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Introduction

Two of the greatest achievements in theoretical physics are the theory of special
relativity and quantum mechanics. A fundamental theory of physics must unite
these areas and be both relativistic and quantized. This is how quantum field the-
ory was formed describing the fundamental forces of nature as interactions between
elementary particles, which are excitations of the more fundamental objects, the
quantum fields. One of the consequences of unifying the theory of special rela-
tivity and quantum mechanics is that the physical quantities such as the charge
or mass of a particle measured in vacuum become scale-dependent due to quan-
tum fluctuations. This means that even the strength of an interaction depends
on the energy or momentum scale of the interaction. A powerful tool to describe
this scale-dependence is the functional renormalization group (FRG) method which
takes into account the fluctuations of a system at different scales by integrating out
the modes of fluctuations successively. It can be used to study critical phenomena,
phase diagrams, phase transitions of a large number of models providing a deep
insight into their universal properties.

The FRG equation is an exact one, however, in most cases approximations
are needed to obtain a solution. When approximations are used the results could
depend on the so called regulator function. The question arises, which regulator
function gives the most accurate predictions for physical quantities such as critical
exponents at a certain level of approximation?

Approximate results may also suggest unphysical properties of a system, like
the presence of a fixed point indicating a spurious phase transition. Thus, it is
crucial to know what is a sufficient approximation that produces reliable results
when different models are investigated.

Another interesting question is whether it is possible to view the time evolution
of the Universe going through different temperatures and energy scales as a renor-
malization group (RG) flow. A consequence of this connection is the possibility
to constrain the parameters of a candidate Higgs-inflationary model at the scale
of inflation by astrophysical observations, and then calculate its RG running down
to the electroweak scale by the RG method, where it should recover the measured
parameters of the Standard model Higgs potential.

Furthermore, the RG approach could be applied not only in the post-
inflationary, but also in the pre-inflationary period up to very high energies around
the Planck scale. Thus the inflationary potential can have an RG evolution in this

1



2 INTRODUCTION

period. Is it possible to use this mechanism to induce inflation?
My thesis is centered around these questions presenting the results of my research
which provide some of the answers.

The structure of my thesis is the following. In Part I. I introduce the theo-
retical framework used during my analysis. First, the basic concepts of statistical
physics are described, then the renormalization group approach is explained via
the blocking construction technique. In the third chapter the statistical descrip-
tion is translated to the language of quantum field theory while the fourth chapter
is dedicated to the functional renormalization group approach starting with the
derivation of the Wetterich equation and giving special focus to the optimization
of the regulator function. In the fifth chapter the most studied models of my thesis
are introduced, namely the O(N) and sine-Gordon type models, while in the final
chapter of this part a brief introduction is given to inflationary cosmology.

The findings of my research are presented in Part II.
First, my study of the compactly supported smooth (CSS) regulator is discussed
based on the optimization method called the principle of minimal sensitivity [1].
This principle is applied in the framework of the O(N) and the massive sine-
Gordon models. Then, the parameters of the CSS regulator is also optimized
based on the requirement of the absence of spontaneous symmetry breaking in the
one-dimensional sine-Gordon model beyond LPA [2].

In the following chapter I examined the reliability of the FRG method on O(N)
models paying special attention to its truncated Taylor expanded potential and the
local potential approximation discussing what is sufficient to recover the Mermin-
Wagner theorem [3,4].

In the next two chapters I have applied the FRG technique in the context of cos-
mology. I have proposed a new Higgs-inflationary model the massive sine-Gordon
theory, constrained its parameters at the scale of inflation using the observed data
of the cosmic microwave background radiation. Then, by applying the FRG method
I have calculated the parameters of the model at the electroweak scale [5].

I have also applied the FRG method to the pre-inflationary period, and proposed
a new mechanism to induce inflation based on the convexification of the inflationary
potential over its RG evolution [6].

In the Summary the results are concluded by stating my thesis points.
Finally let me note, that some technical issues of the FRG method, such as

the graphical representation of the RG flow and its fixed point analysis can re-
ceive important application in the study of differential equations which is at the
heart of almost every physical systems. As an example I would like to mention a
rather unusual topic, the dynamics of magnetic nanoparticles, in particular their
application in tumor therapy which is the so called magnetic hyperthremia, where
I participated in a theoretical research [7].



Part I

Theoretical Framework
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Chapter 1

Statistical mechanics

In this chapter I will introduce the reader briefly to the basics of statistical me-
chanics following mainly Refs. [8–10]. Statistical mechanics describes how the fun-
damental microscopic interactions generate the macroscopic properties and laws
of large systems in equilibrium, therefore it is the first step to understand many-
particle systems.

Let us start with introducing the concept of information and entropy. Suppose
that we have n elementary events with equal probabilities. Then the probability
of each event is p = 1/n and the information one obtains by observing which event
actually occurred is log2 n bits. Now consider grouping these n equally probable
events into the disjunct setsAi that can happen by ki equally probable events. Then
an Ai event has a probability of p(Ai) = pi = ki/n and contains an information
Ii. Now assuming the additive property of independent informations one can write
the following

log2 n = Ii + log2 ki . (1.1)

This means that the information of an elementary event can be obtained by first
observing which Ai event occurred, then how this Ai happened, by which of the
ki possibilites. Rearranging the above equation, the information obtained by mea-
suring Ai is

Ii = − log2

ki
n

= − log2 pi . (1.2)

Instead of measuring the information in bits, let us measure it in a different unit,
in units of the Boltzmann constant k, and also let us use the natural log. This way
the expectation value of the received information during the measurement of Ai is

S = −k
∑
i

pi log pi . (1.3)

This formula is a cornerstone of statistical physics and called the Shannon entropy
formula.

One of the key principles of statistical mechanics is the principle of maximal
entropy. It states that the pi probability distribution of the microscopic states of
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6 CHAPTER 1. STATISTICAL MECHANICS

the system gives maximal entropy. Suppose a many-particle system with a large
number of particles. In this case, it is basically impossible to know the microscopic
(quantum) state of every particle, there are too many degrees of freedom. Therefore
one can only measure averages, macroscopic properties. By requiring the entropy
to be maximal one makes as few assumptions about the system as possible, or in
other words one assumes that a measurement will give maximal information.

Another key principle of statistical mechanics is the assumption that one can
divide the system into a large number of smaller, homogeneous, weakly-interacting
parts. Thus, the central limit theorem can be used, since homogeneity assures that
the random variables have the same distribution, while neglecting the interactions
between the parts means that these random variables are independent. Using
the central limit theorem one can take the thermodynamic limit of a system by
increasing the number of particles and volume of the system while keeping their
ratio fixed.

N →∞ V →∞ N

V
= const . (1.4)

Let us see what are the implications of these principles. Consider a closed sys-
tem with fixed macroscopic properties, fixed internal energy, volume, and number
of particles (U, V,N). The mathematical formulation of maximal entropy states
that the derivative of the entropy is zero. Imposing the condition that the sum of
all probabilities are one and using the Lagrange multiplier kλ, one gets

∂

∂pj

(
S − kλ

∑
i

pi

)
= −k log pj − k − kλ = 0 , (1.5)

which yields
pj = e−1−λ . (1.6)

The consequence of this formula is that the probabilities are equal, thus each mi-
croscopic configuration is considered by equal weight, which seems a reasonable
thing to do. Therefore, if the number of microscopic configurations is W , then
pi = 1/W and the entropy for the so called microcanonical ensemble writes

S = k logW , (1.7)

as it stands famously on the grave of Boltzmann, one of the great pioneers of
statistical physics.

For the derivation of Boltzmann’s formula the only condition imposed was the
necessity of the sum of all probabilities to be one, but the situation is different if
there are other constraints, for example if the system is in a heat bath with the
temperature β = 1/(kT ). By definition temperature is the inverse of the derivative
of the entropy with respect to the energy

∂S

∂U
=

1

T
. (1.8)

This means that the system is not closed like in the microcanonical ensemble,
therefore the total energy is not fixed, it can fluctuate around the average U . This
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is another condition: the expectation value of the energy should be
∑
i piEi = U .

With this extra condition the derivative of the entropy is

∂

∂pj

(
S − kλ

∑
i

pi − kβ
∑
i

piEi

)
=

−k log pj − k − kλ− kβEj = 0 , (1.9)

therefore the probabilities are proportional to the Boltzmann factor, i.e., the neg-
ative exponential of the energy

pj = e−1−λ e−βEj . (1.10)

The obtained ensemble is called the canonical ensemble. It is very useful to define
the function

Z(β, V,N) =
∑
i

e−βEi , (1.11)

which is called the canonical partition function. From the first condition this fixes
the first Lagrange multiplier∑

i

pi = e−1−λ
∑
i

e−βEi = 1 =⇒ e−1−λ =
1

Z
, (1.12)

and one can write the probabilities in a nice way

pi =
1

Z
e−βEi . (1.13)

The partition function is also useful since physical quantities can be extracted from
it like the average energy

− ∂ logZ

∂β
=

1

Z

∑
i

Eie
−βEi =

∑
i

Eipi = U , (1.14)

or the variance of the energy

− ∂2 logZ

∂β2
=
〈
E2
〉
− 〈E〉2 . (1.15)

Finally the entropy writes as

S = −k
∑
i

pi log pi = −k
∑
i

e−βEi

Z
log

e−βEi

Z
=

k
∑
i

βEipi + k logZ = kβU + k logZ . (1.16)

Let us allow the change in the number of particles as well, not just the fluctua-
tion of the energy. This way even more microstates will have non-zero probability,
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thus this ensemble is called the grand canonical ensemble. The extra condition for
the average number of particles is

∑
i piNi = N , and the derivative of the entropy

writes as

∂

∂pj

(
S − kλ

∑
i

pi − kβ
∑
i

piEi − kλN
∑
i

piNi

)
=

−k log pj − k − kλ− kβEj − kλNNj = 0 , (1.17)

hence the probabilities
pj = e−1−λ e−βEj−λNNj . (1.18)

Just like for the canonical ensemble, here the grand canonical partition function is
introduced

Z(β, V, λN ) =
∑
i

e−βEj−λNNj . (1.19)

Then physical quantities can be extracted from this function

− ∂ logZ
∂β

= U − ∂ logZ
∂λN

= N , (1.20)

and the probabilities can be written as

pi =
1

Z
e−βEj−λNNj , (1.21)

while the entropy becomes

S = −k
∑
i

pi log pi = kβU + kλNN + k logZ . (1.22)

The three ensembles, the microcanonical, the canonical and the grand canonical
ensembles are equivalent in the thermodynamic limit.

It is generally true that the entropy and its derivatives contains all information
about a thermodynamic system. Such functions are called thermodynamic poten-
tials. Entropy is not the only function with this property, the internal energy is
also a thermodynamic potential and other functions can be derived via Legendre
transformations. The logarithms of the partition functions are also thermodynamic
potentials, since they are the Legendre transformations of the entropy. The log-
arithm of the canonical partition function is the Legendre transformation of the
entropy with respect to the internal energy

k logZ(β, V,N) = S − ∂S

∂U
U = S − kβU , (1.23)

while the logarithm of the grand canonical partition function is the Legendre trans-
formation of the entropy with respect to the internal energy and the number of
particles

k logZ(β, V, λN ) = S − ∂S

∂U
U − ∂S

∂N
N = S − kβU − kλNN . (1.24)
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These equations are the rearrangements of (1.16) and (1.22) which is not surprising
since when there are constraints, due to these conditions the full entropy cannot
be maximal. Instead, one has to look for the extremum of the corresponding
thermodynamic potential.

From the Legendre transformation of the internal energy, further thermody-
namic potentials can be obtained. To mention a few, here is the Helmholtz free
energy

F (T, V,N) = U − ∂U

∂S
S = U − TS = −kT logZ(T, V,N) , (1.25)

and the Landau potential

Ω(T, V, µ) = U − TS − µN = −kT logZ(T, V, µ) , (1.26)

where µ = −kTλN .
In the thermodynamic limit physical results will be the same no matter which

potential is used, since it does not matter if one fixes the macroscopic properties
or allow fluctuations, because the relative fluctuations tend to zero in this limit.
However there are situations where the assumptions for the central limit theorem
are not justified. If the system is not homogeneous, then it is not in the state of
equilibrium, because the inhomogeneities will give rise to currents that want to
eliminate these inhomogeneities. In this instance non-equilibrium thermodynamics
must be used. The most important case for this thesis is when the interactions
cannot be neglected as a long-range correlation forms between the degrees of free-
dom in the system. This is what happens at phase transitions. The corresponding
thermodynamic potential does not have a sharp peak, but a spread out extremum,
therefore even small fluctuations can drastically change the system. Thus a better
method is needed to analyze phase transitions, so let us turn our attention to the
renoramlization group.
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Chapter 2

Renormalization group

As we discussed in the previous chapter, there are cases when the central limit
theorem cannot be used. This is the situation in case of phase transitions since one
cannot divide the system into smaller parts where the correlation between the parts
are negligible. Another tool is necessary to analyze the system. In this chapter
the renormalization group (RG) is discussed, which is a more appropriate method
to study the scale dependence of a model and its critical properties around phase
transitions [11].

Before going straight to the topic let us discuss the O(N) model which we will
use as a “toy model” to better understand the effect of the renormalization group
transformations.

2.1 The O(N) model

We have to choose a model that is easy to solve and demonstrates the effects of
our method well, by showing a nice intuitive picture. The O(N) models, especially
the O(1) or the Ising model, prove to be a good choice.

TheO(N) spin models as their name suggests have anN dimensional orthogonal
rotational symmetry. Their Hamiltonian can be written as

HON = −J
∑
〈i,j〉

SiSj −
∑
i

hiSi , (2.1)

where Si are N dimensional spin vectors placed on a d dimensional grid, hi is
an external magnetic field at site i, and 〈i, j〉 denotes that the sum goes over the
pairs of adjacent spins, therefore it contains only nearest neighbor interactions. For
further calculations periodic boundary conditions are assumed in the spin-lattice.
The partition function of this model writes as

Z = Tr e−βHON . (2.2)

11



12 CHAPTER 2. RENORMALIZATION GROUP

where the trace is a summation over all possible spin configurations. By differenti-
ating the logarithm of the partition function with respect to the external field, one
gets the expectation value of the spin

1

β

∂ logZ

∂hi
= 〈Si〉 =

1

Z
TrSie

−βHON , (2.3)

while differentiating twice gives the second momentum of the spin, also called the
correlation function, since it describes the correlation between two spins

Gij = 〈SiSj〉 − 〈Si〉 〈Sj〉 . (2.4)

Depending on what d dimension and what N parameter we choose, we can obtain
models with different properties. If we use N = 1, we get the Ising model. The
N = 2 case is referred to as XY , the N = 3 case is referred to as the Heisenberg
model, whereas if N → ∞ it is called the spherical model. These models are
well known in statistical physics as they describe the statistics of an interacting
spin system (magnetic moments) placed on a d dimensional grid see Fig. 2.1. If

d=1

N=1

d=2

N=2

Figure 2.1: The O(N) spin models in d = 1, 2 dimensions with N = 1, 2. While
d determines the dimension of the grid, N defines the dimension of the interior
space, i.e., the dimension of the spins (arrows situated on the grid points).

J is positive the interaction is ferromagnetic and the lowest energy state of two
adjacent spins is when they are parallel. Then, in the T → 0 limit, when the
fluctuations can be neglected, all spins point in the same direction in the lowest
energy state. This breaks the rotational symmetry. The phenomenon when the
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symmetry is broken not by a term in the Hamiltonian but by the ground state is
called spontaneous symmetry breaking.

In the next sections we will examine one of the simplest examples, the O(1),
i.e., the Ising model with a positive coupling J . When N = 1 the spins have only
two states and the Hamiltonian has a discrete Z2 symmetry. In d = 1 and d = 2
dimensions this model is solved exactly, which means it is possible to write down
the partition function of the model in a closed compact form. For example in d = 1
dimension when there is no external field h = 0 the Hamiltonian is simply

HIsing = −J
∑
〈i,j〉

SiSj . (2.5)

Therefore the partition function is

Z = Tr e−βHIsing , (2.6)

where the Boltzmann factor can be written as

e−βSiSj = coshβ + SiSj sinhβ , (2.7)

where β was redefined to include the strength of the interaction β = J/(kT ). Then
the partition function takes the compact form

Z = 2n [coshn β + sinhn β] , (2.8)

where n is the number of particles. When there is no external field the expectation
value of the spins are zero 〈Si〉 = 0. It is also straightforward to calculate the
correlation function G(r) and correlation length ξ

G(r) = 〈SiSi+r〉 − 〈Si〉 〈Si+r〉 ∝ e−
r
ξ . (2.9)

In the thermodynamic limit

ξ =
−1

log tanhβ
. (2.10)

Knowing the exact solution and the above formulas will help to better understand
the renormalization group, which is discussed in the next section.

2.2 Blocking construction

One way to perform the renormalization group transformation on a spin system is
called the Wilson-Kadanoff blocking construction [12, 13]. The main step of this
method is to block or group together a fixed number of degrees of freedom, spins
S, and create new, blocked degrees of freedom, new spin variables S′. To do this
blocking one has to integrate out some degrees of freedom of the original partition
function thus creating the new blocked spins. These new blocked spins will be
basically averages of the original spins. A recommended step in this process is to
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S S

S S
S’ S’

S’ S’

S S

S S

S S S S

S S S S

lattice space:  a lattice space:  2a

Figure 2.2: Blocking spins by rescaling the lattice space a→ 2a.

change the scale of observation by rescaling the lattice spacing a → a′ = ba or in
reciprocal space to decrease the running momentum cut-off, k ∼ 1/a, see Fig. 2.2

During this transformation new interaction terms could be generated therefore
the idea is to start with a general ansatz that already include all possible interaction
terms. If one includes all interaction terms generated by the transformation, then
the functional form of the partition function is preserved and only the parameters
i.e., the couplings might change.

Generally the blocking can be achieved by a block transformation function

T ([S′], [S]) =

{
1 if one gets [S′] by blocking [S]

0 othervise
. (2.11)

Therefore the new Boltzmann factor is

e−β
′H′[S′] ∝

∑
[S]

T ([S′], [S])e−βH[S] , (2.12)

which is the RG transformation that maps a Hamiltonian onto another effective
Hamiltonian that still contains all the long range information of the system. In
other words the RG transformation can be summarized as an operation Rb on the
couplings gi of a Hamiltonian. This operation creates RG trajectories in the space
of the couplings moving from small lattice spacings (large momentum) to large ones
(small momentum).

From this simple fact a large number of very interesting phenomenon can be
explained [14].

Universality. If the RG trajectories tend to go in one direction for example to
a single fixed point then it means that it does not matter what is the microscopic
physics of the system, the long-range behavior is always the same. This phe-
nomenon is called universality and it is present in a large number of system. Even
different models, different microscopic laws often produce the same long distance
physics.

Wilson-Fisher fixed points. If the RG trajectories run in two different directions,
then there must be two phases and a phase separating critical surface between them.
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If a trajectory starts with the right couplings which are on this critical surface then
this trajectory cannot leave the surface and often tends into a critical fixed point.
This critical fixed point is attractive towards the critical surface and repulsive
perpendicular to the surface like a saddle point. This means that a saddle point is
not only a good indication of a phase transition, but a critical system is also in a
saddle or the so called Wilson-Fisher (WF) fixed point after the RG transformation.
Therefore the properties of the WF fixed point describes the critical properties of
the model. A trivial property of a fixed point is scale invariance, which means that a
critical system is also scale invariant, i.e., invariant under the RG transformation.
This is only possible if the correlation length is infinite ξ = ∞, or zero, since
otherwise the correlation length would decrease during the scale transformation.

Relevance. Those couplings which survive the RG evolution are called relevant
while those that tend to zero are called irrelevant couplings. There is a strong
connection between relevancy and dimensionality. It is easy to see why. The RG
transformation changes the scale of the system, in real space a → ∞ while in
momentum space k → 0. Therefore if a coupling has a dimension dg, then it has
a trivial scaling which is proportional to its dimension g ∝ kdg . For this reason
it is often useful to introduce dimensionless couplings g̃ = gk−dg so that one can
observe only the non-trivial scaling of the couplings.

Power-law scaling around the fixed points. Let us see the effect of the RG
operator Rb on the couplings {g1, g2, . . . } = g

g → g′ = Rb(g) . (2.13)

If it is applied on a fixed point g∗ then due to scale-invariance the couplings do not
change

Rb(g
∗) = g∗ . (2.14)

Suppose that g∗ is a stable fixed point on the critical surface and consider the
linearization of the RG around this fixed point

g′i − g∗i =
∑
j

Tij(gj − g∗j ) +O((gj − g∗j )2) , (2.15)

where

Tij =
∂Rib
∂gj

∣∣∣∣
g∗
. (2.16)

For this linearized RG operator one can write the following eigenvalue equation

u′i = λiui . (2.17)

Applying the blocking by changing the lattice spacing by a factor of b then by a
factor of c is the same as applying only one blocking with the blocking parameter
bc. If b = 1, the RG should be the identity operator therefore the following relations
are true for the eigenvalues

λ(bc) = λ(b)λ(c), λ(1) = 1 . (2.18)
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These properties of λ guarantees that it is a power-law function of b thus one
obtains

λ(b) = by = ey log b , (2.19)

therefore the RG evolution of the couplings around the fixed point is also a power-
law function

u′i = byiui . (2.20)

The value of yi determines the behavior in the i direction.

• Re yi > 0 =⇒ ui increases, mowing away from the fixed point, relevant
coupling

• Re yi < 0 =⇒ ui decreases, moving towards the fixed point, irrelevant
coupling

• Re yi = 0 =⇒ the linearized approximation is not enough, marginal
coupling

Homogeneity of the thermodynamic potential. Suppose that there are two rele-
vant couplings in the eigendirections t and h. (The generalization for an arbitrary
number of couplings is trivial and not mentioned here.) The irrelevant couplings
can be neglected therefore the thermodynamic potential density f(t, h) can be con-
sidered as a function of only t and h. The thermodynamic potential is an extensive
quantity which means that it has an additive property. Thus by blocking together
degrees of freedom it will increase by a factor of bd

f(t′, h′) = bdf(t, h) . (2.21)

Using the power-law scaling of the couplings

t′ = bytt, h′ = byhh , (2.22)

one can rewrite the thermodynamic potential showing its homogeneous property

f(t′, h′) = f(bytt, byhh) = f(λatt, λahh) = λf(t, h) , (2.23)

where at = yt/d, ah = yh/d and λ = bd.
Relations between the critical exponents. From the homogeneity of the thermo-

dynamic potential it is easy to show that all the critical exponents can be expressed
in terms of the powers at and ah, since the physical quantities can be generated
from the thermodynamic potential and its derivatives. For example differentiating
the specific free energy of the Ising model with respect to the homogeneous external
field h yields

∂f(λatt, λahh)

∂h
= λah∆(λatt, λahh) = λ∆(t, h) , (2.24)

where ∆(t, h) = ∂f(t, h)/∂h is the order parameter of the phase transition and t
in this case is the reduced temperature t = (T − Tc)/Tc. After substituting t = 0
and λ = h−1/ah one gets

∆(0, 1)h(1−ah)/ah = ∆(0, h) , (2.25)
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where ∆(0, 1) is only a constant. Therefore, the critical exponent of the order
parameter with respect to the external field is δ = ah/(1− ah), where we used the
definition of δ which is ∆(0, h) ∝ h1/δ. Similarly, in the T < Tc region one obtains
the following expression by substituting h = 0 and λ = (−t)−1/at into Eq. (2.24)

(−t)(1−ah)/at∆(−1, 0) = ∆(t, 0) . (2.26)

Thus, the critical exponent of the order parameter with respect to the reduced
temperature is β = (1− ah)/at, since the definition of β is ∆(t, 0) ∝ (−t)β .

The models that have the same critical exponents are in the same universality
class.

As a simple example let us perform the RG transformation for the 1d Ising
model as promised. The partition function of the Ising model is

Z =

1∑
S1=−1

1∑
S2=−1

. . . eβS1S2eβS2S3 . . . . (2.27)

It is easy to do the summation for every even spin. For example for the second
spin

1∑
S2=−1

(coshβ + S1S2 sinhβ)(coshβ + S2S3 sinhβ) = (cosh2 β + S1S3 sinh2 β).

(2.28)
Therefore the following equality arises between the partition function of the blocked
spins, which are denoted by odd indexes, and the original partition function, where
we did the summation for every second spin

Z = N
1∑

S1=−1

1∑
S3=−1

. . . coshβ(1 + S1S3 tanhβ) coshβ(1 + S3S5 tanhβ) . . .

=

1∑
S1=−1

1∑
S3=−1

. . . cosh2 β(1 + S1S3 tanh2 β) cosh2 β(1 + S3S5 tanh2 β) . . . .

(2.29)

It is clear that only the norm of the partition function changed and the coupling

tanhβ′ = tanh2 β , (2.30)

while we blocked two adjacent spins together and increased the lattice spacing by
a → 2a. More generally if the blocking is done over b spins, increasing the lattice
spacing by a factor of b, then the above formula takes the general form

x′ = xb, x = tanhβ . (2.31)
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By performing the blocking several times one can obtain the long-range behavior
of the system. For the 1d Ising model remembering that β = J/(kT ) there are two
limiting cases

T →∞ or J → 0 =⇒ x→ 0 , (2.32)

T → 0 or J →∞ =⇒ x→ 1 . (2.33)

If x < 1 then during the blocking x tends to zero which is the first case. If x = 1
then it stays one, which is the second case. These are the two fixed points, but the
second one corresponds to zero temperature. For any positive temperature only
the other phase is present, which means that the critical temperature is Tc = 0 and
the model has only one phase.

Now doing the linearization around the x = 1 fixed point by introducing the
coupling u = 1− x yields

u′ = 1− x′ = 1− xb = 1− (1− u)b ≈ 1− [1− bu+O(u2)] = bu . (2.34)

Therefore the power of b is one, which means that in this case y = 1. From this,
one can obtain the critical exponent of the correlation length. Increasing the lattice
results in the decrease in the correlation length by the same factor ξ′ = ξ/b. By
expressing b from (2.34) one can write ξ′ as a function of u′

ξ′ =
1

b
ξ =

u

u′
ξ ∝ u′−1

. (2.35)

From this relation the power of u′ is by definition the critical exponent of the
correlation length which is negative one. From the exact formula one can also
obtain the scaling and critical exponent of the correlation length

ξ = − 1

log tanhβ
= − 1

log(1− u)
≈ − 1

−u
= u−1 , (2.36)

which confirms our result using the RG method. However while the exact solution
is known for a very small number of models, the RG method can be widely used
in many cases, giving a powerful tool to analyze the phases and critical properties
of many models.



Chapter 3

Quantum field theory

Now let us turn our attention to one of the most advanced and fundamental areas
of physics, that gives the most accurate predictions for particle physics, quantum
field theory [15, 16]. Quantum field theory describes the particles as excitation of
fields. For every elementary particle there is a more fundamental object, the field.
The fermions are described by fermion fields, the force carrier bosons are described
by gauge fields and the scalar particles such as the Higgs boson, are a described by
scalar fields. Quantum field theory models are constructed at high energies using
symmetries. For example the current best model in particle physics, the standard
model is derived by requiring three local symmetries SU(3)C × SU(2)Y × U(1)γ .

Fortunately there are a lot of analogies and parallels that can be drawn between
statistical physics and quantum field theories. In quantum field theory there is a
functional called generating functional Z, which is defined by the path integral,
i.e., the integral over all field configurations of the negative exponential of the bare
action S

Z =

∫
Dφ e−S , (3.1)

where the natural units (c = ~ = 1) are used and imaginary time (t→ it) is intro-
duced by performing a Wick rotation, thus the metric is changed from Minkowski
to Euclidean. One can immediately see the parallels to the partition function.
This functional also contains all the information about the model described by
the action, just like a partition function, and from its functional derivatives physi-
cal quantities can be derived such as correlation functions, transition amplitudes,
cross-sections. Here the weight given to one field configuration is proportional to
the negative exponential of the action, therefore the expectation value of a physical
quantity A can be calculated by the integral

〈A〉 =
1

Z

∫
Dφ Ae−S . (3.2)

It is very useful to generalize this functional by adding a source J to the action

Z[J ] =

∫
Dφ e−S+

∫
Jφ . (3.3)

19
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This way the expectation values, and moments of the field can be generated by the
functional derivatives of the generating functional with respect to the source

〈φ1 . . . φ2〉 =
1

Zn
δnZ[J ]

δJ1 . . . δJ2

∣∣∣∣
J=0

, (3.4)

where the notations φi = φ(xi) and Ji = J(xi) are used. These are the so called
n-point functions. Using perturbation theory these functions can be represented by
Feynman diagrams, which provide an elegant way to compute them using graphs.

However the goal is to obtain correlation functions. For this reason we define
the generating functional of the connected Feynman graphs as

W [J ] = logZ[J ] . (3.5)

Differentiating the above functional with respect to J gives the expectation value
of the field

δW [J ]

δJ(x)
=

1

Z

δZ

δJ(x)
= 〈φ〉J = ϕJ , (3.6)

the same way as the expectation value of the spin is obtained by differentiating the
logarithm of the partition function of the O(N) model with respect to the external
field. The second derivative gives the two point correlation function of the field,
also called the propagator

δ2W [J ]

δJ1δJ2
=

1

Z

δ2Z

δJ1δJ2
− 1

Z

δZ

δJ1

1

Z

δZ

δJ2
= 〈φ1φ2〉 − ϕ1ϕ2 = 〈φ1φ2〉c . (3.7)

Since the disconnected averages are subtracted, the derivatives of W [J ] generates
only the connected n-point functions. Therefore the correlation functions after
substituting J = 0 write as

〈φ1 . . . φn〉c =
δnW

δJ1 . . . δJ2

∣∣∣∣
J=0

. (3.8)

However this is still not the functional we are looking for, because it depends on
the source J , which is basically only a mathematical tool to generate the n-point
functions. We want something more physical, for example the expectation value
of the field. Therefore let us do a Legendre transformation, like we did for the
thermodynamic potentials, and define a functional that depends on ϕ instead of J

Γ[ϕ] = −W [Jϕ] +

∫
Jϕϕ . (3.9)

This functional is called the effective action or the generating functional of the one
particle irreducible graphs, the graphs that do not become disjoint after a line is
cut. Differentiating the effective action with respect to ϕ gives the source

δΓ[ϕ]

δϕ
= −δW

δϕ
+

∫
ϕ
δJϕ
δϕ

+ Jϕ = −
∫

δW

δJϕ

δJϕ
δϕ

+

∫
ϕ
δJϕ
δϕ

+ Jϕ = Jϕ . (3.10)
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For on-shell particles, when the source is zero, the derivative of the effective action
is δΓ[ϕ∗]/δϕ = 0, where the field ϕ∗ that satisfies this equation gives the vacuum
state. Differentiating Γ[ϕ] with respect to both ϕ and J and using the chain rule
gives

δ2Γ[ϕ(z)]

δϕ(x)δJ(y)
=

∫
v

δ2Γ[ϕ(z)]

δϕ(x)δϕ(w)

δ2W [J(u)]

δJ(v)δJ(y)
=
δJ(x)

δJ(y)
= δ(x− y) , (3.11)

therefore the second derivative of effective action is the inverse of the connected
propagator

δ2Γ[ϕ]

δϕδϕ
=

(
δ2W [J ]

δJδJ

)−1

. (3.12)

By approximating the field and the source in the spacetime volume Ω as constants
(ϕ(x) = φ0, J(x) = J0), the effective action can be reduced to the effective potential
as follows

Γ[φ] = ΩVeff(φ0) , W [J ] = Ωw(J0) , (3.13)

while (3.12) can be written as(
δ2Veff

δφ0δφ0

)(
δ2w

δJ0δJ0

)
= 1 . (3.14)

In the above expression the second term, i.e., the second derivative of the generating
functional of the connected Green functions is the connected correlation function
which takes only positive values. Therefore, the effective potential must be convex
[17] (

δ2Veff

δφ0δφ0

)
≥ 0 . (3.15)

In the next chapter after giving a definition for a scale-dependent effective action
Γk[ϕ], a renormalization group equation for its scale-dependence is derived which
also entails a renormalization group equation for the scale-dependent potential.

The strong connection between quantum field theory and statistical physics is
not that surprising. Both deals with many particle systems where fluctuations
are present. In statistical physics the temperature gives rise to these fluctuations
while in quantum field theories the quantum fluctuations are in the nature of the
fields since the Heisenberg uncertainty principle is present. In fact a d = D + 1
dimensional generating functional of quantum field theory can be mapped onto a
d dimensional partition function of a statistical mechanical system. For example
the XY spin model (N = 2) can be mapped to the O(2) scalar field theory (see
Sect. 5.1) via the Hubbard-Stratonovich transformation. In this case, the generat-
ing functional of the XY model can be written as

Z =

∫
DS exp

βJ∑
〈ij〉

SiSj + 2βµ
∑
i

S2
i

 ∏
j

δ(S2
j − 1) (3.16)

=

∫
Dφ exp

[
−1

2

∑
q

φqε(q)φ−q −
∑
r

U(φr)

]
, (3.17)
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where

ε(q) = 2(Jd+ µ)
d− ε0(q)

Jε0(q) + µ
, ε0(q) =

d∑
ν

cos(qνa) , (3.18)

U(φ) = −U0

(
2

√
β

J
(Jd+ µ)|φ|

)
+
Jd+ µ

J
|φ|2, U0(φ) = log(πI0(|φ|)) ,

(3.19)
where I0 is the modified Bessel function of the first kind [18]. Without violating
the symmetries of the model, one can Taylor expand the potential obtaining the
Taylor expansion of an O(2) symmetric potential of a field theory. Therefore from
an RG point of view, the only differences between the XY spin model and the O(2)
field theory are the initial conditions.

In quantum field theory there is also a very strong energy scale dependence. In
fact quantum field theories heavily rely on renormalization. At the early develop-
ment of quantum field theory the naive approach to the momentum loop integrals
gave infinities. A solution is to introduce a regularization, for example a momen-
tum cut-off scale Λ. This cut-off parameter can be eliminated by fixing a physical
measurable at the energy scale µ. Now, if there are no singularities preventing it,
one can take the limit Λ→∞ eliminating the regularization in high energies while
preserving the value of the measurable quantities at low energies, i.e., at the scale
of measurement. This means that we are fixing a low-energy point in RG space and
by taking the Λ→∞ limit we are tracing back an RG trajectory that starts from
a Gaussian fixed point, i.e., from a free field theory, where the scale dependence on
this cut-off can be eliminated. This technique was developed in the framework of
perturbation theory, approximating this renormalization flow around the Gaussian
fixed point. But perturbation theory has its drawbacks. One of these drawbacks
is that irrelevant interactions cannot be considered consistently, because towards
high energies the coupling constants could increase, and divert the RG trajectory
from the Gaussian fixed point. Therefore for each order of the perturbative expan-
sion new type of diagrams has to be introduced in order to control the divergent
tendency of the irrelevant interactions and to be able to eliminate the cut-off pa-
rameter. Fortunately irrelevant couplings are decreasing towards low energies and
became, as their name suggests, irrelevant. Thus they are usually not included in
the action when doing perturbative calculations. However, if there is another fixed
point in the theory the classification of the coupling may change, and can become
relevant at low energies. The other drawback is that perturbation theory requires
the couplings to be small in order to do the perturbative expansion. This means
that it works well only around the Gaussian fixed point.

For these reasons a non-perturbative method is necessary to analyze the full
phase diagram of a model, therefore the next chapter is dedicated to the functional
renormalization group method, that takes into account irrelevant couplings as well.



Chapter 4

Functional renormalization
group

In this chapter the functional renormalization group (FRG) method is discussed.
FRG is a powerful method to obtain the phase diagram of models, describe their
scale dependence and critical properties. Unlike the perturbative method it can
consider irrelevant interactions and remain accurate far from the Gaussian fixed
point.

4.1 Derivation

In this section I am going to derive a differential equation for the scale-dependent
effective action Γk[ϕ], the so called Wetterich or FRG equation following mainly
the derivations discussed in Refs. [19, 20]. It is presented for a single scalar field,
but it can be generalized for multiple fields. First let us write φ as an average
field ϕ plus a fluctuation term χ around the average

φ = ϕ+ χ . (4.1)

This way one can rewrite the generating functional as the integral of the fluctuating
field only

Z[J ] = eW [J] = e−Γ[ϕ]+
∫
Jϕ =

∫
Dφ e−S[φ]+

∫
Jφ =

∫
Dχ e−S[ϕ+χ]+

∫
J(ϕ+χ) .

(4.2)

After simplifying with the term e
∫
Jϕ and using that the source is J = δΓ[ϕ]

δϕ , one

gets an equation for Γ[ϕ] as follows

e−Γ[ϕ] =

∫
Dχ e−S[ϕ+χ]+

∫
χ
δΓ[ϕ]
δϕ . (4.3)

23
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From this the on-shell (J = δΓ[ϕ∗]
δϕ = 0) ground state can be calculated

e−Γ[ϕ∗] =

∫
Dχ e−S[ϕ∗+χ] = Z =⇒ Γ[ϕ∗] = − logZ . (4.4)

Doing the path integral in (4.3) using the saddle point approximation gives the
loop expansion of the effective action

Γ[ϕ] = S[ϕ] +
1

2
Tr log

δ2S[ϕ]

δϕδϕ
+ . . . . (4.5)

To implement the idea of the renormalization group approach one has to in-
troduce a running cut-off scale. Here we consider an infrared (IR) cut-off k by
changing the measure of the path integral. This is done by adding another term to
the action

Dχ→ Dχ e−∆Sk[χ] , (4.6)

that guarantees that the modes lower than k are suppressed, and therefore only
the modes higher than the cut-off k are integrated out. Implementing this idea the
scale-dependent effective action by definition is written as

e−Γk[ϕ] =

∫
Dχ e−S[ϕ+χ]−∆Sk[χ]+

∫
χ
δΓk[ϕ]

δϕ . (4.7)

The term ∆Sk must suppress the lower modes by not letting them propagate. This
can be achieved by a large mass term, thus the cut-off function is

∆Sk[φ] =
1

2

∫
φRk(−∂2)φ , (4.8)

where Rk is called the regulator function, which in momentum space depends on
the momentum Rk(p). This function must satisfy the following conditions

Rk→0(p) = 0, Rk→Λ(p) =∞, Rk(p→ 0) > 0 . (4.9)

The first condition is necessary in order to recover the full effective action in the
k → 0 limit. It is trivially true, since in this limit the regulator is zero. From the
second condition if k → Λ the regulator function tends to infinity, therefore it does
not allow any fluctuation to propagate. Thus ΓΛ is the bare action, our starting
point where the quantum fluctuations are not taken into account yet. From the
loop expansion of the scale-dependent effective action

Γk = SΛ +
1

2

∫
ddp

(2π)d
ln
[
Rk + S

(2)
Λ

]
+ . . . , (4.10)

it is also clear that if the regulator is infinitely large, then all the terms containing
it become field independent and can be excluded. The only term that survives is
the first one, SΛ, the bare action. Therefore the scale-dependent effective action is
interpolating between the classical bare action and the full effective action.

Γk→0 = Γeff , Γk→Λ = ΓΛ = SΛ . (4.11)
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The third condition of the regulator is necessary for the IR regularization. To see
this, consider a typical massless propagator G(p) = 1/p2, that is divergent in the
p→ 0 limit. The regulator changes this propagator as follows

G(p) =
1

p2
→ 1

p2 +Rk
. (4.12)

Since the regulator stays positive in the p → 0 limit, Rk(p → 0) > 0, the denomi-
nator does not tend to zero and the propagator does not become divergent in this
limit, see Fig. 4.1. A few typical choices for the regulator functions are listed here
to see their properties. They are discussed in detail in Sect. 4.2.2.

Ropt
k (p2) = (k2 − p2)θ(k2 − p2) (4.13)

Rexp
k (p2) =

p2

ep2/k2 − 1
(4.14)

Rpow
k (p2) =

(
k2

p2

)b
(4.15)
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Figure 4.1: On the left the typical regulator functions are shown. Different colors
represent different regulators. The red corresponds to the optimized, the blue to
the exponential while the green to the power-law regulator. On the right the effect
of these regulators is shown to a massless propagator while the black curve is the
propagator without a regulator.

Now we turn our attention back to the scale-dependent effective action. The
definition of the scale-dependent generating functional of the connected diagrams
writes as

eWk[J] =

∫
Dφ e−S[φ]−∆Sk[φ]+

∫
Jφ . (4.16)

Is Γk[ϕ] the Legendre transformation of this functional, Wk[J ]? The answer is no,
to obtain the correct Legendre transform of the scale-dependent Wk[J ] one also
has to add the cut-off function.

Γk[ϕ] + ∆Sk[ϕ] = −Wk[J ] +

∫
ϕJ . (4.17)
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Therefore the relations (3.10) and (3.12) also change accordingly

δ(Γk[ϕ] + ∆Sk[ϕ])

δϕ
= Jϕ ,

δ2(Γk[ϕ] + ∆Sk[ϕ])

δϕδϕ
=

(
δ2Wk[J ]

δJδJ

)−1

. (4.18)

To see why, let us use the following property of the cut-off function

∆Sk[ϕ+ χ] =
1

2

∫
(ϕ+ χ)Rk(ϕ+ χ) (4.19)

=
1

2

∫
ϕRkϕ+

∫
ϕRkχ+

1

2

∫
χRkχ (4.20)

=∆Sk[ϕ] +

∫
δ∆Sk[ϕ]

δϕ
χ+ ∆Sk[χ] . (4.21)

Solving this equation for ∆Sk[χ] and substituting into (4.7) one gets

e−Γk[ϕ]−∆Sk[ϕ] = (4.22)

=

∫
Dχ exp

[
−S[ϕ+ χ]−∆Sk[ϕ+ χ] +

∫
χ
δ(Γk[ϕ] + ∆Sk[ϕ])

δϕ

]
(4.23)

=

∫
Dφ exp

[
−S[φ]−∆Sk[φ] +

∫
(φ− ϕ)

δ(Γk[ϕ] + ∆Sk[ϕ])

δϕ

]
. (4.24)

From the first relation of (4.18) and using the definition of Wk[J ], one obtains

e−Γk[ϕ]−∆Sk[ϕ] = eWk[J]−
∫
ϕJ , (4.25)

which is equivalent to (4.17) that we wanted to prove.
Finally we are ready to derive a differential equation for the functional Γk[ϕ].

Therefore the next step is to differentiate (4.17) with respect to the scale, while
keeping ϕ constant. This can be done, however the source will be scale-dependent,
since it is the derivative of the scale-depenent Γk with respect to the field. Keeping
this in mind the derivative becomes

k∂kΓk[ϕ] =− k∂kWk[J ]− k∂k∆Sk[ϕ]−
∫
δWk[J ]

δJ
k∂kJ +

∫
ϕk∂kJ (4.26)

= 〈k∂k∆Sk[φ]〉 − k∂k∆Sk[ϕ] (4.27)

=
1

2

∫
〈φφ〉 k∂kRk −

1

2

∫
ϕϕk∂kRk (4.28)

=
1

2

∫
δ2Wk[J ]

δJδJ
k∂kRk (4.29)

=
1

2
Tr

(
δ2Γk[ϕ]

δϕδϕ
+Rk

)−1

k∂kRk (4.30)

=
1

2
Tr

k∂kRk

Rk + Γ
(2)
k [ϕ]

. (4.31)
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Therefore the final equation, the so called Wetterich or FRG equation [21,22] writes
as

k∂kΓk[ϕ] =
1

2
Tr

k∂kRk

Rk + Γ
(2)
k [ϕ]

(4.32)

To end this section let us note a few important properties of this equation.
It is a non-linear integro-differential equation that constitutes functionals. This
equation is exact, no approximations were used for its derivation. However ap-
proximations are usually necessary to obtain its solutions. Unlike perturbation
theory here the approximations are usually not in powers of a small parameter,
instead the theory space is restricted by using a gradient or derivative expansion
of the scale-dependent effective action. The effect of these approximations are dis-
cussed in the next section. The regulator does not only regularize the IR behavior,
but the k∂kRk term also makes the equation finite in the large momentum, i.e., in
the ultraviolet (UV) limit. For example the θ function of the optimized regulator

k∂kRk = 2k2θ(k2 − p2) + (k2 − p2)δ(k2 − p2) = 2k2θ(k2 − p2) , (4.33)

shows that the upper bound of the momentum integral is k which is a finite value,
thus the integral also stays finite. It is generally true that the scale derivative of
the regulator tends to zero, regularizing the momentum integral in the UV limit.
Because of the UV regularization and because the integral only goes up to k,
the higher modes of the fluctuations coming from, for example a mass term m,
do not influence the RG running for k < m. The path integral does not need
to be performed, because the FRG equation describes the relation between two
infinitesimally close points in phasespace. Therefore only a loop integral has to be
performed, integrating out an infinitesimal range of fluctuations on a momentum
shell. Comparing the FRG equation to the scale derivative of the loop expansion
(4.10), the only difference is the replacement SΛ → Γk. For this reason the FRG
equation is also called the 1-loop improved RG equation.

4.2 Optimization and regulator functions

In this section further properties of the FRG equation and the regulator functions
are discussed relying on Ref. [23]. The exact RG equation provides physical results
that are independent of the specific form of the regulator [24, 25], which means
that the UV and IR limits of the scale-dependent effective action are well-defined,
i.e., Γk→0 = Γeff and Γk→Λ = SΛ. This is guaranteed by the imposed properties of
the regulator function (4.9). The RG flow in the parameter space depends on the
actual choice of the regulator but the initial and final value does not, see Fig. 4.2.

The FRG equation is an integro-differential equation for functionals and thus,
it is generally not possible to have exact solutions. Therefore, approximations must
be used. One of the most often used approximations is the reduction of the theory
space by truncating the so called gradient or derivative expansion of the effective
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Figure 4.2: Exact RG flow in the parameter space for the effective action which
depends on the particular choice of the regulator. The initial and final values of
the running effective action are regulator independent.

action,

Γk[ϕ] =

∫
ddx

[
Vk(ϕ) + Zk(ϕ)

1

2
(∂µϕ)2 + ...

]
. (4.34)

The most drastic truncation is called the local potential approximation (LPA)
where only the first derivative is kept and the wave-function renormalization is
fixed as a scale-independent constant Zk ≡ 1. Within LPA the FRG equation can
be simplified and written as an equation for the effective potential

k∂kVk(ϕ) =
1

2
Tr

k∂kRk
Rk + p2 + V ′′k (ϕ)

. (4.35)

A better approximation is the LPA′, where the wave-function renormalization is
also a running coupling but it does not depend on the field Zk = Zk(ϕ\).

Further approximations are also commonly used such as the Taylor or Fourier
expansion of the potential Vk(ϕ)

Vk(ϕ) =

Ncut∑
n=1

gn(k)

n!
ϕn, Vk(ϕ) =

Ncut∑
n=1

un(k) cos(nβϕ), (4.36)

where Ncut denotes the number of terms kept in the series. The couplings gn(k)
or un(k) depend on the running RG scale k encoding the scale-dependence of the
potential.

The use of approximations can lead to the scheme-dependence of the RG run-
ning, i.e., the obtained physical results may depend on the particular choice of the
regulator. Hence, it is important to study which regulator gives the most accurate
results for a given approximation.

4.2.1 Optimization

To improve the accuracy of the approximate FRG calculations, it is necessary
to optimize the regulator-dependence. One of the most well-known optimization
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methods is called the Litim–Pawlowski method [24,25] which is based on the con-
vergence properties of amplitude expansions. This general optimization criterion
states that the most regular FRG running is obtained if the gap in the inverse
propagator C is maximal

min
p2≥0

(
δ2Γk[ϕ]

δϕ(p)δϕ(−p)

∣∣∣∣
φ=φ0

+Rk(p2)

)
= Ck2 > 0 . (4.37)

For example, the FRG equation in LPA can be written as

k∂kVk = − αdkd
∫ ∞

0

dy
dr

dy

yd/2+1

P 2 + ω
, (4.38)

P 2 =[1 + r(y)] y , ω =
V ′′k
k2

, (4.39)

where αd = Ωd/(2(2π)d) with Ωd = 2πd/2/Γ(d/2) being the d-dimensional solid
angle, while r(y) is the dimensionless form of the regulator defined as

r(y) =
Rk(p)

p2
, y =

p2

k2
. (4.40)

In this case, the amplitude expansion takes the form

k ∂kVk =

∞∑
m=1

2m

d
a2m−d (−ω)m−1 , (4.41)

an =

∫ ∞
0

dy

(
−d

2

r′

(1 + r)d/2+1

)
P−n , (4.42)

while the gap in the RG flow after neglecting the momentum-independent terms, or
equivalently, the radius of convergence of the series can be given by the expression

C = min
y≥0

P 2(y) . (4.43)

According to the method, the optimal regulator provides the fastest convergence
in this series. Following this general guideline for optimization and choosing a
momentum-independent propagator, P 2 = 1, Litim’s optimized regulator has been
derived from (4.39) and (4.43) [24]. It is a continuous function with compact
support, which gives excellent analytic results [26], however it is not differentiable,
thus it does not support the derivative expansion [27, 28]. The Litim–Pawlowski
optimization procedure can also determine the optimal parameters for various types
of regulators by searching for the best convergence properties.

Another well-known optimization method is based on the principle of minimal
sensitivity (PMS) [29], which as the name suggests, attempts to choose the optimal
parameters of a regulator by making the physical quantities as insensitive as pos-
sible to any conceivable changes in these parameters. It is not to be confused with
the principle of minimal sensitivity in perturbation theory, where the term is used
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for the optimization condition that ensures the vanishing of higher loop order con-
tributions to physical quantities [30]. This procedure can be utilized in any order
of the gradient expansion, however its disadvantage is that it operates under the
implicit assumption that the insensitivity produces the optimal parameters rather
than some non-optimal values in parameter space. Another disadvantage of the
method is that regulators that have different functional form cannot be compared
to each other.

Solution for the above problems of differentiability (in case of the Litim–
Pawlowski optimization) and comparability (in case of the PMS method) could
be the recently introduced [31] compactly supported smooth (CSS) regulator. It
is a smooth, inflinitely differentiable (class C∞) function with compact support,
which can recover all major types of regulator functions proposed in the litera-
ture. Thus, using the CSS regulator with the PMS optimization method allows the
comparison of different regulators. Additionally, the CSS regulator is an inffinitely
differentiable, smooth function with compact support, therefore its ”Litim limit”
can be considered at any order of the derivative expansion.

4.2.2 Regulator functions

Various functional forms has been proposed in the literature for the regulator func-
tion. Here the most common ones are discussed using their dimensionless form,
r(y) defined in (4.40). For instance, the regulator can take the simple form

rsharp(y) =
1

θ(y − 1)
− 1 , (4.44)

where the suppression of certain modes are controlled by the Heaviside step function
θ(y). This regulator is called the sharp-cutoff, and in LPA it allows the momen-
tum integral of (4.35) to be evaluated analytically, obtaining an RG identical to
the Wegner-Houghton equation [32] in this approximation. However, due to the
Heaviside step function, higher derivatives in the gradient expansion cannot be
determined unambiguously.

On the other hand, an exponential regulator [21] such as

rexp(y) =
a

exp (c2yb)− 1
, (4.45)

is compatible with the gradient expansion. The optimal parameters of this reg-
ulator are a = 1, c2 = ln(2) and b = 1.44 determined by the Litim–Pawlowski
optimization procedure [24, 25]. The disadvantage of this regulator type is that
analytic RG equations cannot be indicated, i.e., it requires the momentum integral
to be performed numerically.

Another type of regulator which supports the gradient expansion (if b ≥ 1) is
the power-law regulator [22]

rpow(y) =
a

yb
. (4.46)
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Based on the Litim–Pawlowski optimization method the favorable parameter
choices are a = 1 and b = 2 [24,25]. For this regulator it is also possible to perform
the momentum integral analytically, but only in LPA. It has the disadvantageous
property that it is not UV finite in all dimensions for b = 1.

The issue of UV safety can be avoided by the (general) optimized regulator,
also called Litim regulator [24], which can be written as

rgen
opt (y) = a

(
1

yb
− 1

)
Θ(1− yb) . (4.47)

It is a continuous regulator which has a compact support, however it is not dif-
ferentiable. According to the Litim–Pawlowski method, the optimal parameter
choices in LPA are b = 1 and a = 1 [24, 25]. This regulator allows the momentum
integral to be performed analytically for all dimensions in LPA, and also when
the wave-function renormalization is taken into account if higher derivatives of the
gradient expansion are not included. As discussed above, the Litim regulator, as a
solution to the Litim–Pawlowski optimization, provides the best convergence prop-
erties for the amplitude expansion in LPA. Indeed, it was demonstrated that in
LPA it yields the closest results to the accepted ones for the critical exponents of
the three-dimensional O(N) model [26]. In LPA, the derived FRG equation us-
ing this regulator is equivalent to the Polchinski RG [33]. Nevertheless, the Litim
regulator also has the disadvantage that it is not compatible with the gradient
expansion beyond second order due to its non-differentiability [27, 28]. However,
differentiability is argued to be an important condition for optimization.

One of the main goals of this thesis is the optimization of the so called CSS
regulator [31] which has the form

rgen
css (y) =

exp
[
cyb0/(f − hyb0)

]
− 1

exp[cyb/(f − hyb)]− 1
θ(f − hyb), (4.48)

which is an infinitely differentiable function even at the point f −hyb = 0. It must
be noted, that this form can be simplified with no loss of generality by substituting
f = 1,

rmodif
css (y) =

exp
[
cyb0/(1− hyb0)

]
− 1

exp[cyb/(1− hyb)]− 1
θ(1− hyb). (4.49)

Both variations can reproduce all major types of regulator functions, namely
Litim’s optimized one (4.47), the power-law type (4.46) and the exponential (4.45)
regulators,

lim
c→0

rgen
css = lim

c→0,h=1
rmodif
css =

yb0 (y−b − 1)

1− yb0
θ(1− yb),

lim
f→∞

rgen
css = lim

h→0,c→0
rmodif
css =

yb0
yb
,

lim
h→0,c=f

rgen
css (y) = lim

h→0,c→1
rmodif
css =

exp
[
yb0
]
− 1

exp[yb]− 1
. (4.50)
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In the limit c→ 0, h→ 1 it recovers the It is possible to further reduce the number
of free parameters by fixing the value of y0, so that the numerator of the CSS
regulator simplifies to a linear function of c.

rnorm1
css (y) =

c

exp[cyb/(1− hyb)]− 1
θ(1− hyb). (4.51)

The critical properties of the O(1) theory was studied using this normalized form of
the CSS in [34] to investigate the scheme-dependence of the RG equations obtained
for Quantum Einstein Gravity. The linearly normalized CSS regulator (4.51) has
the limits,

lim
c→0,h→1

rnorm1
css =

(
1

yb
− 1

)
θ(1− yb), (4.52a)

lim
c→0,h→0

rnorm1
css =

1

yb
, (4.52b)

lim
c→1,h→0

rnorm1
css =

1

exp[yb]− 1
. (4.52c)

The norm (4.51) is one of the simplest choices for y0, and this type of the CSS
can reproduce the optimized Litim regulator (with b = 1), the optimized power-
law regulator (with b = 2), yet it cannot recover the optimal parameters for the
exponential regulator (4.45) [c2 = ln(2)].

However it is also possible to choose other types of normalization, for example
an exponential one, such as

rnorm
css (y) =

exp[ln(2)c]− 1

exp
[

ln(2)cyb

1−hyb

]
− 1

Θ(1− hyb) =
2c − 1

2
c yb

1−hyb − 1

Θ(1− hyb), (4.53)

with the limits,

lim
c→0,h→1

rnorm
css =

(
1

yb
− 1

)
Θ(1− yb), (4.54a)

lim
c→0,h→0

rnorm
css =

1

yb
, (4.54b)

lim
c→1,h→0

rnorm
css =

1

exp[ln(2)yb]− 1
. (4.54c)

This norm has the advantage that it can recover all major types of regulators with
their optimal parameters, thus using the CSS regulator with the PMS optimization
method allows the comparison of different regulators. While the Litim regulator
does not support the derivative expansion, the CSS regulator still has a compact
support, but it is also smooth and infinitely differentiable, therefore its ”Litim
limit” (with a small but nonzero c parameter) can be considered at any order of
the derivative expansion.



Chapter 5

O(N) and sine-Gordon type
models

In my thesis the most studied models are the O(N) and sine-Gordon type models,
therefore this section is dedicated to them. Their symmetries, critical properties,
phase diagrams and other properties are discussed that will be used in the second
part of the thesis.

5.1 O(N) models

In this section let us revisit the O(N) model in the context of quantum field theory
and functional renormalization group [14].

The O(N) model as a scalar field must have an action that is symmetric to the
O(N) transformations. Thus the Euclidean action of the O(N) model in the local
potential approximation, where the higher derivatives of the field are neglected and
the wave-function renormalization is set to one, takes the form [14,26]

SON[ϕ] =

∫ [
1

2
(∂µϕ)2 + VON(ϕ)

]
, (5.1)

where ϕ is a vector with N components, and the potential can only depend on the
magnitude of ϕ due to the O(N) symmetry. As discussed in Chapt. 3 this scalar
field model can be mapped to statistical models using the Hubbard-Stratanovich
transformation, therefore the properties discussed below also apply to those.

In these models the fluctuations and the interactions are competing against each
other. As we saw for the ferromagnetic spin models it is energetically favorable
for the spins to align, but there are cases when the temperature fluctuations win
and a spatial long-range order cannot form. The situation is the same in quan-
tum field theory, the quantum fluctuations can prevent the formation of long-range
correlations. In this competition the dimensionality, i.e., both the dimension of
spacetime and the internal dimension of the field play an important role. It is

33
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easy to understand why, while in lower dimension the fluctuations dominate, by
increasing the dimension the number of neighbors and the number of pair inter-
actions also increase for each spin (or field, considering spacetime as a lattice),
therefore the interactions will become the dominant factor. This also means that
a mean field theory becomes a better approximation as the dimension increases.
In fact in d ≥ 4 the critical behavior of the Ising model can be described entirely
by its mean field theory therefore d = 4 is called the upper critical dimension of
the Ising model [15,35]. In small dimensions the fluctuations dominate and it was
shown by Landau that in d = 1, it is impossible for any model to have a phase
transition. In d ≤ 2 there is a theorem called Mermin-Wagner theorem stating that
if (i) there are fluctuations (T 6= 0), (ii) the interaction has a short range, (iii) the
system is in its thermodynamic limit, then a continuous symmetry cannot be bro-
ken, indicating that there cannot be a second order phase transition between the
symmetric and the symmetry-broken phase [36–38]. This however does not exclude
all phase transitions in d ≤ 2. Indeed there are very famous exceptions among the
O(N) models. One is the Ising or O(1) model in d = 2. Since the Ising model has
a only a Z2 symmetry i.e., a discrete symmetry, the Mermin-Wagner theorem does
not apply, and indeed this model has two phases [10]. Another exception is the XY
or O(2) model in d = 2. This model is restricted by the Mermin-Wagner theorem,
however it still has a topological phase transition [18].

These properties can be investigated by the FRG method. Without breaking the
O(N) symmetry the potential can be Taylor expanded as a further approximation.
Using the dimensionless potential uk ≡ k−dVk and dimensionless variables the
Taylor expansion of the potential around zero writes as

uk(ϕ) =

NCUT∑
n=1

1

(2n)!
gn(k)ϕ2n. (5.2)

For simplicity the tilde notation for dimensionless variables is not used here. A
new field variable ρ = (1/2)ϕ2 can be introduced, therefore the Taylor expanded
potential takes the form

uk(ρ) =

NCUT∑
n=1

1

n!
λn(k) ρn. (5.3)

As indicated, the scale-dependence is encoded in the dimensionless couplings which
are connected by the relation gn(k)/(2n− 1)!! = λn(k).

Since ϕ is an N component vector the FRG equation for the potential in LPA
reads [14]

k∂kVk =
1

2
Tr

[
k∂kRk

(
∂2Vk
∂ϕi∂ϕj

+ (p2 +Rk)δij

)−1
]
, (5.4)

where the trace means not only the integration over p, but also the summation
over the N indices of ϕ. Using the O(N) symmetry we can choose the direction of
ϕ to be aligned with the first axis, thus all the components of ϕ is zero except the
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first one
ϕ = (ϕ1, 0, 0, . . . ) . (5.5)

The second derivative of the potential can be written as

∂2Vk
∂ϕi∂ϕj

=
∂Vk
∂ρ

δij +
∂2Vk
∂ρ2

ϕiϕj =
∂Vk
∂ρ

δij + 2ρ
∂2Vk
∂ρ2

δ1iδ1j . (5.6)

Therefore the right hand side of (5.4) contains a diagonal matrix that can be easily
inverted

∂2Vk
∂ϕi∂ϕj

+ (p2 +Rk)δij =


p2 +Rk + ∂Vk

∂ρ + 2ρ∂
2Vk
∂ρ2

p2 +Rk + ∂Vk
∂ρ

. . .

p2 +Rk + ∂Vk
∂ρ

 . (5.7)

After calculating the inverse and the trace of this matrix one obtains

k∂kVk =
1

2

∫
p

k∂kRk

(
1

p2 +Rk + V ′k + 2ρV ′′k
+

N − 1

p2 +Rk + V ′k

)
, (5.8)

where the prime means taking the derivative with respect to ρ. By substituting
the Litim regulator ((4.47) with b = 1) the integration can be easily evaluated
analytically. Using the dimensionless potential uk ≡ k−dVk and dimensionless
variables we finally obtain the FRG equations in LPA for the O(N) model [14]

k∂ku = (d− 2)ρu′ − du+
(N − 1)Ad

1 + u′
+

Ad
1 + u′ + 2ρu′′

,

Ad =
1

2d+1

1

πd/2
1

Γ(d/2)

4

d
, (5.9)

where u′ = ∂ρu and Γ(x) is the gamma function. Let us look at the simplest
example one can think of, the Ising model in d = 2 dimensions, with the most
drastic approximation, i.e., when NCUT = 2.

Differentiating the FRG equation for the potential with respect to the field,
then substituting zero yields the FRG equations for the couplings,

k∂kg1 = −2g1 −
1

4π

g2

(1 + g1)2
, (5.10)

k∂kg2 = −2g2 +
6

4π

g2
2

(1 + g1)3
. (5.11)

By solving these differential equations one can obtain the phase diagram shown
in Fig. 5.1. As the figure shows, the model has two phases, a symmetric and a
spontaneous symmetry-broken phase. The critical WF fixed point corresponding
to the phase transition is drawn by a green point. In the symmetry-broken phase
the RG trajectories run into the IR convexity fixed point indicated by a red point.
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Figure 5.1: Phase diagram of the Ising model in d = 2 dimensions.

Here the potential has degenerate minima, therefore by choosing one of the min-
ima, the ground state spontaneously breaks the symmetry of the potential. When
all couplings are zero the model is reduced to a free field theory and there is no RG
running. This is the Gaussian fixed point shown by the black point on the figure.
By increasing the dimension up to d = 4 the WF and the Gaussian fixed points
merge and the mean field theory appropriately describes the critical behavior of
the model [39]. In dimensions smaller than four one obtains similar diagrams using
the LPA. However as discussed above, in d = 1 the model cannot have a phase
transition and therefore cannot have a WF fixed point. Also the symmetry-broken
phase cannot exist, since in d = 1 the quantum mechanic and the quantum field
theory descriptions are equivalent and the quantum mechanical effect of quantum
tunneling prevents spontaneous symmetry breaking [15, 40]. This discrepancy can
be resolved by using an improved approximation. A question arises, what is the ap-
propriate approximation that is sufficient to restore the Mermin-Wagner theorem?
My second thesis point is dedicated to this question.

5.2 Sine-Gordon type models

5.2.1 Sine-Gordon model

Besides theO(N) models one of the most studied models by FRG is the sine-Gordon
(SG) model. The SG model is defined by the action [41]

SSG =

∫ [
1

2
(∂µϕ)2 + u cos(βϕ)

]
, (5.12)
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where the two couplings are the Fourier amplitude u, and the frequency β. Strictly
speaking from an FRG viewpoint this is only valid in LPA, otherwise all interaction
terms should be included that the RG running can generate. In fact even in LPA
substituting this action into the FRG automatically generates the higher modes of
a periodic function, therefore a full ansatz for the potential has the form

VSG =

NCUT∑
n=1

un cos(nβϕ) . (5.13)

The model has a Z2 symmetry and it is also periodic. The action is invariant under
the following transformations

ϕ→ φ = −ϕ, (5.14)

ϕ→ φ = ϕ+
2π

β
. (5.15)

These symmetries play a crucial role shaping the phase diagram of the model,
since the RG transformations must preserve them. This also means that the di-
mensionful frequency, β, does not change under the RG transformation, otherwise
the periodicity would be lost. However beyond LPA it is often merged with the
wave-function renormalization by rescaling the field allowing to consider a single
coupling, the scale-dependent frequency. As it was discussed, the effective poten-
tial, i.e., the potential in the IR limit must be convex. The only function that is
both periodic and convex is a constant, therefore the dimensionful uk tends to zero
as k → 0.

Although the SG model is not part of the standard model of particle physics, it
has been used to describe the topological phase transition of superfluid films, vortex
dynamics, and it can be mapped to the Coulomb-gas in arbitrary dimensions. Its
possible applications are also studied in axion, Higgs and inflaton physics [42].
In d = 2 it is also equivalent to the fermionic Thirring model and to the XY
model [15]. One can already know from this equivalency that the SG model must
have a topological phase transition in two dimensions. Indeed Fig. 5.2 shows the
phase diagram of the SG model in d = 2, obtained by solving the FRG equations
in LPA′, using the single Fourier-mode approximation (NCUT = 1) [42]. As the
figure shows the SG model has two phases, a symmetric and a symmetry-broken
one. For small ũ = uk−2 values the topological phase transition occurs at the
critical frequency β2

c = 8π; if β2 > β2
c , then the RG trajectories tend to the

ũ→ 0 axis which is a line of attractive fixed points corresponding to the symmetric
phase, while if β2 < β2

c , then the trajectories converge to the IR convexity fixed
point where spontaneous symmetry breaking occurs. This is not forbidden by the
Mermin-Wagner theorem, since both symmetries that are broken, the periodicity
and the Z2 symmetry are discrete symmetries. The saddle point corresponding to
the phase transition is at β2

c = 8π, ũ = 0.
Interestingly this exact critical frequency can be easily obtained by FRG using

simple approximations [41]. First substituting the Litim regulator into the FRG
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Figure 5.2: Phase diagram of the sine-Gordon model in d = 2 dimensions obtained
in LPA′ using the scale-dependent frequency as a single coupling for both the
frequency and the wave-function renormalization.

equation in LPA yields

k∂kVk =
1

4π

k4

k2 + V ′′k
. (5.16)

Then by linearizing the right hand side in terms of V ′′k and throwing out the field-
independent term, one obtains

k∂kVk = − 1

4π
V ′′k +O(V ′′2k ) . (5.17)

Substituting the potential and using the single Fourier-mode approximation gives

k∂k(uk cos(βϕ)) =
β2

4π
uk cos(βϕ) . (5.18)

In LPA β does not depend on the RG running scale, k, otherwise the periodicity of
the potential would be lost. Therefore the above equation is a simple differential
equation for u that has the solution

uk = uΛ

(
k

Λ

) β2

4π

, ũk = ũΛ

(
k

Λ

) β2

4π−2

. (5.19)

This shows that the tendency of the dimesnionless ũ changes at β2
c = 8π, indicating

the correct critical frequency. This value is exact, since in the ũ → 0 limit the
wave-function renormalization does not give contributions and the linearized LPA
equation becomes exact. This also means that the critical frequency does not
depend on the choice of the regulator and cannot be used for optimization [43].
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In higher dimensions the model has only a single phase, the symmetry-broken
one, thus all trajectories converge to the IR fixed point [42]. In one dimension, even
in LPA′, due to the approximations, the FRG method shows that the two phases
are still present, similarly to the Ising model in LPA. However as discussed there,
quantum field theory in d = 1 is equivalent to a quantum mechanic description,
which means that the tunneling effect prevents a spontaneous symmetry breaking.
One of the goals of my thesis is to use this phenomenon for optimization.

5.2.2 Massive sine-Gordon model

A possible extension of the sine-Gordon model is the massive sine-Gordon (MSG)
model, where an explicit mass term is also added to the periodic self-interaction.
Its action has the form [43–45]

SMSG =

∫ [
1

2
(∂µϕ)2 +

1

2
M2ϕ2 + u cos(βϕ)

]
. (5.20)

One of the first things to notice is that this mass term breaks the periodicity of
the model, while the Z2 symmetry is intact. This suggests that the MSG model,
similarly to the Ising model, has a second-order phase transition, not a topological
one, like the SG model in d = 2.

One of the advantages of this model in d = 2 is that via bosonisation trans-
formations it can be equivalently rewritten as a gauge and fermionic model. As
the SG model is equivalent to the fermionic Thirring model, the MSG model is
also equivalent to the QED2 with a massive Dirac fermion, which is also called the
massive Schwinger model [46]

SQED2
=

∫ [
ψ̄ (iγµ∂µ −m− eγµAµ)ψ − 1

4
FµνF

µν

]
. (5.21)

For this equivalency the following relations must be true

β2 = 4π, M2 = e2/π, u =
em

2π3/2
eγ , γ = 0.57721 . . . , (5.22)

where γ is the Euler-Mascheroni constant, and the byproduct of the bosonization
procedure, i.e., the vacuum angle parameter is chosen to be θ = ±π for u > 0 and
θ = 0 for u < 0 (see Ref. [44]).

In Fig. 5.3 the phase diagram of the MSG reveals two phases in d = 2. The
symmetry broken phase, where the RG trajectories merge into a single line, and
the symmetric phase where they do not. The phase transition is indeed an Ising-
type and it is controlled by the dimensionless ratio u/M2. This ratio is related
to the critical ratio (m/e)c of QED2, which separates the half-asymptotic and the
confining phases of the fermionic model. The value of this critical ratio has been
determined by the density matrix RG approach to be 0.13 < (m/e)c < 0.33 [47].
This implies that the critical ratio of the MSG model is around 0.156 < [u/M2]c <
0.168. In the FRG framework in LPA the calculated value is [u/M2]c = 2/(4π) ≈
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Figure 5.3: Phase diagram of the QED2 model equvivalent to the MSG model in
d = 2 with β2 = 4π obtained by the CSS regulator in the “Litim limit” (b = 1, h =
1, c = 0.001). In the symmetry broken phase the RG trajectories (solid lines) merge
into a single line, while the dashed lines correspond to the symmetric phase.

0.15915, that can be derived analytically by considering spinodal instability and
the IR behavior of the propagator. Spinodal instability occurs when the FRG
equation reaches a singularity, i.e., when the inverse propagator becomes zero.
This condition gives the equation

lim
k→0

(k2 + V ′′k (ϕ)) = 0, (5.23)

where Vk(ϕ) is the scaling potential which, beside the mass term, should contain
all the higher harmonics generated by RG transformations [44]. If all Fourier
modes are taken into account, one obtains the mentioned critical ratio [u/M2]c =
2/(4π). However if the single Fourier-mode approximation is used, i.e., a potential
Vk(ϕ) that includes only a single cosine and the mass term, then the analytic
considerations based on the IR behavior of the propagator [44,48] leads to

χc =
[ u

M2

]
c

=
1

(4π)
≈ 0.07957, (5.24)

which is half of the result obtained in LPA without further approximations. In
this case, the CSS regulator (4.53) with b = 1 and c = 0.01 gives the ratio
[u/M2]c = 0.07964 close to the analytic prediction. However, other regulator func-
tions such as the power-law type regulator with b = 1 run into a singularity, and
stop at some finite momentum scale due to the spinodal instability, rendering the
determination of the critical ratio [44] impossible. Thus, the scheme dependent con-
vergence properties of the RG equations in the single Fourier mode approximation
provides us another tool to optimize the regulator functions.



Chapter 6

Inflationary cosmology

One of the most interesting topics of today’s research is inflationary cosmology
where particle physics can play a role describing the early stages of the Universe.
Recent studies suggest that it is maybe possible to identify the time evolution
and the cooling of the Universe as an RG evolution. The consequences of this
possibility are studied in the second part of my thesis therefore here I give a very
brief introduction to the topic following mostly Ref. [49] and also Refs. [23,50,51].

A rapid expansion of the early Universe called inflation explains many issues
such as the horizon problem, the flatness of the Universe, and the absence of mag-
netic monopoles [52]. It is believed that the scale of the Universe got multiplied by a
large factor around e60. Let us start with the definition of the so-called Friedmann–
Lamâıtre–Robertson–Walker (FLRW) metric that describes an isotropic, homoge-
neous expanding Universe, using (−1, 1, 1, 1) signature and c ≡ 1

gµν =


−1 0 0 0
0 a2 0 0
0 0 a2 0
0 0 0 a2

 , a = a(t), gµν =


−1 0 0 0
0 a−2 0 0
0 0 a−2 0
0 0 0 a−2

 ,

(6.1)

ds2 =gµνdx
µdxν = −dt2 + a2

(
dx2 + dy2 + dz2

)
,

=− dt2 + a2
(
dr2 + r2dθ2 + r2 sin2 θ dφ2

)
, (6.2)

which is modified in curved spacetime as

ds2 =− dt2 + a2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θ dφ2

)
, (6.3)

ds2 =a2

(
−dτ2 +

dr2

1− kr2
+ r2dθ2 + r2 sin2 θ dφ2

)
, (6.4)

where k = −1, 0, 1 means open, flat and closed Universes and dτ ≡ dt/a is the
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conformal time. The distance between two particles at (t, 0) and (t, r) is

d =

∫
ds = a

∫ r

0

dr√
1− kr2

= a(t)


sinh−1 r if k = −1

r if k = 0

sin−1 r if k = 1

, (6.5)

and the time derivative of this equation gives the Hubble law

ḋ =
ȧ

a
d = Hd, H ≡ ȧ

a
. (6.6)

In order to derive the time-dependence of the scalar factor a(t) one has to use the
Einstein equation

Gµν = Rµν −
1

2
Rgµν = 8πGTµν , (6.7)

where R is the scalar curvature and assuming isotropy and homogeneity the stress-
energy tensor writes as

Tµν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 , Tµν = gµαT
α
ν =


ρ 0 0 0
0 a2p 0 0
0 0 a2p 0
0 0 0 a2p

 . (6.8)

Substituting the FLRW metric and the stress-energy tensor into the Einstein equa-
tions gives only two independent equations, the Friedmann and the Raychaudhuri
equations

H2 =

(
ȧ

a

)2

=
8πGρ

3
− k

a2
, (Friedmann) (6.9)

ä

a
= −8πG

6
(ρ+ 3p). (Raychaudhuri) (6.10)

and from the combination of these, one can get a continuity equation (by differen-
tiating the first one and substituting the second)

ρ̇+ 3H(ρ+ p) = 0. (continuity) (6.11)

Let us note that this can also be interpreted as the consequence of the 1st law
of thermodynamics dU = −pdV =⇒ d(ρa3) = −pd(a3). Now we turn to the
discussion of the solutions of the Friedmann equation for k = 0, i.e., flat curvature.
Let’s assume that ρ ∼ a−n. This is equivalent with an assumption that the equation
of state is p = ωρ. This can be shown using the continuity Eq. (6.11) as follows

dρ

ρ
= −3

da

a
(1 + ω) =⇒ ρ ∼ a−3(1+ω), (6.12)

therefore
ρ ∼ a−n ⇔ n = 3(1 + ω), p = ωρ. (6.13)
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Let us first discuss the case (p = −ρ) which results in exponential expansion

n = 0, ω = −1 =⇒ ρ ∼ a0 = const =⇒ H2 =
8πG

3
ρ = const,

=⇒ ȧ = Ha =⇒ a ∼ eHt. (6.14)

The case of exponential expansion can also be understood as an inclusion of a new
term in the Einstein equation

Tµν = diag(−ρ,−ρ,−ρ,−ρ), Gµν = 8πGTµν

⇔ ρ =
Λ

8πG
, Gµν = −Λgµν , (6.15)

where Λ stands for the cosmological constant (related to dark energy). In other
words, the requirement for the equation of states (p = −ρ) and the inclusion of
Λ in the Einstein equation results in the same exponential expansion. Finally, let
us note that the cases n = 3, 4 (ω = 0, 1

3 ) stand for matter and radiation which is
not discussed here. Although the cosmological constant and the special equation
of state (ρ = −p) both result in the same rate of expansion but the former cannot
be used for inflation since it has to end. The key observation is that scalar fields
can mimic the equation of state thus represent excellent models for inflation

S =

∫
d4x
√
−g
[

1

2
R+ Lφ

]
,

√
−g =

√
−det(gµν) = a3, (6.16)

where

Lφ = −1

2
gµν∂µφ∂νφ− V (φ), (6.17)

and substituting the FLRW metric the scalar Lagrangian writes as

Lφ =
1

2
φ̇2 − 1

2

1

a2
(∇φ)2 − V (φ). (6.18)

From the Euler-Lagrange equations one finds the equation of motion

∂µ

(
∂(
√
−gLφ)

∂(∂µφ)

)
− ∂(

√
−gLφ)

∂φ
= 0 ⇒ φ̈+ 3Hφ̇− 1

a2
∇2φ+ V ′(φ) = 0. (6.19)

The stress energy tensor and its components of the scalar field are the following

Tµν =
2√
−g

δ(
√
−gLφ)

δgµν
= ∂µφ∂νφ+ gµνLφ,

T00 = ρ =
1

2
φ̇2 +

1

2

1

a2
(∇φ)2 + V,

Tii = a2p = a2

(
1

2
φ̇2 − 1

6

1

a2
(∇φ)2 − V

)
. (6.20)
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Let us discuss the requirements for inflation. The first observation is that over
inflation the field can be considered to be homogeneous (∇φ/a = 0). Then the
relation between the density and pressure reads

ω =
p

ρ
=

1
2 φ̇

2 − V
1
2 φ̇

2 + V
if

1

2
φ̇2 � V =⇒ ω = −1, (6.21)

and as a consequence

H2 =
8πG

3
ρ =

8πG

3

(
1

2
φ̇2 + V

)
≈ 8πG

3
V ≈ const. (6.22)

There is another condition that is imposed in the ”slow-roll” mechanism (see
Eq. (10.6) of [51] or [49]) which assures a prolonged inflation

φ̈� 3Hφ̇. (6.23)

It is clear that if the change in φ̇ is small then the first condition holds for a suffi-
ciently large time interval. From the equation of motion (6.19) for a homogeneous
field one gets the relation

3Hφ̇+ V ′ ≈ 0. (6.24)

Now rewrite these conditions for the potentials. From Eq. (6.21) one finds

1

2

φ̇2

V

(6.24)
=

1

2

V ′
2

9H2V

(6.22)
=

1

2

1

3

1

8πG

V ′
2

V 2
≡ ε

3
� 1. (6.25)

The first condition therefore writes as

ε� 1, ε ≡ 1

2

1

8πG

V ′
2

V 2
. (6.26)

Using ε one can get a simple equation for Ḣ. From Eq. (6.22) it follows

2HḢ =
8πG

3
V ′φ̇

(6.24)
= −8πG

3

V ′
2

3H
, (6.27)

Ḣ =− 8πG

6

V ′
2

3H2

(6.22)
=
−V ′2

6V

(6.22)
=
−V ′2

6V

3H2

8πGV
= −εH2. (6.28)

Thus the condition ε� 1 also means Ḣ � H2, i.e., the Hubble constant changing
slowly. Differentiating (6.24) gives

φ̈ =− V ′′φ̇

3H
+
V ′Ḣ

3H2

(6.28)
= −V

′′φ̇

3H
− V ′

3
ε,

φ̈

3Hφ̇

(6.24)
= − 1

3

(
V ′′

3H2
− ε
)

(6.22)
= −1

3

(
1

8πG

V ′′

V
− ε
)
≡ −1

3
(η − ε)� 1, (6.29)
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where the second condition writes as

η � 1, η ≡ 1

8πG

V ′′

V
. (6.30)

Thus, if ε(φf ) ≈ 1 or η(φf ) ≈ 1 then the inflation ends. Further constraints coming
from experimental data can be drawn by using the formal solution of the Friedmann
equation and the so-called e-fold number which has to be in the range N = 50−60,

a(t) = exp

{∫ t

t0

dt′H(t′)

}
, (6.31)

N = ln
a(tf )

a(ti)
=

∫ tf

ti

dt′H(t′) ≈ H
∫ φf

φi

dφ

φ̇

(6.24)
= −3H2

∫ φf

φi

dφ
1

V ′
,

(6.22)
= −8πG

∫ φf

φi

dφ
V

V ′
. (6.32)

One more constraint is given by the energy scale of inflation, i.e., by the equation

V (φi) ≡
r

0.01
(1016 GeV)4 , (6.33)

which fixes an overall factor for the potential [50].
Various types of inflationary potentials can be considered and the goal is always

to determine the above quantities, such as ε, η, φi, φf and the required number
for the e-fold parameter. How can one measure some of these in order to be able
to select between competing scenarios? The answer is related to the temperature
fluctuations of the cosmic microwave background radiation (CMBR). These fluctu-
ations are the relic of the physical properties of the Universe at the inflation period
after which the Universe has to be reheated and the quantum fluctuations (of the
scalar field and of the metric) should be the seeds for structure formation. Fluc-
tuations can be described by the power spectrum Pg(k) which has the following
definition for a generic quantity g(x, t)

g(x, t) =

∫
d3k

(2π)3/2
eikxgk(t),

〈
g∗k1

, gk2

〉
= δ(3)(k1 − k2)

2π2

k3
Pg(k). (6.34)

Then one can define the so-called spectral index ns for scalar and the ratio r of
tensor and scalar fluctuations

ns − 1 ≈ V ′

V

dlnPR
dφ

, ns − 1 ≈ 2η − 6ε, r ≡ PT
PR

, r ≈ 16ε, (6.35)

where PR is the scalar and PT is the tensor power spectrum. The spectral index
(ns) and the ratio (r) can be related to each other (being independent of N) and can
be determined by experimental data. While the discussed slow-roll mechanism can
be considered as a classical process, quantum fluctuations are necessary to explain
the fluctuations of the CMBR and how to relate the theoretical predictions of an
inflationary model to observations.

In the second part of my thesis I am going to discuss inflationary models and
constrain them using the available experimental data.
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Chapter 7

Optimization

The FRG equation involves a function called the regulator that can be chosen
arbitrarily as long as it satisfies a few conditions. The physical results derived by
the exact FRG method must not depend on the choice of the regulator, however
in most cases approximations are required to obtain solutions which gives rise to
scheme-dependence (see Sect. 4.2). In this chapter the goal is to study this scheme-
dependence in various models and determine the optimal regulator that produces
the most accurate results. The CSS regulator recovers all major type of regulators
in its appropriate limits, thus it provides a useful tool to achieve this goal.

7.1 Optimization based on the principle of mini-
mal sensitivity

One of the most used optimization methods is based on the PMS [29]. As the name
suggest it attempts to choose the optimal parameters of the regulator in such a
way to make the physical quantities as insensitive as possible to any changes in the
parameters. If one treats a physical quantity as a function of the parameters of a
regulator then the optimal parameters are those where the derivative of the regu-
lator function is zero. Therefore one has to look for an extremum, i.e., a minimum
or a maximum in the parameter space. This procedure can be utilized in any order
of the gradient expansion, however its disadvantage is that it operates under the
implicit assumption that the insensitivity produces the optimal parameters rather
than some non-optimal values in parameter space. Thus, here the method is also
tested by reproducing a number of known results, reassuring that the results of
the PMS method are consistent with the globally optimal values for all regulator
functions discussed in this section.

Another disadvantage of the method is that regulators that have different func-
tional form cannot be compared to each other. However the parameter space of the
CSS regulator contains all major type of regulators discussed so far in the litera-
ture, since it recovers all of them in its appropriate limits. This property allows the
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comparison of various regulator functions by using the PMS optimization method.
Furthermore, it has a compact support (non-zero only in a finite interval of the
momentum), smooth, infinitely differentiable function, thus it can be applied at
any order of the derivative expansion.

In the next sections I am going to study the regulator-dependence of the func-
tional RG in the framework of the bosonized QED2 [44] equivalent to the MSG
model (see Sect. 5.2.2) and in the O(N = 1) symmetric scalar field theory [26],
within the leading order of the derivative expansion, i.e., in LPA. I am going to op-
timize the parameters of the CSS regulator with both normalization in LPA using
the PMS optimization method, while comparing the result to the one obtained by
the Litim–Pawlowski procedure.

7.1.1 Results obtained by the RG study of QED2

Orientation

Consider first the RG study of the bosonized QED2 described by the action (5.20),
where the subscript denotes that the model is considered in d = 2. Two approx-
imations of the FRG approach are used, the LPA and the single-mode Fourier
approximation. In this case the dimensionless effective potential (Ṽk = k−2Vk) of
the model has a mass term and only a single cosine,

Ṽk = 1
2 M̃

2
k ϕ

2 + ũk cos(βϕ) , (7.1)

with β2 = 4π, fixed by the bosonisation, and the tilde superscript as usual de-
notes dimensionless variables, M̃2

k = k−2M2
k and ũk = k−2uk. From (4.35) the

dimensionless FRG equation for this potential in LPA writes as

(2 + k∂k)Ṽk(ϕ) = −
∫ ∞

0

dy

4π

dr

dy

y2

(1 + r)y + Ṽ ′′k (ϕ)
. (7.2)

No further approximations have been used solving this equation, all calculations
presented here were obtained by the numerical integration of the above equation
for the single-frequency MSG model.

The phase diagram of the MSG model presented in Fig. 5.3 is not an exception,
it was obtained using equation (7.2) substituting the first normalization of the CSS
regulator (4.51) with the parameter values b = 1, h = 1 and c = 0.001 ≈ 0. The
second normalization of the CSS regulator (4.53) gives almost identical results, since
both normalizations converge to the same optimized form of the Litim regulator in
the c→ 0 limit.

As discussed in Sect. 5.2.2, Fig. 5.3 shows two phases. The symmetry broken
phase is represented by full lines, where the Z2 symmetry of the MSG model is
broken spontaneously. In this phase the RG trajectories merge into a single line
in the IR limit and the slope of this so called master trajectory defines the critical
ratio. Therefore in the IR limit of the symmetry broken phase the ũk becomes a
linear function of M̃2

k ,

ũk = a M̃2
k + b. (7.3)
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Both the dimensionless and the dimensionful ratio of these couplings tend to the
same constant value, i.e., to the slope, [ũk→0/M̃

2
k→0] = [uk→0/M

2
k→0] = a, since

in the IR limit ũk and M̃2
k are increasing, thus b can be neglected. The slope is

also independent of the initial conditions. This is not true in the symmetric phase
where ũk is still a linear function of M̃2

k in the IR limit, but the slope depends on
the initial conditions. The numerical calculations obtained in this work strongly
suggest that the slope is scheme-independent and takes the value a = 1/(4π),
within the single Fourier-mode approximation.

However the convergence of the ratio of the couplings to this value depends
on the regulator. For example Fig. 7.1 was obtained using the CSS regulator close
to the power-law limit (4.52b) (h → 0, c → 0), that has poor convergence prop-
erties for b = 1. Therefore the RG trajectories stop at a finite scale kf , when
spinodal instability occurs. This means that the ratio χc = [uk→kf

/M2
k→kf

] is
scheme-dependent, and can be used to test the convergence properties of different
regulators, and select the optimal one in the framework of the PMS optimization.

Figure 7.1: Phase diagram of the QED2 model equivalent to the MSG model in
d = 2 with β2 = 4π obtained by the CSS regulator (4.51) with the parameters b = 1,
h = 0.001 and c = 0.001, approximating the power-law limit. RG trajectories of
the symmetry broken phase (solid lines) stop at a finite scale kf .

QED2 and CSS regulator with linear norm

First consier the CSS regulator with the “linear norm” (4.51) and find its opti-
mal parameters (b, h, c). Fig. 7.2 shows how the critical ratio χc = [u/M2]c =
ũk→kf /M̃

2
k→kf = uk→kf /M

2
k→kf depends on the parameters b, h and c of the CSS

regulator with the linear normalization. The lower value means that the regula-
tor has better convergence. Applying the PMS method suggests that the optimal
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values can be found at an extremum of a physical quantity as a function of the
parameter space. In the case of the bosonised QED2 this means that the minimum
of the critical ratio [u/M2]c gives minimal sensitivity on the change of the param-
eters. This can be seen in Fig. 7.2, that each subplot with a fixed b has a plateau
around the minimum, that defines the optimal parameters for that fixed b value. If
b = 1, then this minimum as a function of the remaining parameters falls into the
Litim limit (c → 0, h = 1), otherwise for different b 6= 1 the optimized value is a
different limit c→ 0 but h 6= 1. Fig. 7.3 shows these optimal minima of the critical
ratio as a function of the parameter b for every subgraph of Fig. 7.4. The minimum
of these minima, i.e., the global minimum is at b = 1 and therefore also at c → 0
and h = 1 leading to the Litim optimized limit of the CSS regulator. Thus the
PMS optimization method produces the optimized parameters b = 1, c → 0 and
h = 1, approximating the Litim limit of the CSS regulator that gives the smallest
critical ratio, closest to the analytic one.

χc 

χc χc 
χc 

χc 

Critical ratio χc for bosonized QED2 (regulator in linear normalization, b parameter fixed) !

Figure 7.2: The critical ratio χc, defined by Eq. (5.24), of the bosonized QED2,
as a function of the parameters of the CSS regulator with the linear normaliza-
tion (4.51). Smaller ratios correspond to better regulators. The parameters b = 1,
c = 0.001 and h = 1 (“back corner” of the first subplot) produce the optimal result
indicating the Litim limit of the CSS to be the optimal regulator.
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Figure 7.3: Minimum values of the critical ratio with respect to the parameters
c and h as a function of the remaining parameter b for every subgraph of Fig. 7.4
obtained using the linear norm of the CSS regulator. The global minimum is at
b = 1 and therefore also at c → 0, h = 1 leading to the Litim limit of the CSS
regulator.

χc 

χc χc 
χc 

χc 

Critical ratio χc for bosonized QED2 (regulator in exponential normalization, b parameter fixed) !

Figure 7.4: The critical ratio χc, defined by Eq. (5.24), of the bosonized QED2,
as a function of the parameters of the CSS regulator with the exponential normal-
ization (4.53) instead of the linear norm shown in Fig. 7.2 similarly. Smaller ratios
correspond to better regulators. Again, the parameters b = 1, c = 0.001 and h = 1
(“back corner” of the first subplot) produce the optimal result indicating the Litim
limit of the CSS to be the optimal regulator.
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QED2 and CSS regulator with exponential norm

The calculations discussed in the previous subsection can be repeated for the ex-
ponential norm of the CSS regulator (4.53) instead of the linear one. The goal is
the same, to use the PMS method and find the optimal set of parameters b, h and
c, that give minimal sensitivity on the choice of these parameters. Similarly to
Fig. 7.2, Fig. 7.4 shows the critical ratios of the bosonised QED2 obtained using the
CSS regulator but with the exponential norm as a function of the parameters b, h
and c. Again, the lower values correspond to better regulators. Fig. 7.5 shows the
local optimums of the each subgraph of Fig. 7.4 as a function of the parameter b,
analog to Fig. 7.3, demonstrating that the optimum value is b = 1. Comparably to
the previous calculations the critical ratio closest to the analytic result is obtained
with the parameters b = 1, c = 0.001 and h = 1 favoring again the Litim limit
of the CSS regulator. Therefore the PMS strategy applied in the framework of
the bosonised QED2 gives the same parameters independent of the normalization
strongly indicating that the optimal regulator is indeed the Litim limit of the CSS
in LPA.

In order to have a more reliable result, in the following section the PMS op-
timization method is performed for the CSS regulator in the framework of the
O(N = 1) symmetric scalar field theory in d = 3 dimensions.

Figure 7.5: Minimum values of the critical ratio with respect to the parameters
c and h as a function of the remaining parameter b for every subgraph of Fig. 7.4
obtained using the exponential norm of the CSS regulator. The global minimum
is at b = 1 and therefore also at c→ 0, h = 1 leading to the Litim limit of the CSS
regulator.
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7.1.2 Three-dimensional O(1) model

Orientation and previous studies

The O(1) model in d = 3 is a well studied textbook example for the optimization
of regulators. A typical physical quantity that can be easily calculated is the
critical exponent ν of the WF fixed point that describes the critical behavior of
the correlation length. To investigate this model in the FRG approach drastic
approximations are considered. Similar to the bosonized QED2, the O(1) model
is studied here in LPA, and using a drastic truncation in the Taylor series of the
potential considering only the dimensionless ansatz

Ṽ =
1

2
g̃1 ϕ̃

2 +
1

4!
g̃2 ϕ̃

4, (7.4)

with only two dimensionless couplings g̃1 and g̃2. Substituting this potential into
Eq. (4.35) yields the RG equations for the couplings [34],

˙̃g1 = −2g̃1 + g̃2 Φ̄2
3/2(g̃1),

˙̃g2 = −g̃2 + 6 g̃2
2 Φ̄3

3/2(g̃1), (7.5)

where the treshold function is defined as

Φ̄pn(ω) =
1

(4π)n Γ(n)

∫ ∞
0

dy
yn+1 r′

(y(1 + r) + ω)p
. (7.6)

These flow equations depend on the choice of the regulator, thus the ν critical
exponent calculated at the WF fixed point from the inverse of the largest negative
eigenvalue of the stability matrix is also regulator-dependent.

In the literature the RG flow equations has been calculated for all major type
of regulators [24–26, 53]. The most accurate critical exponent is produced by the
Litim regulator. It is obtained to be around ν ≈ 0.54277 by using the RG equations
for two couplings in LPA [34]. This value is smaller than the value accepted to
be exact ν ≈ 0.63. In order to obtain an exact result one has to solve the exact
FRG equations, i.e., take into account higher order terms both in the derivative
expansion and in the Taylor expansion of the potential. In this case, the regulator-
dependence should vanish. The general observation in the literature is that better
agreement can be achieved by better approximations. The ν critical exponent was
also determined using four couplings in LPA with the Litim regulator yielding a
value closer to the exact one [34].

In Ref. [34] the linear normalization of the CSS regulator has already been
investigated using two and four couplings, where the optimization of the parameters
of the CSS has confirmed that the optimal regulator is the Litim one, supporting the
results of Sect. 7.1.1. Since the Litim regulator has the best convergence properties
among the major types of regulators [24–26,53], it is expected that the Litim limit
of the CSS regulator provides the best results for a larger number of couplings
as well. However the exponential norm of the CSS regulator has not yet been
optimized in the framework of the O(1) field theory, therefore a detailed analysis
is performed in the following subsection.



56 CHAPTER 7. OPTIMIZATION

ν 

ν ν ν 

ν 

Critical exponent ν for the 3D O(1) model (regulator in exponential normalization, b parameter fixed) !

Figure 7.6: The critical exponent ν of the three-dimensional truncated O(1)
model (7.4) as a function of the parameters of the CSS regulator with exponen-
tial norm (4.53). Higher exponents correspond to better regulators, therefore the
optimal parameters are at the Litim limit (b = 1, c = 0.001 and h = 1).

Figure 7.7: Maximum values of the critical exponent ν as a function of the pa-
rameter b obtained with the exponential norm of the CSS regulator. The global
maximum is at b = 1 leading to the Litim limit of the CSS as the optimal result.

Three-dimensional O(1) model and CSS regulator with exponential norm

In this subsection the RG study of the O(1) model is performed using the exponen-
tial normalization of the CSS regulator (4.53). The goal is the same again, to look



7.1. OPTIMIZATION BASED ON THE PRINCIPLE OF MINIMAL SENSITIVITY 57

Figure 7.8: The critical exponent ν as a function of b obtained by various limits
of the CSS regulator with exponential norm (4.53).

for the optimal set of parameters b, h and c, using the PMS strategy. Unlike in the
case of QED2, here, the maximum value of the critical exponent ν of the WF fixed
point provides the optimized parameters. Fig. 7.6 shows this critical exponent of
the O(1) model as a function of the parameters b, h and c of the CSS regulator
with exponential norm.

Applying the PMS method, one finds plateaus in each subplot of Fig. 7.6 around
the maximums, where the optimized parameters are the least sensitive to small
perturbations. Calculating the νmax as the maximal critical exponent with respect
to c and h for a fixed b, and then plotting it as a function of the parameter b yields
Fig. 7.7. The global maximum can be also read off from Fig. 7.7 obtaining again
b = 1, c = 0.001 and h = 1 as the optimal parameters. Therefore recalling previous
studies one can conclude that the PMS strategy produces the Litim limit c → 0,
and h = 1 for both normalizations of the CSS as the optimized regulator in LPA.

Considering the CSS regulator with fixed c and h parameters gives a useful
perspective too. Fig. 7.8 shows the critical exponent as a function of the remaining
parameter b of the CSS with exponential norm for its various limits (4.54), i.e., the
Litim, the power-law, and the exponential limit. The optimal result for the Litim
limit of the CSS is b = 1, which is the favored value in the literature. The PMS
strategy gives b ≈ 2 for the power-law limit of the CSS, which is the optimal choice
based on the Litim–Pawlowski field amplitude expansion too. In the exponential
limit one finds b ≈ 1.5 in agreement with the amplitude expansion where the
optimum is b = 1.44. Reproducing these known results [24] ensures the consistency
of the above calculations based on the PMS method. Fig. 7.8 also shows that among
the limits of the CSS regulator the Litim limit with b = 1 provides the optimal
result in accordance with Fig. 7.7. This again demonstrates that the Litim limit is
the most favorable choice.
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7.2 Optimization based on spontaneous symmetry
breaking

Symmetries and symmetry breakings play a crucial role in physics, especially in the
phase transitions of quantum field theories. For example spontaneous symmetry
breaking (SSB) in the standard model gives rise for the mass generation due to
the Brout-Englert-Higgs mechanism. However, in d = 0 + 1 dimension, there is
an equivalence between quantum mechanics and quantum field theory, thus as
a consequence of quantum tunneling a symmetry cannot be broken spontaneously
[15,40]. Therefore, the spontaneously broken phase must vanish in one-dimensional
quantum field theories.

In the following sections the goal is to introduce a new optimization strategy
for the RG regulators that can be used beyond LPA and it is based on a physical
requirement, that the symmetry broken phase should vanish for the exact RG flow
in d = 1. This method also allows the comparison of different regulators at any
order of the gradient expansion. The optimization is performed in the framework
of the SG model [42] (see also Sect. 5.2.1). The SG model has an advantage over
other models, since its RG equations beyond LPA are simpler. It does not re-
quire field-dependent wave-function renormalization, unlike for example the O(N)
models where the field-dependence of the wave-function renormalization must be
included. First I discuss a test of the optimization method performed in [55], then
the parameters of the CSS regulator are optimized (which is my contribution to
the multi-author paper [2]).

7.2.1 SG model for dimensions 1 ≤ d ≤ 2

Consider first the RG study of the SG model [41]. In LPA it has the action given
by Eq. (5.12), but beyond LPA the effective action must include the wave-function
renormalization. By rescaling the field variable ϕ̃ = βϕ and using the single Fourier
mode approximation the effective action takes the form

Γk =

∫
ddx

[
1

2
zk(∂µϕ̃)2 + uk cos(ϕ̃)

]
, (7.7)

where uk is the dimensionful Fourier amplitude, while zk is the field-independent
wave-function renormalization merged with the frequency β. It can be also in-
terpreted as the inverse of the scale-dependent frequency zk = 1/β2

k and has the
dimension kd−2. This ansatz is an appropriate approximation, since the RG study
of SG type models [41, 44, 46] is accurate without a field-dependent wave-function
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renormalization. From (4.32) the RG equations can be derived for the couplings

k∂kuk =

∫
p

k∂kRk
k2−duk

(
P −

√
P 2 − (k2−duk)2√

P 2 − (k2−duk)2

)
, (7.8)

k∂kzk =

∫
p

k∂kRk
2

[−(k2−duk)2P (∂p2P + 2
dp

2∂2
p2P )

[P 2 − (k2−duk)2]5/2

+
(k2−duk)2p2(∂p2P )2(4P 2 + (k2−duk)2)

d [P 2 − (k2−duk)2]7/2

]
, (7.9)

where P = zkk
2−dp2 + Rk and the integral denotes

∫
p

=
∫
dp pd−1Ωd/(2π)d with

the d-dimensional solid angle Ωd. In the following context it is useful to introduce
the normalized dimensionless parameters z̄k ≡ (8π)z̃k and ūk ≡ ũkk

2/k̄ where
z̃k = k2−dzk and ũk = k−duk are the conventional dimensionless couplings and
k̄ = minp2 P .

In d = 2 dimensions (as discussed in Sect. 5.2.1) the SG model has two phases
and a topological phase transition with a scheme-independent critical value sepa-
rating the phases 1/z̄? = 1 [43]. In d = 1 dimension the approximated RG flow
incorrectly indicates a Wilson-Fisher saddle point ū?, 1/z̄? and two phases that can
be seen for example in Fig. 7.9 which was obtained using the power-law regulator
(4.46).
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Figure 7.9: Phase diagram of the SG model in d = 1 dimension obtained by the
numerical integration of Eqs. (7.8), and (7.9) where the power-law regulator (4.46)
was substituted with a = 1 and b = 3 [2, 55]. The distance between the nontrivial
IR and WF fixed point, D is defined by (7.10).

Similarly, in fractal dimensions, 1 < d < 2 a WF saddle point appears in the
RG flow, too. However, in d = 1 dimension the spontaneously broken phase should
vanish, which means that the nontrivial IR fixed point (1/z̄IR ≡ 0, ūIR ≡ 1) and
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the WF saddle point should coincide. Therefore, the scheme-dependent distance
between the WF saddle point and the nontrivial IR fixed point (see e.g. Fig. 7.9),

D ≡
√

(ūIR − ū?)2 + (1/z̄IR − 1/z̄?)2

=
√

(1− ū?)2 + 1/z̄2
? (7.10)

can be used for the optimization of the RG equations. A smaller distance D in-
dicates a better regulator, since all RG trajectories should converge to the other
attractive IR fixed point (ūk→0 = 0, 1/z̄k→0 = ∞) that corresponds to the sym-
metric phase [31,42].

7.2.2 Optimization of the power-law regulator

In order to study the validity of this optimization strategy one can perform the
optimization on the power-law regulator (4.46) [55]. The position of the saddle
points calculated by the numerical integration of Eqs. (7.8) and (7.9), for dimen-
sions 1 ≤ d ≤ 2 are plotted in Fig. 7.10 as a function of b, the parameter of the
power-law regulator. The WF fixed point of the topological phase transition of
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Figure 7.10: Positions of the WF saddle point of the SG model obtained using the
power-law regulator (4.46) (a = 1) in dimensions 1 ≤ d ≤ 2 for various b [2, 55].
The inset shows the distance D defined by Eq.(7.10) as a function of the parameter
b in d = 1 dimension.

the two-dimensional SG model (ū? = 0, 1/z̄? = 1) is scheme-independent, thus the
curves of Fig. 7.10 join as the dimension increases to two. However the spurious
saddle point for d = 1 and for fractal dimensions depend on the parameter of the
regulator. This can be used to optimize the parameter b of the power-law regulator,
since the symmetry broken phase and therefore the distance between the nontrivial
IR fixed point and the saddle point (7.10) should vanish in d = 1 dimension. The
result can be read off from the inset that shows the distance D as a function of
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b. The optimal parameter of the power-law regular is b = 2, providing the small-
est distance. Therefore the procedure recovers the known result obtained by the
Litim–Pawlowski optimization, validating the proposed method.

7.2.3 Optimization of the CSS regulator

In this subsection the goal is to optimize the CSS regulator (4.53) based on the
minimization of the distance D (7.10) in the one-dimensional SG model. The first
step is to calculate the position of the spurious WF saddle point from which the
distance can be determined. For simplicity the RG equations (7.8), and (7.9) are
linearized in terms of ũ which is found to be usually much smaller than one. It
is important to check the consistency of the method. Fig. 7.11 shows how the
distance D depends on the parameter b of the CSS regulator for its different limits.
The results obtained by the power-law limit (4.54b) of the CSS regulator (with
parameters c = 0.0001 and h = 0.0001) is shown by the dashed line. The findings
are qualitatively identical to the inset of Fig. 7.10 where the exact flow equations
were used. Both curves have a minima around b ≈ 2, in the linearized case it is at
b = 2.3. As a reminder the Litim–Pawlowski optimization indicates b = 2 as the
optimal parameter of the power-law regulator. The exponential limit (4.54c) of the
CSS regulator (with parameters c = 1, h = 0.0001) provides another consistency
check. It is represented by the dotted line in Fig. 7.11 where the minimum is
situated at b ≈ 1.4, while the optimal choice is b = 1.44 according to the Litim–
Pawlowski method. The solid line of Fig. 7.11 corresponds to the minimum values
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Figure 7.11: The distance D (7.10) as a function of the parameter b of the CSS
regulator for its different limits (4.53). The solid line shows the best values obtained
by the optimal c and h parameters as a function of the fixed b.

of D obtained by the optimal c and h parameters as a function of the fixed b. It
coincides with the power-law limit for large b values and has an inflection point
where the exponential and power-law limits cross each other at b ≈ 2.1. As the solid
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line shows, the minimal distance is obtained for small b where the optimal value
used for c was also small but finite. This indicates that even beyond LPA the Litim
limit (b ≈ 1, c ≈ 0) of the CSS is the optimal regulator meaning a small but nonzero
value of c to preserve differentiability. Although in this limit the computations are
costly due to the oscillatory behavior of the derivatives for c → 0, however the
derivatives always exist for a small but finite c, thus the regulator can be used
at any order of the derivative expansion. This is not true for the Litim regulator
itself, only for the approximate Litim limit of the CSS regulator. It is important
to note that performing the PMS method, i.e., finding the global minimum of the
CSS regulator gives exactly the same optimal parameters. In the previous sections
based on the PMS method the Litim limit of the CSS regulator is found to be
optimal with h = 1. Similarly, beyond LPA the optimal parameters obtained to be
c = 0.1 and h ≈ 0.3 for b = 1.25, however the optimal value for h could depend on
the model and the approximations used.

7.3 Conclusion

The optimization of the regulator-dependence of the functional RG equations has
been investigated focusing especially on the CSS regulator (4.49).

First, the optimization has been done in LPA based on the PMS in the frame-
work of the two-dimensional bosonized QED2 and the three-dimensionalO(1) scalar
model [1]. It has been known that according to the Litim–Pawlowski field ampli-
tude expansion the Litim regulator provides the optimal results in LPA, however
the CSS regulator has not yet been subjected to a detailed study. The CSS regula-
tor recovers all major type of regulators in its appropriate limits, thus it allows the
comparison of different regulators within the framework of the PMS strategy at
any order of the gradient expansion by optimizing its parameter space. This strat-
egy, the application of the PMS optimization to the CSS regulator proved to be a
very efficient way to analyze the scheme-dependece of the RG equations. Known
result has been also reproduced for the exponential and power-law limit of the
CSS regulator validating the method. For example, the optimal parameter of the
exponential limit is obtained to be b ≈ 1.5, while according to the field amplitude
expansion it is b = 1.44. The CSS has been analyzed with two different normal-
izations, with “linear” (4.51) and “exponential” (4.53) norm. The Litim limit of
the CSS (4.54a) has been found to be the optimal regulator for both normalization
and for both field theory models in LPA.

In the second section of the chapter a new optimization procedure for the
scheme-dependence of the RG method was also proposed and investigated [2]. It
is based on the requirement that in d = 1 dimension the spontaneous symmetry
breaking must vanish. This new strategy has been applied in the framework of
the sine-Gordon model in LPA′. It has been validated by the fact that known
results could be reproduced for the power-law and different limits of the CSS reg-
ulator. Then the CSS regulator has been optimized that indicated again that the
best choice among the major type of regulators is the Litim limit of the CSS. It is
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important to note that while the exact Litim limit is not differentiable, an approxi-
mate limit (with nonzero value of c) of the CSS is, and can be applied at any order
of the derivative expansion. The Litim limit of the CSS is found to be optimal also
by the PMS strategy in LPA for the bosonized QED2 and for the O(N) model too.

Therefore, the CSS regulator was thoroughly investigated with various opti-
mization methods, in three different dimensions, for three different models, both in
LPA and LPA′ and with two different normalization all indicating that the Litim
limit of the CSS regulator is the optimal choice.
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Chapter 8

Effects of truncations on the
Mermin-Wagner theorem

FRG is a framework that requires to solve an integro-differential equation for func-
tionals which is usually solved using approximations. These approximations can
give rise to scheme-dependence and can cause the appearance of a spurious fixed
point as it was discussed in the previous chapter. Therefore it is important to
know the limitations of the used approximations. One way to achieve this goal is
to test them against exact results like the Mermin-Wagner theorem [36–38]. The
theorem states that a continuous symmetry cannot be spontaneously broken in
two dimensions, which applies to classical and quantum systems as well. There-
fore at finite temperature, Bose-Einstein condensation cannot form for 2d interact-
ing Bose gases, and it rules out the possibility of a non-vanishing magnetization
for two-dimensional magnetic systems with a continuous symmetry. However the
Mermin-Wagner theorem does not apply to topological phase transitions, which can
occur in two dimensions signaled by the change of correlation functions between
algebraic and exponential behavior.

For the O(N) models (see Sect. 5.1) the Mermin-Wagner theorem means that in
two dimensions there is no SSB of the O(N) symmetry if N ≥ 2. This exact result
also holds for non-translationally-invariant lattices, or more generally for graphs
with non-integer, i.e., fractal dimensions [56], thus if N ≥ 2 then SSB cannot occur
for d ≤ 2, while there is SSB for d > 2 [57, 58]. The N = 1 case, i.e., the Ising
model is special, since it has a discrete symmetry, not a continuous one, like the
O(N) models with N ≥ 2, thus it can have a symmetry broken phase in d = 2.
Another interesting case is the large N -limit of O(N) model that is equivalent to
the spherical model when N →∞ [59], which has an exact solution [60]. In d = 2
for N = 2 the model also has the mentioned topological phase transition, which is
not bounded by the Mermin-Wagner theorem.

This wide variety of the O(N) model makes it an ideal framework to investigate
how the appearance of SSB depends on the used approximation schemes in FRG in
various dimensions. The O(N) model has been widely studied by the FRG method,

65
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notably its critical exponent was studied as a function of the dimension [58,61,62].
The regulator-dependence of the FRG and the effects of truncation was discussed
in [29,53,63–65]. In low-dimension statistical mechanics models can describe single-
particle quantum mechanics, hence double well potential and quantum tunneling,
and quartic anharmonic oscillators were studied by FRG [40,66,67].

In this chapter my goal is to determine what level of approximation is needed
to reproduce the Mermin-Wagner theorem focusing especially on how truncating
the Taylor expansion of the potential affects the presence of SSB in LPA.

8.1 The truncated O(N) model (N <∞, NCUT <∞)

Truncation around the zero field

In LPA the O(N) model has the action described by Eq. (5.1) that must be O(N)
symmetric, and the Taylor expansion of the potential around zero is written in
Eq. (5.2).

First let me demonstrate that SSB is present in the Taylor expanded O(N)
model with a truncation, i.e., with a finite NCUT and finite N even in low dimen-
sions. Consider one of the simplest cases, the Ising model (N = 1) in d = 1 with
the most drastic truncation (NCUT = 2). In this case there are two couplings for
which the dimensionless RG flow equations derived from (5.9) takes the form

k∂kg1 = −2g1 −
1

π

g2

(1 + g1)2
, (8.1)

k∂kg2 = −3g2 +
6

π

g2
2

(1 + g1)3
, (8.2)

where the Litim regulator was used (and the tilde notation is neglected). Similar
equations can be derived for general d, N and NCUT, see for example Eq. (5.10)
for the d = 2 case. Fig. 8.1 shows the RG phase diagram obtained for the one-
dimensional Ising model (O(N = 1)) by solving the equations (8.1). At finite
temperature this model does not have any phase transition in d = 1 [10], however
the presence of the WF fixed point in Fig. 8.1 indicates two phases. The IR fixed
point (red dot in Fig. 8.1) associated with the convexity of the potential appears
in all dimension [48, 68, 69]. In d = 4, the WF saddle point (green) merges with
the Gaussian fixed point (black) in the origin. In this section strong numerical
evidence will be presented that suggests that in dimensions 1 ≤ d < 4, similar
phase diagrams can be obtained to Fig. 8.1 for any finite N and any finite NCUT,
using any regulator function, where the RG trajectories running to the IR fixed
point correspond to the symmetry broken phase and the rest to the symmetric
phase. However for d ≤ 2 the Mermin-Wagner theorem excludes the presence of
SSB, therefore the appearence of the symmetry broken phase in Fig. 8.1 is spurious.

The purple curve in Fig. 8.1 is determined by the vanishing mass beta function
(VMB), i.e., by the RG equation of g1. Substituting zero for the left hand side of
Eq. (8.1) yields

g2 = −2πg1(1 + g1)2, (8.3)
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Figure 8.1: Phase diagram of the one-dimensional Ising model (O(N = 1)) ob-
tained by solving the RG flow equations numerically for two dimensionless cou-
plings (NCUT = 2) using the Litim regulator. The purple (dashed) line indicates
the vanishing mass beta function while the red (dotted) line shows the separatrix
separating the two phases. The IR convexity (red), the Wilson-Fisher (green) and
the Gaussian (black) fixed points are also indicated.

which depends only on g1. Increasing NCUT does not modify this function, higher
order couplings do not give contributions. Therefore the VMB curve on the g1, g2

plane is the same for any finite value of NCUT. It is important to note that all
fixed points are situated on the VMB curve by definition. The VMB function also
has a connection to the FRG determination of the central charge in d = 2 at LPA,
which was discussed in [70]. The VMB and other vanishing beta functions were
studied also in [71].

The position of the WF saddle point depends on the number of couplings used
(NCUT), but it is always situated on the VMB curve. For different regulator func-
tions the VMB curve is also different but qualitatively similar. This is shown in
Fig. 8.2 where the WF fixed points are projected on the g1, g2 plane for the Litim-
like regulator class. This regulator class is the c → 0 and b → 0 limit of the CSS
regulator (4.53), keeping h as a free parameter

r =

(
1

y
− h
)

Θ(1− hy). (8.4)

The optimized Litim regulator has h = 1. While the Gaussian fixed point cor-
responding to the free theory is scheme-independent, the IR fixed point depends
on the choice of the regulator. I have found that in 1 ≤ d ≤ 2 (with d real) the
qualitative picture is similar to Fig. 8.2 for general N : as NCUT increases the WF
fixed points corresponding to the different regulators converge to the respective IR
fixed points.
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Figure 8.2: Position of the WF saddle point of the O(N = 1) model situated on
the VMB curves obtained with various values of NCUT in d = 1. Different VMB
lines are obtained using different parameter values (0.8 < h < 1.2) of the Litim
regulator class (8.4) . The solid line corresponds to the optimized Litim regulator
where h = 1. As NCUT increases the WF fixed points converge to the IR fixed
points which remain unchanged if h ≤ 1.

The situation is different in d ≥ 2 as shown for d = 3 in Fig. 8.3: the WF
fixed points does not converge to the IR ones as for d = 1 for increasing NCUT,
but tend to non-trivial WF saddle points. These constant, non-trivial WF fixed
points are calculated using the spike plot method [72,73], where the LPA is treated
exactly (NCUT → ∞). However the position of these WF fixed points depend on
the regulator. Clearly, the position of these non-trivial WF fixed points depend
on the choice of the regulator. Again, plots similar to Fig. 8.3 can be obtained for
general N and for dimensions 2 < d < 4. This is illustrated in Fig. 8.4 and Fig. 8.5,
where g1 and g2 is shown as a function of NCUT for three different values of N in
d = 1 and d = 3 dimensions.

In summary, I have analyzed the truncated O(N) model with finite NCUT and
finite N that showed the presence of SSB and a WF fixed point (different from the
Gaussian) for dimensions 1 ≤ d < 4 (where d is real). The results indicates that in
the NCUT →∞ limit the symmetry broken phase disappears for d ≤ 2, but persists
for d > 2. This must be verified without truncating the potential, i.e., treating the
LPA equation exactly, which will be referred to as “non-truncated” O(N) model.
Before the non-truncated O(N) model, the truncation around the minimum of the
potential and then the spherical model (N →∞) is discussed.
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Figure 8.3: Position of the WF saddle point of the O(N = 1) model situated on
the VMB curves obtained with various values of NCUT in d = 3. Different VMB
lines are obtained using different parameter values (0.8 < h < 1.2) of the Litim
regulator class (8.4) as in Fig. 8.2. The solid line corresponds to the optimized
Litim regulator where h = 1. As NCUT increases the WF fixed points converge
to the WF fixed point obtained using the spike plot method (shown for the Litim
regulator) [72,73].
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Figure 8.4: The dependence of the g1 coordinate of the WF fixed point of the
O(N) model on NCUT in d = 1 (solid lines) in d = 3 (dashed lines) and from top
to bottom for N = 1 (black), N = 2 (red) and N = 10 (blue).
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Figure 8.5: The dependence of the g2 coordinate of the WF fixed point of the
O(N) model on NCUT in d = 1 (solid lines) in d = 3 (dashed lines) and from top
to bottom for N = 1 (black), N = 2 (red) and N = 10 (blue).

Truncation around the minimum

Now consider the Taylor expansion of the effective potential around the minimum
by a slight modification of Eq. (5.3),

uk(ρ) =

NCUT,m∑
i=2

λk,i
i!

(ρ− ρ0)i. (8.5)

First, examine the most drastic truncation by choosing NCUT,m = 2. In this case
there is only one running coupling λk,2 ≡ λ and the running minimum ρ0. These
quantities can be related to the couplings g1 and g2 defined by the expansion around
zero. These relations give the correct result for the WF fixed point, but not for the
Gaussian one, which is g1 = g2 = 0, however the fixed point equations for ρ0 and
λ do not have a solution for a vanishing ρ0. In general dimension and for general
N the RG flow equations obtained from (5.9) take the form [74]

k∂kρ0 = (d− 2)ρ0 +Ad

(
1−N − 3

(1 + 2ρ0λ)2

)
, (8.6)

k∂kλ = λ

(
4− d− 2Ad

(
N − 1 +

18λ

(1 + 2ρ0λ)3

))
. (8.7)

Substituting zero for the left hand side yields the fixed point solutions for ρ0 and
λ, for example, the WF fixed point solution for the Ising model (N = 1) is given
by

ρ0 =
4(2d− 5)2Ad

3(d− 2)3
, λ =

3(4− d)(d− 2)3

16(2d− 5)3Ad
. (8.8)
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As Eq. (8.8) shows, the minimum is well defined (positive) as long as d > 2, which
is true for any value of N . If d > 4, then the solution for λ is negative, and again,
this holds for general N . Another important observations is that for N = 1 the
coupling λ is diverging at d = 2.5 and becomes negative for d < 2.5, which is an
unphysical solution, since there is SSB for N = 1 in d = 2. However this is only
valid for N = 1, for other N values, λ is not diverging in any d > 2, it only has
a maximum, and does not change sign. In Fig. 8.6 the minimum value ρ0 and the
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Figure 8.6: Running minimum (main plot) and the λ coupling (inset) as a function
of the dimension d at the WF fixed point of the Ising model (N = 1, black dashed
lines), the XY model (N = 2, blue), the Heisenberg model (N = 3, red) and the
O(N = 5) model (green solid lines), using a truncation around the minimum with
NCUT,m = 2. The coupling λ is finite and positive for N > 1 in d > 2, however for
N = 1 it is diverging at d = 2.5 and then turning negative at d < 2.5.

coupling λ are plotted for various N values as a function of the dimension at the
WF fixed point. The running minimum diverges for any N at d = 2 in agreement
with the Mermin-Wagner theorem. The inset shows that the coupling λ is finite
and positive for N > 1 in d > 2, however for N = 1 it is diverging at d = 2.5 and
then turning negative at d < 2.5. This contradicts the known exact solution of the
Ising model in d = 2. Therefore the results imply that this truncation while gives
the correct behavior for the SSB it does not give a reliable lower critical dimension
for the Ising model and cannot reproduce the Gaussian fixed point, giving only
a partial description of the theory space. Increasing the value of NCUT,m is not
expected to change these qualitative observations.
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8.2 The spherical model without truncations
(N =∞, NCUT =∞)

In the large N limit of the O(N) model, i.e., in the case of the spherical model, the
terms in (5.9) which are in the order of 1/N can be neglected. One can rescale the
RG equation by an irrelevant parameter (AdN), and introduce the new variables
ρ→ ρ/(AdN) and u→ u/(AdN). This rescaling does not affect the first derivative

of the potential u′ → ∂u/(AdN)
∂ρ/(AdN) = u′. First dividing Eq. (5.9) by AdN and then

performing the rescaling, one finds

k∂ku = (d− 2)ρu′ − du+
1

1 + u′
− 1

N

1

1 + u′

+
1

N

1

1 + u′ + 2ρu′′
. (8.9)

In the N →∞ limit only the following terms remain

k∂ku = (d− 2)ρu′ − du+
1

1 + u′
. (8.10)

This RG equation describes the evolution of the effective potential for the spher-
ical model in arbitrary dimension. Useful information can be extracted from the
derivative of Eq. (8.10) with respect to ρ, which writes as

k∂ku
′ = (d− 2)u′ + (d− 2)ρu′′ − du′ − u′′

(1 + u′)2
. (8.11)

A physically plausible theory has a potential that is bounded from below, therefore
it is reasonable to assume that it has a global minimum at some ρ = ρ0. At
this ρ0 point, the derivatives of the potential have the expressions u′(ρ0) = 0 and
u′′(ρ0) ≡ λ for the fixed point, thus one finds the equation

0 = (d− 2)ρ0λ− λ (8.12)

that has the solution

ρ0 =
1

d− 2
. (8.13)

If ρ0 > 0 the potential has a minimum and there is SSB. This condition is satisfied
in Eq. (8.13) if d > 2. For d < 2 the equation gives negative ρ0, while in d = 2 it is
undefined, which indicates the absence of SSB in both cases. These results can be
considered exact, since in the large N limit the LPA approximation becomes exact
as N →∞ [15,75]. This is also in agreement with the solution of Eq. (8.11) using
the method of characteristics.

8.3 The XY (N = 2), sinh- and sn-Gordon model

The N = 2 case of the O(N) model is also worth discussing, since in d = 2 it
has a topological phase transition. This model is also known as the XY model,
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and in d = 2 it can be mapped onto a Coulomb Gas and then to the SG model.
As demonstrated analytically in Sect. 5.2.1, the FRG method can easily show the
topological phase transition of the two-dimensional SG model within LPA. However
it is more difficult to see this feature directly on the O(N = 2) model, since one has
to take into account the RG running of the anomalous dimension and go beyond
LPA [18].

The SG model can be also considered with imaginary frequencies β → iβ yield-
ing the sinh-Gordon (ShG) model which has some interesting properties showing
similarities to both the Ising and the SG model [10]. In two dimensions it has the
potential,

VShG(ϕ) = uk cos(iβϕ) = uk cosh(βϕ) . (8.14)

Applying the FRG method to the ShG model proceeding with a derivation similar
to the one applied to the SG model results the following flow for the dimensionless
Fourier amplitude

ũk = ũΛ

(
k

Λ

)− β2

4π−2

, (8.15)

where, in contrast to the SG model (5.19), there is no sign change at β2 = 8π,
therefore this model does not have a topological phase transition. This can be
also concluded by observing the Taylor expansion of the potential, which consists
only positive terms. Thus, the expanded potential is similar to the potential of the
Ising model with the difference that the initial conditions of the couplings must
be all positive. This is a strong constraint, which eliminates the possibility for
the trajectories to converge to the IR convexity fixed point corresponding to SSB,
see Fig. 5.1. Consequently the ShG model has only a single phase, namely the
symmetric one. Fig. 8.7 illustrates these results showing the phase diagram of the
SG model extended to imaginary frequencies obtained by the FRG method beyond
LPA using the mass-cutoff, i.e., power-law regulator [4].

There are also models interpolating between the SG and the ShG models. One
example is called the sn-Gordon (SnG) model with a potential

VSnG(ϕ) = Ak cd(βϕ,m) nd(βϕ,m) , (8.16)

where cd(βϕ,m) and nd(βϕ,m) are Jacobi functions, Ak is the scale-dependent
amplitude and m is the interpolating parameter. Using the identities of the Jacobi
functions the potential can be expressed in the form

VSnG(ϕ) =

∞∑
n=1

ũn(k) cos(n bϕ), b =
β

2F1

(
1
2 ,

1
2 , 1,m

) . (8.17)

This shows, that phase diagram of the SnG model is similar to the SG model with
the only difference in the frequency. If m = 0, then b = β and the SG model is
recovered while in the m → 1 limit the ShG model is reproduced. However the
latter limit is non-analytic. Fig. 8.8 shows how the increase of of the interpolating
parameter m changes the phase structure of the SnG model.
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Figure 8.7: The merged phase diagram of the SG (positive β2) and the ShG model
(negative β2). The black points correspond to the IR fixed points.

Figure 8.8: Phase diagram of the SnG model for the interpolating parameters
m = 0, 0.35, 0.7. The dashed line corresponds to the critical frequency β2

c (m) of
the topological phase transition.
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8.4 The O(N) model without truncations (N <∞,
NCUT =∞)

In this section the O(N) model is finally discussed with a finite N and keeping the
potential non-truncated in LPA.

Consider first the Ising model (N = 1) with the following strategy: compute
the WF saddle points for finite NCUT values, and then observe how the NCUT →∞
limit behaves. In dimensions close to d = 2 this calculation is unfortunately am-
biguous, since it is difficult to approximate the NCUT → ∞ limit and extract the
exact WF fixed point position in LPA. However the spike plot method is able to
determine the WF fixed point of the non-truncated O(N) model.

The results are shown in Fig. 8.9 where the position of WF fixed points are
plotted on the VMB curves as a function of NCUT for several dimensions between
d = 1 and d = 3 using the Litim regulator for the Ising model. For each case the
exact WF saddle points obtained by the spike plot method are also shown by the
symbol X. Similar results are found for general N . As Fig. 8.9 indicates, the g2

coordinate of the WF fixed point tends to zero for d ≤ 2 while converges to a finite
value for d > 2 in the NCUT → ∞ limit. This result holds for general N in LPA,
which implies that when LPA is applied for N ≥ 2 and treated exactly without
truncations, it is enough to reproduce the Mermin-Wagner theorem. In d = 2
the spike plot method yields that no WF fixed point and thus no SSB is present
for any N . This is the correct conclusion for N ≥ 2, however not for N = 1.
To obtain the valid result for the two-dimensional Ising model, at least LPA′ is
required. While the position of the WF fixed point is not universal, its occurance
determines whether SSB is present or not. One might expect that calculating a
universal quantity, such as a critical exponent of the WF fixed point would confirm
the obtained results. Namely, for N = 1 the critical exponent would likely converge
to a certain value in d = 3, but not in d = 2.

Besides the strong numerical evidence given by the excellent agreement between
the spike plot analysis and the limit of increasing NCUT values, where the non-
truncated LPA has been sufficient to reproduce the Mermin-Wagner theorem, in
the following, two analytical arguments are also presented to confirm these results.

To analytically investigate the appearance of SSB for the unexpanded potential
(NCUT = ∞) of the O(N) model with a finite N in LPA, consider substituting
k∂ku = 0 in Eq. (5.9) to obtain the fixed point equation

du− (d− 2)ρu′ =
Ad(N − 1)

1 + u′
+

Ad
1 + u′ + 2ρu′′

. (8.18)

The left hand side of this equation is linear in the effective potential, while the
right hand side have non-linear terms in its derivatives, therefore one can use the
notation

LP ≡ du(ρ)− (d− 2)ρu′(ρ), (8.19)

NLP ≡ Ad(N−1)
1+u′(ρ) + Ad

1+u′(ρ)+2ρu′′(ρ) , (8.20)
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Figure 8.9: The position of the WF fixed points on the respective VMB curves for
increasing values of NCUT of the expanded O(N = 1) model in dimension between
1 ≤ d ≤ 3 with the values d = 3, 2.8, 2.6, 2.4, 2.2, 2, 1.8, 1.6, 1.4, 1.2, 1 from top to
bottom. The WF points are obtained using the truncation NCUT = 2, · · · , 10 from
right to left for each dimension. The symbol X denotes the position of the exact
WF fixed point computed with the spike plot method [72,73].

where LP means linear and NLP means non-linear part. Assuming analyticity for
the potential [76] for all finite values of the field implies that the potential can only
be a constant or divergent in the large field limit (ρ � 1). In the first case NLP
must be a constant at infinity, and thus the potential is also just a constant for
all ρ. In the second case NLP either vanish or converge to a constant (eventually
to zero) at infinity, hence at large field the fixed point potential has to satisfy the
condition

LP = C, (8.21)

where C is a constant that is finite (or zero) and has to be treated consistently.
Then the large field solution for the potential writes as

u(ρ) =
C

d
+ aρ

d
d−2 , (8.22)

where a is the constant of integration. Differentiating the above equation yields

u′(ρ) = a d
d−2 ρ

2
d−2 , which is zero for d < 2 and divergent for d > 2 as ρ → ∞. In

the former case C is zero, while in the latter the assumption that u′ is bounded is
violated. In either case the large field limit is described by the expression

u(ρ) = aρ
d
d−2 . (8.23)
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Thus the general fixed point solution for the effective potential can be divided into
two parts,

u(ρ) = f(ρ) + aρ
d
d−2 , (8.24)

where the function f(ρ) is defined to satisfy the condition limρ→∞ f(ρ) = 0. From
the effective potential the Gibbs free energy F (m) can be calculated by changing
the variables to dimensional ones [75], finding

F (m) = kdu(k2−dm2) = kdf(k2−dm2) + am
2d
d−2 , (8.25)

where m is the dimensional field, which can be associated with the average magnetic
moment in the case of a spin system. Finally the k → 0 limit of Eq. (8.25) gives
the free energy, where three different cases can be distinguished.

d > 2

If d > 2, then in Eq. (8.25) the factor k2−d is diverging in the argument of the
function f(ρ). However f(ρ) tends to zero in the infinite field limit, therefore the
Gibbs free energy of the O(N) model for d > 2 in LPA writes as

am
2d
d−2 , (8.26)

where a is a positive constant that can be fixed by the method discussed in [76].

d < 2

When d < 2 the factor k2−d is vanishing in the argument of f(ρ). The effective
potential given by Eq. (8.24) should be defined for all finite values of ρ, hence to

compensate the divergence of the term ρ
d
d−2 , which has a negative exponent in this

case, the f(ρ) function must be also divergent in zero. Consequently in the zero
limit f(ρ) can be written as

lim
ρ→0

f(ρ) = w(ρ)− aρ
d
d−2 , (8.27)

where w(ρ) is finite for vanishing arguments. Substituting this expression into
Eq. (8.25) yields

kdw(k2−dm2), (8.28)

which converges to zero as k → 0.

To conclude, the analysis of the O(N) model in LPA showed that for d > 2 the
fixed point free energy is either given by Eq. (8.26) or it can be zero, indicating
that two phases are present [76]. When d < 2 the critical free energy is always
zero, thus SSB does not occur. An alternative derivation reporting the same result
in LPA can be found in [77].
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d = 2

The above analysis cannot be applied to the d = 2 case, however the numerical
investigation of Eq. (8.18) in LPA shows that the large field behavior of u(ρ) is
oscillatory, indicating the absence of SSB. For N ≥ 2 this is in agreement with the
Mermin-Wagner theorem, however the N = 1 case also has an oscillatory solution,
which incorrectly predicts the absence of SSB.

In order to describe the critical behavior of the two-dimensional Ising model a
better approximation is needed which goes beyond LPA. In [58] the LPA′ calcu-
lations show a vanishing anomalous dimension in the d → 2 limit for N ≥ 2 but
a non-vanishing one for N = 1 providing the correct picture in the FRG frame-
work. Of course this does not exclude the possibility of the Berezinskii Kosterlitz-
Thouless phase transition [78, 79] that occurs for N = 2 and can be captured also
by FRG [58,80,81].

8.5 Conclusion

In this chapter I have studied the presence of SSB in the FRG framework and
whether the LPA is sufficient to retrieve the Mermin-Wagner theorem [3].

First the solutions of the Taylor expanded O(N) models were investigated in
LPA with finite N and finite NCUT using various regulators. In this case SSB
always appears even in dimensions (in d ≤ 2 for N ≥ 2) where it should not. This
is indicated by the WF fixed points which are situated on the curves defined by
the vanishing mass beta functions. In d ≤ 2 as the number of couplings (NCUT)
increases the WF fixed points converge to the pertinent infrared convexity fixed
point, while in d > 2 they tend to the respective exact LPA WF point calculated by
the spike plot method. The Taylor expansion of the potential around the minimum
ρ0 was also investigated, which showed that even with the most drastic truncation
(NCUT,m = 2) it is able to reproduce the expected result for the Mermin-Wagner
theorem. This is shown by the diverging behavior of ρ0 when d→ 2. However for
the Ising model (N = 1) the coupling λ is diverging at d = 2.5 and then turning
negative for smaller dimensions, which is clearly wrong, since it is well known that
SSB occurs in d = 2 for the Ising model. In the large N limit a simple analytic
expression is obtained for the spherical model in LPA, retrieving the correct result.

The XY model (N = 2) and the corresponding SG model was discussed where a
topological phase transition is present in d = 2, since these type of phase transitions
are not excluded by the Mermin-Wagner theorem. Extensions of the SG model,
namely the sinh- and sn-Gordon model were also investigated observing a change
in the critical frequency and finding a non-analytic limit of the SnG model [4].

Finally the exact LPA equations were studied considering analytic arguments
based on the Gibbs free energy of the system given by the dimensional effective
potential. In d > 2 the dimensional field associated with the average magnetic
moment of a spin system can be zero, or non zero, indicating two phases and the
presence of SSB, while in d < 2 the field can only be zero signaling no SSB. This
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analysis cannot be directly applied in d = 2, however numerical calculations exclude
the possibility of SSB, which is again, an incorrect result.

Thus, SSB always appears in the truncated O(N) models, even when it should
not, however the Taylor expanded potential around the minimum and the local
potential approximation when treated exactly, without truncations, is sufficient to
reproduce the Mermin-Wagner theorem for the O(N ≥ 2) models in all dimensions.
The only exception when the exactly treated LPA gives an incorrect qualitative
picture is for the two-dimensional Ising model, where it incorrectly predicts the
absence of SSB.
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Chapter 9

Higgs-inflation

Inflationary cosmology is one of the most studied theories that describes the ex-
ponential inflation of the early Universe. It is developed to explain the isotropy of
the CMBR, the origin of the large-scale structure of the cosmos, the horizon and
the flatness problem, and the absence of magnetic monopoles [52]. A hypothetical
scalar field called inflaton is thought to be responsible for inflation as the vacuum
expectation value of the field slowly rolls down from a metastable false vacuum to
the real vacuum [82,83], see Chapt. 6 for a more detailed description of the mecha-
nism. However, the particle physics origin for inflation, and whether it is a reliable
approach is still a matter of discussion [84,85].

Another topic of intense debate is whether it is possible to identify the inflaton
with the Higgs field. Indeed, the Standard Model (SM) of particle physics can be
extrapolated up to very high energies and possibly the same scalar field can describe
both inflationary and Higgs physics. However various issues, such as the exit from
the inflationary phase or the stability of the Higgs potential, need to be addressed
in these Higgs-inflationary scenarios. Reflecting to the latter issue in Ref. [86] it is
argued that even if the SM vacuum is not completely stable the traditional Higgs
inflation is viable within a minimalistic framework. The stability question was also
studied for example in Refs. [87–89] highlighting the importance of RG running.
An unstable potential can also indicate unknown new physics, which is discussed
in Refs. [90, 91].

However there are still several unanswered questions regarding Higgs-inflation,
which require further investigations. One question is how to construct a single
scalar field that works both at electroweak and cosmological energy scales. A
single model must simultaneously explain the thermal fluctuations of the CMBR
and the measurements at the electroweak scale. Another problem is related to the
ad hoc choice between the inflationary models. There is a plethora of scalar fields
proposed in the literature [92], which are not excluded by the data extracted from
the CMBR and work well describing the inflation, thus to naively choose one of
them seems ad hoc. The assumption that the Higgs field is identical to the inflaton
may provide an answer to this issue, since the requirement for a scalar model to

81
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be viable both for Higgs and inflationary physics gives extra constraints and can
drastically reduce the number of viable candidates. RG is a method designed to
relate parameters of a model at different energy scales, therefore it is expected to
provide a tool to connect the scale of inflation and the electroweak scale, and thus
reduce the number of admissible inflationary models.

In the following sections a new viable inflationary model the MSG model is pro-
posed and it is demonstrated that it works well describing the physics of inflation.
Then by using an RG approach, the relation between the parameters of the model
at the cosmological and the electroweak scale is discussed.

9.1 Inflationary potentials

Before proposing a new model it is important to understand the qualitative struc-
ture of inflationary potentials. One of the simplest examples is the quadratic large-
field inflationary (LFI) potential φ2, which has only a single minimum. More
minima can be added by increasing the number of higher-order terms with the
form φ2n. Thus the question to ask is how much one should deviate from the
simple quadratic potential. The relevance of the “φ2 or not-φ2” issue was dis-
cussed in Ref. [93]. Also a very “not-φ2” potential with infinitely many minima
was considered with the form VNI(φ) = u [1− cos(βφ)]. This model is known as
the Natural Inflation (NI) in cosmology, but in condensed matter physics and in
field theory it is the well-known SG model, and it has a single phase in d = 4 [42].
It has been a widely studied inflationary potential [42,94–103], since as a periodic
scalar field it can incorporate the axion physics too [42]. The measurements of
the PLANCK mission [104–106] showed that the NI model has a better agreement
with the data on the thermal fluctuations of the CMBR (namely the scalar tilt ns
and the tensor-to-scalar ratio r given in (6.35)) than the simple LFI model.

In this chapter a new scalar theory is proposed for inflation which has an overall
φ2 shape shifted by a constant and dressed with a periodic cosine to have many
minima. This proposal can be rightfully called as the massive Natural Inflation,
or as it is known in statistical field theory, the MSG model, see Sect. 5.2.2. Here,
three MSG variants are considered which differ only by the constant term and by
the sign of the periodic term

VMSG1
(φ) =

1

2
m2φ2 + u [1− cos(βφ)] , (9.1)

VMSG2
(φ) =

1

2
m2φ2 + u [cos(βφ)− 1] , (9.2)

VMSG3
(φ) =

1

2
m2φ2 + u [cos(βφ)− 1]− V0 , (9.3)

where m is an explicit mass, u is the Fourier amplitude and β is the frequency.
Besides the additional mass term, the first variant has the same form as the Natural
Inflation, however in the second variant the sign of u is changed, while the third
version also has an additional constant V0 which is chosen in a way to keep the
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global minimum of the potential at zero (Vmin = VMSG3
(φmin) = 0). By tuning the

m2/u ratio, i.e., the ratio between the parabolic and periodic term, the number of
local minima and the energy separation between them can also be tuned from the
limit of infinite degenerate minima to only one non-degenerate minimum.

These properties make the MSG model a great candidate for inflationary physics
and a possible extension of the Standard Model Higgs potential.

9.2 Cosmological scale

Scalar fields are an essential part of the Standard Model of particle physics and they
also find a natural role to play in inflationary cosmology, since they can mimic the
equation of state and the energy tensor required for the exponential expansion of
the early Universe, see Chapt. 6. Various inflationary models have been proposed in
the literature, one of the simplest among them is the single-field slow-roll models
with minimal kinetic terms [92]. A reliable inflationary potential is also simple,
and has a small number of adjustable parameters, which is a condition that a good
candidate should satisfy. The go to example is the LFI model, which has only a
quadratic mass term, V = 1

2 m
2φ2.

Another condition for a good inflaton potential is that it should be able to pre-
dict the cosmological observations, such as the thermal fluctuations of the CMBR
measured by the PLANCK mission [104–106]. Therefore the slow-roll analysis must
be performed for the MSG model to see whether it is a viable iflationary model at
the cosmological scale.

First, one has to compute the quantities (see Chapt. 6 or Ref. [49]),

ε ≡ 1

2
m2
p

(
V ′

V

)2

, η ≡ m2
p

V ′′

V
, (9.4)

where m2
p = 1/(8πG) is the Planck mass, and as usual c = ~ = 1. The gravitational

constant G and consequently the Planck mass mp is assumed to be a constant. In
Quantum Einstein Gravity these would be running parameters, however here their
running is neglected. If ε � 1 and η � 1, then the inflation is in progress, but
it stops if either of these parameters reach a value in the order of one. To have a
large enough expansion, the E-fold number N , defined by

N ≡ − 1

m2
p

∫ φf

φi

dφ
V

V ′
(9.5)

must also reach a value between 50 < N < 60 during inflation, while the expec-
tation value of the inflaton field slowly rolls down from its initial value φi, to its
final one φf . Another constraint is given by the energy scale on which the inflation
occurred [50]. For the potential this is written as

V (φi) ≡
r

0.01
(1016 GeV)4. (9.6)
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For r values in the range of r ≈ 0.01 this means that the scale of inflation is at the
Grand Unified Theory (GUT) energy scale (1016 GeV).

The Planck mass appears in most of the equations, thus it is convenient to
introduce dimensionless variables accordingly. In d = 4 dimensions the dimension-
less potential and the parameters of the MSG model are obtained by the following
formulas

V̂ = V/m4
p, φ̂ = φ/mp, û = u/m4

p ,

m̂ = m/mp, β̂ = mpβ . (9.7)

Here the hat notation is used for the dimensionless quantities, while the tilde is
reserved when the dimension is taken away by the relevant running energy scale
(see Eq. (9.22)) instead of the Planck mass. Since the field independent constant
term is fixed for all three variants of the MSG model, and the overall factor is
also fixed by the normalization using Eq. (9.6), the only free parameters are the
frequency β and the ratio u/m2. By performing the standard slow-roll analysis
these two remaining parameters can be constrained.

The next step is to calculate the scalar tilt ns and the tensor-to-scalar ratio r,
by using the relations ns ≈ 2η−6ε+1 and r ≈ 16ε [49]. The inflation stops if either
ε(φf,ε) = 1 or η(φf,η) = 1, thus the final value of the expectation value is given
by φf ≡ max (φf,ε, φf,η). Substituting φf into Eq. (9.5) the initial value of the
expectation value φi can be also computed using the required range of the E-fold
number 50 < N < 60. Finally the quantities ns(φi) and r(φi) can be calculated
and compared to the measured data. The results clearly depend on the chosen
potential. For the quadratic LFI model this procedure yields ns − 1 ≈ −2/N and
r ≈ 8/N giving the relation ns− 1 + r/4 = 0, which however does not show a good
agreement with the measurements of the PLANCK mission [104–106].

I have performed the described slow-roll analysis for all three variants of the
MSG potential and compared the results to the measured fluctuations of the
CMBR, namely to the measured scalar tilt ns and the tensor-to-scalar ratio r.
The result is shown in Fig. 9.1, where the best acceptance parameter regions are
plotted for the three different MSG variants. It shows that there is an overlap
between the variants in the small β̂ range, but the results depend on the particular
form of the potential. In the large β̂ limit, the acceptance regions become a straight
line for each considered MSG model. This line depends on the sign of the periodic
term, since it is a significant change in the shape of the potential. However the
numerical calculations verify that the acceptance regions of the second and third
variant coincide, thus the change in the constant term do not modify the slow-
roll results. This remark is true in the β̂ & 1.5 region for all N values between
50 < N < 60. From the û/m̂2 ratios read from the figure, the parameters u and
m2 can be calculated using the normalization described in Eq. (9.6). For example,
by choosing the middle of the acceptance region of the first MSG variant (9.1) from
Fig. 9.1, one obtains

m ≈ 1.42× 1013 GeV , u ≈ 2.4× 1064 GeV4 , β ≈ 1.25× 10−19 GeV−1 . (9.8)
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Finally the most important result which will be necessary for scaling down the
model to the electroweak scale is the fact that the ratio ûβ̂2/m̂2 is always larger

than one in the acceptance regions. This ratio remain unchanged in the large β̂
limit, and has the property

ûβ̂2/m̂2 = uβ2/m2 > 1 . (9.9)

More details about the slow-roll analysis of the MSG model are discussed in the
next chapter in Sect. 10.3.

These results were obtained preserving the sinusoidal functional form of the
MSG potential, however by truncating its Taylor expansion and keeping the terms
up to the quartic power, one can find good agreement with the measured ns and r
quantities of the CMBR. This would require a large explicit mass, which however
cannot be scaled down to the known Higgs mass at the electroweak energy scale
unlike in the case of the MSG model. This point will be discussed in the next
sections.
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Figure 9.1: Comparison of the slow-roll results for the MSG model (9.1)-(9.3)
to the Planck data [104–106] on the fluctuations of the CMBR, namely on the
scalar tilt ns and the tensor-to-scalar ratio r. The best agreement is given by the
parameters located inside the gray regions. For large β̂ values these regions become
a straight line.

9.3 Electroweak scale

Many attempts have been made in the literature to identify the inflaton with the
Higgs field. [107–117]. In the SM of particle physics the Higgs field is an SU(2)
complex scalar doublet which consists four real components and can spontaneously
break the SU(2)L × U(1)Y symmetry of the electroweak sector. It has the La-
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grangian

L = (Dµφ)?(Dµφ)− V (φ)− 1

2
Tr (FµνF

µν) (9.10)

where

Dµ = ∂µ + igTWµ + ig′yjBµ, (9.11)

and the potential is

V = µ2φ?φ+ λ(φ?φ)2 . (9.12)

If µ2 > 0, then the vacuum expectation value is at zero, while for µ2 < 0 it is at√
φ?φ =

√
−µ2/(2λ) = v/

√
2 where the value v = 246 GeV has been determined

from low-energy experiments. After spontaneous symmetry breaking, due to the
Brout-Englert-Higgs mechanism [118, 119], from the four degrees of freedom of
the Higgs doublet three are absorbed by the weak gauge bosons, which become
massive as a consequence. The remaining degree of freedom is a single scalar field
h. The excitation of h is the Higgs boson that was discovered by the Large Hadron
Collider at CERN [120,121]. In this phase the field is usually parametrized around
its minimum and the unitary phase of the field is omitted by an appropriate choice
of the gauge. Thus, the Higgs sector of the SM can be written as

L =
1

2
∂µh∂

µh− 1

2
M2
hh

2 − M2
h

2v
h3 − M2

h

8v2
h4

+

(
M2
WW

+
µ W

−µ +
1

2
M2
ZZµZ

µ

)(
1 + 2

h

v
+
h2

v2

)
, (9.13)

where the Higgs mass Mh =
√
−2µ2 =

√
2λv2 has a measured value of Mh =

125.6 GeV implying λ = 0.13. This value is close to the one predicted assuming
the validity of the SM supplemented by asymptotically safe gravity between the
Fermi and Planck scales [122].

An identification must be made between the Higgs field (scalar singlet) and
the inflaton field that has been used in the literature. However, this requires the
reparametrized form of the Higgs Lagrangian where there is no SU(2) doublet any-
more. This reparametrization is straightforward in the broken phase nevertheless
it might be applicable in the symmetric case too, because the Higgs mechanism is
based on SSB where only the ground state breaks the symmetry not the explicit
form of the Lagrangian. In my thesis I rely on the standard choice typically used
in the corresponding literature [111–117], namely the identification of the Higgs
singlet with the inflaton field.

In order to find a link between the Higgs and inflationary physics, one has to
extrapolate the SM up to very high energies. For this reason the action, i.e., the
spacetime integral of the Lagrangian is defined with the Ricci scalar R which is
either multiplied by a function of a scalar field, called the Jordan frame, or not
multiplied by the field, which is called the Einstein frame [123]. Various trans-
formations exist between the frames, but usually the Einstein frame is used for
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the slow-roll study. In the case of minimal coupling to gravity the action in the
Einstein frame takes the form

S =
∫
d4x
√
−g

[
m2
pR

2
− 1

2g
µν ∂µφ∂νφ− V (φ)

]
,

V (φ) ≡ λ

4

(
φ2 − v2

)2
=
M2
h

8v2

(
φ2 − v2

)2
, (9.14)

where gµν is the metric tensor,
√
−g ≡

√
−det g, the scalar field is denoted by

φ ≡ h and V is the standard quartic-type double-well potential of (9.13),

V (φ) =
λ

4
v4 − 1

2
λv2φ2 +

λ

4
φ4 . (9.15)

with the shift h → h + v in the field. The non-minimal inflation scenario is not
discussed here.

Another way to approach Higgs inflation is to extend the SM Higgs potential
with minimal coupling to gravity and assume that it develops at least a second
minimum from which the inflation began [107–110]. However in this scenario the
inflationary phase may become eternal. A possible solution is to add more fields,
but then the simplistic nature would be lost.

Another problem with Higgs-inflation comes from fact that the measured Higgs
mass is close to the lower limit that still ensures the stability of the absolute vacuum
in the SM [124]. Fortunately, even if the SM vacuum is not completely stable, the
conventional Higgs-inflation is still a viable scenario in a minimalistic framework
[86]. Also many polynomial Higgs potentials have been investigated using the
functional renormalization group method that had no stability problem [88,89].

The Higgs potential given by (9.15) can be recovered by the Taylor expansion of
the MSG model up to the quartic terms. This is not true for the first variant (9.1)
since it cannot reproduce the required double-well shape, thus it is not considered
in further calculations in this chapter. For the other two variants (9.2) and (9.3)
the potential can be written as

VMSG ≈ V0 +
1

2
(m2 − uβ2)φ2 +

1

24
uβ4φ4 +O(φ6) , (9.16)

therefore the parameters can be related

λv2 ≡ (uβ2 −m2), λ ≡ 1

6
uβ4. (9.17)

From equations Mh =
√

2λv2 and v =
√
M2
h/(2λ) the Higgs mass and the VeV

takes the form

Mh ≡ m

√
2

(
uβ2

m2
− 1

)
, v ≡ 1

β

√
6(uβ2/m2 − 1)

uβ2/m2
. (9.18)

with the known low-energy/IR values

Mh,IR = 125 GeV, vIR = 245 GeV , (9.19)
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at the electroweak scale kIR ∼ 250GeV. Taking into account the higher order terms
in the Taylor expansion only slightly modifies these relations and has no effect on
the main results presented in the next section.

These quantities can be determined also at the cosmological scale where the
slow-roll study gives a large Higgs mass. For example for the parameters shown in
Eq. (9.8) the obtained Higgs mass is

Mh,UV ≈ 1.9× 1013GeV , (9.20)

only a few orders-of-magnitude below the high-energy (UV) scale of inflation kUV ∼
1015GeV, which also depends on the choice of β̂. This large mass and also the VeV
must be scaled down by orders of magnitude to the elextroweak scale where they
have the measured values given by Eq. (9.19). FRG is a powerful method that
provides a tool to obtain the RG running of these parameters and relate them at
distant scales. In the next section the RG study of the MSG model is performed
to describe the post-inflation period.

9.4 Renormalization group scaling

In order to scale down a Higgs-inflation model from the cosmological to the elec-
troweak scale within the FRG framework, one has to incorporate all fields including
the fermion and gauge fields as well. However, the MSG model, besides the mass
term and a trivial constant, has a periodic self-interaction, which allows to per-
form its RG study in a simple way. The reason can be understood by observing
the structure of the RG equation given by Eq. (4.32) where the flow of the action
is given by its Hessian (second derivative). Even if the scalar field is coupled to
fermion or gauge fields with terms not higher than quadratic, the Hessian of the
scalar sector remains periodic. Thus, it can be a reliable approximation to study
only the RG evolution of the MSG potential while neglecting other fields.

The MSG model was extensively studied in d = 2 dimensions by functional RG
[43–45], however in the case of Higgs-inflation d = 4 dimensions are required. Here
the LPA of the functional RG is used (4.35), with the optimized Litim regulator
(4.47), therefore the following RG equation is obtained for the dimensionless scaling
potential (

d− d− 2

2
φ̃∂φ̃ + k∂k

)
Ṽk =

2αd
d

1

1 + ∂2
φ̃
Ṽk

, (9.21)

where αd = Ωd/(2(2π)d), Ωd = 2πd/2/Γ(d/2) is the d-dimensional solid angle,
and k is the running momentum scale. As usual, the tilde denotes dimensionless
variables where their dimension is taken away by multiplying with the appropriate
power of k,

β̃ = k(d−2)/2 β , m̃ = m/k , ũ = k−d u , φ̃ = k−(d−2)/2 φ . (9.22)

Substituting the MSG potentials into Eq. (9.21) yields an expression which can be
separated to periodic and non-periodic parts. This is true since the higher order
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self-interaction terms originate only from the periodic part, hence it can be written
as a separate equation. The right-hand side is periodic, thus the non-periodic part
reads as

m̃2φ̃2 + k∂k

(
1

2
m̃2φ̃2

)
− ũφ̃ sin

(
β̃φ̃
) d− 2

2
β̃ + ũφ̃ sin

(
β̃φ̃
)

(k∂kβ̃) = 0. (9.23)

By investigating the purely trigonometric and polynomial terms one can see that
these terms also split into two separate equations, providing the flow equations for
β̃ and m̃,

k∂kβ̃k =
d− 2

2
β̃k → β̃k = β k(d−2)/2 , (9.24a)

k∂km̃
2
k = −2m̃2

k → m̃2
k = m2 k−2 . (9.24b)

These solutions obtained in LPA indicate that the dimensionless quantities (m̃, β̃)
have a trivial scaling according to their corresponding dimension, thus the dimen-
sionful parameters (m,β) remain unchanged during the RG running. The scaling of
β̃ in (9.24a) can be also considered as the trivial RG running of the wave-function
renormalization after rescaling the field as βϕ→ ϕ̃. For the remaining parameter
ũ, the flow equation is given by the periodic part

− cos
(
β̃φ̃
)

(d+ k∂k)ũ =
2αd
d

1

1 + m̃2 + ũβ̃2 cos
(
β̃φ̃
) . (9.25)

Similar equations can be derived for different regulators. However, the properties
of the master trajectory is related to spinodal instability, i.e., to the equation
1 + ∂2

φ̃
Ṽk = 0, which is the same for all regulators in LPA. This suggests that the

presented results do not depend on the regulator. The right-hand side of (9.25)
contains all Fourier modes, but the characteristic behavior can be read off using
the single-mode approximation taking into account only the single cosine terms of
the Fourier expansion of (9.25). This provides the RG flow equation for the Fourier
amplitude ũ which writes as

(d+ k∂k)ũk = −4αd
d

1

β̃2
kũk

1−

√√√√ (1 + m̃2
k)

2

(1 + m̃2
k)

2 − β̃4
kũ

2
k

 . (9.26)

One can obtain the scale dependence of the couplings and the phase diagram by
simultaneously solving these partial differential equations. In this case, using the
Litim regulator, spinodal instability occurs at a large enough scale so that the phase
diagram can be determined. An important observation is that the RG method
gives the same flow for all variants of the MSG model given in Eqs. (10.3)-(9.3),
since the obtained RG equations do not change under the ũ→ −ũ transformation,
and the field-independent terms are eliminated by the derivatives in the Hessian.

The result of this computation is shown in Fig. 9.2. The four-dimensional MSG
model has two phases controlled by the dimensionless ratio ũkβ̃

2
k/m̃

2
k. In the (Z2)
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symmetric phase (blue lines of Fig. 9.2) this quantity depends on the initial con-
ditions however it is always smaller than one, limk→0 |ũkβ̃2

k/m̃
2
k| < 1. In the SSB

phase (green lines of Fig. 9.2) this ratio is larger than one and converges to one
in the IR limit regardless of the initial conditions. The two phases are separated
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˜2

|β˜
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ũ
|

Figure 9.2: Phase diagram of the MSG model in d = 4 showing the flow of its
parameters. The model has two phases separated by the black line with a unit slope.
The blue trajectories correspond to the symmetric phase, while the trajectories of
the symmetry broken phase are indicated by the green lines.

by the black line with a unit slope. The trajectories corresponding to the SSB
phase merge into a single master trajectory which has also a unit slope and can be
described by the equation

ūkβ̃
2
k = 1 + m̃2

k . (9.27)

Rearranging the above formula yields the following scaling

ūkβ̃
2
k

m̃2
k

− 1 =
1

m̃2
k

=
k2

m2
UV

. (9.28)

This equation describes the running on the master trajectory which, apart from
the initial part of the running, determines the scaling in the SSB phase.

Using Eq. (9.28) one can also calculate the scaling of the Higgs mass and VeV
from their UV values to their IR ones (9.19). This is indeed true, since at the
cosmological scale the UV initial conditions suggest that the Higgs-inflation field
is in the SSB phase as a result of the ratio (9.9) being larger than one. Thus, from
Eq. (9.18) the running Higgs mass writes as

Mh(k) = mUV

√√√√2

(
ũkβ̃2

k

m̃2
k

− 1

)
. (9.29)
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Figure 9.3: Scaling of the Higgs mass of the MSG model from the cosmological
(UV) to the electroweak (IR) scale. The flow shows UV insensitivity as all trajec-
tories merge into a single line reproducing the correct order of magnitude for the
measured Higgs mass at the electroweak scale.

and substituting Eq. (9.28) yields the scaling

Mh(k) = mUV

√
2

√
k2

m2
UV

=
√

2���mUV
k

���mUV
=
√

2k, (9.30)

where it is emphasized that the UV mass cancels. The UV independence is again,
a consequence of the constant unit slope of the master trajectory. This property
holds even if the initial UV condition does not fall on the master trajectory, since
in the IR limit all SSB trajectories merge into it. One obtains a similar scaling for
the VeV,

v(k) =
1

βUV

√
6(ũkβ̃2

k/m̃
2
k − 1)

ũkβ̃2
k/m̃

2
k

≈
√

6k

mUVβUV
. (9.31)

The electroweak (IR) scale is at kIR = 250 GeV, thus these formulas reproduce
the correct order of magnitude for the measured IR values (9.19). While the IR
Higgs mass is independent of the initial UV conditions, to recover the measured
VeV at the electroweak scale one has to choose appropriate UV values for mUV and
βUV requiring fine-tuning. These parameters can be determined from the slow-roll
analysis together with a normalization condition such as V (φi) ≈ k4

GUT. The result
is a point on the “tail” of the acceptance region in Fig. 9.1 with a large frequency
β̂ ≈ 300. However the standard normalization is given by Eq. (9.6), where the r
quantity makes this determination problematic.

Fig. 9.3 shows the RG evolution of the Higgs mass from the cosmological (UV)
scale to the electroweak (IR) scale which is independent of the initial UV param-
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eters. It is important to note that in the perturbative RG framework the (dimen-
sionful) SM Higgs mass has a weak running [16]. This is in agreement with the
presented observations, since in the MSG model the dimensionful explicit mass
m has no running at all, while the Higgs mass is an effective mass to which the
periodic term also contributes. For this effective Higgs mass the non-perturbative
functional RG method demonstrated a linear dependence on the running scale.

9.5 Conclusion

I have proposed the MSG model as a Higgs-inflationary potential and analyzed its
properties both at cosmological and electroweak scales [5]. The MSG model has the
advantage of having a rather simple functional form with only a small number of
parameters. It has concave regions and many non-degenerate minima with tunable
energy differences which improves its viability as a Higgs-inflationary candidate.

I have performed the slow-roll analysis of the model and determined that it
works well at the cosmological level. It reproduces the data on the fluctuations
of the CMBR, namely the scalar tilt and tensor-to-scalar ratio measured by the
PLANCK and BICEP2 experiments, hence it provides a good agreement with
observations. This has been used to constrain the parameter region of the MSG
model serving as a high-energy (UV) initial condition.

The use of the MSG model represents the first step towards a possible consistent
UV extension of the SM Higgs field, since at low energies (IR) it can reproduce
the double-well SM Higgs potential. However in order to complete this task, i.e.,
the UV completion, one has to incorporate all the gauge and matter fields, and in
addition the running of the gravitational and the cosmological constant. This very
general framework is required to study whether a Landau singularity appears or
not and/or the theory remains UV safe. This is of course a demanding task which
is out of the scope of the present work.

Finally I have extended the RG study of the MSG model to d = 4 dimensions to
describe its evolution in the post-inflation period and to connect the distant energy
scales. The MSG potential contains a periodic term providing an ideal framework
to compute its RG running in a straightforward way. I have obtained the phase
diagram which showed that the UV parameters determined by the slow-roll analysis
give the ratio |ũkβ̃2

k/m̃
2
k| in the spontaneously symmetry broken phase. Within the

used approximations the measured value of the Higgs mass at the electroweak
(IR) scale have been recovered by the correct order of magnitude. This result is
insensitive of the UV initial parameters as long as they stay in the broken phase.

In conclusion, the proposed MSG model proved to be an excellent candidate
for a Higgs-inflationary theory, since it provides a remarkable agreement with cos-
mological observations. By performing its RG analysis I have found that it can
simultaneously describe the physics both at cosmological and electroweak scales
and it recovers the Higgs mass by the correct order of magnitude at the elec-
troweak scale in the post-inflation period independently of the high-energy (UV)
initial conditions.



Chapter 10

Renormalization group
induced inflation

The theory of inflation which describes the rapid expansion of the early Universe
has advanced significantly, however there are still important questions that need
to be answered. The original formulation of inflation [52] caused by the hypothet-
ical inflaton field requires a relatively stable false vacuum, from which the system
moves to the true vacuum (see Fig. 10.1). This induces the inflation and bubble
nucleations are formed where the inflaton field reaches its low-energy vacuum state
causing the bubbles to expand nearly at the speed of light. Several issues can be ex-
plained by this original inflationary scenario however it also suffers from numerous
problems.

One problem is related to the fact that the Universe should undergo a reheating
process after inflation, but this mechanism is not well defined in this context. Over
the inflation period the exponential expansion of the observable Universe must
continue long enough to dilute the magnetic monopoles, but as a consequence the
bubbles become rare and they do not merge. This generates further problems,
since the collision between bubble walls become so rare that they cannot generate
the needed radiation. Another problem is the eternal nature of the decay process
which is never complete.

A modification of the original idea provides a possible solution for these prob-
lems [82,83]. In this new scenario the expectation value of the inflaton field starts
from an excited metastable position and then slowly rolls down to the true mini-
mum (see Chapt. 6 for more details). After inflation the oscillations of the field can
produce the reheating (see Fig. 10.1). The inflation ends when the energy hill of the
potential becomes steep or when the expectation value of the field gets close to the
minimum solving the problem of having a “graceful exit”. Yet, it does not address
the question why the inflation starts with a particular initial condition. For chaotic
(large-field) inflation models [125] large field fluctuations occur naturally, but then
they also dominate the classical evolution of the field and can make the field move
up the potential leading again to an eternal inflation. However for small-field infla-
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Figure 10.1: The original inflationary scenario starting from a false vacuum (left)
and the slow-roll scenario (right) where the oscillations of the field can cause the
reheating of the Universe.

tion the initial conditions are even more problematic, since the interactions should
homogenize the Universe on a scale larger than the horizon. Several other theo-
ries, like the cyclic Universe [84, 85], have been proposed to solve these problems.
The particular form of the potential is also unknown, thus it is important to find
principles to constrain its shape.

To address these problems in this chapter the goal is to propose a new infla-
tionary mechanism based on the proper treatment of quantum fluctuations in the
pre-inflationary period that can result in the RG evolution of the potential. After
the description of the proposed analysis, its validity is also shown for the MSG
model as a working example.

10.1 Proposed inflationary scenario

The RG technique has already been successfully applied to the post-inflation period
for Higgs-inflationary models, see for example the previous chapter, or the overview
in Ref. [87]. Here the discussion is centered around the RG scaling of the potential
in the pre-inflationary period as a mechanism to induce inflation which connects
the original (Ref. [52]) and the modern (Ref. [82,83]) scenarios and gives a possible
solution for the initial condition problem.

Although the slow-roll process during inflation is considered to be classical, in
the pre-inflationary period quantum fluctuations can have a strong effect, thus the
RG approach is widely applied in cosmology [126]. According to Ref. [126] the
running momentum scale k of the RG method can be identified with the inverse
of the cosmological time (k ∼ 1/t) which is a relation used in a series of papers
describing the RG evolution of the Einstein equation, and the physics of the FLRW
cosmology and Quantum Einstein Gravity [127].

Here the proposed scenario inspired by the RG method assumes that the inflaton
has a false vacuum in the pre-inflationary period in which the vacuum expectation
value (VeV) of the field is trapped. Then the effective potential has an RG evolution
over time due to quantum fluctuations and tends to a convex shape releasing the
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trapped field leading to its slow-roll to the true vacuum initiating inflation. This
RG induced inflation welcomes fluctuations even below the scale of inflation where
the slow-roll is commonly considered as a classical process, however these have less
relevance as the false vacuum vanishes.

The cornerstone concept of this inflationary scenario relies on the fact that any
potential tends to a convex one during its RG running. It starts with a concave
shape at high energies (around the Planck scale), since it has a false vacuum where
the VeV is trapped, then it becomes less and less concave at lower energies (around
the scale of the Grand Unified Theory (GUT)) releasing the field to induce infla-
tion. The RG evolution between the two scales should be sufficient to provide the
necessary change in the potential. The validity of this general picture is shown us-
ing explicit RG calculations in the framework of the MSG model in flat Euclidean
space. An argument can be made that one should also include the effects of curved
spacetime to have a reliable RG study. This has been investigated for functional
RG in an FLRW metric for example in Refs. [128–130]. The results show (see
Fig. 9 of Ref. [130]) that in the FLRW metric the RG flow leads to even more en-
hanced convexification effects compared to the flat-space approximation used here
in Eq. (10.4), which only strengthens the proposed idea.

It is important to stress that the presented RG induced inflation scenario is
independent of the choice of the inflationary potential. However the potential
must have a concave region and at least one false vacuum. If these conditions are
met, then the method can be implemented in the following three steps:

• The first step is to perform the slow-roll analysis of the chosen model con-
straining the parameters and the shape of its potential. This produces a
potential ideal for slow-roll which means that the concave region of the false
vacuum must be almost flat, therefore it can release the VeV to induce infla-
tion.

• The second step is to determine the RG flow of the couplings, i.e., the RG
evolution of the inflaton potential. For example when it does not break any
symmetry of the model, the potential can be expanded into a Taylor series
as

V = V0 + g1φ+
1

2!
g2φ

2 +
1

3!
g3φ

3 + . . . , (10.1)

and then the specific RG flow equations for the generated couplings
g1, g2, g3, ... can be determined. This approximation is expected to give an
accurate RG running if an appropriate number of couplings are taken into
account.

• In the final step the initial state of the model is determined at the Planck
scale. Using the obtained RG equations one has to determine the initial
potential so that after its RG evolution in the pre-inflationary period it takes
the form of the slow-roll potential at the scale of inflation (k ∼ 1016 GeV).
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Suitability of the φ6 and MSG Models

One of the simplest models which has a Z2 symmetry and satisfies the mentioned
conditions is the φ6 model with a potential

Vφ6 =
1

2
g2φ

2 +
1

4!
g4φ

4 +
1

6!
g6φ

6 , (10.2)

with the signature g2 > 0, g4 < 0, g6 > 0, thus it has two false vacua. According
to the proposed scenario, at very high energies in the pre-inflationary period the
VeV is trapped in one of these false vacua which flattens out and vanishes in the
low-energy limit allowing the VeV to slowly roll down to the true minimum. The
couplings of the model over inflation can be obtained by the slow-roll analysis using
the PLANCK data [104–106]. However the φ6 scalar model is nonrenormalizable,
therefore it cannot be considered as a possible UV completion of an inflationary
potential. This problem is solved by the MSG model which represents the simplest
(non-perturbatively) renormalizable UV completion of the φ6 model.

Another reason to consider the MSG model is based on the PLANCK results.
Although the periodic natural inflation potential [93–95] has certain disagreement
with the PLANCK measurements it still provides a better fit than the simple
quadratic mass term called large field inflation (LFI). Combining the two into the
MSG model might give an even better agreement, like in the case of the combination
of a linear and a periodic function [131], which is however not bounded from below.

The MSG model also has the advantage of being bounded from below, it is
Z2 symmetric, serves as a non-perturbatively renormalizable UV extension and
most importantly it has many non-degenerate minima separated by an adjustable
energy difference ideal for the RG induced inflation from a false vacuum. The MSG
potential has the form

VMSG(φ) =
1

2
m2φ2 + u [1− cos(βφ)] . (10.3)

with the Euclidean action considered in flat space

S =

∫
d4x

[
1

2
(∂µφ)2 + VMSG(φ)

]
. (10.4)

It is important to clarify that a flat action can be identified with the full FLRW
action given by Eq. (6.16) by ignoring the curvature term. Substituting the FLRW
metric into Eq. (6.16) yields the kinetic term

gµν∂µφ∂νφ = −
(
∂φ

∂t

)2

+
1

a(t)2

(
∂φ

∂~r

)2

. (10.5)

After stretching the spatial coordinates by the scale factor

~r′ = a(t)~r , φ(t, ~r) = φ′(t, ~r′) (10.6)
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the primed variables can be re-identified with the unprimed ones. The factor√
−det g = a3 cancels with the Jacobian of this transformation leading to the

Euclidean action defined in Eq. (10.4) after a Wick rotation. This Wick rotation
can be problematic, however in the present work the FRG method is applied only for
a single scalar field where the usage of an Euclidean action is a standard approach.
It is important to note that, in the calculations reported below, this rescaling (10.6)
does not affect the connection between the running momentum k of the RG method
and some parameter related to the inverse of the cosmological time.

In the following sections the main attention is given to the MSG model in the
form of Eq. (10.3), however it is important to emphasize here that the reported
conclusions are more general and should hold for any field that fulfills the mentioned
criteria. For example other MSG variants with different constant terms can be
considered as in Eqs. (9.2) and (9.3) without changing the results significantly.

10.2 Pre-inflationary period and RG running

In this section the goal is to show how the RG induced inflation works in the
specific case of the MSG model. One of the best frameworks to achieve this goal is
the functional RG method, since it is based on a non-perturbative, exact equation
(4.32). To apply the functional RG technique to cosmology, it is necessary to
identify the running momentum scale of the method (k) with a running quantity
in cosmology as it has been done in a series of papers [126] where the RG scale
is identified with the inverse of the cosmological time (k ∼ 1/t). Including time-
dependence in a quantum field theory is a complicated task which can be done by
introducing a closed-time-path (or Schwinger–Keldysh) formalism [132,133] leading
to an open system that generally requires an external heat bath. In cosmology a
time-dependent background can be considered with an external bath of particles
which also gives a solution to the so-called overshoot problem [134]. However this
approach and the assumption that time-dependence necessarily follows from the
RG scaling is not used here which does not exclude the possibility to connect the
RG momentum scale with the inverse of the cosmological time.

The functional RG study of the MSG model in d = 4 has already been discussed
in the previous chapter, see Sect. 9.4. Before summarizing the results and applying
for the pre-inflationary period, it is important to note that while the functional
RG equation for the field-dependent terms do not require a modification, addi-
tional subtraction terms are might needed to obtain the correct evolution of the
field-independent constant term Vk(0). The reason emerges from the fact that the
functional RG equation is constructed in such a way that imposes certain condi-
tions to the regulator (4.9) making the determination of field-independent constant
term ambiguous which can result in an unphysical divergence. A carefully chosen
subtraction scheme may solve this problem like in the case of the one-dimensional
anharmonic oscillator [135]. However none of the presented conclusions depend on
the evolution of this constant term.

The functional RG analysis in the local potential approximation showed that
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the dimensionful parameters of the MSG model, the explicit mass m and the fre-
quency β remain unchanged during the RG running (9.24). Thus only the Fourier
amplitude u changes during the RG evolution of the potential while the running
momentum scale k is decreasing from a high-energy value Λ around the Planck
scale to a low-energy one around the scale of inflation ki.

To see how, it is helpful to rewrite the obtained flow equation (9.26) for the
Fourier amplitude in a dimensionful form that writes as

k∂kuk = −4αd
d

kd+2

β2uk

(
1−

√
(k2 +m2)

2

(k2 +m2)
2 − β4u2

k

)
. (10.7)

Assuming that β2uk/(k
2 + m2) � 1 and linearizing around the Gaussian fixed

point yields

k∂kuk = −4αd
d

kd+2

β2uk

(
1−

√
1

1− β4u2
k/(k

2 +m2)2

)

≈ 2αd
d

kd+2

β2uk

β4u2
k

(k2 +m2)2
. (10.8)

If the mass can be neglected compared to the momentum scale m2 � k2, then the
above equation can be can be further simplified and written as

k∂kuk ≈
2αd
d
kd−2β2uk , (10.9)

which is identical to the linearized RG equation obtained for the massless sine-
Gordon model. This is an UV approximated flow equation for the MSG model,
however it is not a trivial scaling, since the couplings on the right-hand side depend
on the scale k, in contrast to the independent mode approximation in perturbation
theory where they do not. Recalling that β does not run in this approximation,
the above equation has the following solution in d = 4 dimensions (αd=4 = 1/16π2)

uk = uΛ exp

[
β2

64π2
(k2 − Λ2)

]
, (10.10)

where uΛ is the high-energy initial value of uk at the UV scale Λ. In the pre-
inflationary framework the natural choice is the Planck scale Λ = Λp = 2.4 ×
1018 GeV. It should be noted that in this context the applied procedure is different
than the usual RG analysis, since here the astronomical measurements provide
values at lower energies at the scale of inflation ki, and not at the UV, i.e., at
the Planck scale. Thus the parameters of the MSG model, namely the constant
dimensionful mass m, the frequency β, and the running Fourier amplitude uk are
also fixed at the the scale of inflation ki, around the GUT scale, ki ∼ kGUT =
2×1016 GeV. This is performed by matching the parameters at the scale of inflation
ki with the initial conditions of the slow-roll analysis, which will be denoted here
as
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Figure 10.2: RG scaling of the MSG potential (10.3) in the pre-inflationary period.
The solid line corresponds to the potential obtained from the slow-roll analysis at
the scale of inflation (ki = 2.0 × 1013 GeV) where β̂ = 30 is chosen from the
acceptance region shown in Fig. 10.4 resulting the normalized parameters m̂ =
5.4×10−10, û = 1.5×10−21, β̂ = 30. The dashed lines stand for the pre-inflationary
UV values obtained from the RG analysis using Eq. (10.10). The black disk shows
the VeV rolling down to induce inflation.

uki = u0, β = β0, m = m0. (10.11)

After these parameters are determined, the UV value uΛ can be calculated using
Eq. (9.24) or if the mass is much smaller than the running momentum scale then
using the approximate solution given by Eq. (10.10). This also determines the RG
scaling of the potential. One can immediately observe that uk is decreasing during
the RG running in agreement with the general statement that the potential must
tend to a convex shape in the low energy limit, see Eq. (3.15).

In comparsion the quadratic LFI model is a free theory and therefore it does not
have an RG evolution, its single parameter the dimensionful mass stays constant.
This is also true for the explicit mass of the MSG potential, however the periodic
self-interaction term has a non-trivial RG running resulting in the RG evolution of
the potential. Therefore in the case of the MSG model the RG-induced inflationary
mechanism can be described as follows. In the pre-inflationary period at very high
energies the vacuum expectation value (VeV) of the field is trapped in one of the
second minima of the MSG potential, see Fig. 10.2. Then the RG running makes
the potential flatter and more convex and eventually the local minima disappear at
the scale of inflation releasing the VeV. At this point the parameters of the potential
can be matched with the results of slow-roll analysis. As the VeV is released it
starts to roll down to the global minimum inducing the desired inflation.
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10.3 Inflationary period and slow-roll

The inflationary period begins after the RG scaling forces the false vacua to vanish
and the VeV starts to slowly roll down the remaining energy hill at the scale of
inflation. Over this period the potential is assumed to remain unchanged, since the
slow-roll process is considered to be classical. To discuss this period it is convenient
to use the reduced Planck units and set c ≡ ~ ≡ 1, and m2

p = 1/(8πG). Therefore
in this context the dimensionless couplings of the MSG model are

û =
u0

m4
p

, β̂ = β0mp, m̂ =
m0

mp
, (10.12)

where the dimensionful parameters denoted as u0, β0 and m0 are defined at the
scale of inflation ki similar or below the GUT scale kGUT = 2× 1016GeV and not
around the Planck scale mp = 2.4×1018 GeV. Thus, the ratio between these energy
scales are at least

kGUT

mp
≈ 1

120
. (10.13)

Here, the slow-roll analysis (described in Sect. 9.2) is performed only for one
variant of the MSG model (10.3), but similar results are found for different variants.
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Figure 10.3: Theoretical predictions of the natural inflation (orange line segments
on the left) and the MSG model (purple line segments in the middle) for the scalar

tilt ns and tensor-to-scalar ratio r using various frequencies β̂ and a fixed ratio
û/m̂2 = 1/(0.22)2 for the MSG model. For each β̂ parameter there is a correspond-
ing line segment where the e-fold number varies in the range 50 < N < 60. The
two model has the same prediction for β̂ = 0, which line segment is also equivalent
to the prediction of the simple quadratic φ2 inflationary potential. The results are
compared to the measurements made by the PLANCK mission [104–106], where
the combined data from BICEP2/Keck Array and Planck Collaborations are indi-
cated by the colored areas. The darker regions correspond to 95% CL while the
lighter regions to 68% CL adopting the notation from Refs. [104–106].
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Figure 10.4: Acceptance levels of the parameter space of the MSG model (10.3)
indicated by colored regions using the conventions of Fig. 10.3 for the e-fold number
N = 55. The dark blue regions correspond to the best agreement with the Planck
data which is shown in the inset for the e-fold numbers N = 50, 55, 60.

A comparison can be made between the results obtained for the MSG and the
sine-Gordon, i.e., the natural inflation model as shown in Fig. 10.3 which clearly
indicates that the MSG model has a better agreement with the measured scalar
tilt ns and tensor-to-scalar ratio r. Predictions with different parameter values fall
into regions with different levels of acceptance corresponding to different colors.
This is plotted in Fig. 10.4 for the parameter space of the MSG model where the
regions are colored according to their level of acceptance.

As Fig. 10.4 shows, the slow-roll analysis only fixes the ratio û/m̂2 and the

frequency β̂ leaving out a free overall factor. However the normalization of the
potential can be fixed too at the starting point of the slow-roll φi, which originates
from the disappearing false vacuum. The MSG potential (10.3) can be written as

VMSG(φ) = u

(
1

2

m2

u
φ2 + [1− cos(βφ)]

)
, (10.14)

making it evident that after the slow-roll study one has to also fix the value of
u = uki at the scale of inflation substituting φ = φi. This can be done by using
the condition for the absolute value of the potential [50] given by

V (φi) ≡
r

0.01
(1016 GeV)4 , (10.15)

where the tensor-to-scalar ratio r depends on the parameters determined by the
slow-roll. If the obtained value is in the range of r ≈ 0.1, then the energy scale
of the potential is around the GUT scale kGUT = 2 × 1016GeV. From the above
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formula the scale of inflation can be determined as

V (φi) ≡ k4
i , ki =

( r

0.01

) 1
4

1016 GeV, (10.16)

which also depends on the tensor-to-scalar ratio. For example, as it can be seen
in Fig. 10.4, the parameters û/m̂2 = 1/(0.22)2 and β̂ ≈ 0.3 provide one of the
best levels of acceptance, yielding r ≈ 0.05 and consequently putting the scale of
inflation around ki = 1.5× 1016 GeV close to the GUT scale.

Thus, the parameters of the MSG model can be chosen to give an excellent
agreement with the astrophysical observations which fixes these parameters at the
scale of inflation using the slow-roll analysis. It is useful to discuss the obtained
results by separating the parameter space of the MSG model into two regions.

Fit to experimental data for small β

Taking a closer look at the acceptance regions of the MSG model plotted in Fig. 10.4
reveals an interesting feature. For frequencies smaller than β̂ < 1.5 these regions
are relatively large areas, but for larger frequencies the acceptance region becomes
nearly a straight line along which the parameters satisfy the relation

ûβ̂2

m̂2
=
u0β

2
0

m2
0

≈ 0.32

0.222
> 1 . (10.17)

For small β̂ values the parameters that provide the best fit are situated in the dark
blue “blob” at the starting point of the line. Reading off the parameter values
of this location leads to the values around β̂ ≈ 0.3 and û/m̂2 = 1/(0.22)2, thus

the relation (10.17) also holds for the best fits in the small β̂ region. Using the
normalization given by Eq. (10.15) with the results of the slow-roll analysis fixes
all three parameters of the MSG model yielding the numerical values

m̂small ≈ 5.92× 10−6 ⇒ msmall
0 ≈ 1.42× 1013 GeV , (10.18a)

ûsmall ≈ 7.24× 10−10 ⇒ usmall
0 ≈ 2.4× 1064 GeV4 , (10.18b)

β̂small ≈ 0.3 ⇒ βsmall
0 ≈ 1.25× 10−19 GeV−1 . (10.18c)

These are also the parameters chosen in Fig. 10.3, for which the scale of inflation
is obtained to be around the same order-of-magnitude as the GUT scale, namely
ki = 1.5× 1016 GeV, as mentioned above.

It must be pointed out that the dimensionful explicit mass calculated by the
slow-roll (10.18a) is small compared to the obtained scale of inflation, therefore
the approximate RG equation (10.10) can be used to determine the RG flow of the
potential and to scale it up to higher energies. Over the RG evolution from the
Planck (mp) to the GUT scale (kGUT) the dimensionful β remain unchanged, thus
the quantity β k = β0 k takes values between

β̂
kGUT

mp
< (β0 k) < β̂ . (10.19)
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In the proposed RG-induced inflationary scenario the false vacuum must disappear
during the RG flow of the potential between the Planck and GUT scale, therefore
it must undergo a significant change. To measure this change one can substitute
the ratio of the scales (10.13) into Eq. (10.10) obtaining

χ =
ump
ukGUT

= exp

[
1

64π2

(
β̂2 − β̂2

1202

)]
. (10.20)

In the acceptance region where

β̂ & 30 , χ & 4.2 , (10.21)

the change in the coupling u is more than four-fold, as indicated by the ratio χ.
For smaller β̂ values this ratio is too small. In this case an option is to consider
an RG flow from super-Planckian scales, which would be problematic. This makes
the large β̂ region more favorable which is discussed in the following subsection.

Fit to experimental data for large β

For large β̂ values the accepted region is found to be a straight line for all the
considered MSG variants (10.3), (9.2), (9.3) as indicated by Fig. 10.4 and Fig. 9.1.
Furthermore, the choice of the constant term does not affect the results in this
region, since the obtained lines coincides for variants where the periodic term has
the same sign.

The tensor-to-scalar ratio and consequently the scale of inflation depends on
the chosen parameter values. If one chooses a small β̂ from the best acceptance
region then the inflation takes place at the GUT scale, however for large β̂ values
along the acceptance line, it occurs at smaller scales. For example, the scale of
inflation is found to be ki ≈ 2 × 1013 GeV for β̂ = 30. In this case the obtained
normalized parameters are

m̂large ≈ 5.4× 10−10 ⇒ mlarge
0 ≈ 1.3× 109 GeV , (10.22a)

ûlarge ≈ 1.5× 10−21 ⇒ ularge
0 ≈ 5.0× 1052 GeV4 , (10.22b)

β̂large ≈ 30 ⇒ βlarge
0 ≈ 1.25× 10−17 GeV−1 . (10.22c)

for which the RG evolution produces a sufficient change in the only running coupling
u(k = mp)/u(ki) ≈ 4.2. Fig. 10.5 shows the RG scaling of the MSG potential where
at the scale of inflation the above parameters are reproduced similarly to Fig. 10.2.

An important observation to make is related to how large β̂ values can be
choosen. For the VeV to be “securely” trapped in the false vacuum so that the
initial quantum fluctuations cannot push it over the energy barrier, the barrier must
be high enough and consequently the RG running must produce a significant change
in the potential. As mentioned, this means that the large frequencies β̂ & 30 are
favored from the acceptance region, because then the ratio of the Fourier amplitude
at the Planck scale and at the scale of inflation is sufficiently large χ & 4.2. However
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Figure 10.5: RG running of the MSG potential in the pre-inflationary period from
the Planck scale to the scale of inflation ki = 2× 1013 GeV, where the parameters
of the potential are fixed by the slow-roll analysis with the choice β̂ = 30. The VeV
is indicated by the red ball which is initially trapped in a false vacuum at large
scales, however after the RG evolution the false vacuum vanishes releasing the VeV
to slowly roll down to the true vacuum at the scale of inflation.

the scale of inflation decreases towards larger frequencies, and around β̂ ∼ 300
it is below the GUT scale by more than four orders of magnitude, which can
be problematic. This is an important point, since for large β̂ parameters the
acceptance region is a single line, therefore after choosing a β̂ value, the slow-roll
analysis together with the normalization condition (10.15) fixes all the parameters
of the MSG model.

10.4 Conclusion

I have proposed a new inflationary scenario based on the RG evolution and
convexification of the inflaton potential due to the quantum fluctuations in the
pre-inflationary period [6]. According to the proposed mechanism the vacuum-
expectation value (VeV) of the inflaton field is initially trapped in a false vacuum
at very high energies around the Planck scale, then as a consequence of the RG
scaling towards the scale of inflation the potential tends to a more convex shape.
The false vacuum disappears as the potential flattens out releasing the VeV to
slowly roll down to the ground state inducing inflation. This scenario can be viable
for a large number of inflationary models which have concave regions and at least
one false vacuum.

The MSG model is a good candidate for the described mechanism, since it has
many non-degenerate minima separated by a tunable amount of energy interpo-
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lating between a model with infinite degenerate minima (sine-Gordon model) and
one with a single minimum. I have demonstrated by the slow-roll analysis that
the model also shows an excellent agreement with cosmological observations on
the scalar tilt and tensor-to-scalar ratio made by the Planck mission. I have ex-
plicitly showed the flattening of the MSG potential due to its RG evolution using
the functional RG method in local potential approximation. This produces a suf-
ficient change in the potential over the pre-inflationary period to make the local
minima disappear releasing the VeV of the field to initiate the inflation. Although
a complete demonstration would involve all the fields from the Standard Model of
particle physics considering a particular unified theory, however the inclusion of
other fields do not change the general statement that the effective potential must
be convex in the low-energy (IR) limit.

There are many inflationary models in the literature. One type of them are the
hybrid inflationary models which are almost excluded by the Planck measurements
because contrary to the data they predict ns > 1 [136, 137]. Chaotic, large-field
inflationary scenarios are better candidates, but they need large quantum fluctu-
ations to excite the inflaton field to the required values, thus the initial position
of the VeV rely on random fluctuations leading to the so-called initial condition
problem. This is even more problematic for small-field inflationary models. How-
ever the presented mechanism has, in this sense, a unique value for the initial VeV
determined by the position of the false vacuum which explains why the slow-roll
starts from a particular value and solves the initial condition problem. It also sup-
ports a particle physics origin, since the problematic large quantum fluctuations
are no longer needed at the scale of inflation.

Therefore I have proposed a valid inflationary scenario which suggests that the
inflation was induced by the RG running of the potential in the pre-inflationary
period which also solves the initial condition problem. It is based on the con-
vexification of the effective potential in the low-energy (IR) limit. The vacuum
expectation value of the inflaton field is assumed to be trapped in a false vacuum
at high energies around the Planck scale then it is released as the potential flat-
tens out inducing inflation. I have showed the validity of the mechanism for the
massive sine-Gordon model, which has an excellent agreement with cosmological
measurements fixing its parameters at the scale of inflation. I have calculated the
RG evolution of the model using the functional RG method demonstrating the
disappearance of its second minima due to the RG running from the Planck scale
towards the scale of inflation.
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Summary

In my thesis I have worked within the framework of the functional renormalization
group (FRG). It is an exact method to obtain the phase diagram of various models
and to describe their phase transitions and critical behavior by integrating out the
modes of fluctuations successively.

The FRG equation is an integro-differential equation that constitutes functionals,
thus there are only a few special cases when exact solutions can be indicated,
which means that approximations are required. When approximations are used
the results could depend on the so called regulator function. The question arises,
which regulator function gives the most accurate predictions for physical quantities
such as critical exponents at a certain level of approximation? To answer this
question I have studied the compactly supported smooth (CSS) regulator using
the optimization method called the principle of minimal sensitivity. I have applied
this principle in the framework of the O(N) and the massive sine-Gordon (MSG)
model in local potential approximation (LPA). The parameters of the CSS regulator
has been also optimized based on the requirement of the absence of spontaneous
symmetry breaking (SSB) in the one-dimensional sine-Gordon model beyond LPA.

T1: The CSS regulator was thoroughly investigated with various optimization
methods, in three different dimensions, for three different models, both in LPA and
LPA′ and with two different normalization all indicating that the Litim limit of
the CSS regulator is the optimal choice. [1, 2]

Approximate results may also suggest unphysical properties of a system, like the
presence of a fixed point indicating a spurious phase transition. Thus, it is crucial
to know what is a sufficient approximation that produces reliable results when
different models are investigated. Therefore I examined the reliability of the FRG
method on O(N) models paying special attention to its truncated Taylor expanded
potential and the local potential approximation discussing what is sufficient to
recover the Mermin-Wagner theorem.

T2: SSB always appears in the truncated O(N) models, even when it should
not, however the Taylor expanded potential around the minimum and the LPA
when treated exactly, without truncations, is sufficient to reproduce the Mermin-
Wagner theorem for the O(N ≥ 2) models in all dimensions. The only exception
when the exactly treated LPA gives an incorrect qualitative picture is for the two-
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dimensional Ising model (N = 1), where it incorrectly predicts the absence of
SSB. [3, 4]

FRG can also find its applications in cosmology if the time evolution of the Universe
can be identified with a renormalization group (RG) scaling. A consequence of this
connection is the possibility to first, constrain the parameters of a candidate Higgs-
inflationary model at the scale of inflation by astrophysical observations, then using
the RG method to calculate its RG running down to the electroweak scale, where
it should recover the measured parameters of the Standard model Higgs potential.
I have investigated this scenario proposing the MSG model as a Higgs-inflationary
scalar field.

T3: The proposed MSG model proved to be an excellent candidate for a Higgs-
inflationary theory, since it provides a remarkable agreement with cosmological
observations. By performing its RG analysis I have found that it can simultaneously
describe the physics both at cosmological and electroweak scales and it recovers
the Higgs mass by the correct order of magnitude at the electroweak scale in the
post-inflation period independently of the high-energy (UV) initial conditions. [5]

Furthermore, the RG approach could be applied not only in the post-inflationary,
but also in the pre-inflationary period up to very high energies around the Planck
scale.

T4: I have proposed a new inflationary scenario which suggests that the infla-
tion was induced by the RG running of the potential in the pre-inflationary period
which could also solve the initial condition problem. It is based on the convexifica-
tion of the effective potential in the low-energy (IR) limit. The vacuum expectation
value of the inflaton field is assumed to be trapped in a false vacuum at high ener-
gies around the Planck scale then it is released as the potential flattens out inducing
inflation. I have showed the validity of the mechanism for the MSG model, which
has an excellent agreement with cosmological measurements fixing its parameters
at the scale of inflation. I have calculated the RG evolution of the model using the
functional RG method demonstrating the disappearance of its second minima due
to the RG running from the Planck scale towards the scale of inflation. [6]



Összegzés

Tézisemben a funkcionális renormálási csoport (FRG) módszer keretében végeztem
kutatást. Ez egy egzakt metódus, amely lehetővé teszi különböző modellek
fázisdiagramjának meghatározását, fázisátalakulásuk és kritikus viselkedésük
léırását a rendszer különböző módusú fluktuációinak eliminálásával.

Az FRG egyenlet egy funkcionálokra vonatkozó integrált tartalmazó diffe-
renciálegyenlet, ı́gy csak néhány speciális esetben lehetséges egzaktul megoldani,
ami azt jelenti, hogy közeĺıtések szükségesek. Közeĺıtések használatakor azonban
az eredmények függést mutathatnak az úgynevezett regulátor függvénytől. Így
felmerül a kérdés, melyik regulátor függvény biztośıtja a fizikai mennyiségek, mint
például a kritikus exponensek legpontosabb jóslatait. A kérdés megválaszolásához a
minimális érzékenység elvét alkalmaztam a kompakt tartójú, sima (CSS) regulátor
optimalizáláshoz az O(N) és a tömeges sine-Gordon modell (MSG) keretében
lokális potenciál közeĺıtésben (LPA). A CSS regulátor paramétereit optimalizáltam
egy másik módszerrel is, kihasználva a spontán szimmetriasértés (SSB) hiányának
megkövetelését az egy-dimenziós sine-Gordon modellben.

T1: Alapos vizsgálatnak vetettem alá a CSS regulátort különböző opti-
malizálási módszerekkel, három különböző dimenzióban, három modellre, LPA-ban
és LPA′-ban, két különböző normálással, amely azt mutatta, hogy a CSS regulátor
Litim limesze az optimális választás. [1, 2]

A közeĺıtő eredmények hamis jóslatokat is adhatnak, például egy nem-fizikai fix-
pontot jelezve, ami egy nem létező fázisátmenet jelenlétére utal. Emiatt elenged-
hetetlenül fontos tudni, hogy melyek azok a közeĺıtések, amik elegendően pon-
tosak ahhoz, hogy megb́ızható ereményeket szolgáltassanak különböző modellek
vizsgálatakor. Ezen célból tanulmányoztam az FRG módszer megb́ızhatóságát az
O(N) modellek esetében különös figyelmet szentelve a csonkolt Taylor sorfejtett
potenciál és a lokális pontenciál közeĺıtésre, megvizsgálva, hogy ezek elengedőek-e,
hogy a Mermin-Wagner tételt helyesen visszaadják.

T2: SSB mindig megjelenik a csonkolt O(N) modellben, olyan esetben is,
amikor ez nem megengedett. Azonban a minimum körül Taylor sorfejtett potenciált
és az egzakt (nem csonkolt) LPA-t használva, az eredmények helyesen visszaadják
a Mermin-Wagner tételt az O(N ≥ 2) modellekre, minden dimenzióban. A két-
dimenziós Ising modell (N = 1) az egyedüli kivétel, amikor az egzaktul kezelt LPA
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hibás kvalitat́ıv képet ad, tévesen az SSB hiányát jelezve. [3, 4]

Az FRG módszer a kozmológiában is alkalmazható, ha az Univerzum időbeli
fejlődését azonośıtani lehet egy renormálási csoport (RG) skálázással. Ez a
kapcsolat azt eredményezheti, hogy miután egy lehetséges Higgs-inflációs mod-
ell paraméterei rögźıtésre kerülnek az infláció energiaskáláján, figyelembe véve
asztrofizikai megfigyeléseket, azután az RG módszer használatával kiszámolható
az RG futása az elektrogyenge skáláig, ahol a Standard modell Higgs potenciál
paramétereit kell visszaadnia. Az MSG modellt, mint Higgs inflációs skalármezőt
javasolva tanulmányoztam ezt a forgatókönyvet.

T3: A javasolt MSG modell egy kitűnő Higgs-inflációs elméletnek bizonyult,
hiszen figyelemreméltó egyezést mutat a kozmológiai megfigyelésekkel. Az RG
anaĺızisét végrehatjva azt találtam, hogy a modell képes egyszerre léırni a koz-
mológiai és elektrogyenge skálán történő méréseket, valamint nagyságrendileg
visszaadja a Higgs részecske tömegét az infláció utáni elektrogyenge skálán, a
nagyenergiás (UV) kezdőértékektől függetlenül. [5]

Mindez azt sugallja, hogy az RG megközeĺıtés nem csak az infláció utáni szakaszra,
hanem az infláció előtti időszakra is alkalmazható lehet a nagyobb energiák felé,
egészen akár a Planck skáláig.

T4: Egy új inflációs mechanizmust javasoltam, amely szerint az inflációt a po-
tenciál RG futása indukálja az Univerzum korai szakaszában, ami megoldhatja
a kezdeti feltétel problémáját. A mechanizmus az effekt́ıv potenciál konvexi-
fikációjára alapszik az alacsony energiás (IR) határesetben. A kezdeti feltételezés,
hogy a Planck skála körüli nagy energiákon az inflaton vákuum várható értéke
beragadt egy hamis vákuumba, majd ahogyan a potenciál ellaposodik elegendi
a várható értéket, elind́ıtva az inflációt. Megmutattam ezen forgatókönyv al-
kalmazhatóságát az MSG modellre, amely kiváló egyezést mutat a kozmológiai
mérésekkel, rögźıtve a modell paramétereit az infláció skáláján. Meghatároztam az
MSG potenciál RG evolúcióját a funkcionális RG módszer használatával, megmu-
tatva a lokális minimumok eltűnését a Planck skálától az inflációs skáláig történő
RG futás következtében. [6]
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Isidori, and A. Strumia, JHEP 08, 098 (2012).

[125] A. D. Linde, Phys. Lett B 129, 177–181 (1983); Phys. Lett. B 175, 395–400
(1986).

[126] A. Bonanno and M. Reuter, Phys. Rev. D 65, 043508 (2002); A. Bonanno
and M. Reuter, Phys. Lett. B 527, 9–17 (2002); A. Bonanno and M. Reuter,
Int. J. Mod. Phys. D 13, 107–121 (2004); E. Bentivegna, A. Bonanno and M.
Reuter, J. Cosmology Astropart. Phys. 0401, 001 (2004); I. L. Shapiro, J.
Sola, J. High Energy Phys. 2002, 006–006 (2002); I. L. Shapiro, J. Sola, Phys.
Lett. B 530, 10–19 (2002); I. L. Shapiro, J. Sola, Phys. Lett. B 475, 236–246
(2000); I. L. Shapiro, J. Sola, Nucl. Phys. B Proc. Suppl. 127, 71–76 (2004); I.
L. Shapiro, J. Sola, H. Stefancic, J. Cosmol. Astropart. Phys. 2005, 012–012
(2005); I. L. Shapiro, J. Sola, Phys. Lett. B 682, 105–113 (2009).

[127] Y.-F. Cai, Y.-C. Chang, P. Chen, D. A. Easson and T. Qiu, Phys. Rev. D 88,
083508 (2013); G. Kofinas and V. Zarikas, Phys. Rev. D 94, 103514 (2016);
R. Moti and A. Shoja, Eur. Phys. J. C 78, 32 (2018).

[128] A. Kaya, Phys. Rev. D 87, 123501 (2013).

[129] J. Serreau, Phys. Lett. B 730, 271–274 (2014); T. Prokopec and G. Rigopou-
los, J. Cosmology Astropart. Phys. 1808, 013 (2018).

[130] M. Guilleux and J. Serreau, Phys. Rev. D 92, 084010 (2015).

[131] T. Kobayashi, O. Seto and Y. Yamaguchi, Prog. Theor. Exp. Phys. 2014,
103E01 (2014); T. Higaki, T. Kobayashi, O. Seto and Y. Yamaguchi, J. Cos-
mology Astropart. Phys. 1410, 025 (2014).

[132] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515–1527 (1964); [Sov. Phys. JETP
20, 1018 (1965)]; O. V. Konstantinov and V. I. Perel, Zh. Eksp. Teor. Fiz. 39,
197 (1960); [Sov. Phys. JETP 12, 142 (1961)]; J. Schwinger, J. Math. Phys. 2,
407–432 (1961); L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics,
(Benjamin, New York) (1962).

[133] J. Polonyi, Phys. Rev. D 74, 065014 (2006); S. Nagy, J. Polonyi, I. Steib,
Phys. Rev. D 93, 025008 (2016); S. Nagy, J. Polonyi, I. Steib, Phys. Rev. D
97, 085002 (2018).

[134] R. Brustein, S. P. de Alwis and P. Martens, Phys. Rev. D 70, 126012 (2004).

[135] H. Gies, Lect. Notes Phys. 852, 287 (2012).

[136] D. H. Lyth, Lect. Notes Phys. 738 81-118 (2008).

[137] D. H. Lyth and A. Riotto, Phys. Rept. 314 1-146 (1999).


	 Introduction 
	I Theoretical Framework
	 Statistical mechanics 
	Renormalization group
	The O(N) model
	Blocking construction

	Quantum field theory
	Functional renormalization group
	Derivation
	Optimization and regulator functions
	Optimization
	Regulator functions


	O(N) and sine-Gordon type models
	O(N) models
	Sine-Gordon type models
	Sine-Gordon model
	Massive sine-Gordon model


	Inflationary cosmology

	II Findings
	Optimization
	Optimization based on the principle of minimal sensitivity
	Results obtained by the RG study of QED2
	Three-dimensional O(1) model

	Optimization based on spontaneous symmetry breaking
	SG model for dimensions 1d 2
	Optimization of the power-law regulator
	Optimization of the CSS regulator

	Conclusion

	Effects of truncations on the Mermin-Wagner theorem
	The truncated O(N) model (N< , NCUT < )
	The spherical model without truncations (N = , NCUT=)
	The XY (N=2), sinh- and sn-Gordon model
	The O(N) model without truncations (N<, NCUT =)
	Conclusion

	Higgs-inflation
	Inflationary potentials
	Cosmological scale
	Electroweak scale
	Renormalization group scaling 
	Conclusion

	Renormalization group induced inflation
	Proposed inflationary scenario
	Pre-inflationary period and RG running
	Inflationary period and slow-roll
	Conclusion

	Summary
	Összegzés
	Acknowledgments
	Bibliography


