
Implementing a New Interface for Directed
Graph Analysis by Existing and New

Algorithms

Miklós Becsei, Máté Csongor Széll, Gergely Kocsis

University of Debrecen, Hungary, Faculty of Informatics,
Department of IT Systems and Networks

kocsis.gergely@inf.unideb.hu

Abstract

We have developed a multiplatform application that provides an easy-to-
use alternative for structural analysis of directed graphs. The work consisted
of two major parts. On the one hand, a Java package has been created
which, in addition to the implementation of some basic and some moderately
complex algorithms, allows for the modular addition of new algorithms. On
the other hand, we have created a web interface that can analyze the uploaded
graphs online and display the results as a web application. The source of the
Java package can be used without a web interface, so it can be easily adapted
to a third-party application, or even create a new interface (e.g. in JavaFX).
In addition to statistics on simple nodes and edges related to the graph, the
package is able to find the giant component of the graph using the Tarján
algorithm and use the result to map the so-called “tendrils” in the graph [1].
It can also specify the number of triangles of different directions in the graph
[2]. The web interface gives the ability to register the user so that it can retain
previously uploaded graphs and results in a consistent manner. After logging
in, one can upload a new graph, delete an older one, and run the Java package
algorithms on the uploaded graphs. Because this interface is independent of
the underlying Java package, it can run all algorithms implemented in it and
display the result, even after adding new algorithms. In the current stage
of the work we are adding new algorithms by integrating well-known graph
analysis software into the package under our common interface. This paper
focuses on the web-interface while the details of the core package are to be
published later since it may need some structural reorganization. The results

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Proceedings of the 11th International Conference on Applied Informatics
Eger, Hungary, January 29–31, 2020, published at http://ceur-ws.org

38



of the work are continuously made available at http://dina.inf.unideb.hu.

Keywords: directed graph, network topology, web interface

MSC: 68W40, 68N99, 68U01

1. Motivation

One of the most popular interdisciplinary topics of recent years is network research,
which seeks to provide solutions for analyzing and evaluating complex processes
across statistical disciplines from statistical physics through biology to sociology.
The basis of these researches is that, taking into account a real-world process, we
try to describe it as a network using a graph. Finally, we model the phenomenon
based on network properties. The networks used for modeling can be directional
and non-directional, edges can have weight, and vertices can be parameterized in
many different ways.

There are several methods for analyzing networks. From many points of view
the simplest is the development of a dedicated program. This may need some
already existing programming knowledge, but does not require to learn new lan-
guages. Because of this latter property still many scientists refuse to use modern
network analysis tools. Instead they implement their own algorithms in their well
known languages (C, Fortran, Java) from the basis [3, 4]. Another solution is to
use some freely available graph analysis software. There are many such software or
programming packages available such as Gephi [5], Wolfram Alpha [6], Graphviz
[7], JGraphT [8], GraphStream [9] or NetworkX [10]. Unfortunately, in many cases
they do not have implementations for specific algorithms out of the box. One needs
to learn how to implement or at least parameterize algorithms in these. The aim
of our work is to develop a software that, beside providing some basic algorithm
implementations by itself, makes it easy to run our own implementations of algo-
rithms written in common languages or implemented by well-known packages or
tools. We also would like to provide the possibility for users to add their own graph
analysis algorithms under this common interface.

2. The application’s structure

As a first step a small core Java package has been developed by implementing a
bunch of algorithms which can be used to analyze various, unique properties of a
directed graphs, which are not in the main focus of the research of directed networks
in order to have an application on the top of which we implement our interface.
The main goal was to make this software more easy to be used by creating a web
application which through the features of it can be reached. After examining the
existing application and the implementation of the graph analyzer algorithms we
started to investigate the tools and technologies which are appropriate to create
the application efficiently.

39



The application is based on client-server architecture. The server is a Spring
Boot [12] application leveraging the advantages of Spring Framework [11]. It pro-
vides REST endpoints for the client application [13]. The client-server connection
is secured via OAuth 2.0 protocol [14] with JSON Web Tokens managed by Spring
Security [15]. For data persistence it uses MySQL relational database management
system through interfaces exposed by Spring Data JPA [16]. We implemented the
actual user interface on Angular platform [17] using the components of PrimeNG
UI kit [18]. The custom components are written in TypeScript [21] and HTML, the
look and feel defined by SCSS stylesheets. For state management we used NgRx
[19], which is designed specifically for Angular based on the widely used Redux
pattern [20]. The full technology stack is illustrated on Figure 1.

Figure 1: The technology stack used while implementing the web
service interface for the core Java application.

In order to use our web-service users need to have an account. The registration
process is quite simple, consists of providing a username and password secured by
a CAPTCHA test. After completing the procedure, the user can log in to the
application. As the server’s REST endpoints are secured – except the registration
and the login – the server will decline all the unauthorized requests.

3. The application’s features

After the login the user can upload CSV files containing graphs to the server. At
the moment only two specific formats are accepted. i.) The first line of a CSV file
contains the number of nodes and the upcoming lines describe the links as pairs of
node IDs separated by a whitespace characters, commas or semicolons. Numbering

40



of IDs start from 0, so if we have for example 7 nodes the ID of the first one is
0 while the ID of the last one is 6. ii.) The file contains only pairs of nodes in
each line. In this case those nodes that have no links cannot be represented. The
upload procedure is an HTTP POST request, the file is transferred in the request
body. The uploaded graphs are bound to the user by a database table. During the
upload process a new row is inserted into this table saving the date of the upload,
the name of the file and the identifier of the uploading user. The file itself is stored
in the file system. The user’s uploaded graphs can be listed on the UI allowing the
user to do different actions on them.

One of the main goals while implementing the interface was to implement it
without the need of changing the already existing Java core. Keeping this aim in
mind helped to build the interface in a modular way making it absolutely inde-
pendent from the algorithms while on the other hand keeping it easy to add new
features. To accomplish this, we created adapter classes to convert the input data
to the proper format for the algorithms. POJOs are also made for each of them to
transfer the results of the analysis.

After these preparations we started to invoke the analyzer methods with differ-
ent sized graphs to measure the run times. It turned out that the processes can be
really time consuming in case of big graphs with many nodes and edges. The solu-
tion for this became to run the methods in asynchronous manner and persist the
results to the file system in JSON format. The advantage of this strategy is that
the stored result can be pushed directly to the client without any conversions or
calculations when it asks for it. Figure 2 shows the UI in a state where 3 methods
have finished while the fourth one it still in progress. It is important to note that
more than one method can run at the same time and also that one method can
be run only once. We put information circles nest to the names of the algorithms.
Pressing these show detailed description of them.

Figure 2: Three analysis methods have finished on the selected
graph while one is still in progress. The information circles next
to the names of the algorithms provide detailed description about

them to the user.

The user can start the analysis of a graph by selecting it from the list on the

41



UI. At first the server will check if the result is existing for the specified graph
and algorithm, if it does, it returns the result immediately, if does not, the process
starts on another thread and the client will get an empty response. In that way
the caller thread is not blocked so there is no infinite loading screen presented to
the user. One analysis can be started one time on a graph to avoid the overloading
of the server with unnecessary tasks. The results will be stored when the analysis
completes, and the client is notified about this fact. When it happens, the client
will send a request to the server to obtain the result and presents it to the user. If a
graph contains a huge number of nodes and edges the result of the analysis cannot
presented well visually for the user, so it can be downloaded from the application
in text format allowing additional processing and investigation. This file is created
by a conversion of the stored JSON. The uploaded graphs and the results can be
deleted from the application, after confirmation all data will be physically deleted
from the server if the user makes that decision. At the current state of the web-
application four plus two different algorithms can be run on directed graphs: i.)
basic properties are expressed such as number of nodes, links, bidirectional links
(links that have directions for both directions), unidirectional links (links having
only one direction), loops (links that for which the start and the end are the same),
multilinks (more than one links having similar starting and end nodes), in-degree
(number of incoming links) and out-degree (number of outgoing links) (see Figure 3
(top-left)), ii.) strongly connected components including the giant component using
the Tarján algorithm [22, 23] (see Figure 3 (top-right)), iii.) tendrils and tubes for all
layers [1] (see Figure 3 (bottom-left)), iv.) number of different triangles in the graph
[2] (see Figure 3 (top-right)). The detailed description of these algorithms is out of
the scope of this paper since currently we focus on the interface itself. However in
the software we added a description next to each algorithm that describes all the
needed details. The two extra algorithms mentioned above are two algorithms from
third-party software packages that have been successfully merged to the system to
test how easy it is to add already existing solutions to the package.

By successfully integrating the core Java package we have developed this inter-
face in a way that lets us adding more (even pre-written) other algorithms from
other well-known graph analysis software. We have successfully added algorithms
from JGrapht and GraphhStream. Although using the built in Java interfaces of
the core package adding Java implementations of algorithms is possible, we are
also working on a part of the application that lets users to add their own imple-
mentations in several different languages. A powerful property of our interface is
that if the user precisely implement the provided Java interfaces of the core pack-
age, that visualization types are automatically generated. Right now these may
be Map, Table, Graph and File. See examples of these on Figure 3. Since this
paper is about the web-interface the detailed description of this process is out of
the scope. However for users who would like to try it, after requesting the code
from the authors the JavaDoc of the classes provide enough help.

42



Figure 3: Snapshots of the results of the algorithms run on a sam-
ple graph. The visualization is automatically generated based on
the output of the implementation of the algorithm in the core pack-
age. (upper left) Example of map and linechart results through
simple graph statistics. (upper right, lower left) Examples of table
result through Tarjan and Tendril algorithms. (lower right) Exam-
ple of map results through triangle counter algorithm. In each case
the results can be downloaded also in file format specified by the

algorithm itself. For more detailed investigation please visit
http://dina.inf.unideb.hu.

4. Discussion

In this work, we have developed a multiplatform application that provides an easy-
to-use alternative for structural analysis of directed graphs. Based on an already
existing Java core package for graph analysis we have created a web interface that
can analyze the uploaded graphs online and display the results as a web application.
In addition to statistics on simple nodes and edges related to the graph, the package
is able to find the giant component of the graph using the Tarján algorithm and use
the result to map the so-called “tendrils” in the graph [1]. It can also specify the
number of triangles of different directions in the graph [2]. The web interface gives

43



the ability to register the user so that it can retain previously uploaded graphs
and results in a consistent manner. After logging in, one can upload a new graph
to the interface, delete an older one, and run the Java package algorithms on the
uploaded graphs. Because this interface is independent of the underlying Java
package, it can run all algorithms implemented in it and display the result, even
after adding new algorithms. In the current stage of the work we are adding new
algorithm implementations by integrating well-known graph analysis software into
the package under our common interface. We also provide the possibility for users
to add their own graph analysis algorithms under this common interface. Right
now there are two ways to do this. the user can either send the implementation of
the algorithm to the authors to add it to the list. Or what is more comfortable,
by ask the full code of the software is sent so the new algorithm can be added on
the locally deployed version. In the future we would like to make this more easy
by providing scripts for the re-deployment.

Acknowledgements. Miklós Becsei and Máté Csongor Széll were supported by
the construction EFOP-3.6.3-VEKOP-16-2017-00002. The project was supported
by the European Union, co-financed by the European Social Fund.

Gergely Kocsis is supported by the EFOP-3.6.1-16-2016-00022 project. The
project is co-financed by the European Union and the European Social Fund.

References

[1] Timár, G., Goltsev, A. V., Dorogovtsev, S. N., Mendes, J. F. F., Mapping
the Structure of Directed Networks: Beyond the Bow-Tie Diagram, Physical Review
Letters 118, 078301 (2017).

[2] Roughgarden, T., Reading in Algorithms Counting Triangles, Stanford University
(2014).

[3] Teng, S.-H., Scalable Algorithms for Data and Network Analysis, now Publishers
Inc, Boston–Delft (2016).

[4] Varga, I., Comparison of network topologies by simulation of advertising, In:
Gusikhin, O., Méndez Muñoz, V., Firouzi, F., Mønster, D., Chang, C. (eds.) Proceed-
ings of the 2nd International Conference on Complexity, Future Information Systems
and Risk (COMPLEXIS 2017), pp. 17–22. SciTePress (2017).

[5] Bastian, M., Heymann, S., Jacomy, M., Gephi: an open source software for
exploring and manipulating networks, International AAAI Conference on Weblogs
and Social Media (2009).

[6] Official site of WolframAplha: https://www.wolframalpha.com/ (last visited:
01.15.2020).

[7] Official site of graphviz: https://www.graphviz.org/ (last visited: 01.15.2020).

[8] Official site of JGraphT: https://jgrapht.org/ (last visited: 01.15.2020).

[9] Official site of GraphStream: http://graphstream-project.org/ (last visited:
01.15.2020).

44



[10] Official site of NetworkX : https://networkx.github.io/ (last visited: 01.15.2020).

[11] Official site of Spring Framework: https://spring.io/projects/spring-
framework (last visited: 01.15.2020).

[12] Wikipedia page of Spring Framework, https://en.wikipedia.org/wiki/Spring_
Framework#Spring_Boot (last visited: 01.15.2020).

[13] The official REST tutorial, https://restfulapi.net/ (last visited: 01.15.2020).

[14] Sathya Bandara, An Introduction to OAuth 2.0 (2017), https://medium.
com/@technospace/an-introduction-to-oauth-2-0-4c71b5fb19ff (last visited:
01.15.2020).

[15] Jorge Veliz, 5 Easy Steps to Understanding JSON Web Tokens (JWT) (2018),
https://thejlmedia.com/5-easy-steps-to-understanding-json-web-tokens-
jwt/ (last visited: 01.15.2020).

[16] Spring Data JPA, https://spring.io/projects/spring-data-jpa (last visited:
01.15.2020).

[17] Official Angular documentation: https://angular.io/docs (last visited:
01.15.2020).

[18] Official site of PrimeNG: https://www.primefaces.org/primeng (last visited:
01.15.2020).

[19] Official NgRx documentation: https://ngrx.io/docs (last visited: 01.15.2020).

[20] Official Angular documentation / RxJS library: https://angular.io/guide/rx-
library (last visited: 01.15.2020).

[21] Official Typescript documentation: https://www.tutorialspoint.com/
typescript/typescript_overview.htm (last visited: 01.15.2020).

[22] Nuutila, Esko, On Finding the Strongly Connected Components in a Directed
Graph, Information Processing Letters. 49 (1): 9–14 (1994).

[23] Micha Sharir, A strong-connectivity algorithm and its applications to
data flow analysis, Computers and Mathematics with Applications 7(1): 67–72,
(1981).

45


