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Abstract 

Under pathological conditions the shortening of the upper (dome) and lower (base) parts of the urinary bladder are 

different. Namely, the contraction of the base is milder than that of the dome. To understand how different parts of 

the urinary bladder could respond differently to the same stimulation, the cellular mechanisms that might be 

responsible for cholinergic effects blocking non-adrenergic non-cholinergic contractions in the rat urinary bladder 

were investigated. Rat urinary bladder smooth muscle cells were thus freshly isolated or cultured and the 

contribution from cholinergic and purinergic pathways to their Ca2+ homeostasis together with the expression of 

nicotinic (nAChR) and purinergic receptors was examined. The ATP-evoked Ca2+ transients in rat smooth muscle 

cells did not show any desensitization. However, when ATP was administered together with carbamylcholine (CCh), 

the latter essentially prevented ATP from evoking Ca2+ transients in smooth muscle cells from the base (suppression 

to 12±2.5% of control, n=57; p<0.01), but not from the dome (99±5% of control, n=52; p>0.05) of the rat urinary 

bladder. While atropine was unable to modify (6±3% of control, n=14; p<0.05), α-bungarotoxin (118±12% of 

control, n=20; p>0.05) blocked the inhibitory effects of CCh. Additionally, α7 subunits of nAChR were identified 

using immunocytochemistry, immunohistochemistry, and Western blot in cultured urinary bladder smooth muscle 

cells, in urinary bladder sections, and in urinary bladder muscle strips, respectively, suggesting that the activation of 

nAChR modifies the action of ATP.  
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Introduction 

 

The function of the urinary bladder is to relax and store urine during filling, and contract to empty the 

bladder during micturition. These roles are achieved through complex interactions between the autonomic nervous 

system and the urinary bladder, primarily the smooth muscle cells. Urinary bladder smooth muscle in adult rats is 

well innervated (Gabella, 1999). The bundles of nerve fibres branch repeatedly in urinary bladder smooth muscle 

and eventually become single fibres containing varicosities. The varicosities contain neurotransmitters, including 

acetylcholine (ACh) and adenosine triphosphate (ATP) (Gabella, 1995).  

During electrical stimulation of the parasympathic nerves ACh and ATP are co-released from the nerve 

terminals to stimulate the muscarinic and purinergic receptors of the smooth muscle cells, respectively, and to elicit 

bladder contraction (Dowdall et al. 1974; Kasakov and Burnstock, 1982; Theobald and de Groat, 1989). 

Acetylcholine is a ubiquitous transmitter, while ATP plays an additional role in many species, including rats 

(Calvert et al. 2001; Somogyi et al. 2002; Szigeti et al. 2005). Acetylcholine acts via M3 receptor activation, 

generation of intracellular inositol-1,4,5-trisphosphate (IP3) and Ca2+ release from intracellular stores. There is also 

evidence that muscarinic activation leads to Ca2+ influx (Schneider et al., 2004). Conversely, ATP binds to 

ionotropic P2X receptors, depolarizing the cell membrane and instigating Ca2+ influx through voltage-activated 

(mainly L-type) Ca2+ channels (Andersson and Arner, 2004). The Ca2+ influx could initiate Ca2+-induced Ca2+ 

release from intracellular stores and lead to contractile protein activation. Thus, modulation of intracellular calcium 

concentration ([Ca2+] i) remains a common pathway to regulate detrusor contractility, with additional modulation via 

alterations to the Ca2+ sensitivity of contractile proteins (Andersson and Arner, 2004; Arner et al. 2007).  

Transient increases in [Ca2+] i in smooth muscle have been recorded following the activation of purinergic 

receptors. In urinary bladder smooth muscle, the activation of purinergic receptors may induce excitatory junctional 

potentials and Ca2+ transients (Bramich and Brading, 1996; Hashitani et al. 2000). Field stimulation of the smooth 

muscle evoked local, transient Ca2+ release events. These events were mediated by postsynaptic smooth muscle P2X 

receptors activated by ATP released from synaptic varicosities (Brain et al. 2002, 2003). Pharmacological studies 

also confirmed that junctional Ca2+ transients were mediated through the activation of purinergic receptors (Lamont 

and Wier, 2002; Lamont et al. 2003). 
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Ligand-gated receptors may interact and regulate one other both at the neuronal and the end-organ levels 

and modulate their responses to external stimuli (Searl and Silinsky, 1998). G-protein coupled metabotropic 

receptors commonly "cross-talk" through intracellular second messenger molecules and protein phosphorylation (de 

Blasi et al., 2001; Moldrich and Beart, 2003). Recently, ionotropic receptors have also been shown to interact 

directly with one another in ganglia. Co-activation of the nicotinic and the P2X2 purinergic receptors inhibited the 

functions of both ion-channel receptors through direct protein-protein interaction on the neuronal cell membrane 

(Nakazawa, 1994; Searl et al., 1998; Zhou and Galligan, 1998; Barajas-Lopez et al., 1998; Khakh et al., 2000, 

2005). Negative interactions between the nicotinic and 5-HT3 receptors (Barajas-Lopez et al., 2002; Boue-Grabot et 

al., 2003) and between the GABAA and P2X purinergic receptors (Sokolova et al., 2001) have also been described 

when the two ionotropic receptors were co-activated in neurons. However, similar interaction between nicotinic and 

purinergic receptors at the bladder smooth muscle level has not been described on cellular but suggested at tissue 

level (Lai et al. 2008).  

Here we investigated the cholinergic and purinergic contribution to the Ca2+ homeostasis of smooth muscle 

cells isolated from young adult rat urinary bladders. Given the potential role for nicotinic acetylcholine receptors 

(nAChRs) in the neural control of bladder function, the current study was aimed to determine whether nAChRs are 

also expressed in the smooth muscle cells and whether activation of these receptors can alter the function of these 

cells. We present evidence for the existence and determine its location dependence of the interaction between the 

purinergic and cholinergic signaling in smooth muscle cells of the urinary bladder. Certain aspects of these results 

were presented at the Annual Conference of the European Muscle Society (Jenes et al. 2006; Szigeti et al, 2007).  
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Materials and Methods 

 

All experiments were performed in accordance with Hungarian guidelines and were in compliance with the 

“European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific 

Purposes” (Council of Europe No 123, Strasbourg 1985). 

 

Smooth muscle cell culture from rat urinary bladder 

 Young adult Wistar rats (male and female, 8-12 weeks old) were terminally anaesthetized by isoflurane, 

bladders were removed, opened and cut into a base and a dome part. The pieces were placed into Hank’s solution 

and the urothelial layer was peeled off. Each smooth muscle piece was placed into 5 ml 0.75 mg ml-1 trypsin 

(Sigma-Aldrich, Heidelberg, Germany)-0.4 mg ml-1 EDTA (Sigma-Aldrich, Heidelberg, Germany) solution, and 

incubated in a shaking bath for 30 minutes at 37 °C. After transferring into RPMI 1640 (Roswell Park Memorial 

Institute) solution containing 0.75 mg ml-1 collagenase (Sigma-Aldrich, Heidelberg, Germany) the smooth muscle 

was cut into small pieces and incubated in shaking bath for further 45 minutes at 37 °C. After incubation 2 ml fetal 

bovine serum (FBS) was added, cells were centrifuged at 1000 RPM for 10 minutes, then the superfusate containing 

collagenase was removed. Cells were resuspended in 3 ml RPMI solution containing 10% FBS and centrifuged 

again at 1000 RPM for 10 minutes (twice). After the last cleaning process 3 ml RPMI solution containing 10% FBS 

was added for 3 plates (diameter 3 cm) having 1 ml cell suspension each. This medium was renewed every second 

day until the cells reached a confluence of 60-70 %. At that point, the FBS content of the RPMI medium was 

reduced to 1% for 2-3 more days to facilitate myocyte differentiation. Experiments were carried out on 5-7-days-old 

cultures. 

 The smooth muscle cells in the cultures were morphologically distinct from the interstitial cells and their 

identity were confirmed with immunocytochemistry using primary antibodies against alpha smooth muscle actin. 

 

Freshly isolated smooth muscle cells from rat urinary bladder 

 Same method was used as for the cell culture, but the isolated cells were tested right after they attached to 

the coverslips. All of these experiments were carried out within 20 hours after removing the urinary bladder from the 

rats. 
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Fluorescent measurement of [Ca2+]i 

Changes in the concentration of [Ca2+] i were detected using the fluorescent dye Fura-2 as described in our 

previous reports (Bíró et al., 1998; Csernoch et al., 2000). To introduce the calcium-sensitive probe into the 

intracellular space cells were incubated for 90 min at 37 °C with 15 µM Fura-2 AM (Molecular Probes, Eugene, OR, 

USA). Coverslips were then washed with normal HEPES Tyrode’s solution (in mM: 137 NaCl, 5.4 KCl, 0.5 MgCl2, 

1.8 CaCl2, 11.8 HEPES-NaOH, 1 g l-1 glucose, pH 7.4) and this solution also provided the extracellular 

environment for the cells throughout the entire measurement. The coverslips with the Fura-2 loaded cells were then 

placed on the stage of an inverted fluorescence microscope (Diaphot, Nikon, Japan). The measuring bath was 

constantly perfused with normal HEPES Tyrode’s solution at a 2 ml min-1 rate (Econo Pump, Bio-Rad Hungary, 

Budapest, Hungary). Test solutions were directly applied to the cells through a local perfusion capillary (Perfusion 

PencilTM, AutoMate Scientific, San Francisco, CA, USA) with an internal diameter of 250 µm at a 1.5 µl s-1 rate, 

using a local perfusion system (Valve BankTM8 version 2.0, AutoMate Scientific, San Francisco, CA, USA). 

Experiments were performed at room temperature (22-24°C). Excitation wavelength was altered between 340 and 

380 nm by a dual-wavelength monochromator and an on-line connected microcomputer (Deltascan, Photon 

Technology International, New Brunswick, NJ, USA) while the emission was monitored at 510 nm using a 

photomultiplier at an acquisition rate of 10 Hz per ratio. Background fluorescence was measured at cell-free regions 

of the coverslip and subtracted automatically.  

[Ca2+] i levels were calculated according to the method of Grynkiewicz et al. (1985) from the ratio 

(R=F340/F380) of the fluorescence intensities measured with excitation wavelengths 340 nm (F340) and 380 nm (F380) 

as previously described (Bíró et al., 1998; Csernoch et al., 2000) using in vivo calibration data. 

 

Immunocytochemistry 

Smooth muscle cells from urinary bladders were cultured on sterile plates. The 5-7 days old cells were 

fixed in acetone for 5 min and then permeabilized by 0.1% Triton-X-100 (Sigma-Aldrich, Heidelberg, Germany) in 

a phosphate buffered saline (PBS, 0.02 M NaH2PO4, 0.1 M NaCl) for 10 min. After washing with PBS solution and 

blocking with 1% bovine serum albumin (BSA, Sigma-Aldrich, Heidelberg, Germany) in PBS for 30 min, cells 

were incubated with anti-nAChRα7 primary antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA) or anti-
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P2X2 receptor primary antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4 °C (dilution 

1:50, 1:200, 1:500). Plates were washed three times in PBS then incubated with fluoresceine isothiocyanate (FITC) 

conjugated secondary antibodies (Vector Laboratories, Burlingame, CA, USA) for 45 min (dilution 1:200). The 

nuclei of cells were visualised using 4',6-diamidino-2-phenylindole (DAPI). Cells were examined on a confocal 

microscope (Zeiss LSM 510 META, Zeiss, Oberkochen, Germany). 

 

Immunohistochemistry 

The tissue specimens were immediately fixed in 4% buffered formaldehyde (24 h), embedded in paraffin 

wax, and 4 µm thick sections were cut. The endogenous peroxidase activity was blocked with 3% H2O2 in methanol 

(10 min, room temperature). Non-specific binding was prevented by incubating the sections with BSA. The tissue 

sections were then incubated overnight at 4 °C with anti-nAChRα7-specific primary antibodies (dilution 1:200, 

Santa Cruz Biotechnology). After incubation, the slices were rinsed three times with PBS for 5 minutes. The 

sections were incubated in biotinylated anti-goat secondary antibodies (raised in rabbit) for 30 min (1:100, Dako, 

Glostrup, Denmark), then rinsed with PBS and incubated with horseradish peroxidase-conjugated streptavidin (30 

min; 1:500; room temperature). In these instances visualisation of the immunolabelling was also achieved using 

3,3’-diaminobenzidine (DAB). At the end of the procedure slight counterstaining was performed using hematoxylin. 

Control experiments were regularly performed. In these cases, the sections were incubated overnight without the 

primary antibody.  

 

Western blot 

To determine the expression of nAChRα7 subunits in different parts of the young adult rat bladder, Western blot 

technique was applied. Tissues were homogenized in homogenization buffer [20 mM Tris-Cl, pH 7.4, 5 mM EGTA, 

1 mM  4-(2-aminoethyl)benzenesulfonyl fluoride, 20 µM leupeptin, all from Sigma] and the protein content of 

samples was measured by a modified bicinchoninic acid (BCA) protein assay (Pierce, Rockford, IL, USA). The 

samples were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (8% gels were loaded with 20 

to 30 µg protein per lane), transferred to nitrocellulose membranes (Bio-Rad, Vienna, Austria), and then probed with 

the above mentioned anti-nAChRα7 antibodies (1:100). A horseradish peroxidase-conjugated rabbit anti-goat IgG 

antibody (1:500, Bio-Rad) was used as a secondary antibody, and the immunoreactive bands were visualized by 
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enhanced chemiluminescence (Gel Logic 1500 Imaging System, Carestream, Rochester, NY, USA). Western 

blotting experiments were repeated five separate times, and the protein bands were analyzed by Image J software 

provided by the NIH. The densitometric values were normalized to the values of actin immunoreactivity to correct 

any loading and transfer differences between samples. 

 

Data analysis 

Data were analyzed using Microsoft Excel® (Microsoft, Redmond, WA, USA) and Microcal Origin® 

(OriginLab, MA, USA) computer softwares. Data are expressed as mean±SEM. Student’s t-test was used to 

compare paired data between the control group (first ATP application) and the other groups (purinergic and 

cholinergic agonists and antagonists), and 2-tailed p<0.05 was taken to indicate statistical significance. 
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Results 

 

Effect of repetitive ATP application on the Ca2+ transients of cultured smooth muscle cells from the urinary bladder 

To study the role of the purinergic and cholinergic stimulation, first the shape and reproducibility of the 

ATP-induced Ca2+ transients were determined on cultured rat urinary bladder smooth muscle cells (Fig. 1). ATP 

(180 µM) was applied for 40 seconds three times (at time zero, then three and six minutes later) to activate P2 

receptors and induce Ca2+ transients. There were no visible changes in the second and third Ca2+ transients as 

compared to the first one (Fig. 1A). To quantify any possible changes that might have occurred, single exponential 

functions were fitted to the declining phase of the calcium transients and their time constant (τ) was determined. In 

addition, the peak of the first time derivative of the signal was used to assess its maximal rate-of-rise. Pooled data 

from 7 independent experiments (7 cells from 7 animals) confirmed that the amplitude (Fig. 1B), the τ (Fig. 1C) and 

the maximal rate-of-rise (Fig. 1D) of the second and third transients were not significantly different statistically 

(p>0.05) from those of the first transient. 

 

Interaction between purinergic and cholinergic pathways at the level of the Ca2+ transients on freshly isolated and 

cultured smooth muscle cells  

To understand the possible cross-reactivity between the purinergic and cholinergic signaling pathways, 

cultured and freshly isolated smooth muscle cells from adult rat urinary bladders were stimulated by the agonists of 

the two pathways (Fig. 2). While ATP was essentially always (more than 90% of the cells) capable of initiating a 

calcium transient, the parasympathetic agonists carbamylcholine (carbachol; CCh) and nicotine (nic) could not 

induce elevations in [Ca2+] i in rat smooth muscle cells, either cultured (n=109) or freshly isolated (n=5). 

However, when ATP was administered together with 10 µM CCh, CCh prevented ATP from evoking Ca2+ 

transients in the rat smooth muscle cell from the base of the urinary bladder (Fig. 2B, 2C). All together 57 cultured 

(Fig. 2B) and 3 freshly isolated (Fig. 2C) cells from the base of the urinary bladder prepared from 18 and 3, 

respectively animals were tested. While CCh decreased the amplitude of the ATP-evoked Ca2+ transients by 

88±2.5% (p<0.01), this cross-inhibition was not present when ATP was applied together with 5 µM nicotine (Fig. 

2). The effect of nicotine was tested on 20 cells obtained from 6 animals. On the other hand, neither carbachol nor 
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nicotine inhibited the effect of ATP in the cells of the dome of the urinary bladder (52 cells prepared from 16 rats, 

Fig. 2A). 

 

Pharmacological characterization of the cross-inhibition  

To establish the cholinergic receptor subtype responsible for the observed cross-inhibition in the cells of the 

base of the urinary bladders, muscarinic and nicotinic antagonists were applied (Fig. 3). The muscarinic receptor 

blocker atropine (1 µM; Fig. 3A, 3B) was unable to modify the purinergic-cholinergic interactions (24 cells from 4 

animals). That is, on the one hand, when the cross-inhibition was present for ATP and CCh – on cells from the 

base –, the co-application of atropine with ATP and CCh could not prevent the purinergic-cholinergic inhibition 

(Fig. 3A, 4). On the other hand, when there was no interaction between the purinergic and cholinergic pathways 

without atropine – on cells from the dome –, there was no interaction between them in the presence of atropine 

either (Fig. 3B, 4). 

In contrast, the presence of α-bungarotoxin – a specific competitive antagonist of the nicotinic 

acetylcholine receptor (nAChR) – prevented carbachol from interfering with the ATP-evoked calcium transients 

(Fig. 3C, 3D, 4). In 20 cells from 3 animals isolated from the base of urinary bladders CCh was unable to block the 

effect of ATP when α-bungarotoxin (500 nM) was present in the bathing medium (Fig. 3C, 4). Nevertheless, α-

bungarotoxin did not interfere with the ATP-evoked signals since the simultaneous presence of CCh and the toxin 

did not modify the calcium transients in the cells isolated from the dome (Fig. 4D). The pooled data (Fig. 4) 

confirmed that while the effect of α-bungarotoxin was statistically significant (p<0.05) in cells from the base, the 

toxin did not modify significantly (p>0.05) the changes in [Ca2+] i in cells from the dome. 

To narrow the possible receptor candidates for the purinergic pathway different purinergic agonists were 

also tested. From the P2X receptor agonists neither α,β-methylene-ATP (10 µM; cultures from 6 animals, data from 

25 cells, 13 cells from the base and 12 cells from the dome), nor 2-methyl-tio-ATP (180 µM; cultures from 3 

animals, data from 7 cells, 4 cells from the base and 3 cells from the dome) induced any elevation in [Ca2+] i 

(Fig. 5A). In this respect, there were no significant differences between the cells isolated from the base and the 

dome. In addition, the P2Y receptor agonist UTP (180 µM; cultures from 5 animals, data from 29 cells, 20 cells 

from the base and 9 cells from the dome) could not induce Ca2+ transients in cultured smooth muscle cells of the 

urinary bladder (Fig. 5B). Again, there were no significant differences, in this respect, between the cells from the 
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base and the dome. In addition, the L-type calcium channel blocker nifedipine (10 µM) significantly – to 38±15% of 

the response measured in the absence of nifedipine (p<0.05; 9 cells from 2 animals) – reduced the ATP-induced 

Ca2+ transients (data not shown). Noteworthy, that CCh was still able to further reduce the effect of ATP in the 

presence of nifedipine (to 0%; 2 cells from 1 animal). 

 

Immunostaining of the nicotinic receptors and P2X2 receptors in smooth muscle cell cultures and urinary bladder 

tissue sections 

CCh can serve as an agonist for the α1, α3, α4, α7, and α9 nAChR subunits and, furthermore, it has a higher 

affinity than nicotine does towards the α1, α7, and α9 subunits (Alexander et al. 2008). This, together with the 

effects seen with α-bungarotoxin (see above) led us to suspect the involvement of the α7 subunit of nAChR in the 

cross-inhibition detail before. To determine the distribution of the α subunit of the nicotinic receptors, cultured 

smooth muscle cells from rat urinary bladders (Fig. 6A) and bladder tissue sections (Fig. 6B) were used. Cultured 

smooth muscle cells from the rat urinary bladder, both from the base and from the dome, displayed α7 nicotinic 

receptor positivity, however, it seemed to be more intensive for cells from the base than that of the cells from the 

dome (Fig. 6A). The α7 nicotinic receptor immunoreactions in urinary bladder tissue sections showed similar 

distribution (Fig. 6B). Western-blot analysis confirmed the expression of nAChRα7 protein in rat urinary bladder 

smooth muscle strips (Fig. 6C). Furthermore, quantitative evaluation of the Western blots (normalizing the 

absorbance of the nAChRα7 band to that of the actin band) confirmed that the expression of nAChRα7 in the cells 

from the base was significantly higher than the expression in the cells from the dome (Fig. 6D, p<0.05).  

Based on previous reports (Creed et al., 2010; Dutton et al., 1999; Lee et al., 2000; Studeny et al., 2005) 

and the pharmacological profile of the ATP-evoked calcium transients presented above, we suspected the presence 

of P2X2 receptors in the rat urinary bladder smooth muscle. This was indeed confirmed using immunocytochemical 

and immunohistochemical surveys (Fig. 7). Distribution of the P2X2 receptors appears to be rather cytoplasmic than 

membrane, which is in agreement with previous studies ().  
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Discussion 

 

 This report presents evidence of purinergic-cholinergic receptor cross-inhibition in non-neural cells. This 

cross-inhibition between the two signaling pathways was observed in the base, but not in the dome of the rat urinary 

bladder.  

We demonstrated the contribution of the purinergic signaling pathway to the Ca2+ homeostasis in cultured 

rat smooth muscle cells. ATP was able to evoke Ca2+ transients in the smooth muscle cells and these transients did 

not show any desensitization. When ATP was administered together with the parasympathetic agonist carbachol, the 

latter prevented ATP from evoking Ca2+ transients in the cells from the base of the urinary bladder. Since α-

bungarotoxin but not atropine was able to interfere with this interaction and because certain nicotinic receptors are 

also sensitive to CCh, we suspected the presence of the nAChRα7 on our cells. Smooth muscle cells from the rat 

urinary bladder – either isolated or in situ – displayed α7 nicotinic receptor positivity. Furthermore, cells from the 

base of the bladder seemed to have stronger immunopositivity than the cells from the dome as confirmed by 

Western blotting. 

 

Cholinergic and purinergic receptor activation in cultured smooth muscle cells from the urinary bladder 

Our results suggest a unique interaction between P2X purinergic and a putative nicotinic receptor in the 

bladder smooth muscle. Earlier measurements gave evidence on cholinergic (nicotinic) and purinergic interaction 

between neuronal type nicotinic and P2X2 purinergic receptors in rat sympathetic ganglia (Nakazawa, 1994), 

hippocampal neurons (Khakh et al., 2005), autonomic ganglia (Searl et al., 1998), and myenteric neurons (Barajas-

Lopez et al., 1998; Zhou and Galligan, 1998; Brown and Galligan, 2003). In these systems, co-application of a 

nicotinic agonist (nicotine, cystine) and a purinergic agonist (ATP, α,β-methyleneATP) produced lower additive 

response (inward currents, calcium influx) then what was expected from independent receptor stimulations.  

The question then was, whether there are nicotinic receptors present on urinary bladder smooth muscle 

cells. Traditionally smooth muscle is not considered to be equipped with nicotinic receptors (Jensen et al. 2005). It is 

important to note that even if nicotinic receptors are present in the bladder smooth muscle, they are silent since 

nicotinic agonists do not elicit a contraction and no intramural ganglia can be found in rat bladders (Alian and 
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Gabella, 1996; Somogyi and de Groat, 1992). However, expression of several isoforms of the nicotinic receptor has 

been demonstrated in vascular smooth muscle (Brüggmann et al., 2002). Nicotinic receptors are also found in the 

urothelium in urinary bladder (Beckel et al. 2006; Birder and de Groat, 2007). Our study provides evidence that 

while nicotinic receptors are present on the bladder smooth muscle cells, too, their activation is indeed not 

accompanied by an elevation in intracellular Ca2+ concentration. The current study, nevertheless, demonstrated that 

nicotinic receptors on the smooth muscle may play an important role in modulating the activity of the purinergic 

signal transduction.  

Most of the experiments presented in this study were carried out on cells held in primary culture. Due to the 

fact that culturing could lead to alterations in receptor expression pattern or in the signaling pathways, we carried out 

similar experiments on freshly isolated cells, too. Since these cells responded similarly in all aspect – while 

carbachol was unable to generate Ca2+ transients it interfered with ATP in evoking an increase in [Ca2+] i – we can 

conclude that the observations were not exclusively due to culturing. 

 

The possible receptor subtype candidates for the cholinergic-purinergic receptor interaction  

Based on our data on the pharmacology of the urinary bladder smooth muscle cells we suggest that the 

P2X2 receptors have importance in this cholinergic-purinergic interaction. The P2 receptors displayed no or just a 

slow and partial desensitization. They were not activated by the application of α,β-methylene-ATP, 2-methyl-thio-

ATP (data not shown) and UTP, consistent with the idea that ATP-induced Ca2+ transients are generated via 

activating P2X2 receptors in the cultured urinary bladder smooth muscle cells. The presence of P2X2 receptors on 

these cells has already been described (Creed et al., 2010; Dutton et al., 1999; Lee et al., 2000; Studeny et al., 2005) 

and were also detected through immunostaining in this study.  

In our experiments the muscarinic receptor blocker atropine did not modify the purinergic-cholinergic 

interactions. When we found cross-inhibition applying ATP and CCh together, atropine could not prevent this 

interaction, in addition, when such interaction was not observed, atropine did not invoke such interaction either. 

These data suggest that muscarinic acethylcholine receptors do not have any role in the purinergic-cholinergic 

receptor cross-inhibition. On the other hand, the presence of α-bungarotoxin prevented CCh from interfering with 

the purinergic signaling pathway on cells from the base but had no effect on cells from the dome. Since α-

bungarotoxin is considered as a specific antagonist for nAChR, especially for the α7 subunit (Couturier et al., 1990; 
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Kempsill et al., 1999), we must assume a role of the nicotinic receptors instead. Our immunocyto- and 

immunohistochemistry, as well as Western-blot data confirmed the presence of nAChRα7 positive smooth muscle 

cells in cultures and in urinary bladder tissues from rat. It should be noted, however, that the muscarinic agonist 

carbachol had modulatory effect on the nicotinic acethylcholine receptors, while nicotine itself did not affect the 

inhibitory function of these receptors. Nevertheless, our results are in agreement with the findings that α1, α3, α4, α7, 

and α9 nAChRs can be activated by carbachol (Alexander et al. 2008), moreover, the affinity of the α1, α7, and α9 

subunits to carbachol is higher than that to nicotine. 

 

The functional relevance of the nicotinic-purinergic cross-inhibition in urinary bladder 

Another observation in our study is that there is a difference in the receptor cross-inhibition between the 

base and the dome of the urinary bladder. Namely, the cross-inhibition is important in the base but not in the dome. 

In human urinary bladders, impaired contraction of the base might indicate outlet obstruction (Hirahara et al., 2006). 

Although there are considerable species differences in the regulation of urinary bladder contraction, the results 

presented here raise the interesting possibility that this difference in receptor cross-inhibition might contribute to the 

relatively milder contraction of the base as compared to the dome in this pathological condition. 
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Legends to figures 

 

Fig. 1 

Representative calcium transients evoked by repetitive application of ATP (180 µM) on cultured smooth muscle cells 

from rat urinary bladder. (A) ATP-evoked Ca2+ transients in urinary bladder smooth muscle cells. (B, C, D) Pooled 

data from 7 similar experiments (7 cells from 7 different animals) where the parameters (amplitude (B), time 

constant (τ) of decay (C) and maximum rate of rise (D)) of the 2nd and 3rd ATP-evoked transients were normalized to 

that of the first response in the given cell. None of the differences proved statistically significant (p>0.3, p>0.5 (B); 

p>0.1, p>0.1 (C); p>0.5, p>0.3 (D)). 

 

Fig. 2  

Representative calcium transients evoked by cholinergic and purinergic agonists in cultured and freshly isolated 

smooth muscle cells from adult rat urinary bladder. 

The application of both ATP, carbachol(CCh)+ATP and nicotine(nic)+ATP resulted in a Ca2+ transient in rat smooth 

muscle cell from the dome (A) of the urinary bladder (ATP 180 µM, CCh 10 µM, nic 5 µM, c=16, n=52). In 

contrast, while carbachol prevented, nicotine did not interfere with the ATP-evoked Ca2+ transients in cultured (B) 

or freshly isolated (C) rat smooth muscle cells from the base of the urinary bladder (carbachol: c=18, n=57, nicotine: 

c=6, n=20 in cultures, carbachol: c=3, n=3 freshly isolated). Here, and in subsequent figures, “c” represents the 

number of cultures, while “n” represents the number of cells we obtained the results from. Markers show the onset 

of the 40s-long drug application. 

 

Fig. 3  

Pharmacological characterization of the cross-inhibition.  

The muscarinic acetylcholine receptor blocker atropine (A: smooth muscle cell from the base, B: smooth muscle cell 

from the dome of the bladder; 1 µM) was unable to modify the purinergic-cholinergic interactions. The nicotinic 

acetylcholine receptor blocker α-bungarotoxin did not interfere with the ATP-evoked signals in the cells isolated 

from the dome (D, 500 nM), but it prevented carbachol from inhibiting the ATP-evoked calcium transients in the 

cells isolated from the base (C, 500 nM).  
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Fig. 4  

Involvement of nicotinic signalling in the cross-inhibition.  

The pooled data confirmed that the acetylcholine receptor agonist carbachol reduced the ATP-evoked Ca2+ transients 

in cultured rat smooth muscle cells from the base of the urinary bladder (c=18, n=57, p<0.01). The acetylcholine 

receptor blocker atropine was unable to modify the purinergic-cholinergic interactions (c=2, n=14, p<0.05), but the 

nicotinic acetylcholine receptor blocker α-bungarotoxin prevented carbachol from inhibiting the ATP-evoked 

calcium transients in the cells isolated from the base (c=3, n=20, p>0.05). Carbachol did not interfere with the ATP-

evoked signals in the cells isolated from the dome (c=16, n=52, p>0.05), and it was not influenced by either atropine 

(c=2, n=10, p>0.05) or α-bungarotoxin (c=1, n=3, p>0.05). *,#  indicate significant difference (*p<0.01, #p<0.05) 

between control (ATP response) and test groups. 

 

 

Fig. 5  

Pharmacological characterization of the purinergic pathway.  

Neither α,β-methylene-ATP (abm)(A; 10 µM, n=6, c=25), nor UTP (B; 180 µM, n=5, c=29) application could 

induce Ca2+ transients in cultured smooth muscle cells of the urinary bladder. Cells were obtained from the base and 

from the dome of the urinary bladders. 

 

 

Fig. 6  

The immunostaining of nAChRα7 subunits in rat urinary bladder.  

Results were obtained from cultured cells from rat urinary bladders (A), tissue sections (B) and muscle strips (C). 

The left column of panel A presents cultured cells from the base while the right column of panel A presents cultured 

cells from the dome of the urinary bladder. Green color shows smooth muscle cells stained with FITC conjugated 

secondary antibody. Blue color shows the nuclei of the cells stained with DAPI. Inserts in the right side of each 

image show negative controls. The brownish color (DAB) in the panel B presents cells which expressed nAChRα7. 

Left column of panel B shows section from the base, right column shows section from the dome of the bladder. 
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Inserts in the corners show negative controls. Scale bar represents 25 µm (A) or 250 µm (B). The Western-blot 

confirmed nAChRα7 protein expression in rat urinary bladder smooth muscle (C), densitometry indicated a 

statistically more pronounced expression in the base, than in the dome (D, p<0.05). The data are ratios of the signal 

at 56 kDa (nAChRα7 protein) over the actin signal. 

 

Fig. 7 

P2X2 receptors on urinary bladder smooth muscle cell cultures.  

Cultured cells from the base of the urinary bladder are presented on the left side, cultured cells from the dome are on 

the right. Primary antibody against P2X2 receptors (1:200), secondary antibody conjugated with FITC, nuclei stained 

with DAPI. Scale bar indicates 25 µm, inserts show negative controls. 

  

 


