns
.
1

SE 1 1 1 0.9527 0.7838 0.4122 0.0203 0.0203 0 0

SP 0 0 0.0558 0.4206 0.9013 0.9828 1 1 1 1

ACC 0.3885 0.3885 0.4226 0.6273 0.8556 0.7612 0.6194 0.6194 0.6115 0.6115

E
ns
.
2

SE 1 1 1 0.9662 0.8986 0.4932 0.0743 0.0068 0 0

SP 0 0.0178 0.2103 0.5751 0.9270 1 1 1 1 1

ACC 0.3885 0.3990 0.5170 0.7270 0.9160 0.8031 0.6404 0.6141 0.6115 0.6115

cause of the different datasets and evaluation methods employed, but
it can be observed that the performance of Ensemble 2 is competitive
in this field.

Table 3.9. Performance of MA-based DR classification methods.

Method Performance dataset used

Hipwell et al. [42] SE : 0.78, SP : 0.91 non-public
(3783 images, 956 with DR)

Fleming et al. [44] SE : 0.854, SP : 0.831 non-public
(1441 images, 356 with DR)

Bhalerao et al. [45] SE : 0.826, SP : 0.802 DIARETDB1
(89 images, 80 with DR)

Giancardo et al. [46] AUC : 0.854 Messidor
(1200 images, 654 with DR)

Ensemble 2 SE : 0.899, SP : 0.927
(AUC : 0.965)

e-ophtha-MA
(381 images, 233 with DR)
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3.4.5 Implementation and hardware details

SA-SBE was implemented in Java SE 8 and also used for the SA tests
with sampling disabled. All the detector outputs were stored in mem-
ory during the search and the evaluation of the energy function was
parallelized at the image level in order to reduce the time required
to find a solution. The reported runtimes exclude the time required
for loading the input files and other overheads. The results with the
e-ophtha-MA dataset were acquired using a computer equipped with
two 6-core AMD Opteron 2423 HE processors and 32 GB DDR2 RAM.
The results with the Kaggle EyePACS dataset were acquired using two
computers, where each was equipped with a 4-core Intel Xeon W-2123
processor and 64 GB DDR4 RAM.

3.5 Conclusions

In object detection applications, it is common to optimize systems us-
ing objective functions computed as an average over a dataset. Our
motivation for developing the proposed method was to provide a theo-
retically established way to reduce the time required for optimization
without compromising the quality of the achievable solution when the
dataset used is large. In Section 3.2, we proposed a sampling strategy
to ensure that SA exhibits the same convergence in probability us-
ing sampling-based evaluation as that using complete evaluation. Our
experimental results in Section 3.4 demonstrated that SA-SBE can pro-
vide the same solution quality as SA for our parameter optimization
problems. The proposed evaluation method is domain independent
and easy to adapt to problems where evaluation over large datasets is
required. Our method does not incorporate complex techniques for the
determination of the required sample size (e.g., monitoring changes in
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energy) or sample selection (e.g., finding the critical samples in classes)
to accelerate the search process.

For practical problems, it is typically possible to empirically deter-
mine a fixed sampling rate for the evaluation in SA in order to obtain
solutions with adequate quality and reduce the runtime. However, us-
ing the same sample size in each iteration would not necessarily provide
the same solution quality as a complete evaluation. In the case of SA,
according to (2.8), the standard deviation of the energy noise must ap-
proach 0 faster than the temperature to maintain the convergence in
probability, i.e., the sampling rate must approach 1 faster in our case.
Clearly, for any fixed sample size nconst < N , there is a temperature
level T (l) (0 ≤ l < kmax) up to nconst would be larger than the minimum
sample size required to maintain the convergence in probability, and
thus the search would be slower than possible, and after reaching T (l),
samples of size nconst will be insufficient and the search convergence
will deteriorate, thereby potentially decreasing the performance.

The stochastic method presented in this chapter and the correspond-
ing DR classification results were published in [P4]. Our preliminary
studies on the application of dataset sampling to accelerate parameter
optimization of ensembles, which form the basis of this method, were
published in [P16] and [P18]. The deep learning-based MA detector
used in Ensemble 2 was proposed in [P14]. In addition, the ensem-
ble methodology applied in this chapter for retinal image analysis was
described in [P8].
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Chapter 4

Optimization with Image
Downscaling

4.1 Introduction

In the previous chapter, we discussed how to use dataset sampling to
accelerate optimization with SA when large datasets or energy func-
tions that are expensive to compute are used. However, sampling is not
the only way to introduce controlled noise during the search. Depend-
ing on the dataset type and the application field, different approaches
can be taken in order to utilize noisy evaluation to accelerate the op-
timization process.

In this chapter, we consider image segmentation as the application
field. To accelerate the evaluation of a solution, a pyramid representa-
tion of the dataset images is used, where evaluating on lower resolution
levels results in noisy determination of the energy. Naturally, the lower
the resolution, the larger the noise can be, since the segmentation using
lower resolution versions of the images can be less accurate. To meet
the theoretical requirements, we introduce a strategy to determine the
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maximum allowed noise level, and thus the lowest image resolution that
can be used, in each iteration to control the search. We will show that
our method successfully reduces the time requirement of the search
while preserving the quality of the solution.

As a specific application, we consider an ensemble of segmenta-
tion algorithms for the extraction of bone structures from computed
tomography (CT) images. The outputs of the algorithms are binary
images containing the candidate bone regions, which are aggregated
by majority voting.

The remainder of this chapter is organized as follows. In Section
4.2, we describe the image pyramid-based evaluation method and the
strategy for selecting the appropriate scaling levels during the search
to ensure that the theoretical requirements regarding the energy noise
are met. The bone segmentation ensemble is described in Section 4.3:
we give an overview of the member algorithms, list their adjustable
parameters, and explain the aggregation strategy. Our experimental
setup and results regarding the performance of the proposed evalua-
tion method for optimizing the segmentation ensemble are presented
in Section 4.4. Finally, some conclusions are drawn in Section 4.5.

4.2 SA with downscaling-based evaluation

In this section, we describe how noisy evaluation can be exploited to
accelerate optimization of a segmentation ensemble using image down-
scaling.

4.2.1 Nearest neighbor image pyramid

To implement downscaling, a pyramid representation of the dataset
images is considered. An image pyramid is a collection of images de-
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rived from a single original that are successively downscaled until a
termination criterion (e.g., a desired minimum resolution) is not met.

The Gaussian pyramid [60] is the most common method for creating
such image pyramids, in which each level is constructed by convolving
the original image with a Gaussian-like averaging filter, followed by a
subsampling step. However, since the input images also have a corre-
sponding binary ground truth, we use the nearest neighbor method to
create the levels so that the sharp boundaries of the ground truth are
preserved. That is, the pixel values of a level are defined to match the
original pixel whose center is the nearest to the sample position.

Definition 4.1. We refer to a collection of L ∈ N hierarchically down-
scaled versions of an image as an L-level image pyramid, in which the
higher the scaling level l (l ∈ 0, 1, . . . L − 1), the smaller the image
resolution is.

For a visual explanation of this construction, see Fig. 4.1.

4.2.2 Scaling level selection strategy

Next, we present a method to select the appropriate scaling levels of
the image pyramid during the search.

Naturally, using downscaled versions of the dataset images acceler-
ates the evaluation. Assuming that the cost of calculating the energy
E is proportional to the resolution of the input images, the calculation
of the energy estimate Êl on the l-th level version of the input images
(with an associated scaling factor γl) has 1/γ2

l times lower cost than
the calculation of E. However, using the scaling level l introduces an
energy noise dl, which is determined as

dl = Êl − E. (4.1)
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Figure 4.1. Visual explanation of the image pyramid construction.

To ensure the convergence of SA, we have to apply a strategy to
select the appropriate scaling level l in each iteration k to control the
noise, as described by (2.8).

First, for each k, we have to determine the maximum allowed value
s(k) of the standard deviation σ

(k)
dl

of the noise with respect to the
temperature T (k). For this, we can apply Lemma 1 from Chapter 3 as

s(k) & T (k)(1− ε)k, 0 < ε� 1. (4.2)

To establish the proposed evaluation method, we need to determine
the standard deviation of the noise σdl caused by downscaling for each
scaling level l of the image pyramid.

It should be noted that the amount of noise can vary significantly
for different energy functions when downscaled versions of the images
from the dataset are used for the evaluation. In some cases, the the-
oretical determination of the maximum value of σdl for a given level l
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may be straightforward, while for more complex energy functions this
becomes a difficult problem. Moreover, the empirical standard devi-
ation of the noise for a level l is likely to be much lower than the
theoretical maximum in the case of natural images. Therefore, even
in the case when the theoretical maximum noise standard deviation
can be determined, we propose to estimate σdl for each level l of the
image pyramid by measuring these values on the ground truth used
for the evaluation. See Section 4.4.3 for a concrete realization of this
approach.

Having σdl measured for each level l of the image pyramid, we can
determine the highest level l (i.e., the lowest resolution) where σdl is
less than or equal to the maximum allowed σ(k)

dl
for each temperature

level T (k).
We refer to SA using the above described strategy as SA with

Downscaling-based Evaluation (SA-DBE) in the following.

4.3 Application: bone segmentation in CT
scans

In this section, we present an ensemble that performs automatic bone
segmentation in CT images. We describe its member algorithms and
the aggregation method used to generate the output of the ensemble
based on the individual outputs of the members.

4.3.1 Member algorithms

Our automatic bone segmentation ensemble consists of five algorithms,
each of which has a number of parameters. However, to gain a problem
that is computationally reasonable, we selected only those parameters
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for the later optimization that significantly influence the ensemble out-
put.

Algorithm D1: The algorithm D1 uses distance regularized level
set evolution (DRLSE) [61] with thresholding initialization and an
edge-based active contour model. D1 has the following parameters:
the coefficient of the weighted area term, the width of the Dirac δ
function, the coefficient of the weighted length term and a time-step
parameter, which affects the coefficient of the distance regularization
term. Among these parameters, the width of the δ function (π1) is the
most relevant regarding the accuracy of the output.

Algorithm D2: This algorithm is based on the dual threshold
technique described in [62] for extracting the periosteal and endosteal
surfaces of the bones in two steps. We have implemented only the first
step of the method for extracting the bone surface from CT images.
The algorithm D2, that applies thresholding and morphological opera-
tions, has the following parameters: the number of thresholding levels,
the size of the median filter, and the parameters of the morphologi-
cal structuring elements. In the case of D2, we chose the number of
thresholding levels (π2) for the optimization.

Algorithm D3: The algorithm D3 uses fuzzy C-means cluster-
ing [63]. In the last step, Hounsfield-unit based thresholding of the
input image is performed, and the clustering result having the least
symmetric difference compared to the Hounsfield output is selected.
The range for thresholding has been selected to be 500 to 900 HU [64].
D3 has the following parameters: the number of clusters, the exponent
for the fuzzy partition matrix, the iteration number and the improve-
ment value of the objective function. Among these parameters, the
number of clusters (π3) and the exponent (π4) have the largest influ-
ence on the output.
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Algorithm D4: The algorithmD4 [65] performs histogram match-
ing, morphological operations, and finally active contour segmentation
using the method developed by Chan and Vese [66]. D4 has the follow-
ing parameters: the number of thresholding levels, the parameters of
the morphological structuring elements, the weight of the smoothing
term, and the number of iterations for the active contour segmenta-
tion. Among these parameters, the number of thresholding levels (π5)
has the most significant influence on the output.

Algorithm D5: This algorithm is a variant of the region grow-
ing method [67] with multiple seed points. It compares iteratively the
intensity of each unallocated neighboring pixel to the mean of the al-
ready segmented region until the difference of these values becomes
larger than a threshold. Initial seed points are selected using the his-
togram of the input image, and the similarity threshold is automat-
ically estimated using the variance of the input image. D5 has two
parameters: the number of initial seed points, and a correction factor
of the similarity threshold, of which we chose the latter (π6) for the
optimization.

In Table 4.1, we summarize the adjustable parameters of the en-
semble members.

Table 4.1. Adjustable parameters of the ensemble members.

Alg. Parameter description Range

D1 width of δ function π1 ∈ {0.01, 0.21, . . . , 2.01}
D2 thresholding levels π2 ∈ {2, 3, . . . , 5}
D3 number of clusters π3 ∈ {2, 3, . . . , 7}
D3 exponent π4 ∈ {1.01, 1.21, . . . , 3.41}
D4 thresholding levels π5 ∈ {2, 3, . . . , 5}
D5 correction factor π6 ∈ {0.8, 0.9, . . . , 1.2}
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.2. Bone segmentation example: (a) output of D1, (b) output
ofD2, (c) output ofD3, (d) output ofD4, (e) output ofD5, (f) ensemble
output, (g) ground truth.

4.3.2 Aggregation method

We chose classic majority voting as the aggregation method to obtain
the output of the ensemble. That is, the pixel values of the ensem-
ble output D(π)(λ) for the image λ using the parameter setting π is
determined as

(
D(π)(λ)

)
(x,y)

=

1, if
∑M

i=1

(
D

(π)
i (λ)

)
(x,y)

>
[
M
2

]
,

0, otherwise,
(4.3)

whereM = 5 is the number of member algorithms and (x, y) is the pixel
coordinate. See Fig. 4.2 for examples of the output of the individual
algorithms and the ensemble for a CT image.
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4.4 Experimental results

In this section, we describe the methodology used to assess the perfor-
mance of the proposed image pyramid-based noisy evaluation method,
and present our quantitative results, with highlighting how the down-
scaling of the images affects the optimization process.

4.4.1 SA design choices

Energy function

To evaluate the proposed noisy evaluation method, we have performed
parameter optimization of the ensemble presented in Section 4.3.

Our aim was to of efficiently find the parameter setting that max-
imizes the segmentation performance of the ensemble in terms of the
intersection over union (IoU ) metric [68]. Specifically, for a given level
l (l = 0, 1 . . . , L − 1) of the image pyramid we computed the mean
intersection over union IoU l, which is defined as the number of com-
mon foreground pixels of the ensemble output D(π)(λi,l) for the i-th
(i = 1, 2 . . . , N) image λi,l of the dataset and the corresponding ground
truth τi,l over the number of pixels in either of the two:

IoU l =
1

N

N∑
i=1

|D(π)(λi,l) ∩ τi,l|
|D(π)(λi,l) ∪ τi,l|

. (4.4)

where N is the number of images in the dataset. In the case l = 0, we
use the short notation IoU .

To obtain a minimization problem, we define the energy as

E = 1− IoU, (4.5)

61



and the energy estimate for the level l as

Êl = 1− IoU l. (4.6)

Cooling schedule

To implement the search, we chose the exponential cooling schedule
defined by (2.5). We set the initial temperature T (0) = 1 and the base
α = 0.985. As the stopping criterion, we chose to have a fixed number
of iterations with kmax = 500.

The remaining design decisions were made according to the descrip-
tion in Section 2.1.1.

4.4.2 Dataset

Our dataset consists of 300 private cross-sectional CT slices in DICOM
(Digital Imaging and Communications in Medicine) format taken of
the head of one patient and the corresponding manually annotated
ground truth masks provided by the Biomechanics Laboratory of the
Faculty of General Medicine, University of Debrecen. The dataset was
randomly divided into two parts: a training set with 200, and a test set
with 100 images. The images have the resolution of 512× 512 pixels.

The image pyramid representation of the dataset was constructed
using L = 16 levels, with a corresponding scaling factor γl, defined as

γl = 1− l

L
, l = 0, 1, . . . , L− 1. (4.7)

4.4.3 Realization of the noisy evaluation

Using the setup and dataset described above, we have estimated the
noise standard deviation σdl for each level l using the ground truth of
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the dataset. That is, we measured the noise originating from down-
scaling in the case of perfect segmentation for each level l as follows:

• Downscale the ground truth images τi (i = 1, . . . , N) with the scaling
factor γl to construct the corresponding level of the image pyramids,
that is, to obtain τi,l.

• Upscale the images τi,l to the original size (with the scaling factor
1/γl) to obtain τ ′i,l.

• Determine di,l using (4.1) for each i. For this, compute the energy
estimate Êl using τ

′

i,l and the original ground truth image τi.

di,l =
|τ ′i,l ∩ τi|
|τ ′i,l ∪ τi|

− 1. (4.8)

• Estimate σdl by calculating the standard deviation of the noises di,l.

For comparison, we measured the noise on the aggregated output of the
ensemble as well, using the parameter setting found with the proposed
evaluation method (see Section 4.4.4). It can be observed in Fig. 4.3
that the standard deviation of the noise exhibits a similar trend in the
case of both the ground truth and the corresponding ensemble output.

Using (4.2) and considering an exponential cooling schedule defined
by (2.5), the maximum allowed value s(k) of σ(k)

dl
can be estimated as

s(k) ≈ T (0) αk(1− ε)k with 0 < α ≤ 1 and 0 < ε� 1. (4.9)

Using (4.9), we can determine the required scaling level for each it-
eration (temperature level) k to maintain the convergence of the search
while minimizing the evaluation cost by selecting the level l with the
maximal corresponding standard deviation σdl ≤ s(k).
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Figure 4.3. Measured standard deviation of the noise for the training
set.

The maximum allowed standard deviation of the noise σ(k)
dl

, the
fitted noise σdl , and the corresponding scaling levels l are shown in
Fig. 4.4 and in Fig. 4.5, respectively.

4.4.4 Quantitative results

In Table 4.2, we give the performance of the segmentation ensemble
in terms of the average sensitivity SE , specificity SP , Matthews cor-
relation coefficient MCC , accuracy ACC , and IoU IoU using the indi-
vidually optimal parameter values, and the optimal parameter values
found at ensemble-level using exhaustive search, SA, and SA with the
proposed noisy evaluation method, as well as the running times t in
seconds required for the parameter optimization on the training set.
The stochastic optimization was repeated 10 times and the run with
the best IoU value is included. The running time for the individually
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Figure 4.4. Maximal fitted standard deviation of the noise.
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Figure 4.5. Required image size for a given temperature level during
the search.
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optimal parameter setup and for the test set are omitted since in these
cases only evaluation was performed.

In order to assess the stability of the method, we performed 300
tests using both standard SA and SA-DBE. In Table 4.3 we include
the average results of 300-300 tests. As it can be seen, the algorithm
exhibits a solid behavior for the stability of the search with small dif-
ferences in the average energy function values; however, significant
improvement in the time requirement is achieved.

Table 4.2. Results for the dataset.

Subset SE SP MCC ACC IoU t (sec)

Individual
evaluation test 0.8519 0.9984 0.8827 0.9920 0.8238 -

Exhaustive
search

training 0.9090 0.9970 0.9200 0.9932 0.8597 71343.7

test 0.8588 0.9980 0.8826 0.9919 0.8235 -

SA
training 0.9085 0.9970 0.9197 0.9931 0.8591 137.3

test 0.8583 0.9980 0.8823 0.9919 0.8230 -

SA-DBE
training 0.9021 0.9975 0.9201 0.9933 0.8589 48.9

test 0.8509 0.9984 0.8821 0.9919 0.8226 -

Table 4.3. Performance comparison based on three hundred runs.

IoU t (sec)

SA 0.8248 (±0.0208) 119.5 (±13.7)

SA-DBE 0.8200 (±0.0241) 39.6 (±6.8)

Difference -0.0048 (-0.58%) -79.9 (-66.86%)
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4.4.5 Implementation and hardware details

The algorithms were implemented in Matlab. All detector outputs
and ground truth images represented as image pyramids are stored in
memory during the optimization process to reduce the time required to
find a solution. The reported running times exclude the time required
for loading the ground truth images and the algorithm output that were
computed offline, generating the image pyramids, and other overhead.
Results for the dataset were acquired using a computer equipped with a
4-core 8-thread Intel Xeon W-2123 processor and 16 GB DDR4 RAM.

4.5 Conclusions

In this chapter, we have proposed an image pyramid-based noisy en-
ergy function evaluation method for the local search technique SA.
This method offers an alternative to dataset sampling to exploit noisy
evaluation to accelerate the optimization process, especially in the case
of smaller datasets.

Considering an image segmentation ensemble designed to extract
bone structures from CT scans, we showed that using the proposed
method it is possible to find solutions with the same quality as using
the standard SA, but with a significantly reduced time requirement.

Note that the number of levels in the image pyramid should be cho-
sen depending on the resolution of the images in the dataset and also
the application domain. In general, the more levels the image pyra-
mid has, the better the potential of noisy evaluation can be exploited.
However, as the number of scaling levels increases, so does the memory
requirement of the optimization process.

67



In the next chapter, we present a method that can fully exploit the
potential of noisy evaluation by combining image downscaling using a
smaller number of scaling levels with dataset sampling.

The stochastic method presented in this chapter and the corresponding
bone segmentation results were published in [P11]. In addition, the
lemma on the maximum allowed standard deviation of the noise in
a given search iteration, which was used to develop the scaling level
selection strategy, was published in [P4].
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Chapter 5

Optimization with Combined
Noisy Evaluation

5.1 Introduction

In Chapter 3, we proposed an evaluation method to accelerate opti-
mization with SA based on random sampling of the dataset. This
method performs evaluation on subsets of theoretically determined car-
dinalities of the dataset during the search and has been shown to be
very efficient on large datasets. In Chapter 4, we proposed another
evaluation method for SA that relies on a pyramid representation of
the images in a dataset. Our experiments have shown that by using
increasingly higher resolution levels of a pyramid representation of the
images to evaluate solutions as the search progresses, solutions of the
same quality can be found in less time than at the original input res-
olution. Both methods offer different approaches to noisy evaluation.
They use different strategies to ensure that certain conditions regard-
ing the resulting noise are met in order to maintain the convergence of
the search.
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Despite the simplicity and efficiency of the image downscaling-
based evaluation compared to the standard SA, it can be shown that
it does not fully exploit the potential of noisy evaluation. However, it
can also be observed that image downscaling may introduce noise with
a lower standard deviation than dataset sampling with the same cost
gain, depending on the problem. Based on these observations, here we
investigate the possible combination of these methods.

That is, in this chapter, we propose an evaluation method for SA
that computes the energy using a combination of dataset sampling
and image downscaling to further accelerate optimization on image
datasets. For this aim, we give a strategy that is capable to deter-
mine the appropriate scaling level and sample size in each search step
by adapting convergence results for noisy evaluation in SA. The pro-
posed method is primarily intended for the optimization of image seg-
mentation algorithms. To demonstrate the efficiency of the combined
evaluation method, we consider the optimization of a system that com-
prises an ensemble of conventional image processing algorithms and a
post-processing step to segment the lungs in computed tomography
(CT) scans. Through this, we show that the proposed method further
reduces the cost of the search while preserving solution quality.

The rest of this chapter is organized as follows. In Section 5.2, we
describe the proposed evaluation method. Then, we present our case
study application in Section 5.3. The results of our experiments are
given in Section 5.4. Detailed results are provided on the efficiency of
the evaluation method for the parameter optimization of the segmenta-
tion ensemble, also compared to the two previously described methods.
We also give the performance of the lung segmentation method. Fi-
nally, some conclusions are drawn in Section 5.5.
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5.2 SA with combined noisy evaluation

In this section, we propose a novel evaluation method for SA that
combines image downscaling and dataset sampling to reduce the time
required for optimization over image datasets. To maintain the con-
vergence of SA in probability, we define a strategy that determines
the appropriate scaling level and sample size in each search step by
adapting convergence results for noisy evaluation in SA.

5.2.1 Combining dataset sampling and image down-
scaling

As in the case of the evaluation methods presented in the previous
chapters, we have to control the standard deviation of the energy noise
during the search according to (2.8) to ensure convergence of SA. That
is, for each iteration k, we need to determine the maximum allowed
value s(k) for the standard deviation σ(k)

d of the noise with respect to
the temperature T (k). For this, we can apply Lemma 1 as

s(k) & T (k)(1− ε)k, 0 < ε� 1. (5.1)

When combining dataset sampling and image downscaling, we have
to deal with a noise that is the sum of noises originating from the
dataset sampling dn and the image downscaling dl. Since dn and dl are
uncorrelated, the standard deviation of the sum of these noises σ(dn+dl)

can be calculated as the square root of the sum of their variances, that
is, as

σ(dn+dl) =
√
σ2
dn

+ σ2
dl
. (5.2)
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Furthermore, to maintain the convergence of the search

σ
(k)
(dn+dl)

≤ s(k) (5.3)

must hold in each iteration k.
Our aim is to minimize the total cost of the search, e.g., in terms

of computation time. For this, we need to find that scaling level l
and sample size n whose combination will minimize the cost C(k)

l,n in
each iteration k while ensuring (5.3). To do this, we use the method
described next.

For each scaling level l whose corresponding noise standard devi-
ation σdl ≤ s(k), we estimate the minimum required sample size n by
adapting (3.10) as

n ≈ Nσ2
max

(N − 1)
√
s(k)2 − σ2

dl
+ σ2

max

, (5.4)

and calculate the corresponding cost C(k)
l,n = ncl. Finally, we choose

the combination of l and n for which C(k)
l,n is minimal.

Note that this method ensures that the scaling level l decreases
monotonically during the search if the corresponding noise standard
deviation dl decreases monotonically, which is a natural assumption.
Thus, in this case, the method described above can be accelerated
by not calculating the cost for levels higher than the one used in the
previous iteration.

Hereafter, we refer to SA using the above strategy to compute en-
ergy estimates during the search as SA with Combined Noisy Evalua-
tion (SA-CNE).
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5.2.2 Example

As a numerical demonstration of the total cost of the method described
above, let us consider a problem with a maximum standard deviation of
the evaluation metric σmax = 0.5 and a training set size N = 200. For
the image pyramid, let us use L = 5 levels with the corresponding noise
standard deviations σdl=0

= 0.0, σdl=1
= 0.02, σdl=2

= 0.05, σdl=3
=

0.09 and σdl=4
= 0.15 and the corresponding evaluation costs cl = 1

22l

(l ∈ {1, 2, . . . , L− 1}). Furthermore, let us use an exponential cooling
schedule in SA with

T (k) = T (0)αk, (5.5)

where T (0) = 5, α = 0.99, and 0 ≤ k < 1000.
For this setup, the total theoretical cost of optimization is 200 000

when using standard SA, 101 905 when using dataset sampling, 95 719.5
when using image downscaling, and 90 902.5 when combining dataset
sampling and image downscaling. The change in cost during optimiza-
tion for both methods are shown in Fig. 5.1.

5.3 Application: lung segmentation in CT
scans

CT is a widely used imaging modality for computer-aided diagnosis
systems aimed at detecting and characterizing various lung abnormal-
ities. Lung segmentation is a crucial step in these systems and can
significantly affect their performance.

In the last two decades, several methods for lung segmentation
have been proposed. Conventional methods rely on techniques such as
thresholding [69], region growing [70], active contours [71], mathemat-
ical morphology [72], and cluster analysis [73]; however, deep learning
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Figure 5.1. Changes of the cost during the search.

approaches, in particular convolutional neural networks [74] and gen-
erative adversarial networks [75], have recently gained popularity in
this field too. While deep learning methods achieve state-of-the-art
accuracy, a drawback of these methods is that they require substantial
amounts of annotated training data to achieve the desired accuracy.

Another approach to improve accuracy is to create an ensemble of
segmentation methods by merging their output using an aggregation
rule [10]. In the rest of this section, we present our case study appli-
cation, which uses an ensemble of conventional segmentation methods
and a post-processing step to segment the lungs.
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5.3.1 Segmentation ensemble

Next, we describe the members of the lung segmentation ensemble and
the aggregation method used to combine their outputs.

Member algorithms

Our lung segmentation ensemble consists of three simple, conventional
image processing algorithms, each of which works on the slices of the
CT scans. These methods have been developed to have different op-
erating principles to increase the diversity of the ensemble, i.e., the
independence of the outputs of the members, and thus to reduce the
segmentation error.

Algorithm D1: This algorithm is based on connected component
analysis. First, the input image is thresholded to estimate an initial
lung mask, then the connected components in the resulting binary im-
age are labeled. Those components that are touching the border of
the image are removed, and the two largest remaining components are
kept as lung candidates. After this, morphological erosion is performed
to separate the lung nodules attached to the blood vessels, and mor-
phological closing is used to retain nodules attached to the lung wall.
Finally, the holes inside the binary mask of the lungs are filled. D1 has
the following parameters: the threshold to gain the initial lung mask
π1, the radius of the disk structuring element (SE) for erosion π2, and
the radius of the disk SE for closing π3.

Algorithm D2: This algorithm is based on k-means clustering.
First, the image is standardized to have pixel values with mean 0 and
standard deviation 1. After this, k-means clustering is used to partition
the image into k = 2 clusters, representing lungs/air and tissues/bones.
The resulting binary image is then refined using morphological erosion
and a subsequent dilation using a larger SE in order to avoid missing
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lung pixels. Then, the air outside the body of the subject and those
objects that are too small to be lungs (less than 1% of the image area)
are removed. Finally, morphological closing is performed to fill small
holes. D2 has the following parameters: the radius of the disk SEs for
erosion π4, for dilation π5, and for closing π6.

Algorithm D3: This algorithm is based on contour detection.
First, the intensity values of the input image are clipped to an inter-
val that roughly represents lungs/air. That is, intensities below the
minimum and above the maximum of the interval are set to these val-
ues, respectively. Then, the image is binarized, and its contours are
detected using the “marching squares” method for a given level. After
this, non-closed contours are removed. Using a minimum area (the
square root of the image area) and a maximum area (the quarter of
the image area) unwanted small contours and the contour of the body
is removed. The remaining contours are assumed to correspond to the
lungs. Finally, a lung mask is created converting the list of the remain-
ing contours to a binary image. D3 has the following parameters: the
minimum π7 and maximum π8 values of the interval for clipping, and
the level π9 for contour detection.

In Table 5.1, we summarize the adjustable parameters of the en-
semble members. Overall, there are 38 × 5 = 32 805 possible different
parameter settings for the ensemble.

Aggregation method

To obtain the output of the ensemble, we use pixel-level majority voting
to aggregate the individual member outputs. That is, the pixel values
of the ensemble output D(π)(λ) for the image λ using the parameter
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Table 5.1. Adjustable parameters of the ensemble members.

Alg. Parameter description Range

D1 initial mask threshold π1 ∈ {−450,−400,−350}
D1 erosion SE radius π2 ∈ {1, 2, 3}
D1 closing SE radius π3 ∈ {8, 9, 10, 11, 12}
D2 erosion SE radius π4 ∈ {1, 2, 3}
D2 dilation SE radius π5 ∈ {3, 4, 5}
D2 closing SE radius π6 ∈ {1, 2, 3}
D3 interval minimum π7 ∈ {−1050,−1000,−950}
D3 interval maximum π8 ∈ {−450,−400,−350}
D3 contour level π9 ∈ {0.75, 0.85, 0.95}

setting π is determined as

(
D(π)(λ)

)
(x,y)

=

1, if
∑M

i=1

(
D

(π)
i (λ)

)
(x,y)

>
[
M
2

]
,

0, otherwise,
(5.6)

where M = 3 is the number of member algorithms and (x, y) is the
pixel coordinate.

5.3.2 Post-processing: removing air pockets

The previously presented ensemble performs lung segmentation on a
CT slice level. However, after aggregating the segmentation outputs of
the members and building a new volume from these consensus slices,
the result can be improved by removing the small air pockets and
retaining only those that are almost certainly lung.

For this, we use the following simple method: first, the connected
components of the volume are labeled, and the voxel count for each
unique label is calculated. In addition, the background is removed in
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this step. Then, if there are at least two connected components left, we
check whether the largest component has at least twice the voxel count
of the second largest one. If it holds, the largest component is retained;
that is, we assume that the lungs are not separated from the trachea.
If this condition does not hold, we assume that the lungs and trachea
have been separated, and we keep the two largest components. If only
one label remains after removing the background, that component is
considered as lung.

5.4 Experimental results

In this section we present the methods and results of our experiments.
We start with a description of the dataset used, followed by a discus-
sion of the methodology applied to evaluate the proposed optimization
methods. We then present the results of our experiments. Finally, we
provide the implementation details.

5.4.1 Dataset

Parameter optimization of the ensemble was performed using the pub-
licly available COVID-19 CT Lung and Infection Segmentation Dataset
[76]. This dataset consists of 20 thoracic CT scans and corresponding
annotations, both stored in NIfTI (Neuroimaging Informatics Tech-
nology Initiative) format. The CT scans were provided by the Coro-
nacases Initiative [77] and Radiopaedia [78]. The left and right lungs
and signs of COVID-19 infection were labeled by two radiologists and
reviewed by a third experienced radiologist. From this dataset, the 10
CT scans provided by the Coronacases Initiative were used for the ex-
periments. The resolution of these CT scans ranges from 512×512×200

to 512× 512× 301 pixels, and they contain a total of 2581 slices.
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In our experiments, we used 10 training sets, each created from
the dataset described above as follows: first, we randomly selected 3
of the 10 CT scans, then we randomly selected 100 slices from each
of these scans. In this way, we obtained training sets of 300 slices
each. For each training set, the remaining 7 CT scans were used as the
corresponding test set.

5.4.2 Evaluation methodology

We performed parameter optimization of the ensemble presented in
Section 5.3 to assess the efficiency of the proposed stochastic search
methods.

For the evaluation, we considered each CT slice as a separate im-
age λ. The ensemble output D(π)(λ) for the image λ using the param-
eter setting π was compared with the corresponding binary ground
truth mask τ . That is, a pixel was considered a true positive if it was
correctly classified as foreground; otherwise, it was considered a false
positive. In addition, an unrecognized foreground pixel was treated
as a false negative, while a correctly classified background pixel was
treated as a true negative. For the i-th image λi,l scaled to the l-th
image pyramid level, we denote the number of true positives as TPλi,l ,
the number of false positive as FPλi,l , the number of false negatives as
FN λi,l , and the the numbers of true negatives as TN λi,l . If l = 0, we
use the short notations TPλi , TN λi , FPλi , and FN λi , respectively.

The goal of the optimization was to find the parameter setting that
maximizes the segmentation performance of the ensemble in terms of
the mean F1-score. Specifically, for a given level l of the image pyramid
and for a set of n images, we computed the mean F1-score F1l,n for each
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l = 0, 1, . . . , L− 1 as follows:

F1l,n =
1

n

n∑
i=1

2TPλi,l

2TPλi,l + FPλi,l + FN λi,l

, (5.7)

where λi,l is the i-th image downscaled to the image pyramid level l, L
is the number of levels in the image pyramid, and n is the number of
images used. In the case l = 0 and n = N , we use the short notation
F1.

Furthermore, for a solution we calculated the mean Matthews corre-
lation coefficient MCC , the mean accuracy ACC , the mean sensitivity
SE and mean specificity SP measures as

MCC = 1
N

N∑
i=1

TPλiTNλi
−FPλiFNλi

((TPλi+FPλi )(TPλi+FNλi
)(TNλi

+FPλi )(TNλi
+FNλi

))
1
2
,

(5.8)

ACC =
1

N

N∑
i=1

TPλi + TN λi

TPλi + TN λi + FPλi + FN λi

, (5.9)

SE =
1

N

N∑
i=1

TPλi

TPλi + FN λi

, (5.10)

SP =
1

N

N∑
i=1

TN λi

TN λi + FPλi

. (5.11)

5.4.3 SA design choices

A number of design decisions need to be made in order to implement
the proposed stochastic search method.
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Energy function

To obtain a minimization problem, we defined the energy function as

E = 1− F1, (5.12)

and the energy function estimate for the level l (l = 1, 2, . . . , L − 1)
and a set of n images as

Êl,n = 1− F1l,n. (5.13)

Furthermore, the number of image pyramid levels was set to L = 5.

Cooling schedule

For the implementation, we chose an exponential cooling schedule, us-
ing the temperature function defined in (2.5). For this, we set the initial
temperature T (0) = 1 and α = 0.985. For the termination criterion,
we chose a fixed number of iterations with 0 ≤ k < 500.

The remaining design decisions were made according to the descrip-
tion in Section 2.1.1.

5.4.4 Estimation of the noise caused by downscal-
ing

To estimate the noise caused by evaluating the segmentation perfor-
mance of the ensemble using downscaled versions of the dataset im-
ages, we measured the noise using the corresponding ground truth
masks provided with the dataset (i.e., the noise in the case of perfect
segmentation) for each level l = 0, 1, . . . , L− 1 as follows.

First, for a level l and for each ground truth mask τi (i = 1, . . . , N),
we generated the images τi,l by scaling them down by the factor γl =
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1/2l. These images were then scaled up to their original size to obtain
τ
′

i,l. Then, for each ground truth mask τi, we calculated the noise di,l
as the difference of the energy function and its estimate as

di,l =
2TP τ

′
i,l

2TP τ
′
i,l

+ FP τ
′
i,l

+ FN τ
′
i,l

− 1. (5.14)

Finally, we estimated σdl by calculating the standard deviation of the
noises di,l.

5.4.5 Optimization results

The main results obtained in our experiments regarding the efficiency
of the proposed optimization method are summarized in Table 5.2.
Here we present the average F1, MCC , ACC , SE , and SP values,
as well as the average runtimes t (in seconds) and the corresponding
standard deviations calculated based on the results obtained using the
10 training sets. For each training set, the optimization was repeated
three times and the run with the best energy function value was se-
lected. The results for the solutions found with an exhaustive search
(i.e., the achievable maximum performance) is also included for refer-
ence.

Table 5.2 shows that both the sampling-based, the downscaling-
based, and the combined methods maintained the solution quality of
the standard SA, but required significantly less time (-32.54%, -33.58%,
and -42.01%, respectively). That is, the F1 values obtained with these
three optimization methods were only marginally different from those
obtained with the standard SA. It is also shown that the combined
method could further speed up the optimization process reasonably
without affecting the quality of the solution. Moreover, all methods
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Table 5.2. Results of the parameter optimization using the 10 training
sets.

Method F1 MCC ACC SE SP t (sec)

Exhaustive
search

0.7956
(±0.0377)

0.7737
(±0.0356)

0.9927
(±0.0015)

0.9367
(±0.0145)

0.9960
(±0.0005)

4465.8
(±25.3)

SA 0.7954
(±0.0377)

0.7735
(±0.0356)

0.9927
(±0.0015)

0.9378
(±0.0145)

0.9959
(±0.0006)

67.6
(±0.4)

SA-SBE 0.7953
(±0.0377)

0.7735
(±0.0356)

0.9927
(±0.0015)

0.9369
(±0.0148)

0.9960
(±0.0005)

45.6
(±0.5)

SA-DBE 0.7954
(±0.0378)

0.7735
(±0.0356)

0.9926
(±0.0015)

0.9363
(±0.0148)

0.9960
(±0.0005)

44.9
(±0.3)

SA-CNE 0.7955
(±0.0378)

0.7736
(±0.0356)

0.9927
(±0.0015)

0.9370
(±0.0143)

0.9960
(±0.0006)

39.2
(±0.3)

showed stable behavior in terms of the standard deviations of the eval-
uation measures.

5.4.6 Lung segmentation results

For each parameter setting obtained using the training sets, we used the
corresponding test sets for evaluation as follows. First, we evaluated
the performance of the lung segmentation ensemble without the air
pocket removal (post-processing) step. That is, we processed all slices
of the CT scans in the test sets using the segmentation ensemble to
obtain the mean metrics for each test set. Then, these values were
averaged over the 10 test sets. The corresponding results can be found
in Table 5.3.

Next, we evaluated the lung segmentation performance using the
volume-level air pocket removal method to improve the final segmen-
tation performance. To accomplish this, we generated a new volume
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Table 5.3. Lung segmentation performance without post-processing.

Method F1 MCC ACC SE SP

Exhaustive
search

0.7742
(±0.0159)

0.7593
(±0.0177)

0.9919
(±0.0007)

0.9314
(±0.0096)

0.9957
(±0.0004)

SA 0.7745
(±0.0157)

0.7596
(±0.0175)

0.9920
(±0.0007)

0.9322
(±0.0091)

0.9957
(±0.0003)

SA-SBE 0.7744
(±0.0157)

0.7595
(±0.0174)

0.9920
(±0.0007)

0.9316
(±0.0090)

0.9957
(±0.0003)

SA-DBE 0.7741
(±0.0158)

0.7592
(±0.0177)

0.9919
(±0.0007)

0.9309
(±0.0104)

0.9958
(±0.0004)

SA-CNE 0.7744
(±0.0158)

0.7595
(±0.0176)

0.9920
(±0.0007)

0.9318
(±0.0095)

0.9957
(±0.0003)

Table 5.4. Lung segmentation performance with post-processing.

Method F1 MCC ACC SE SP

Exhaustive
search

0.9393
(±0.0066)

0.7753
(±0.0178)

0.9939
(±0.0006)

0.9311
(±0.0097)

0.9978
(±0.0004)

SA 0.9397
(±0.0068)

0.7757
(±0.0175)

0.9939
(±0.0006)

0.9319
(±0.0092)

0.9977
(±0.0003)

SA-SBE 0.9395
(±0.0068)

0.7754
(±0.0175)

0.9939
(±0.0006)

0.9314
(±0.0091)

0.9978
(±0.0003)

SA-DBE 0.9391
(±0.0071)

0.7750
(±0.0180)

0.9939
(±0.0006)

0.9306
(±0.0104)

0.9978
(±0.0003)

SA-CNE 0.9395
(±0.0067)

0.7755
(±0.0175)

0.9939
(±0.0006)

0.9315
(±0.0095)

0.9977
(±0.0003)

U-Net
(R-231) [74]

0.9651
(±0.0023)

0.8015
(±0.0155)

0.9968
(±0.0002)

0.9693
(±0.0021)

0.9979
(±0.0002)
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.2. Lung segmentation examples: (a) input slices, (b) outputs
of D1, (c) outputs of D2, (d) outputs of D3, (e) ensemble outputs, (f)
post-processed ensemble outputs, (g) ground truth.
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from the output of the segmentation ensemble for a given CT scan
and applied the air pocket removal method to it. For comparison, the
CT scans of the test sets were also processed using the state-of-the-art
deep learning method U-Net trained on a dataset of 231 CT scans [74].
In both cases, we calculated the mean metrics at the slice level. See
Table 5.4 for the corresponding results. It can be observed that the
post-processing step significantly improves the F1 and MCC values. It
is also shown that despite the simplicity of the ensemble members, the
segmentation performance is not far behind the performance of a deep
learning method. For some examples of the output of the ensemble
and its members, see Fig. 5.2.

5.4.7 Implementation and hardware details

All segmentation algorithms were implemented in Python and all op-
timization algorithms were implemented in Matlab. The outputs of
the algorithms were computed offline and stored in memory during the
optimization process along with the corresponding ground truth to re-
duce the time required to find a solution. The reported runtimes do
not include the time required to load the ground truth and the out-
puts of the algorithms, nor any other overheads. Results for the dataset
were obtained using a computer equipped with a 4-core 8-thread AMD
Ryzen 3 3100 processor and 32 GB of DDR4 RAM.

5.5 Conclusions

In this chapter, we proposed an SA-based stochastic search method
that combines dataset sampling and image downscaling to implement
noisy evaluation of the energy. By optimizing the parameters of a
lung segmentation ensemble, we have shown that the proposed search
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method is capable of finding solutions with the same quality as the
standard SA, but with a significantly lower time requirement.

It should be noted, that considering a given problem, the combined
evaluation method reverts to the sampling-based one above a certain
dataset size Np. As a result, the proposed search method using the
combined strategy is never less efficient than using the sampling-based
one in terms of evaluation cost, and it is always more efficient than the
sampling-based strategy when the dataset size is smaller than Np.

Considering real-world implementations, using the combined strat-
egy instead of the sampling-based one for datasets larger than Np im-
plies a negligible computational overhead during the search. However,
in this case, generating and storing the pyramid representations of
the dataset images is unnecessary. For this reason, it is beneficial to
determine which method is more appropriate for a given problem by
calculating the total cost of the two methods for the size of the dataset.

The stochastic method presented in this chapter and the corresponding
lung segmentation results were published in [P1]. The stochastic opti-
mization methods based on dataset sampling and image downscaling,
as well as the related theoretical results, on which the presented method
relies, were published in [P4] and [P11], respectively.
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Summary

In this dissertation, three methods are presented for the efficient pa-
rameter optimization of ensembles in medical image analysis. The
development of these methods was motivated by the fact that the indi-
vidually optimal parameter settings of the members do not necessarily
maximize the performance of the ensemble. Therefore, system-level
parameter optimization is required, which can lead to large-scale prob-
lems. Stochastic methods can be used to find good quality solutions
to such problems, sacrificing some accuracy to significantly reduce the
cost of the search. However, even a stochastic search can be very ex-
pensive if the evaluation of a solution itself is expensive.

The methods proposed in this dissertation are based on the meta-
heuristic simulated annealing and aim to reduce the cost of the search
by determining the value of the objective function, i.e., the perfor-
mance of the ensemble with a given parameter setting, using partial
training data. This approach can be considered as a form of noisy eval-
uation with imprecise measurements. By employing different strate-
gies, the proposed methods are able to control the noise during the
search process according to theoretical constraints and thus maintain
the achievable solution quality.

The first method presented was developed to accelerate the pa-
rameter optimization of ensembles on large datasets. It employs a
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sampling-based evaluation method that considers only a randomly se-
lected subset of the training data with the minimum required cardi-
nality in each iteration to reduce the cost of the search. The sample
sizes required during the search process are theoretically determined
by adapting convergence results for noisy evaluation in simulated an-
nealing. The effectiveness of the method was demonstrated using the
parameter optimization problem of two ensembles that classify retinal
images according to the presence of diabetic retinopathy.

As an alternative approach to accelerate the parameter optimiza-
tion of ensembles using partial training data, the second method pre-
sented in the dissertation uses increasingly higher resolution levels of
a pyramid representation of the images in the training set to evaluate
solutions as the search progresses. To ensure that the convergence con-
ditions are met, a strategy was proposed to determine the highest level
(lowest image resolution) that can be used in each iteration to control
the noise. The applicability and efficiency of this method were shown
through the parameter optimization problem of an ensemble for bone
segmentation on computed tomography images.

The third method presented is based on the observation that, de-
pending on the optimization problem, image downscaling can introduce
noise with a lower standard deviation than dataset sampling with the
same cost gain. Therefore, it employs an evaluation method that com-
bines sampling of the training data with image downscaling to further
accelerate the parameter optimization of ensembles. To this end, a
strategy was proposed that determines the appropriate scaling level
and sample size in each iteration by adapting the convergence results
for noisy evaluation. Using the parameter optimization problem of an
ensemble that segments the lungs in computed tomography scans, it
was shown that this method allows further reduction of the cost of the
search while maintaining solution quality compared to the previous
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two methods when the size of the dataset is below a problem-specific
value.
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Összefoglaló

Ebben az értekezésben három módszer kerül bemutatásra algoritmus-
együttesek paraméteroptimalizálásának hatékony elvégzésére az orvosi
képelemzés területén. E módszerek kidolgozását az motiválta, hogy
az együtteseket alkotó tagok egyedileg optimális paraméterbeállításai
nem szükségszerűen maximalizálják a rendszer teljesítményét. Emiatt
rendszerszintű paraméteroptimalizálásra van szükség, ami nagymére-
tű problémákat eredményezhet. Ilyen problémák esetében jó minőségű
megoldásokat lehet találni sztochasztikus módszerekkel, némi pontos-
ságot feláldozva a keresés költségének jelentős csökkentése érdekében.
Azonban még egy sztochasztikus módszerrel végzett keresés is lehet
nagyon költséges, ha az egyes megoldások kiértékelése önmagában is
költséges.

Az értekezésben javasolt módszerek a szimulált hűtés metaheurisz-
tikán alapulnak, és céljuk a keresés költségének csökkentése azáltal,
hogy a célfüggvény értékét, azaz a rendszer teljesítményét egy adott
paraméterbeállítás mellett, részleges tanulóadatok használatával ha-
tározzák meg. Ez a megközelítés egyfajta zajos, pontatlan mérések-
kel végzett kiértékelésnek tekinthető. A javasolt módszerek különböző
stratégiák alkalmazásával képesek a keresési folyamat során az elméle-
ti megkötéseknek megfelelően szabályozni a zajt, és így fenntartani az
elérhető megoldás minőségét.
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Az első bemutatott módszer algoritmusegyüttesek nagyméretű adat-
halmazok felett történő paraméteroptimalizálásának gyorsítására ke-
rült kidolgozásra. Ez egy olyan mintavételezésen alapuló kiértékelé-
si módszert alkalmaz, amely minden iterációban a tanulóadatoknak
csak egy minimálisan szükséges elemszámú, véletlenszerűen kiválasz-
tott részhalmazát tekinti annak érdekében, hogy csökkentse a keresés
költségét. A keresési folyamat során szükséges mintaméretek elmé-
leti úton kerülnek meghatározásra a zajos kiértékelést használó szi-
mulált hűtésre vonatkozó konvergenciaeredmények adaptálásával. A
módszer hatékonysága két olyan algoritmusegyüttes paraméteroptima-
lizálási problémáján keresztül lett megmutatva, amelyek szemfenék-
felvételeket osztályoznak a diabéteszes retinopátia jelenléte alapján.

Egy másik megközelítésként az algoritmusegyüttesek paraméterop-
timalizálásának részleges tanulóadatok használatával történő gyorsítá-
sára, az értekezésben bemutatott második módszer a keresés előreha-
ladtával a megoldások kiértékeléséhez a tanulóhalmazbeli képek egy
piramis reprezentációjának egyre magasabb felbontású szintjeit hasz-
nálja. A konvergenciafeltételek teljesülésének biztosításához egy olyan
stratégia lett javasolva, amely alkalmas az egyes iterációkban használ-
ható legmagasabb szint (legalacsonyabb felbontás) meghatározására,
és ezáltal a zaj szabályozására. E módszer alkalmazhatósága és haté-
konysága egy komputertomográfiai felvételeken történő csontszegmen-
tálásra kidolgozott algoritmusegyüttes paraméteroptimalizálási prob-
lémáján keresztül lett megmutatva.

A harmadik bemutatott módszer azon a megfigyelésen alapul, hogy
az optimalizálási problémától függően, a képek leskálázása kisebb szó-
rású zajt is eredményezhet, mint az adathalmaz mintavételezése azonos
költségbeli nyereség mellett. Ezért egy olyan kiértékelési módszert al-
kalmaz, amely a tanulóadatok mintavételezését kombinálja a képek le-
skálázásával, annak érdekében, hogy tovább csökkentse a paraméterop-
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timalizálás időigényét. Ehhez egy olyan stratégia lett javasolva, amely
az egyes iterációkban szükséges leskálázási szintet és mintaméretet a
zajos kiértékelésre vonatkozó konvergenciaeredmények adaptálásával
határozza meg. Egy, a tüdő komputertomográfiai felvételeken történő
szegmentálására szolgáló algoritmusegyüttes paraméteroptimalizálási
problémáján keresztül meg lett mutatva, hogy a módszer lehetővé te-
szi a keresés költségének további csökkentését a megoldás minőségének
megőrzése mellett az előző két módszerhez hasonlítva, ha az adathal-
maz elemszáma kisebb, mint egy problémaspecifikus érték.
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