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2 INTRODUCTION

Introduction

This PhD thesis contains new results from the fields of digital image processing and
digital geometry. In the first part we examine the properties of neighbourhood sequences
which provide a tool to generalise the classical neighbourhood relations that are used in
many places in digital geometry and topology. Our results are also published in [15], [17],
[18] and [19]. In the second part of the thesis we describe an own character recognition
algorithm based on Walsh transformation. Our algorithm and its application for compressing
typeset documents are also published in the papers [14] and [13], respectively. We give the
introduction to these two parts separately.

I. Neighbourhood sequences

In digital applications it is often very useful to have an appropriate (digital) distance func-
tion on the digital grid the application is based on. See the survey paper [23] of MELTER
for an account. In two dimensions MELTER and TOMESCU [24] investigated path genera-
ted digital metrics, while HARARY et al. [20] graph generated digital distances. For three
and higher dimensional analysis we can mention the paper of OKABE et al. [25] about the
properties of paths, and the paper of BORGEFORS [1] with certain generalizations of former
two dimensional results. YAMASHITA and HONDA [32] found a condition for a sequence of
neighbourhoods to generate digital metrics. YAMASHITA and IBARAKI [33] extended and
generalized the results of [32] using a general neighbourhood definition. Investigating a spe-
cial case of a concept studied in [33], DAS, CHAKRABARTI, CHATTERJI and MUKHERJEE
published several papers [3]-[10] in this topic. One of the most essential tasks in this area
is to give a convenient digital metric which approximates the Euclidean metric well. Many
of the above papers also contain such results, like [3], [7], [8], [9], [10], and [33]. A detailed
description about the basic concepts of digital topology can be found in [21] or [31].

The theory of neighbourhood sequences is an important part of this topic. By the help of
such sequences, we can describe planar (or higher dimensional) movements. The classical di-
gital — cityblock and chessboard — motions in Z? were introduced by ROSENFELD and PFALTZ
[26]. The cityblock motion allows movements only in horizontal and vertical directions, while
the chessboard motion in diagonal directions, as well. Based on these two types of motions,
the authors in [26] defined two distances. The d4 or dg distance of two points is the number
of steps required to reach one point from the other, where only cityblock or chessboard mo-
tions can be used, respectively. To obtain a better approximation of the Euclidean distance,
ROSENFELD and PFALTZ recommended the alternate use of these motions, which defines
the distance d,;. By allowing arbitrary periodic mixture of the cityblock and chessboard
motions, DAS et al. [5] introduced the concept of periodic neighbourhood sequences, and
generalised it to arbitrary dimension. Moreover, the authors in [5] established a formula
for calculating the distance of two points in a finite dimensional digital space, determined
by such a periodic neighbourhood sequence. Using this formula, DAS in [4] showed that on
the set of periodic 2D-neighbourhood sequences a “natural” partial ordering relation can be
introduced. Furthermore, he investigated the structure of this set and some of its subsets
with respect to this ordering. More precisely, he proved that under this ordering, the set
of [-periodic 2D-neighbourhood sequences forms a distributive lattice. Recently, FAZEKAS
in [12] has proved that a similar partial ordering can also be introduced for neighbourhood
sequences in 3D.

In the first part of the thesis we generalise the concept of neighbourhood sequences by
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allowing not periodic sequences only. We show that the results of DAS [4] and FAZEKAS [12]
about ordering the set of periodic neighbourhood sequences, can be extended to arbitrary
dimension, even in this more general case. Furthermore, we investigate the structure of the
set and some subsets of these general neighbourhood sequences in finite dimension under
this ordering. As some of the sets considered do not have nice structural properties, instead
of this “natural” partial ordering we propose another relation which is in close connection
with the original one. We extend all these results to coD, which is the most interesting case
theoretically. The lattice obtained in coD under the new ordering relation is the closure of
the union of the finite dimensional lattices, in some sense. These results are also presented
in [15], joint with A. FAZEKAS and L. HAJDU.

The “natural” partial ordering fails to be a complete ordering on the set of neighbourhood
sequences. However, in certain applications it can be useful to compare any two neighbour-
hood sequences, i.e. to decide which one spreads “faster”. For this purpose we introduce
a norm-like concept, called velocity, and investigate its properties. This concept has to be
introduced in a way to fit the ordering relation, so we need some preliminaries before defining
velocity. Furthermore, we define a metric for neighbourhood sequences. We also work out
a possible application scheme of these notions for distributing information. The obtained
results are also contained in [19] which is joint with L. HAJDU.

DAs and CHATTERJI [9] studied the geometric properties of the octagons occupied by a
periodic neighbourhood sequence during “spreading” on the 2D plane. We extend the geo-
metric description of 2D periodic neighbourhood sequences in [9] to general neighbourhood
sequences, and embed the former results into this more general structure. Moreover, we
perform our analysis in arbitrary finite dimension instead of Z?. We give the coordinates of
vertices of polyhedra occupied by neighbourhood sequences, and investigate the symmetry
and convexity of these bodies. Since 2D and 3D digital grids play a very important role in
digital image processing, we study the digital spaces Z? and Z3 in detail. This geometrical
analysis is also presented in [17].

DaAs in [3] determined distance functions induced by periodic neighbourhood sequences
that provide good approximations of the Euclidean distance in a certain sense. This analysis
is a special case of the one presented in [33], moreover, DAS restricted his investigations
to the so called simple metrics. We perform approximations of the 2D Euclidean distance
by distance functions based on general neighbourhood sequences. The whole set of neigh-
bourhood sequences is considered in our investigations. Interestingly, the best approximating
sequences we obtain are (mostly) Beatty sequences, thus they can be constructed very easily.
We give sequences such that the corresponding distance functions are metrics on Z2 In
particular, we determine the digital metric that best approximates the Euclidean one from
below “uniformly”, i.e. independently of the sense of approximation. Our results also can be
found in [18], joint with L. HaJpU.

II. Character recognition by Walsh transformation

The history of character recognition by tools of digital image processing dates back to
the 1950’s (see e.g. [30]). A character recognition process usually consists of a scanning
step, preprocessing (binarization — segmentation), feature extraction (skeletonization — con-
tour extraction), the actual recognition and classification, sometimes postprocessing, and
verification. Most of the character recognition algorithms can be applied to typeset texts,
and there exist procedures to process handwritten characters. Algorithms for recognizing
both typeset and handwritten characters can be based on several methods, like projection
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histograms [29], zoning [11], or on the Fourier descriptors [30]. Naturally, the recognition of
handwritten characters is a more difficult problem than the recognition of printed text.

In the second part of the thesis we present a character recognition algorithm which
basically supports the recognition of typeset documents. We focused on segmentation, clas-
sification, and made some experiments to verify the reliability of our character recognition
method. To classify a character, usually a feature vector is composed and the actual recog-
nition is achieved by searching for the closest prototype feature vector. The dimension of the
feature vector can vary in different applications, and a suitable metric also should be chosen
to measure the difference between feature vectors. In our investigations we tried to find a
method which generates easily separable feature vectors, that is the prototype vectors have
large distance from each other. We found that the feature vectors generated by Walsh trans-
formation can be separated more effectively, than using other popular character recognition
methods like zoning or projection histograms. Using Walsh transformation with underde-
termined feature vectors, we also obtain a noise filtering effect. Feature extraction is not
needed now, since the classification step of our algorithm is based on the Walsh transforms
of the image, and they can be calculated without any modifications. We built our character
recognition algorithm into an application by which we can recognize and compress typeset
documents for further transmission. The results of the above studies are also presented in
[13] and [14] which are joint with A. FAZEKAS.

I. Neighbourhood sequences

We give the basic definitions and notation needed later. From now on, n will denote an
arbitrary positive integer.

Definition 1. Let p be a point in Z™ The i-th coordinate of p is indicated by Pr;(p)
(it = 1,...,n). Let M be an integer with 0 < M < n. The points p,q € Z" are M-
neighbours, if the following two conditions hold:

e |Pri(p) —Pri(¢g)] <1 (1 <i<mn),

. Zl | Pri(p) — Pri(g)] < M.

Definition 2. The sequence A = (A(4)):2,, where A(z) € {1,...,n} for alli € N, is called an
n-dimensional (shortly nD) neighbourhood sequence. If for some | € N, A(i +1) = A(i) (i €
N), then A is periodic with period [. In this case we briefly write A = (A(1), A(2),...,A(])).
The set of the nD-neighbourhood sequences will be denoted by S,,.

Remark 1. We note that the above concept is a generalization of the notion of neighbour-
hood sequences introduced in [5]. The authors in [3], [4], [5], [6], [9] and [12] dealt only with
periodic sequences.

Definition 3. Let p, ¢ € Z™ and A € S,,. The point sequence p = pg, p1,...,Pm = q, where
pi—1 and p; are A(i)-neighbours in Z" (1 < i < m), is called an A-path from p to g of length
m. The A-distance d(p,q; A) of p and ¢ is defined as the length of the shortest A-path(s)
between them. As a brief notation, we also use d(A) for the A-distance.

Notation 1. Let p,q € Z", and A = (A(i))2, € Sy. Let

P —qll = [Pra(p) — Pra(q)],
h=1
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and for every i € N and j € {1,...,n} put

AD(i) = min(A(),j) and f'(G) =D AU (k).

Let
z = (z(1),2(2),...,2(n))

be the nonincreasing ordering of the numbers | Pr;(p) — Pr;(¢)| with ¢ = 1,...,n, that is,
z(i1) > x(ig) if i1 < i9. For j =1,...,n put

Finally, for any = € R, let |z] denote the largest integer which is less than or equal to z,
and [z] the smallest integer which is greater than or equal to x.

Das et al. in [5] provided an algorithm to calculate d(p, q; A), where p,q € Z™ and A is a
periodic nD-neighbourhood sequence. By the following lemma we extend this result to any
neighbourhood sequence belonging to S,,.

Lemma 1. Let p,q € Z", and A € S,,. Write c = ||p — q||, and let
gl (i) = fife)— f{i-1) -1, i=1,....c
Then the A-distance of p and q can be calculated as
d(p,q; A) = miax dj\(p, 9),

where
A _ ~ e+ QJA(@)
d] (paQ)_;\‘ f]A(C) ‘

With the following definition we introduce a natural ordering relation on S,. We note
that this relation is identical with those given by DAS [4] and FAZEKAS [12] in 2D and 3D,
respectively, for periodic neighbourhood sequences.

Definition 4. For any A, B € S;, we define the relation J* in the following way:
AJ*B <= dp,q¢;A) <d(p,g;B) for all p,q € Z".

Beside S, we investigate the structure of all those sets under the ordering relation J*
which were studied by DAS [4] in the periodic case. These subsets of S,, are given below.

Notation 2. Let S}, S (I>) and S),(I) be the sets of periodic, at most [-periodic, and
[-periodic (I € N) nD-neighbourhood sequences, respectively.

In our investigations we also need the well-known concept of L, metrics.

Definition 5. Let ¢, € R*. The L, (p > 0) distance of ¢ and r is

n

Ly(q,r) = (Z | Pri(q) — Pri(r)|p> , and Ly(g,7) = r?%lx (| Pri(q) — Pri(r)]) .

=1
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We also investigate the way a neighbourhood sequence spreads in the digital space star-
ting from a point of Z™ This spreading is translation-invariant, so for simplicity we may
choose the origin 0 of Z™ as the starting point.

Definition 6. Let A € S, and for every k € N put
A ={qez" : d(0,q; A) < k}.

That is, ;17,3 is the region occupied by A after k steps. Let H (;17,3) be the convex hull of ;1;
in R”.

In 2D, we will compare the regions occupied by neighbourhood sequences with the cor-
responding Euclidean disks. For that purpose, we introduce the following notation.

Definition 7. For every k € N, let
Or ={q€7Z?: Ly(0,q) <k}, and G} = {q€R* : Ly(0,q) <k}
be the Euclidean disks of radius &k in Z? and R?, respectively.

The number of the values i (i = 1,...,n) occurring among the first k£ elements of a
neighbourhood sequence A € S, is also used in our investigations.

Definition 8. Let A = (A(i))°, € Sy,. Forevery i =1,...,n and k € N put
Ali k) = #{A(J) : AG) =1, 1 <j <k}
For convenience, write A(7,0) = 0.

We use the densities of the elements of the neighbourhood sequences to study the asymp-
totic behaviour of the occupied regions.

Definition 9. Let A € S,,. The density of the value i (i =1,...,n) in A is defined as
DA(i) = lim — ==
0= =5

if this limit exists.

1. Algebraic properties of neighbourhood sequences

First we recall some definitions and remarks from lattice theory that will be needed later
on. These basic concepts also can be found e.g. in [2].

Definition 10. Let (P, <) be a partially ordered set, and S C P. An element a € P is the
least upper bound (or greatest lower bound) of S, if for all z € S, a > z (or a < z), and
b > a (or b < a) for every upper bound (or lower bound) b of S. Moreover, if every pair of
elements (z,y) with z,y € P has a least upper bound z V y and a greatest lower bound z Ay,
then (P, <) is called a lattice.

Definition 11. The lattice (P, <) is distributive if for all z,y,z € P
zA(yVz)=(xAy)V(zAz).

Definition 12. The lattice (P, <) is complete if its every subset S C P has a least upper
bound \/ S and a greatest lower bound A S.
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Definition 13. Let (P, <) be a complete lattice and S C P. Theset S ={z € P : z <
\/ S} is called the closure of S.

Lattice of neighbourhood sequences in nD

In our investigations we can take advantage of a fundamental connection between the
functions fjA(i) and the relation J*. Such a connection was shown by DAS [4], in case of
periodic 2D-neighbourhood sequences. A similar result was proved by FAZEKAS in 3D (see
[12]). Together with A. FAZEKAS and L. HAJDU, in [15] we extended these results to nD with
arbitrary n € N, to general nD-neighbourhood sequences. Clearly, this case also includes the
periodic one. In particular, our result is new even for n = 2 and 3.

Theorem 1. For any nD-neighbourhood sequences A = (A(7))7°, and B = (B(i))$,
d(p.¢; A) < d(p,q; B), for all p,q € Z" = f{'(i) > f7'(i), for alli €N, j € {1,....n}.
Remark 2. By this theorem, A J* B, if and only if for every i,j € N, fA( ) > fB( ) holds.

Now we formulate our results about the lattice structure of S,, (and its subsets) under
J* (see also [15]).

Theorem 2. (S, 3*) is a complete distributive lattice.
We show that unfortunately J* has some unpleasant structural properties, too.

Proposition 1. The following structures are not lattices:
(S, 3%), for n >3,

(S}, *) forn > 2,

(S3(1>),3%), for 1 >5,

(Sn(lz),g ) forl1>2,n>3,
(Sn (D),

We introduce another ordering relation, which is in close connection with J*. Moreover,
S, and its subsets considered above, form much nicer structures under this new relation.

Definition 14. For any A = (A(i))2,, B = (B(7));2, € S, we define the relation J in the
following way:
AJB <<= A(i) > B(i), forevery i€ N

Remark 3. It is clear that J* is a proper refinement of Jin S,,, S, S} (I>) and S}, (1).

Proposition 2. (S,,3) is a complete distributive lattice with greatest lower bound / Sp= (1)
and least upper bound \/ S, = (n).

Proposition 3. (S),,3) is a distributive lattice with greatest lower bound A\ S), = (1) and
least upper bound \/ S), = (n).

However, the ordering relation J has worse properties in S, than in S,,. This is shown
by the following “negative” result.

Proposition 4. For n > 2, (S],3) is not a complete lattice.

The next proposition shows that S, (I>) is not a “natural” subset of Sy, in the sense that
it does not form a nice structure even under J.
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Proposition 5. (S),(I>),3) is not a lattice for any n > 2 and I > 6.
Remark 4. We note that (S;,(I>),3) is a distributive lattice if 1 <1 <5, for every n € N.

Proposition 6. (5),(1),3) is a distributive lattice for every n,l € N.

Lattice of neighbourhood sequences in coD

Beside the finite dimensional digital spaces we generalize our investigations also to Z*° =
{(2)2, : z € Z}. Our purpose is to extend the results concerning Z" to this case. First we
give some definitions that are natural generalizations of the finite dimensional concepts.

Definition 15. The i-th coordinate of a point p € Z is indicated by Pr;(p). The points
P, q € Z*° are called M-neighbours for some M € NU {oo}, if

o |Pri(p) —Pri(g)| <1 (i €N),
. §|Pri(p) — Pry(q)| < M.

Definition 16. A sequence A = (A(4)):2,, where A(i) € N U {oo} is called an ooD-
neighbourhood sequence. If for some [ € N, A(i) = A(i + 1) holds for every i € N, then
A is called periodic, with period [, or simply [-periodic. In this case we will use the abbre-
viation A = (A(1),...,A(l)). The set of the coD-neighbourhood sequences will be denoted
by Seo-

Definition 17. Let p,q € Z*° and A € So. The point sequence p = pg,p1,---,Pm = ¢,
where p;_1 and p; are A(i)-neighbours in Z%° (1 < i < m), is called an A-path from p to ¢
of length m. If such a path exists, then the A-distance of p and ¢ is defined as the common
length of the shortest A-paths from p to ¢. It will be denoted by d(p, q; A) or briefly d(A).
If there is no A-path from p to ¢, then we put d(p, q; A) = oc.

Remark 5. Observe that for any p,q € Z°, the following two statements are equivalent:
e d(p,q; A) = 0, for every A € S,
e the set {|Pr;(p) — Pr;i(¢q)| : ¢« € N} is unbounded.

The function d(p, ¢; A) has some “symmetry” properties, that is, it depends only on the
differences of the coordinates of the points, i.e. on the numbers | Pr;(p) — Pr;(¢q)], 7 € N. We
note that by Lemma 1, the same is also true in nD for every n € N. In the next theorem we
describe how d(p, q; A) can be calculated.

Theorem 3. Let p and q be two distinct points in Z°° such that the set {|Pr;(p) — Pr;(q)| :
i € N} is bounded and let A = (A(%))2, € Soo. Forc>1let H, = {i : | Pri(p)—Pr;i(q)| > ¢},
and put k = min{c : #H, < oo} and h = #Hj,. Let B(i) = min(h, A(i)), and B = (B(i))2,
(i € N). Moreover, put r = (Pri(p))icu, and s = (Pr;(q))icn,. Let t be defined by the
following properties:

o A(t) = oo,
o #{i:i<tand A(i) =0} =k —1.

If such t does not exist, then put

t:{o, if k=1,

00, otherwise.
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Now the following equality holds:
d(p7 q; A) = ma’X(dh(’ra 83 B)a t)a
where for h > 1, dy(r, s; B) is the h-dimensional B-distance of r and s, and dy(r,s; B) = 0.

Remark 6. Combining the above result with the formula provided for d(p, ¢; A) in Lemma
1, it is possible to calculate explicitly the distance of two points in Z°°, determined by an
ooD-neighbourhood sequence. On the other hand, if we take p,q € Z°° such that they differ
only at finitely many places, then we have k = 1 whence ¢ = 0 in Theorem 3. This shows
that the distance defined in Z* is in fact a generalization of the distances introduced in the
finite dimensional cases.

Now we examine the structure of the ocoD-neighbourhood sequences. We study two
ordering relations on them, which are the extensions of the finite dimensional orderings to
this general case.

Definition 18. Let A, B € Sy. We write A J* B, if and only if for every p,q € Z,
d(p,q; A) < d(p,q; B).

The following result is the extension of Theorem 1 to Z°.

Theorem 4. Let A,B € Sy with A = (A(4))i2, and B = (B(i))2,. For i,j € N, put
fMi) = Y-y min(A(k), 5) and fE(i) = Y;_ min(B(k),5). Then

d(p,q; A) < d(p,q; B), for all p,q € Z® = f]\(i) > f(i), for alli € N,j € N.

Remark 7. As in the finite dimensional case, A J* B if and only if for every ¢,5 € N,
fi1@) = fF(i) holds.

Remark 8. Let S.,, S. (I>) and S, (I) be the sets of periodic, at most I-periodic and
[-periodic (I € N) ooD-neighbourhood sequences, respectively. It is clear that J* is an
antisymmetric, transitive relation, i.e. a partial ordering on S, and on all its above sub-
sets. However, just as in the finite dimensional case, (Ss, 3%), (Sio, 3%), (Si(I>),3*) and
(SL.(1),3*) with [ > 2 are not lattices.

Definition 19. For A = (A(7))2, and B = (B(7))2; in S, we write A J B if and only if
A(i) > B(i), for every i € N.

It turns out that 3 has much more pleasant properties than J* in case of coD-neigh-
bourhood sequences, too.

Proposition 7. For any | € N, (S0, 3), (SL,3) and (S, (1),3) are distributive lattices,
with greatest lower bound (1) and least upper bound (0c0). Moreover, the first and third lattices
are complete, while the second one is not.

Proposition 8. (S, (I>),3) is a complete distributive lattice for 1 <1 <5. Ifl > 6, then
(SL.(l>),3) is not a lattice.

The following result provides some information about the structures of several other
subsets of Sy, under 1.

Proposition 9. Let Si = {A : A = (A1), with A(4) € N}, SL = U2, Sn and
Sx =Ur2,S;,. Then (Si,,3), (S%,3) and (S, 3) are non-complete distributive lattices
(sublattices of S ) with greatest lower bound (1), but having no least upper bounds.
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Finally, we show that the lattice (Sx,3J) (and in some special cases (S, (l>),3) or
(S%.(1),3)) can be considered as the closure of the union of the finite dimensional lattices.
We also include the lattices (S, , 3J) and (S%,, J) into this consideration.

Proposition 10. Let Sy (I>) = U2, Sy (l>) and S (1) = U2, S, (1) (I € N). For any
€N, in Sy,
(o0, F) = (84, 2)" = (5%, 2) = (85, 2)" =
(S0, D) = (S (1), 2) = (551, 2)°

holds. Moreover, for any l € N, in S._(I) we have

(S%(1),3) = (Sx (1), )"
Finally, for 1 <1<5, in S, (I>)

(S%(l>),3) = (S (1>), 3)"

2. Metrical properties of neighbourhood sequences

As we could see, J* is not a complete ordering on the set of neighbourhood sequences,
and the structure obtained is not even a lattice in higher dimensions. However, in certain
applications it can be useful to compare any two neighbourhood sequences, i.e. to decide
which one spreads “faster”. For this purpose, we introduce a norm-like concept, called
velocity, on the set of neighbourhood sequences, and investigate its properties. This concept
should be introduced in a way to fit the relation J*, so we need some preliminaries before
defining velocity. Furthermore, we introduce a metric for neighbourhood sequences.

Preliminaries to introduce velocity

By defining velocity, we assign a positive real number to every neighbourhood sequence.
We give some natural conditions which should be met by this concept.

(i) Velocity must be sensitive for the behaviour of the sequences in different dimensions.
(ii) The elements of a sequence should contribute to its velocity by different weights.
(iii) Velocity must be defined in a way to fit the natural ordering.

Assigning velocity to neighbourhood sequences

According to (ii), first we give the concept of a weight system, which will be appropriate
in our further investigations.

Definition 20. Let n € N. The set of functions §; : N = R (j =1,...,n) is called a weight
system, if the following three conditions hold:
e 0;j(i1)>0 (1€N, j=1,...,n),
o0
* > (i) <oo (j=1,...,n),
i=1

e 0; is monotone decreasing (j =1,...,n).
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In order to meet (i), we introduce the concept of velocity in two steps. First, we assign an
n-tuple to every neighbourhood sequence. The elements of this n-tuple reflect the “velocity”
of the given neighbourhood sequence in the subspaces of Z™ of dimensions from 1 to n. Then,
we define one descriptive velocity value.

Definition 21. Let A € S, and §; (j =1,...,n) be a weight system. The j-dimensional
velocity of A is defined as

The velocity of A is given by

Now we show how (i), (ii) and (iii) are met. The vector (v{',vs,...,v2), thus also v*

is obviously sensitive for the behaviour of the sequence A in subspaces of Z" of dimensions
from 1 to n. Thus (i) is satisfied. As we use a weight system to define (vi',v4,...,v2) and
v, the requirements of (ii) are also met. The following theorem verifies that our velocity
concept satisfies (iii) as well.

Theorem 5. Let A,B € S, with A J* B, and let 6; (j = 1,...,n) be a weight system.
Then, U]A > vf foreveryj=1,...,n.

Remark 9. By the definition of velocity, this theorem implies that if A J* B, then v > 5.
Remark 10. The monotonity of §; is necessary to have Theorem 5.

As one can easily see, it can happen that with some weight system 9, v;-‘ > Uf for every
j=1,...,n, but A J* B does not hold. However, in some sense we can reverse Theorem 5.
More precisely, we have

Theorem 6. Let A, B € S,. If for any weight system §; (j = 1,...,n), v]‘-“ > U]-B holds for
all 7 =1,...,n, then A J* B.

Examples of weight systems
Let ¢ > 1, and put
. 1 : .
9; (@) = i for every j =1,...,n and 7€ N.

Obviously, d; is a weight system with

Consider the nD-neighbourhood sequences
A=(h, 1, 1,1, 1, ...), and B=(1, n, n, n, n, ...), where 2 < h < n.

Then
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Clearly, the sequences A and B cannot be compared by the ordering J*. We show how
the relation between the velocity values of A and B changes according to the choice of the
parameter c. First, suppose that ¢ > n. Then, we have

1

1 C n

A B B
=i = +h> + 2= +1 +1=v =0v".
v U] c—1 c—1 c—1 >C—1 1)] v

Using this weight system we obtain a very strong condition, namely that »4 > % if and
only if A precedes B lexicographically. Now, let ¢ = 2. In this case we have

UA:U]A:]_—)—hS]_—I—n:UjB:’UB,

with equality only for h = n. Finally, set ¢ < 2. By a simple calculation, we get v = v >

J
’U3~4 = v in this case.

An application for distributing information

We present an application scheme of neighbourhood sequences and velocity in a network
model, where the members of the network are the points of Z?. The network model has an
information source at the center (origin) which distributes information to the other members
(clients) of the network. The system is based on priority, that is if a client is “closer” to
the origin than another one, it has greater priority, and receives the information earlier. In
this model we use 2D-neighbourhood sequences to deliver the information to the clients.
Suppose that the cost of distributing information decreases with the number of 2-s in the
chosen neighbourhood sequence. Knowing the importance of the information, we have to
choose one of the cheapest sequences, which is still “fast” enough. That is, we take a
neighbourhood sequence, whose velocity fits the importance of the information to be sent.
By choosing an appropriate weight system, we can increase and decrease the initial priority of
the clients in the network. This network model can be easily extended to Z3. In this case, we
can take more advantage of the behaviour of neighbourhood sequences in lower dimensional
subspaces. If we know in advance that a special type of information is important only for a
group of clients, we can place these clients onto or close to the [z,y], [y, z] and [z, z] planes.

Metric spaces of neighbourhood sequences

We introduce a metric on .S, in a similar fashion as we did it for velocity.

Definition 22. Let A = {0; : j = 1,...,n} be a weight system and A,B € S,. The
distance pa of these sequences is defined by

L gn o= (i) » :
os(dB) =303 140G) ~ B 5
Remark 11. For any weight system A, the function pa is a metric on S,,.
In what follows, we establish some useful and interesting properties of these metric spaces.
Theorem 7. For any weight system A, (Sp,0A) is a complete metric space.

Definition 23. A sequence (Aj);°, is monotone increasing (resp. decreasing), if A;11 J* A;
(resp. A; J* A;y1) holds for every 7 € N.

Theorem 8. Every monotone increasing or decreasing sequence (Ap)p,, with A, € S,
(k € N) is convergent.



NEIGHBOURHOOD SEQUENCES 13

The next result shows that the Bolzano-Weierstrass theorem is true in the constructed
metric spaces.

Theorem 9. For any weight system A, every subset of (Sp,o0a) of infinite cardinality has
an accumulation point.

The following result shows that periodic neighbourhood sequences form a dense subset of
(Sn, o). As the set of periodic neighbourhood sequences is countable, this also yields that
(Sn,0A) is a separable metric space.

Theorem 10. For any weight system A, the set of periodic neighbourhood sequences is dense
in (Sna QA)

3. Geometric properties of neighbourhood sequences

DAs and CHATTERJI [9] investigated some geometric behaviour of the regions occupied
by 2D periodic neighbourhood sequences. Now we extend these results to arbitrary finite
dimensions. Moreover, we use general neighbourhood sequences in our analysis.

Geometric properties of nD-neighbourhood sequences

We start our geometric investigations in the general digital space Z™. Since neighbour-
hood sequences spread in an “isotropic” way, the occupied regions are symmetric objects.

Theorem 11. Let A € S, and k € N. If a point p € Z™ with coordinates (p1,p2,...,Pn)
belongs to Ay, then the points with coordinates (AMipi,, A2Piy, --- , AnDi,) also belong to Ay.
Here \j = %1 (j =1,...,n), and (i1,i2,...,in) is an arbitrary permutation of (1,2,...,n).

Remark 12. It is easy to verify that the theorem also holds for the points of H (;176)

Using the above results we can find hyperplanes, for which the regions occupied by
neighbourhood sequences are symmetric.

Remark 13. Let A € S, and k € N. Then H(Ay) is symmetric to those (n—1)D hyperplanes
that contain (n—1) coordinate axes (this implies that the coordinate values can change sign),
and to their rotations by 45° around any axis they contain (this implies that coordinates can
be permuted).

Now we calculate the coordinates of vertices of polyhedra occupied by neighbourhood
sequences.

Theorem 12. Let A € S, and k € N. The vertices of H(;l;) are ezxactly those points, whose
coordinates are the permutation of the values

(Ale(z’,k), M Y AGLK), ... AnA(n,k)>,
=1 1=2

where A\j = %1, for every 7 =1,...,n, and \; can be different in every permutation.

Remark 14. Using the above theorem we obtain that the maximal number of vertices of
H(Ayg) is n!-2™. The polyhedron H(Ay) can be degenerate if some of the elements (1,...,n)
do not occur in A, causing the decrease of the number of the vertices.
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We investigate the existence of some convergence limits related to the sequence of poly-
hedra (H(A))72,. We use the densities of the 1,...,n elements in A to calculate the
corresponding limits. In the general n-dimensional case only the asymptotic behaviour of
the diameter of H (Ag) is considered, where we use the usual definition of diameter, that is
diam(H(A)) = sup_ La(p,q).

P,qEH(Ay)

Theorem 13. Let A € S,,, and suppose that DA (i) exists for every i =1,...,n. Then

M

. - n n—1 n
lim ZiemH (Ap) _ YDA +23° ST iDA36)DAG)

k— 00 k ‘ ° =
=1 =1 j=i+1

Geometric properties of 2D- and 3D-neighbourhood sequences

We present a detailed investigation of the geometry of neighbourhood sequences in Z2 and
Z3. Tn [9] DAS and CHATTERJI showed that for every 2D periodic neighbourhood sequence A,

H (;176) is always an octagon. They calculated the coordinates of the vertices of the octagon,
and also the length of its sides based on the relative occurrence of the 1 and 2 values in a
period of A. Using general neighbourhood sequences we obtain similar results, but in this
case we have to work with the densities of the 1 and 2 values in the neighbourhood sequence.

Remark 15. If we start any 2D-neighbourhood sequence A from the origin, then for every
k € N the octagon H(Aj) is symmetric to both coordinate axes, and to their 45° rotations.

In what follows, we calculate some geometric parameters of these octagons, namely the
length of their sides, their perimeters and areas. We give these data in terms of A(1, k) and
A(2,k).

Definition 24. Let A be a 2D-neighbourhood sequence. Let z“(k) be the length of the
horizontal and y* (k) be the length of the inclined sides of the octagon H(A). Moreover,
let Pj},(k) be the perimeter and Vi, (k) be the area of this octagon.

Proposition 11. Using the above notation, the following relations hold:

o 2 (k) = 24(2,k), (k) = V2A(1,k),

o P (k) =4 (V2A(L,k) + 2A(2,k)), Vih(k) =2 (A%(1,k) +4A(1, k)A(2, k) +242(2,k)).
Our purpose is to describe the asymptotic behaviour of the sequences x4 (k)/k, y* (k) /k,

P (k) /k, and Vy},(k)/k%. If the densities D4(1) and D*(2) exist, we can obtain these

limits by their help, while if they do not exist, we still can use the lower and upper densities
instead. See the dissertation or [17] for details.

Theorem 14. Let A € Sy. If DA(1) exists, then we have
o lim 220 =901 — DA(1)), lim L8 = /2DA(1),

k—o0 k k—o0
A A
o lim Lip®) _ g 4 (4v/2 — 8)DA(1), lim Yin® _ 92— DA(1)?).

Remark 16. We can formulate the opposite statement as well. Namely, for any A € S5 the
density D“(1) exists, if and only if any of the convergence limits formulated in Theorem 14
exist.
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The extension of the above investigations to 3D is quite straightforward, and can be done
without considerable difficulties. See [17] or the dissertation for details.

4. Approximating the Euclidean distance
by digital metrics

We discuss some possibilities of approximating the Euclidean distance in Z2, and perform
such an analysis using digital metrics induced by neighbourhood sequences. In our approxi-
mation process we compare the regions ;1; occupied by a 2D-neighbourhood sequence with
the Euclidean disks Of. The best approximating sequences we obtain are (mostly) Beatty
sequences.

Let « € R with 0 < a <1, and let A = (A(7))32,, B = (B(7)):2; be sequences of 1-s and
2-s, defined by

AG) = lia) — (i — Da) +1, B@) =[ia] — [ —Dal +1 (i€ N).

The sequences A, B are called Beatty sequences on the letters 1, 2. Clearly, for every k& € N
we have

A2,k) = |ka| and B(2,k) = [kal.

For more properties of Beatty sequences and their generalizations see [22].
Three approximation problems

A natural approximation approach could be to choose the number of integer points in
the symmetric difference A 57 O as an error function. However, there is no exact formula
for the number of integer points inside Oy, so we follow a slightly different method. Namely,
we compare the sets H(Ay) and Gi, and choose A to minimize the area of H(A) v Gj. Of
course, it can be done only separately for each £ € N. However, surprisingly it turns out
that for every k the very same A can be chosen to minimize this area. So this neighbourhood
sequence A can be regarded as the one that approximates Ly best (in the above sense).

According to these principles, we will investigate the function

TE4(k) = Area(H (A) v Gy),

called the total error of the approximation at the k-th step. We will also use the relative
error at the k-th step, defined as

TEs(k
REA(k) = 100

and the limit relative error (if it exists)
RE4 = lim RE4(k).
k—o0
We perform several types of approximation. Our aims can be summarized by the following
problems. The first problem concerns the general case.

Problem 1. Find a neighbourhood sequence A € So (if exists) such that for every A € S
and k € N . e
Area(H(Ag) v Gi) < Area(H(Ag) v Gi).-

We consider separately the case when the octagons H (;17@) cover G, for every k € N, that
is the corresponding function d(A) minorates Lo.
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Problem 2. Find a neighbourhood sequence ® € Sy (if exists) such that H(@) D Gy for
every k € N, and for every A € Sy, H(Ay) O Gy, implies that

Area(H (D) \ Gi) < Area(H(Ay) \ Gy).

Note that it does not make sense to consider a problem with H (;1;) C Gj. Indeed,
observe that H (;1;) is contained in Gy, if and only if the first k£ elements of A are all 1-s.
This is the reason why we do not take up the problem of majorating Lo by digital metrics
d(A).

We will construct two neighbourhood sequences, satisfying the requirements of Problems
1 and 2, respectively. Moreover, we will give a sequence such that the corresponding distance
function d(A) is a metric, and it can be considered as the digital metric which approximates
Ly best in the sense of Problem 1. We also investigate the following “discrete” version of
Problem 2. Note that Problem 1 does not have a similar variant.

Problem 3. Find a nezghbourhood sequence v e 82 (if exists) such that \Ilk D Oy, for every
k€N, and if A € Sy with Ak D Oy, then Ak D \Ilk

Observe that the sequence ¥ has the nice property that the corresponding distance
function d(¥) is “uniformly” the best one to approximate Ly from below. That is, for every
A € Sy, if d(q,m; A) < Lo(q,r) for any q,r € Z2, then d(q,; A) < d(q,r; V) for any ¢,r € Z>.
In Theorem 16 we will solve Problem 3, by constructing the sequence ¥ having the desired
property. Interestingly, it will turn out that the distance function d(¥) is a metric on Z2.
To show this, the following lemma, will be useful.

Lemma 2. Let o € R with 0 < a < 1. Let A = (A(i))2, € Sy be the unique sequence with
A(2,k) = |ka] for every k € N. Then d(A) is a metric.

The solution of the approximation problems

We construct “extremal” sequences described in Problems 1, 2, and 3, starting with
Problem 2, being the simplest to handle. For this purpose we consider only neighbourhood
sequences A, with Gy contained in H(Ay) for all £ € N. As we mentioned, it means that
the corresponding distance function d(A) minorates Ly. The next result gives a solution to
Problem 2.

Theorem 15. Let & = ($(3))2, be the unique 2D-neighbourhood sequence defined by
®(2,k) = [E(vV2—1)] (k €N), that is

d(i)=[i(vV2-1D]-[GE-1)(V2-1)]+1 (ieN).
Then H(@) D Gy, for any k € N. Moreover A € So, and H(;ﬁc) D Gy, implies that
Area(H (®)) \ Gi) < Area(H(Ay) \ Gy).

Remark 17. The octagons H ('i)\k) are almost regular. (For regularity we should have
A(2,k) = k(v/2—1), which is impossible.) Obviously, the ratio of the inclined and horizontal
(or vertical) sides of H(®) tends to 1 as k — oc.

Remark 18. For the k-th total error of the approximation of Ly with d(®) we get
TEs(k) = (4 — m)k? — 2 (k — ®(2,k))*.
Thus for the k-th relative error and for the relative error we obtain

4—ﬂ_g(1_<1>(i,k) 8(\/5;1)—%

™ ™

REs(k) = = 0.054786175 .. . .

2
> , and RFEg =
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By the following theorem we solve Problem 3.

Theorem 16. Let ¥ = (U(i))2, € Sy be the unique sequene defined by ¥ (2,k) = |k(v/2—1)|
(k € N), that is

U()=i(vV2—-1)] - [(i—1)(V2=1)]+1 (ieN).

Then/f\or every k € N, O C \T/; Moreover, if A € So such that Oy C ;1; for some k €N,
then \I/k C Ak.

Remark 19. By Lemma 2, d(¥) is a metric on Z?. That is, among the digital metrics
corresponding to neighbourhood sequences, d(¥) is the best one to approximate Ly from
below in Z2.

Now we solve Problem 1.
Theorem 17. Let the neighbourhood sequence A = (A(¢))$2, be defined by
: A(24i-1) A(2,i—1)+1
A =4 bV B (AE0) < B (AR,
2, otherwise,

where the function E : [0,1] — R is given by

—y® + 2y, if y>v2-1,
2arccos(y(y +2)) — 2(y + 1)\/1 — 2y — y? —y? + 2y, otherwise.

Then for any A € Sy and k € N,

B - {

Area(H (M) v Gy) < Area(H(A) v Gy).
Remark 20. We have A = (2,1,1,1,2,1,2,1,1,2,1,1,...). For the k-th total and relative
errors of A we obtain

TE\(k) = k*(2 — 7+ 2E(y)), and RE\(k) = 2omt2BW)

™

By a simple calculation we get

92 _ 2 4v/6 — 11
RE = 2" 42 <2arccos (3+8‘/6> L A6 ) = 0.046525347 . ...

T T 25 5

Clearly, d(A) is not a metric on Z2. Another unpleasant feature of A is that it is not
easy to generate: to obtain its k-th element, we have to calculate the first £ — 1 elements
previously. Now we give two sequences which are easy to construct, and for every k € N,
one of them is also the “best” to approximate Gj.

Corollary 1. For 7 =1,2 and i € N put

_ . i
C[]] N I Zf ? ’
v { 28] (- )28 41, if 0> 1,
and write C = (CM(9))2, and O = (C?1(3))2,. Then for every A € Sy and k € N,

min (TEqnj(k), TEq(k)) < TEA(k).
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Remark 21. As ClY(2,k) = LkQ\/g_?’J for every k € N, by Lemma 2, d(Cl!) is a metric
on Z2. Thus in a sense, d(C!!) can be considered to be the best metric (coming from a
neighbourhood sequence) to approximate the Euclidean distance on Z2. Note that REq ) =

RE,.

Comparing approximation results

We compare our results with those of DAS in [3]. He used an error function which
measures the average difference between the Euclidean distance and the “simple metric value”
generated by a neighbourhood sequence. DAS concluded that the periodic neighbourhood
sequence S = (1,1,2,1,2), which generates a “simple metric”, should be used to approximate
Ly. Note that for every k € N, H(:S”;) 2 G}. As we propose to use the sequence C1 defined
in Corollary 1 to approximate Ly, we compare S and CI! here. Since we used a different
error function than Das in [3], we chose a third one to compare our results. We examined
how the k-disks ;1; approximate G}, in digital sense, and we obtained that the sequence C!
behaves better. See the dissertation for details.

II. Character recognition
by Walsh transformation

In the second part of the thesis we present a character recognition process which is based
on Walsh transformation. Walsh transformation is frequently applied in several fields of
digital image processing. Since this transformation is magnification-invariant and preserves
geometry nicely, it is well applicable for character recognition, as well. Now we describe
briefly the steps of our algorithm, and the investigations we performed.

In the first step of our algorithm a segmentation procedure divides the original binary
image into smaller segments which are stored in a chained list. The segments are actually
rectangles, and beside the image information, the coordinates of the upper left pixel and the
size of the rectangle are also stored. For every segment a 64-dimensional feature vector is
composed according to the first 64 Walsh transforms of the segment. After calculating the
feature vector of a given segment, we judge whether the segment contains text information
(letter, number, etc.) or an unrecognizable symbol. We used commonly applied character sets
(OCR-A, OCR-B, CMR, TIMES NEW ROMAN and license plate characters) to test our algorithm
from several points of view, like computation speed, noise sensitivity, or recognition failure.
We made other statistical investigations for correlation analysis as well. The above results
are also published in [14] which is joint with A. FAZEKAS. To prove the practical applicability
of our character recognition algorithm, together with A. FAZEKAS we built our method into
an application for compressing typeset documents [13].

1. Segmentation

The first step of the algorithm performs a segmentation procedure on the binary image.
We try to determine minimal storing rectangles for those subsets of the image foreground
which can be separated by horizontal and vertical lines. These segments can be determined
by calculating their size and the coordinates of their upper left pixel. Using storing rectan-
gles, our segmentation procedure does not extract the connected foreground components in
the case of a ligature. Our algorithm is preconditioned for this phenomenon, and can be
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trained to recognize ligatures. In our experiments we also used CMR character set which
allows ligatures beside the ligature-free sets OCR-A and OCR-B (which were composed for
optical character recognition). The segmentation can be made parallel easily, and the whole
procedure can be performed as an alternating recursive sequence of the following horizontal
and vertical segmentation steps.

Horizontal segmentation step: We have a pixel running from left to right, starting from
the upper left corner of every segment we have already extracted. If we find an object
(foreground) point in the given row then we go one pixel down and start running a pixel
from the beginning of this row. The procedure continues till the running pixel reaches the
right side of the segment (we find a row which does not contain object points). In this case
we obtain a new segment. The top row of the new segment will be the uppermost row of the
original segment which contains an object point. The bottom row of the new segment will be
the lowermost row of the original segment which has been already processed and contains an
object point. After defining the new segment, we go on with processing the original segment,
starting from that row which did not contain object points.

Vertical segmentation step: The vertical segmentation procedure is analogous to the
horizontal one, but here the pixel runs from top to bottom, starting from the upper left
corner of a segment. We go one pixel right till a column is found which does not contain
object points. In this case a new segment is defined.

Horizontal segmentation steps are followed by vertical segmentation steps, and vice versa.
Alternating these two steps, each of the existing segments is divided into smaller segments.
If the number of the segments does not change during a segmentation step, the algorithm
stops. The result of the first (horizontal) step is a line of text if the original binary image is
a text document. The top of the line is determined by the highest character, and the bottom
is determined by the lowest character. The second (vertical) segmentation step divides the
text line into characters, but the rectangles that store the characters contain relatively large
background components which can be eliminated with the following (horizontal) segmenta-
tion step. If the document contains some graphic parts then the number of the necessary
segmentation steps depends on the complexity of the graphics.

The segmentation of accented characters is an interesting and difficult problem. In the
case of English text after three segmentation steps (horizontal — vertical — horizontal) the
storing rectangles cannot be reduced any more, while in the case of Hungarian text (which
contains accented characters), we have the same situation only after the fourth segmentation
step. It is rather difficult to recognize accented characters, since the accent is segmented
separately. Analysing the placement of the segments of small size can help to recognize these
characters. For example, it can be useful to examine if a vowel takes place below a segment
with small size. Our system was not trained to recognize accented characters.

The input image (a text document) can be distorted in many ways: it can be rotated,
corrupted by noise, etc. The image might be rotated if e.g. the document was inserted into
the scanner improperly. Our method tolerates rotation with small degrees. If the degree of
the rotation is too large, the horizontal segmentation is not able to separate the document
lines in the first step, since the lowest pixel of a line is “under” the highest pixel of the next
line. The degree of the maximal tolerable rotation a can be obtained as

line-space

a = arctan : : :
paper width — horizontal margins
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2. Character recognition

Walsh transformation was applied for several purposes in digital image processing, but
never to character recognition. We found that this transformation also gives a verbose
description of the image, like symmetrical relations, placement of the foreground and back-
ground pixels, and so on. Before we explain in detail how Walsh transformation can be
applied here, we give a brief overview on its theory.

Walsh transformation

The Walsh transformation W (u,v) in 2D is a transformation of the form

N—1N-
Z Z 9(z,y,u,v).
=0 y=0

Here f is the binary image of size N X N, where N is supposed to be a power of 2. The
intensity of the pixel (z,y) is denoted by f(z,y), and u,v = 0,..., N —1. The kernel function
g of the transformation is defined by

n—1

9(z,y,u,v) = H (= 1)bi (@it ()b ()br—i—1 (¢)

1
N )
where b;(w) is the i-th bit in the binary expansion of w, and n = logy N.

We compute N? Walsh transforms altogether which can be organized into the N2-

dimensional feature vector
(W(0,0),Ww(0,1),...,W(0,N — 1), W(1,0),W(1,1),... , W(N —1,N —1)).

The Walsh transform is injective in the sense that if we consider two different binary images,
then the corresponding feature vectors are also different. If we compose a feature vector
which does not contain all the Walsh transform values, then this vector can be the same for
two different images. The kernel function of the Walsh transformation is separable:

g(x,y,u,v) = gl(JT,U) gz(y,U)-

Moreover, the equality
9(z,y,u,v) = g1(z,u) g1(y,v)

also holds, thus the Walsh transformation is symmetric, as well. With these two properties
the computation of the 2D transforms can be made considerably faster, since it can be
simplified to the computation of two 1D Walsh transformations, and the symmetry makes
the computation even faster. All of these properties of the Walsh transformation are well-
known from the literature, see e.g. [16]. More analytical properties of Walsh functions can
be found in [28].

Application of the Walsh transformation
To perform Walsh transformation, first we have to magnify the original image to the size

of 2™ x 2™ for some n € N. This does not mean a considerable modification, since the Walsh
transformation is invariant for magnification. In our algorithm the image size was fixed as
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32 x 32 and we use linear transformation to magnify the segments. However, we compute
only the following 64 Walsh transforms instead of the 32 x 32 = 1024 ones:

(W(0,0),w(0,1),(0,2),...,W(0,7), W(L,0), W(1,1),...,W(7,7)).

We have the following reasons to reduce the number of Walsh transforms:

e to save computation time,
e these 64 values describe the global features and symmetric relations well,
e to filter out some noise, since the computation of less Walsh transforms results in blurring.

In our investigations we used the metric L; for measuring the distance of the feature
vectors. The distance of the 64D feature vectors of any two different characters is significant,
so the recognition is quite reliable. For example, we compared the feature vectors of prototype
OCR digits, and experienced strong differences which fortifies our conception to calculate only
a 64 dimensional feature vector for each character.

Magnifying the segments to the same size 32 x 32 can cause a problem in character
recognition. Though the lower and upper cases of the characters usually look different, some
characters have similar lower and upper cases (e.g. “w” and “W”) which become identical
during magnification. The proper case can be restored by examining the side lengths of the
original storing rectangle.

We showed how the 2D Walsh transformation can be performed by two 1D transforma-
tions. In our algorithm we used a faster method and computed the transforms directly from
tables, since the value

n—1
N -g(z,y,u,v) = H(_1)bi($)bn—i—1(u)+bi(y)bn—i—1(U)
=0

in the kernel function can be 41 only.
Comparing our method with other algorithms

Our algorithm was compared with two classical character recognition methods: one of
them is based on projection histograms, the other one is based on zoning. The reason why
we involved these character recognition algorithms into our analysis is that both of them
use feature vectors to classify the recognizable characters and assign a 64D feature vector to
every recognizable segment, similarly to our algorithm. We worked with several font types:
OCR-A, OCR-B, CMR, and TIMES NEW ROMAN in this comparism. By fixing a prototype alpha-
bet (letters, digits, punctuation marks, and other symbols), first we computed the average
distance values for every symbol from the rest of the alphabet. The most significant difference
values occurred in the case of Walsh transformation which results in better recognition
performance.

Character recognition — feature and prototype vectors

We obtain a 64 dimensional feature vector by computing some of the Walsh transforms
for a segment. This feature vector is compared with prototype vectors which contain the
same 64 Walsh transforms of prototype characters. For a given feature vector we find the
closest prototype vector by using a suitable distance function. If we assume that the size of
the character segments lie in an interval, we can exclude the segments of too small (noise)
or too large (graphic parts) size from the recognition process before the decision step. The
recognition is based on the distance between the feature vector of the analysed character
and the prototype vector.
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Decision and training

To make the algorithm more flexible, we inserted a decision step into the recognition
process to handle unrecognizable segments. We have the following two possibilities to make
a decision about the recognizability of a segment.

2-level decision: With this step the given segment is always recognized which means that
the algorithm finds the prototype character whose feature vector has the minimal distance
from the feature vector of the given segment.

3-level decision: With this step we classify the segments as recognizable, or uncertain
ones. In the uncertain cases the algorithm has “doubts” about the recognizability of the
given segments. It happens when the minimal distance is larger than a threshold value.

During character recognition we create a 64D feature vector for every segment, then
calculate the minimal distance between this vector and the prototype vectors. The decision
steps above are based on this distance value. In the 3-level decision step we use one critical
value. The decision can be made according to the relation between the minimal distance
value and the critical value. In the 3-level case, if the minimal distance value is larger than
the critical value the segment is considered unrecognizable. The critical values can be given
globally or separately for every prototype vector.

There is a training part inserted into the algorithm which is independent of the recognition
step. Training can be performed in two possible ways. If we have the font in electronic form,
we can easily compose an artificial document containing the whole alphabet without any
noise. Scanning through this document we can train the algorithm for every symbol of the
alphabet. If we cannot compose such an artificial document, then the algorithm must be
trained by using 3 to 10 samples for every symbol from scanned material.

3. Experimental results

We calculated the average computation time the algorithm took to process one page of
printed text which contained 27 rows. It took 3.5 seconds to segment the document and
additional 4.5 seconds to perform the recognition step. The test was executed on a Personal
Computer at a moderate performance level (Celeron 433 processor). The segmentation step
of the algorithm takes approximately the same time to finish as the actual recognition step.
The performance of the algorithm can be improved highly by making the procedure parallel.

We inserted a noise generator step into the character recognition process after the seg-
mentation. This way we corrupted the image with different noise types (global, contour)
at different levels before executing the recognition step. We applied uniformly distributed
additive noise corruption and the level of the corruption is defined as the percentage of the
pixels which are affected by the noise corruption. Global noise corruption means that all the
points of the binary image are involved in the noise corruption, while in the case of contour
noise corruption only the contour points are affected.

To perform a comparative analysis, we made some tests for our recognition algorithm,
and for the methods based on projection histograms, and zoning. Synthetic images were
generated with the character sets ¢MR, OCR-A, OCR-B. These prototype documents were
used to train the algorithms, so the prototype feature vectors were calculated. We composed
some one page test documents containing regular text, and generated 100 noisy images for
every input document. For noise corruption we used global and contour noise separately
and parallely, as well. Moreover, tests were made on actually scanned printed material
which is equivalent to a small (approximately 1%) global and a moderate (approximately
20%) contour noise corruption. Using these samples, we made an analysis according to the
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recognition accuracy of our method for each symbol of the alphabets. We also calculated an
average accuracy value to measure the recognition efficiency of the above algorithms, and
got the best result in the case of ours.

Our experiments indicated strong correlation among the levels of the noise corruption,
the feature vector of the segment, and its distance from the corresponding prototype vector.
At the significance level 0.001 the correlation coefficient is r = 0.7875.

If the recognition is restricted only to digits then the dimension of the feature space can
be reduced. According to a factor analysis the dimension of the feature space can be reduced
from 64 to 48 without violating the accuracy of the recognition. We can have a moderate
recognition accuracy (at the level of 90%) if we use only a 16-dimensional feature space.

For more details about our experiments see [14] and the dissertation.

4. An application — compressing typeset documents

As a practical application we built our character recognition method into an information
loss compressive algorithm, see [13]. The original digital images are supposed to contain
basically text information — with a small number of symbols — recorded in a typographically
fixed form, and optionally some graphic parts. During the compression our main purpose is
to preserve the visual information of the document. The graphic parts of the document are
compressed by an information preserving compression program, while the text information
is recognized and the characters are encoded with their character code. The characters can
be magnified as the algorithm is invariant for magnification. The experimental analysis
indicated that the algorithm tolerates noise corruption quite well. The noise sensitivity of
the method can be reduced further by lexical analysis. The algorithm was tested in several
cases, and proved to be pretty efficient and reliable for simple documents.

The segmentation procedure also means an efficient compression, since it eliminates the
large background components from the compressed data structure. We used an LZW based
(see, e.g. [27] Chapter 5, p. 127-132) compression program and investigated the efficiency
of the compression, when our method was also applied. We experienced a highly better
compression performance, when our method was applied before LZW.
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Szomszédsagi szekvenciak és
karakterfelismerés Walsh transzformacioval

Jelen PhD tézisek a digitdlis képfeldolgozas teriiletére es6 1j eredményeket tartalmaznak.
A dolgozat két részre tagolédik. Az elsé részben a szomszédsigi szekvencidk elméletével
kapcsolatos eredményeinket ismertetjiik, mig a masodik részben egy Walsh transzforméacion
alapulé karakterfelismerd eljarast mutatunk be.

I. Szomszédsagi szekvenciak

A klasszikus digitalis — 4-szomszédos (cityblock) és 8-szomszédos (chessboard) — moz-
gasokat ZZ2-ben ROSENFELD és PFALTZ [26] vezette be. Egy 4-szomszédos 1épéssel csak
vizszintesen vagy fiiggblegesen, mig 8-szomszédos 1épéssel dtldsan is mozoghatunk. Ezekhez
a lépésekhez koto6ddéen ROSENFELD és PFALTZ két tavolsagfiiggvényt definidlt. Két pont dy,
illetve dg tavolsidga az ahhoz sziikséges 4-, illetve 8-szomszédos 1épések minim4alis szdma, hogy
az egyik pontbdl a masikba jussunk. Az euklideszi metrika egy jobb kozelitéséhez ROSENFELD
és PFALTZ a 4- és 8-szomszédos 1épések felviltva torténd alkalmazasat javasolta, amely a doe
oktagondlis tavolsidgot adja. A szerz6k [26]-ban azt is megemlitették, hogy a kozelités tovabb
javithaté a 4- és 8-szomszédos 1épések tovabbi kombinacidival.

A 4- és 8-szomszédos 1épések tetszOleges periodikus sorozatba vald rendezésével DAS és
szerzOtarsai [5]-ben bevezették a Z2-beli periodikus szomszédsagi szekvencia fogalmat, majd
kiterjesztették azt tetszbleges véges dimenzidra. A témakor részletes irodalmi attekintését a
disszertacio 1. fejezete tartalmazza.

1. Szomszédsagi szekvenciak srukturalis vizsgalata

Legyen n egy pozitiv egész szam. Egy p € Z" pont i-edik (i = 1,...,n) koordindtdjat
jelolje Pr;(p). Legyen M egy olyan egész, hogy 0 < M < n. A p,q € Z"™ pontokat M-
szomszédoknak mondjuk, ha kielégitik a kovetkezd két feltételt:

* [Pri(p) —Pri(g)] <1 (1 <i<n),

. zijl | Pry(p) — Pry(q)| < M.

Az A = (A(4))$2, sorozatot, ahol A(i) € {1,...,n} mindeni € N-re, n-dimenzids (réviden
nD) dltaldnos szomszédsagi szekvencidnak nevezziik. Ha létezik olyan [ € N, melyre A(i+1) =
A(7) (i € N), akkor A periodikus [ periédussal. Az nD &ltalanos szomszédsagi szekvencidk
halmazat S,-nel jeloljik. Megjegyezziik, hogy az altaldnos szomszédsigi szekvencia az [5]-
ben bevezetett periodikus szomszédsagi szekvencia altalanositisa.

Legyen p,q € Z" és A € S,. A p=py,p1,-..,Pm = q pontsorozatot, ahol p;_1 és p; A(%)-
szomszédok Z"-ben (1 < i < m), egy p-t g-val 6sszek6t6 m hosszii A-titnak nevezziikk. A p
és q pont d(p, q; A)-val jelolt A-tavolsdgén a pontok kozott vezetd legrovidebb A-iit hosszat
értjik. Az A-tavolsidgot roviden d(A)-val jeloljik. Minden i € N és j € {1,...,n} esetén
vezessiik be az alabbi jeloléseket:

i
AY(G) = min(A(i),5) 6 fi'6) =D AU (k).
k=1
Sokszor fontos két pont A-tdvolsiganak meghatdrozasa. Ezt DAS szerzOtarsaival [5]-ben

megtette periodikus szekvencidkra nézve. A disszertdciéban (ldsd 2. fejezet, 2.9. Lemma) ezt
kiterjesztjiik az altaldnos esetre.
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Legyen A, B € S, tetszbleges. Definialjuk a J* reldciét az aldbbi mddon:
AJ*B <= d(p,q¢;A) <d(p,q; B), minden p,q € Z" esetén.

Ez a reldcié a DAs [4] 4ltal periodikus esetben bevezetett rendezés dltaldnositdsa. A disszer-
tacid 3. fejezetében (lasd 3.7. Tétel) megmutatjuk, hogy

d(p,q; A) < d(p,q; B), Vp,q € Z"re < fi(i) > fP(i), Vi€ Nre, je{l,...,n}re.

Az értekezés 3.1. szakaszaban azt is megvizsgéljuk, hogy a szomszédséagi szekvencidk halmazai
milyen hdléelméleti struktirat alkotnak a fenti rendezésre nézve. S, mellett annak ugyana-
zon tipusi részhalmazait elemezziik, mint DAS [4]-ben a periodikus esetben. Mivel a J* ren-
dezés ritkdn indukal szép haléstruktirdkat, ezért bevezetjik annak egy durvdbb viltozatat
is, amelyet haszndlva szebb strukturdlis eredményekhez jutunk. Minden A = (A(i))2,,
B = (B(i))X, € Sy, esetén definidljuk a 1 relaciét az aldbbi médon:

AJB <=  A(i) > B(i), mindeni € N esetén.

A fenti strukturalis eredményeinket a co dimenzids digitalis térre is kiterjesztjik a disszer-
taci6 3.2. szakaszdban. Az ott kapott hdléstruktirdk bizonyos értelemben a véges dimenzids
halék unidi lezartjanak tekinthetok. Az értekezés 2. és 3. fejezete mellett ezek az eredmények
[15]-ben is kozlésre keriiltek FAZEKAS ATTILA és HAIDU LAJOS térsszerzékkel.

2. Szomszédsagi szekvencidk metrikus vizsgalata

A " rendezés csak féligrendezés a szomszédsigi szekvencidk halmazin, 4&m egyes ese-
tekben sziikség lehet barmely két szekvencia , gyorsasiganak” oOsszehasonlitdsira. FEzen
probléma megoldésira a disszertacié 4. fejezetében bevezetiink egy norma jellegii sebesség-
fliggvényt a szekvencidk halmazin, és megvizsgiljuk annak tulajdonsigait. A sebesség de-
finidlasahoz a kovetkezd feltételeket vessziik alapul:

(i) A sebességnek érzékenynek kell lennie a szekvencia egyes alterekben valé viselkedésére.
(ii) A szekvencia elemei kiilonbéz6 mértékben jaruljanak hozzd a sebességhez.
(iii) A sebességnek Osszhangban kell lennie a J* rendezéssel.

A fentieknek megfeleléen a sebességet a kovetkezoképpen adjuk meg. A §; : N — R

(7 = 1,...,n) figgvényhalmazt silyrendszernek nevezziik, ha teljesiil az aldbbi hirom
feltétel:

¢ 5;(i)>0 (€N, j=1,...,n),

e >0 <00 (j=1,...,m),

. Sjlmonoton csokkend (j =1,...,n).

Legyen A€ S, és0; (j =1,...,n) egy silyrendszer. Az A szekvencia j-dimenzids sebessége

o0

ot = AD(@)5;(2),
=1

az A sebessége pedig

n
A _ A

vt = 5

S|

Jj=1

Mivel J* csak féligrendezés, ezért (iii) csak az egyik irdnyban teljesiilhet. A mdsik irdny
megvaldsitasahoz még egy tovabbi feltétel sziikséges:
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U]A > U]-B, minden §;-re (j =1,...,n) = A J* B, minden j =1,...,n-re.
A sebesség bevezetéséhez hasonléan a disszertécio 4.5. szakaszdban metrikat is definidlunk
a szomszédsagi szekvencidk halmazin, és elvégezziik a szokdsos vizsgdlatokat. Legyen A =
{6;j + j =1,...,n} egy silyrendszer és A,B € S,. Ezen szekvencidk pa tdvolsigit a
kovetkezéképpen definidljuk:

n o0

04, B) = -3 S°1406) ~ BOG)] 4500).

j=1i=1

Az értekezés 4.5. szakaszdban megmutatjuk azt is, hogy minden A stlyrendszer esetén
(Sn,0n) teljes metrikus tér. Tovabbd, a metrikus tér minden korldtos monoton sorozata
konvergens, és minden korldtos végtelen részhalmazdnak létezik torlédédsi pontja. A perio-
dikus sorozatok halmaza a metrikus tér egy stiril részhalmazat adja. A sebesség és metrika
bevezetésével kapcsolatos eredményeket és gyakorlati példdkat a disszertdcid 4. fejezete és a
HAJIDU LAJOSSAL kozos [19] tartalmazza.

3. Szomszédsagi szekvencidk geometriai vizsgalata

A disszertacié 5. fejezetében a szomszédsigi szekvencidk altal elfoglalt tartomanyokat
vizsgdljuk meg. A szekvencidk ,terjedése” eltoldsinvaridns, ezért az egyszeriiség kedvéért a
7" tér 0 origdjabol indulunk. Legyen A € S, és minden k& € N-re

Ay ={g ez : d0,q;A) <k}

az A 4ltal az elsé k 1épésben elfoglalt tartomdany. Jelolje H(Ay) az Ay, konvex burkat R'-ben.
Approximéciés mddszereinkhez a szomszédsigi szekvencidkhoz és a klasszikus euklideszi
metrikdhoz tartozd ,,korok” osszehasonlitdsa szolgdl alapul. Minden k£ € N esetén legyen

Or={q€Z?: Ly(0,q) <k}, illetve Gp={geR® : Ly(0,q) <k}

a k sugari euklideszi kérlap Z2-ben, illetve R%-ben.

Szamitasainkban gyakran haszndljuk egy A € S, szomszédsagi szekvencia elsé k elemében
el6fordulé azonos elemek szamat. Legyen A = (A(7))°, € Sy ésmindeni =1,...,nésk € N
esetén

A(i k) = #{A(J) + AG) =i, 1 <j <k}

Az elfoglalt tartoményok aszimptotikus tanulményozdsidhoz a szomszédsigi szekvencia egyes
elemeinek stirtiségét (amennyiben ez nem létezik, also és felsd stirtiségét) hasznaljuk a disszer-
tacié 5. fejezetében.

DAS és CHATTERJI [9] az euklideszi metrika szomszédsigi szekvencidkkal valé kozeli-
tésének hatékonysagat vizsgilta. Nevezetesen, azon nyolcszogek geometriai tulajdonsigait
elemerték, amelyeket egy szomszédsigi szekvencia az origobdl kiindulva a sikban valé ter-
jedésekor elfoglal. Altalanositott szomszédsagi szekvencidkat haszndlva az euklideszi met-
rika jobban kozelithet6. Ennek megfeleléen a disszerticié 5. fejezetében kiterjesztjiik DAS
és CHATTERJI [9] 2D-ben elvégzett geometriai vizsgilatait dltaldnos szomszédsigi szek-
vencidkra, és bedgyazzuk a kordbbi eredményeket az 1j kornyezetbe. Z?2 helyett ezeket a
vizsgalatainkat tetsz6leges véges dimenzidéra elvégezziik. Egy sok helyen jol felhaszndlhatd
eredményként (1asd disszertécié 5. fejezet, 5.4. Tétel) el6szor megadjuk az elfoglalt poliéderek
csucspontjait. Legyen A € S), és k € N. A H(;ﬁc) poliéder csicsai pontosan azok a pontok,
melyeknek koordinatdi az alabbiak egy permutécidja

(AIZA(i,k), Ay Y A(iLk), ..., AnA(n,k)>,
=1 1=2



MAGYAR NYELVU TEZISEK 27

ahol \j = %1 (j =1,...,n), és A; eltérhet az egyes permutdcidkban.

Az n-dimenzids esetben, a dlsszertamo 5.1. szakaszdban meghatarozzuk az elfoglalt poli-
éderek atmérijét, és vizsgaljuk az atmér6 és a lépésszam hanyadosdnak aszimptotikus visel-
kedését. Mivel a 2D-s és 3D-s eset kiemelt jelent&sséggel bir a képfeldolgozdsban, ezért a
7.2 és 7. tereket behatéan tanulmanyozzuk a disszerticié 5.2. szakaszaban. A szomszédsagi
szekvencia elemeinek stirtiségével (illetve als6/felsd siirtiségével) meghatarozzuk az elfoglalt
tartomanyok oldalhosszanak, teruletének és térfogatdnak aszimptotikus viselkedését. Geo-
metriai eredményeink a disszertaci6 5. fejezete mellett [17]-ben is kozlésre keriiltek.

4. Az euklideszi metrika kozelitése digitalis metrikakkal

Az euklideszi metrika digitélis tdvolsadgokkal valé kozelitése széleskorben kutatott tertilet.
DaAs [3]-ban olyan szomszédsigi szekvencidk altal indukalt tavolsigfiiggvényeket adott meg,
amelyek egy bizonyos értelemben az euklideszi metrika j6 kozelitéseit adjak. Mi is végrehaj-
tunk egy hasonlé, de altaldnosabb vizsgilatot az euklideszi metrika kozelitésére szomszédsagi
szekvencidk segitségével a disszerticio 6. fejezetében. Approximéciés modelliink geometriai
megkozelitésen alapszik, nevezetesen az euklideszi metrika és a szomszédsigi szekvencidk
tavolsagfiiggvényeihez tartozd kiillonbozé sugard korcket hasonlitjuk Ossze. Szemben DAS
[3] eredményeivel, periodikus helyett dltaldnos szekvencidkkal dolgozunk, és lehetéség nyi-
lik a legjobban kozelitd szomszédsigi szekvencia explicit, zart alakban valé megadasara is.
Vizsgilatunk a szomszédsagi szekvencidk egész halmazara kiterjed, és megadjuk a legjobban
kozelitd, metrikat generdld szekvencidkat is.

Héarom approximéciés probléméat fogalmazunk meg, amelyek megoldasa a legjobban ko-
zelité szomszédsdgi szekvencidkat szolgéltatja. Az aldbbiakban T'(H) a H sikbeli tartomany
tertiletét jeloli.

1. probléma. Keressiikk meg azt a A € Sy szomszédsigi szekvencidt, amelyre minden
A€ Sy és keN esetén

T(H(Ay) v Gy) < T(H(Ay) v Gr).-

2. probléma. Keressik meg azt a ® € Sy szomszédsagi szekvencidt, amelyre minden k € N
esetén H(®y) D Gy, tovdbba ha A € Sy és H(Ay) DO Gy, akkor

T(H(®;) \ Gy) < T(H(A) \ Gy).

A disszertacié 6.2. szakasziban megadunk két, a fenti problémakat kielégité szomszédsigi
szekvencidt. Ezen kivil meghatarozunk egy szekvenciat, amely olyan digitdlis metrikat in-
dukal, amely az Lo-t az els6 probléma értelmében legjobban kozeliti. A koévetkezo kérdés a
masodik probléma diszkrét valtozatara vonatkozik.
3. probléma. Keressitkk meg azt a ¥ € Sy szomszédségi szekvencidt, amelyre \I!k D O
minden k € N esetén, és ha A € S, gy, hogy Ak D O, akkor Ak ) \I/k

A probléma megoldisahoz ugyancsak egy olyan szomszédsagi szekvenciat tudunk meg-
adni a disszertdci6 6.2. szakaszdban, ami metrikat generdl. A megoldds soran 1.n. Beatty-
sorozatokat kapunk, igy a legjobban approximdlé szomszédsagi szekvencidkat zart alakban
fel tudjuk irni. Approximéciés eredményeink az értekezés 6. fejezetében és a HAIDU LAJOS
tarsszerz6vel kozos [18] cikkben is megtaldlhatok.

I1I. Karakterfelismerés Walsh transzformacioval

A disszertdcié médsodik részében egy Walsh transzformdciéon alapuld, sajat fejlesztésii
karakterfelismer6t mutatunk be, amely elsésorban nyomdatechnikailag rogzitett szovegek fel-
ismeréséhez hasznilhaté. Az algoritmus elkészitése sordn a szegmentalasra és osztalyozasra
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fektettiitk a hangstlyt, és kisérletekkel ellenériztiik rendszeriink megbizhatésagat. A di-
gitalis képfeldolgozason beliil gyakran hasznalt Walsh transzformdaciét nagyitdsinvariancidja
és geometridt megorzé tulajdonsiga teszi alkalmassd karakterfelismerésre. A felismerni
kivant karakterekhez Walsh transzforméaltakbdl allé sajatsagvektorokat rendeliink, amelye-
ket etalonvektorok alapjan osztilyozunk. A Walsh etalonvektorok meglehetGsen jol sze-
paralhatok, ezért a tévesztés esélye kisebb, mint mds klasszikus (példaul projekcids hisz-
togramon vagy z6ndzison alapulé) médszerek esetében. Algoritmusunkban nem szdmolunk
ki minden transzformaltat, ami csokkenti a szamitdsi idét és fokozza a zajjal szembeni tole-
rancidt. Mdédszeriink hatékonysidganak és megbizhatésdganak bizonyitékaképpen bemutatjuk
eljarasunk zajtliré képességét, tovibba mdas felismerdkkel valé 0sszehasonlitisinak eredmé-
nyeit.

Az algoritmusunk els6 1épésként a kiinduldsi bindris képet kisebb szegmensekre bontja,
amelyeket egy lancolt listdban tdrol el. A szegmensek téglalapok, melyek bal fels6 pontjai-
nak koordinatai és méretei keriilnek tarolasra a képi informéacioval egyutt. A szegmentdcids
algoritmus részletes leirdsa az értekezés 9.1. szakaszadban taldlhaté meg. Karakterfelismerd
eljarasunk a disszerticié 9.2. szakaszaban leirt Walsh transzformécién alapul. Minden szeg-
menshez egy 64D-s sajitsdgvektort készitiink a szegmens els6 64 Walsh transzforméltjabol.
A sajatsdgvektor elkészitése utdn eldontjiik, hogy a szegmens felismerhet6 karaktert vagy
egyéb képadatot tartalmaz-e. Az értekezés 9.3. szakasza tartalmazza a kiillonb6zo szinteken
végrehajthaté dontési folyamatot és az algoritmus tanithatésdginak feltételeit. A hatékony-
siag ellenOrzésére, a zajérzékenységre és a felismerés pontossigara vonatkozd tesztjeinkbe
olyan gyakran hasznalt betiitipusokat vontunk be, mint az OCR-A, OCR-B, CMR, TIMES NEW
ROMAN és a magyar rendszamtdblakon szerepl6 karakterek. Ezeken kiviil mas statisztikai
teszteket, példaul korrelaciés analizist is végeztiink. Kisérleti tapasztalatainkat a disszerticid
9.4. szakasza rogziti. A vizsgilat eredményei a FAZEKAS ATTILA tarsszerzével kozos [14]
publikiciéban ugyancsak megtaldlhatok.

Karakterfelismerd eljarasunknak egy gyakorlati alkalmazasdt is adtuk: az eljardst beépi-
tettik egy géppel irt dokumentumok tomoritésére hasznalhatd, karakterfelismerésen alapuld
rendszerbe. Az alkalmazas leirdsit és a végrehajtott teszteket az értekezés 9.5. szakasza és
a FAZEKAS ATTILAVAL koz6s [13] is tartalmazza.
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