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3.5 O(2) ghost model in Case Ỹ . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.2 Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.3 Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



3.5.4 Phase III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.5 On the phase transitions . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Modified effective average action renormalization group method ap-
plied to the O(1) ghost model with periodic condensate 69
4.1 Fourier-Wetterich renormalization group approach . . . . . . . . . . . . . 71

4.1.1 Structure of the RG equation . . . . . . . . . . . . . . . . . . . . . 71
4.1.2 Parameters of the periodic condensate . . . . . . . . . . . . . . . . 76
4.1.3 Strategy for solving the RG equations . . . . . . . . . . . . . . . . 76

4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 On our numerical approach . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 The phase structure . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Conclusions 83

6 Összefoglaló 87

Appendices 91

A Tree-level renormalization and the Wegner-Houghton equation 92
A.1 Tree-level renormalization of Euclidean one-component scalar field theory

with polynomial potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.2 Wegner-Houghton equations for φ4 models with O(2) symmetry . . . . . . 93

B Fourier-Wetterich approach 96
B.1 Regulated full propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.2 Traces contributing to the flow equations . . . . . . . . . . . . . . . . . . 98

Bibliography 99





Chapter 1

Background Theory

This chapter is dedicated to convey the ideas behind the functional renormalization group
(FRG) in the Introduction and to sketch the specific methods I employed in my work in
the following sections. More specifically, Wegner and Houghton’s renormalization group
equation and it’s applicability and Wetterich’s renormalization group equation along with
the so called gradient expansion.

1.1 Introduction

In the current state of physics, the microscopic phenomena are well understood. The
Standard Model of particle physics is a very successful theory, it describes the element-
ary particles and the basic interactions between them, except gravity. The symmetries
present in the model enforce a beautiful simplicity in the equations. Thus, making it pos-
sible, to qualitatively and quantitatively understand many microscopic phenomena. The
Standard Model along with the General Relativity are a triumph of our understanding of
the laws of nature. Even though, there are a few insufficiencies, for example, the cause
of neutrino masses, dark matter, dark energy and so on. In the everyday life, one may
only observe electromagnetism and gravity. However, for many common observations, we
have a long way to go in order to make predictions from our accessible microscopic laws
of physics. Let us take the Navier - Stokes equation for example, the equation describing
the flow of viscous fluids. It has not yet been proven, that three dimensional solutions
always exist, in fact this is a Millennial Prize Problem. How could we derive this equation
from our microscopic equations? In the macroscopic, we have powerful frameworks, such
as thermodynamics and statistical physics to deal with many-body systems. This treat-
ment makes prediction for stationary systems with large number of degrees of freedom
neglecting irrelevant microscopic details. One has to bridge the gap between the known
microscopic interactions and the macroscopic laws. The introduction of the article [6]
summarized the main problems one has to face, when trying to formulate a method to
change the scale from the simplicity of microphysics to the complexity of macrophys-
ics: ”For a thermodynamic equilibrium system of many identical microscopic degrees of

1



2 Chapter 1.

freedom, the origin of the problems on the way to complexity is threefold. First, there
is often no small parameter which can be used for a systematic perturbative expansion.
Second, the correlation length can be substantially larger than the characteristic distance
between the microscopic objects. Collective effects become important. Finally, the relev-
ant degrees of freedom which permit a simple formulation of the macroscopic laws may
be different from the microscopic ones. A universal theoretical method for the transition
from micro- to macrophysics should be able to cope with these generic features.”

The scale transformations and the concept of scale invariance originates from
the early days of physics. Scaling arguments were already present in the Pythagorean
school and at Euclid. Scale invariance regained popularity in the 20th century. The
renormalization group (RG) was first applied in particle physics. Today, its fields of
applications include a wide variety of popular research areas. Originally, the goal was
to treat infinities and obtain finite observables in quantum field theory. The problem of
infinities was first addressed in quantum electrodynamics by Feynmann, Schwinger and
Tomonaga. They were awarded the Nobel prize in 1965. They laid down the cornerstones
of the perturbative renormalization.

A more refined understanding of the physical meaning of the renormalization
process came from Leo P. Kadanoff. His paper [7] proposes the so-called ”block-spin”
renormalization group. The works of Kenneth Wilson complemented and completed this
idea. The viability of Wilson’s ideas for the renormalization group was demonstrated by
the solution of the long-standing Kondo problem, [8]. He has also developed a method,
called the ε-expansion in the theory of second-order phase transitions and critical phe-
nomena [9]. He received the Nobel prize for these decisive contributions in 1982. In
a microscopic, many-body system fluctuations are present. Quantum fluctuations for a
quantum system and thermal fluctuations for a statistical system. Wilson said in his
Nobel lecture, that: ”The renormalization group approach is to integrate out the fluc-
tuations in sequence, starting with fluctuations on an atomic scale and then moving to
successively larger scales until fluctuations on all scales have been averaged out.” To be
exact, the renormalization group is a semi-group. The transformations can only be ap-
plied to map the Hamiltonian towards the low energy scales, since we lose microscopic
information by integrating the fluctuations (however, their contributions are incorporated
into the observables). In order to realize the renormalization process, one has to smoothly
map the Hamiltonian HΛ (defined in the microscopic, or high energy scale Λ), down to
the macroscopic Hamiltonian H0 (which is valid at low energy scales k = 0), through
sufficiently small steps in the energy scale Λ → k′ → k′′ → ... → 0. This sequence of
maps however has to leave the partition function

Z = Tre−βH (1.1)

invariant. This means, that one has to take couplings into account, which are irrelevant
at the high energy scale. We may not know which degrees of freedom become relevant at
lower energy scales. In the next section I am going to elaborate the idea behind the RG.
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1.2 The Renormalization Group

In the field of continuous phase transitions, the success of the scaling theory in cor-
rectly predicting various critical exponent identities supported the claim, that close to
the critical point, the correlation length ξ is the only important length scale and that the
microscopic lengths are irrelevant. The critical behavior is governed by fluctuations, that
are statistically self-similar up to the scale ξ, which diverges in the critical point, making
the entire system self-similar. In fact, there are two relevant length scales of a strongly
correlated system: the lattice spacing a and the correlation length ξ. In the language
of particle physics, a means the typical energy scale of the underlying theory, while ξ
corresponds to the Compton wavelength of the particle. When one is executing a series of
RG transformations, it would be meaningless to compare, say, the correlation length at
different RG steps in an extrinsic unit, like meters. It comes naturally to use the lattice
spacing a as a unit of measurement. Therefore, one turns to dimensionless quantities such
as ξ̃ = ξ/a, and rescales all quantities in terms of the lattice spacing. The RG exploits
the self-similarity property of continuous phase transitions. The RG flow takes place in
the theory space, which is spanned by the couplings of the model. Each axis corresponds
to different couplings and a given physical system corresponds to a point K here. During
an RG flow - decreasing the scale k form Λ to 0 - the initial K(Λ) point travels along
a trajectory. The system is critical if the point K(k) is on the (hyper)surface, where
ξ = ∞. The different points on this hypersurface converge to a fixed point K(k) = K(k′)
(with k < k′) and the system becomes completely self-similar. By linearizing the RG
flow in the close vicinity of the fixed point, one can read the power law scaling of each
coupling. Those scaling exponents then can be related to the critical exponents. A lot
of different physical systems have identical critical exponents, which allows us to classify
them into universality classes. No matter how different the microscopic theories are, they
may result in the same long distance theory. This opens up the opportunity to examine
simpler theories rather than more involved microscopical ones. In FRG, we derive beta
functions, which describe the RG evolution of dimensionless couplings g̃i of the theory:

˙̃gi = βg̃i({g̃i}), (1.2)

here the dot reflects the derivative with respect to the scale. When one is interested in the
critical behaviour of the model, searches for fixed point solutions {g̃∗i } of βg̃i({g̃i}) = 0.
The eigenvalues {ωi} of the matrix

Mij =
∂βg̃i
∂g̃j

∣∣∣∣
{g̃∗

i }
(1.3)

are the scaling exponents of the couplings near the critical point, in linear approximation
of the equations. The matrix Mij is called stability matrix.
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1.3 Functional Renormalization Group methods

The FRG combines Wilson’s RG with the functional methods of the quantum field theory.
Actually, there are several formulations and they are called exact renormalization group
equations (ERGE). Among them, one may find Wilson’s ERGE, Polchinsky’s ERGE,
Wegner and Houghton’s ERGE and Wetterich’s ERGE, with no claim of being exhaustive.
I’m going to talk about the latter two equations in this section.

1.3.1 Wegner and Houghton’s ERGE

The paper proposing this equation is [10]. The derivation of the equation and some of
the arguments made here are based on Sect. IIA of [11]. This is the simplest form of
infinitesimal blocking-step RG equations. For the sake of simplicity, consider an Euclidean
theory in d dimensions for a scalar field φ(x), governed by the action SB [φ]. An O(d)
invariant U.V. cut-off Λ is introduced in the momentum space by requiring φ̃p = 0 for
|p| > Λ to render the generating functional

e
1
~W [j] =

∫
Dφ e− 1

~SB [φ]+ 1
~φ·j (1.4)

finite, we accommodated DeWitt’s shorthand for the product of the field and current.
Let us denote the moving U.V. cut-off by k. Its decreasing k → k − ∆k results the
blocking transformation of the action, which preserves (1.4). ∆k serves as a new small
parameter to suppress higher order loop contributions. Due to the presence of the source,
this blocking introduces an explicit source dependence in the action∫

Dkφ e
− 1

~Sk[φ;j]+
1
~φ·j =

∫
Dk−∆kφ e

− 1
~Sk−∆k[φ;j]+

1
~φ·j , (1.5)

where Dkφ is the integration measure over the functional space Fk, consisting of functions
whose Fourier transform is non-vanishing for |p| ≤ k. In order to avoid this complication,
one usually assumes j ∈ Fk−∆k. In this case, the blocking becomes a mapping Sk[φ] →
Sk−∆k[φ] and it is enough to impose the invariance of the partition function

e−
1
~Sk−∆k[φ] =

∫
Dζe− 1

~Sk[φ+ζ] (1.6)

where φ ∈ Fk−∆k and ζ ∈ Fk\Fk−∆k. The evaluation of the path integral by means of
the loop-expansion gives the functional RG equation,

Sk−∆k[φ] = Sk[φ+ ζ] +
~
2
Tr ln

δ2S[φ+ ζ ′]

δζ ′δζ ′

∣∣∣∣
ζ′=ζ

+O(~2), (1.7)

with δS[φ+ζ′]
δζ′

∣∣∣∣
ζ′=ζ

= 0, per definition of the loop expansion. It can be seen that (1.7) has

two parts, a tree level one and the one which describes the one loop contributions (O(~)).
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Let us consider a simple Z2 symmetric ansatz

Sk[φ] =

∫
ddx

(
Zk(φ)(∂µφ)

2 + Uk(φ)

)
. (1.8)

One cannot derive consistent flow equations for Zk or any coupling corresponding to
higher derivatives of the field variable in the WH scheme. Therefore we assume trivial
wave-function renormalization, Zk = 1. This is called the local potential approximation
(LPA). Considering the simplest case for the background configuration φ = Φ =const.
with trivial saddle point ζ = 0 and substituting (1.8) into (1.7) yields

Uk−∆k(Φ) = Uk(Φ) +
~
2

∫
k−∆k<|p|<k

ddp

(2π)2
ln

(
p2 + U ′′(Φ)

)
+O((~∆k)2). (1.9)

Each loop-integral is over the shell k − ∆k < |p| < k in momentum space. So long as
the propagator is non-singular in the integration domain, the n-loop integrals will be
proportional to the n-th power of the integration volume, giving a dimensionless small
suppression parameter ≈ (∆k/k)n. The higher loop contributions are suppressed in the
infinitesimal blocking step limit and the one-loop evolution equation turns out to be an
exact functional equation. After the integration in (1.9) and taking the limit ∆k → 0,
one finally acquires the flow equation for the local potential

U̇k(Φ) = −kd ~
2

Ωd

(2π)d

(
k2 + U ′′

k (Φ)

)
, (1.10)

where the dot means k∂k and Ωd is the d-dimensional solid angle. This is a difficult
partial differential equation for Uk. This can be solved with shooting method in simpler
scenarios. The most widely used tactic however, is to suppose a polynomial expansion
for Uk. For example, considering

Uk(Φ) =

M∑
n=1

g2n
(2n)!

Φ2n (1.11)

with the order M for truncation. Setting M = 2 retains the well known φ4 model, with
g2 being the running mass squared and g4 the self-interaction coupling.

As I mentioned earlier, the Wegner-Houghton equation is restricted to the LPA.
Generally, the dynamics of the field variable (and therefore information about the an-
omalous dimension) is taken into account by considering a field configuration, where the
usual homogeneous background Φ is supplemented with an additional fluctuating field ηx
with infinitesimal amplitude:

φx = Φ+ ηx. (1.12)

The equations then are expanded in powers of this fluctuating field. Naturally, the zeroth
order provides the evolution equation for the local potential Uk. The second order should
provide the evolution equation for the wave function renormalization Zk. However, at
O(η2) level a new evolution equation appears for Uk, which is an obvious inconsistency.
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Furthermore, for the evolution of Zk, there is an additional problem. Either the left hand
side shows up a restricted integration domain for η2 and essentially cannot be matched to
the right hand side or the radius of convergence of the gradient expansion is zero. These
problems arise inherently from the integration method used to perform the momentum
integrals. Namely, by the sharp, shell-by-shell integration. For further reading check [11].

It is possible for the expression [k2+U ′′
k (ζ)] in the logarithms - which corresponds

to the inverse propagator - to become zero at a certain scale ks, because the matrix
δ2S[φ+ζ]

δζδζ

∣∣∣∣
ζ=ζ∗

develops zero eigenvalues. The quantity [k2+U ′′
k (ζ)] is the curvature of the

action at the scale k and corresponds to the restoring force against fluctuations. At this
point, when the restoring force is zero, the system becomes unstable against infinitesimal
fluctuations. This also means, that the mean-field approximation is no longer applicable.
We have used the mean field approximation, when we set the field variable to be the
homogeneous background Φ and when we assumed, that the saddle point is trivial. If the
saddle point is non-trivial, then

Sk−∆k[φ] = min
ζ′

Sk[φ+ ζ ′] 6= Sk[φ]. (1.13)

This means a non-trivial RG flow for the tree level action. In general, the saddle points
ζ ′ are difficult to find. In the case of the WH RGE, these saddle points can be considered
simply as plane waves due to the simplification, that the shell-by-shell integration means.
For plane waves, the tree-level WH equations takes the form

Uk−∆k(Φ) = min
ρk

(
1

2
k2ρ2k +

1

π

∫ π

0

dxUk(Φ + ρk cosx)

)
. (1.14)

This is the blocking relation for the tree-level renormalization (TLR). I am going em-
ploy this method with some modifications in the third chapter of this work. The TLR
procedure is discussed in more detail in Refs. [47, 48]

1.3.2 Wetterich’s ERGE

This equation was introduced in [12]. Some arguments here are based on the second
chapter of [13]. The original Wilson-Kadanoff’s idea is to perform an averaging to map
Hamiltonians onto other Hamiltonians at larger scales. Rather than computing this se-
quence of Hamiltonians, one can compute the Gibbs free energy Γ[ϕ] of the high energy
modes (φ̃p with |p| > k), that have already been integrated out. The idea is to build
a one parameter family of models, indexed by a scale k which fulfills the following two
requirements. On one hand, when k = Λ, when no fluctuation has been integrated out,
Γ[ϕ] is equal to the microscopic/bare action:

Γ[ϕ]k=Λ = S[φ = ϕ]. (1.15)
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On the other hand, when k = 0, meaning that all fluctuations are integrated out, Γ[ϕ]k=0

is the Gibbs free energy of the original model

Γ[ϕ]k=0 = Γ[ϕ]. (1.16)

k plays the role of an infrared cut-off in the effective average action (EAA) method since
Γk is the free energy of the rapid modes. The task is to build explicitly this one parameter
family of Γk. The idea is to decouple the slow modes (φ̃p with |p| < k) of the model in
the partition function by giving them a large mass:

Z[j] = eW [j] =

∫
Dφe−S[φ]−∆Sk[φ]+j·φ (1.17)

in deWitt’s notation for the integration and setting ~ = 1, with

∆Sk[φ] =
1

2
φ ·Rk · φ. (1.18)

The function Rk - called the cutoff function - has to meet three requirements and apart
from those, it is arbitrary. Firstly, in order to recover the original model, when all
fluctuations are integrated out

Rk=0 = 0 (1.19)

has to hold. Secondly, when k = Λ,

Rk=Λ = ∞ (1.20)

will ensure that (1.15) holds as well. In practice it is done by setting Rk=Λ ≈ Λ2. Finally,
the rapid modes (with |p| > k) must be almost unaffected by Rk. The Legendre transform
of Wk[j] ordinarily gives the effective action. However, the action that we started off with
is really S[φ] + 1

2φ ·Rk · φ and so, to get the effective average action, we have to subtract
this term from the Legendre transform:

Γk[ϕ]
def.
=

(
−W [j] + j · ϕ

)
− 1

2
ϕ ·Rk · ϕ, (1.21)

where ϕ is the average of the classical field

ϕ =
δW [j]

δj
= 〈φ〉. (1.22)
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Taking the scale derivative of the EAA and conducting straightforward operations

dΓk

dk
= −dWk

dk
− δWk

δj

dj

dk
+
dj

dk
· ϕ− 1

2
ϕ · dRk

dk
· ϕ

= −dWk

dk
− 1

2
ϕ · dRk

dk
· ϕ

=
1

2
〈φ · dRk

dk
· φ〉 − 1

2
ϕ · dRk

dk
· ϕ =

1

2

δ2Wk

δjδj
· dRk

dk
− 1

2

δWk

δj
· dRk

dk
· δWk

δj

=
1

2
Tr

[(
δj

δϕ

)−1

· dRk

dk

]
=

1

2
Tr

[(
δ2Γ

δϕδϕ
+Rk

)−1

· dRk

dk

]
, (1.23)

one arrives to Wetterich’s ERGE

dΓk

dk
=

1

2
Tr

[(
δ2Γ

δϕδϕ
+Rk

)−1

· dRk

dk

]
. (1.24)

This ERGE has allowed to compute the anomalous dimension η in a reasonable way. It is
easy to generalize this equation for multiple component fields, and to study the physics of
the O(N) models and many others, in all dimensions, including two. The scheme allows
to retrieve very easily the one-loop results both in 4 − ε and 2 + ε dimensions and in
the large N limit. This has convinced many physicists in the subject to work with this
formalism.

It is worthwhile to mention here the gradient expansion. The functional methods
yield exact equations, however, in order to acquire numerically computable equations, one
has to truncate the functional space of the action/effective action. Γk can be expanded
in the power series of ∇ϕ at k > 0. For slowly varying fields, it is expected to be well-
behaved. Thus, this is a convenient way of imposing sensible truncations in the functional
space of Γk. This is the basis of the gradient expansion that consists in proposing an ansatz
for Γk, involving only a finite number of derivatives of the field. For example, for a Z2

symmetric scalar model:

Γk[ϕ] =

∫
ddx

(
Uk(ϕ) + Zk(ϕ)(∇ϕ)2 + Yk(ϕ)(∇ϕ)4 +O(∇6)

)
. (1.25)

There is a simple terminology for the different orders of approximation, and I’m going to
use that in the following chapters:

• Zk = 1 and Yk = 0, we have only a scale dependent local potential, it is called the
local potential approximation (LPA),

• Yk = 0 and Zk is non-trivial, we call it next-to-leading order (NLO) approximation,

• Finally, Yk 6= 0 and non-trivial, we call it next-to-next-to-leading order (NNLO)
approximation.
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There is one last distinction one can make. The ϕ-dependence of Zk and Yk may be
neglected, this approximation is going to employed in Chapt. 2. Later this is referred to
as uniform wave function renormalization.

Finally, it is in order here to elaborate the regulator functions, Rk. As it was
mentioned earlier, the Wetterich ERGE in principle is independent of the choice of the
regulator so long as it meets the three requirements. In order to extract tangible results,
on has to truncate the exact functional equations for the RG flow. The truncation of
the functional space introduces a regulator dependence to the method. This is realised
in the numerical values of the universal quantities, such as the critical exponents. There
are several types of the regulator functions. The stability of the universal quantities and
optimisation of the RG scheme versus Rk are actively researched topics in FRG. This
work is not about this type of examination, here only one kind of Rk is used, namely
Litim’s optimised regulator. It is proven, that it optimises the RG flow in LPA [14].
The philosophy behind Litim’s regulator is to kill the loop-momentum dependence of the
inverse propagator. This makes the loop integral - the momentum integral in the trace of
the r.h.s. of the Wetterich equation - almost trivial, it reduces to an integral of a polyno-
mial of the loop momentum. Thus, the flow equations for the different couplings contain
no direct momentum integrals - as they can be performed analytically - and reduce to
a coupled set of first order ordinary differential equations. It is not known whether Li-
tim’s regulator provides optimal results beyond LPA, however the aforementioned feature
makes it a convenient choice for a regulator. The higher orders of the GE spawn more
differential equations for the new couplings, that is, the usage of Litim’s regulator makes
the analysis of the examined system less time consuming.
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1.4 Generic features of O(N) symmetric models in FRG

The RG flow is believed to keep global symmetries, and thus the universality class cor-
responding to the given symmetry. This motivates to research different models belonging
to different symmetry groups in the field of FRG. For example, the O(1) models, which
are actually Z2 symmetric, belong to the Ising universality class. Generally, the O(N)

symmetric models refer to vector models with an N -component field variable, ~φ. An
ordinary, Euclidean, d dimensional, O(N)-symmetric model can be described via making
an ansatz for its bare action at the UV scale k = Λ:

ΓΛ[~φ] = SΛ[~φ] =

∫
ddx

(
ZΛ(ρ)(∇~φ)2 + YΛ(ρ)(∇~φ)4 + UΛ(ρ)

)
, (1.26)

where ρ = ~φ · ~φ. The ordinary in the classification means, that the couplings in ZΛ(ρ) and
YΛ(ρ) are positive. Note that this is an NNLO level ansatz. The tools available in the FRG
method allows one to (i.) find fixed points in the theory space of the model as well as they
make it possible (ii.) to follow the RG flow of arbitrary trajectories with arbitrary initial
conditions. By exploiting item (i.) one can quantitatively and qualitatively describe the
characteristics of a second order phase transition, while considering item (ii.), one may
acquire the scaling laws (at high and low energies and at intermediate scales) of a generic
trajectory in a given phase, not necessarily close to a fixed point. An FRG analysis of
the O(N) model generally consist of these steps.

It is well known that perturbative renormalization is only applicable in the vi-
cinity of the trivial fixed point, the Gaussian one, where all the couplings vanish. This is
a repulsive FP in the manner of lowering the momentum scale. Upon following the RG
flows of different trajectories - with initial conditions close to the Gaussian fixed point
(GFP) - one finds, that they emanate from the GFP. The GFP is present in the O(N)
models. However, another non-trivial fixed point exists there, called the Wilson-Fisher
fixed point (WFFP). In some directions in the theory space it repels trajectories, in oth-
ers it attracts them, therefore this is a crossover type fixed point. The WFFP drives the
critical behavior of the model, the system is critical exactly in the WFFP and on the
separatrix, which connects the GFP to the WFFP in the theory space. The trajectories
behave differently considering where they lie compared to the separatrix. The ordinary
O(∞ > N > 0) models, in 3 spatial dimensions have two phases: (a) a symmetric one
and (b) a symmetry broken one.

(a) The bare action may have a trivial minimum at ~φ∗ = 0 or non-trivial ones, but the
the effective action action will always have one trivial minimum. The low energy
limit of the dimensionful couplings depend on the bare values of the couplings.
The dimensionless couplings however scale with their tree-level scaling laws in the
infrared momentum scale.

(b) The bare action exhibits non-trivial minimums at ~φ∗ 6= 0 and the RG flow evolves
these minimums towards infinities, so that the effective potential has its dimen-
sionless non-trivial minimums at |~̃φ∗| = ∞. At some intermediate momentum scale,
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some of the positive eigenvalues of the second functional derivative matrix of the ac-
tion, i.e., the propagator become zero. This phenomenon is the spinodal instability.
The excitations corresponding to the zero eigenvalues require zero energy to excite
and by this, they destabilize the path integral. This is remedied by the emergence of
inhomogeneous saddle point(s) of the path integral, which brake spatial translational
and rotational symmetries. The appearance of spinodal instability is confined inside
of the region selected by the non-trivial minimums of the RG flowing potential. The
dimensionful effective potential as the function of constant background field con-
figuration flattens between the dimensionful non-trivial minimums. This flatness is
referred to in the literature as Maxwell-cut, similarly to the Maxwell construction
of the van der Waals equation of state. The fact that the system has non-trivial
minimums, means that the ground state at a given scale is not uniquely defined.
Should the system select a particular ground state, it would spontaneously break
its O(N) symmetry. According to Goldstone’s theorem, the spontaneous violation
of the O(N) symmetry creates N − 1 massless scalar particles, called Goldstone
bosons. Their number is N − 1, because this is the number of the broken symmetry
group generators, which correspond to continuous symmetry. This is why, the com-
ponents of the field ~φ are split into two parts in the second chapter of this thesis, I
refer to one component as the radial mode, and the other N − 1 components as the
transverse or Goldstone modes.

It is not a different phase, yet the most interesting, the Wilson-Fisher fixed point
itself. It can be found as a solution of the fixed point equations (where all the β-functions
vanish). The eigenvalue spectrum of the stability matrix in this case can be ordered in an
increasing manner: ω0 < ω1 < . . . The smallest eigenvalue is negative and related to the
critical exponent of the correlation length ν = −1/ω0. The other eigenvalues are positive
and they give scaling corrections to ν. In LPA, the anomalous dimension is η = 0 and at
higher orders of the gradient expansion one obtains an expression for η, which depends
solely on the other couplings, that is, computing the WFFP is enough to acquire η, one
only has to substitute the fixed point values of the couplings into the expression η. In
possession of ν and η one can express all the other critical exponents. η and ν depend on
the dimension of the inner space N as well as the Euclidean space d. At fixed 2 < d < 4, ν
and η are universal and the O(N) models with N = 0, N = 1, N = 2, and N = 3 belong
to the entangled polymers, Ising, XY-, and Heisenberg universality classes, respectively.



Chapter 2

Critical exponents of the
ordinary O(N) models in the
FRG approach

This chapter is based on [A]. Chronologically, this paper was born after [B, C]. However,
I believe, that this chapter would be more educative to give a brief glimpse into the
applications of the FRG method and its technical tools. We are going to attune to the
Wetterich’s ERGE here and study in detail the critical exponent ν of the correlation
length and the anomalous dimension η, characterizing the Wilson-Fisher fixed point of
the O(N) models in different orders of gradient expansion. The determination of these
critical exponents of the O(N) model is a popular subject for specialists in this field, since
anomalous dimension is known to be the most susceptible among the critical exponents
to the given scheme, ansatz and the regulator function as well. It became a benchmark
of the employed method in FRG. In [A], we established a computable framework to
determine ν and η of the Wilson-Fisher fixed point (WFFP) in the fourth order of the
gradient expansion (NNLO) in the O(N) models. I have shown, that the higher-derivative
coupling (which we denoted as Ȳ ) in the WFFP of the O(1) model scales with ∼ ε3 in
the 4− ε expansion. I have also studied the stability of the critical exponents against the
different orders of truncation of the polynomial expansion of the model’s local potential
Uk. I have computed the O(1) model’s ν and η in continuous 2 < d < 4 dimensions,
with particular emphasis on the NNLO effect compared to the results of the second order
of the gradient expansion (NLO). This is found to be in very good agreement with the
literature. Finally, I have provided numerical results in NNLO for the O(N > 1) models
ν and η, as well as their N -dependence. I have also computed the N -dependence of the
first three, rarely discussed scaling corrections ω1, ω2, ω3 to the WFFP, beyond ν. The
motivation was not to achieve the numerically most precise results, but to qualitatively
show the effect of the NNLO on the O(N > 1) critical exponents, within our scheme.

12
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2.1 Ansatz and derivation of the flow equations

I have contributed to the derivation of the sought flow equations. I have also written a code
in a computer algebraic environment, which automatically generates the flow equations at
an arbitrary order of the polynomial truncationM in LPA, NLO and NNLO. The following
part of this section are quoted from [A], except for very slight changes in the notation
of the parameters of the potential: ”In order to apply the EAA RG approach to the N -
component scalar field φax (a = 1, 2, . . . , N), one splits the EAA Γ̄k[φ] = Γk[φ] + ∆Γk[φ]
into the reduced EAA (rEAA) Γk[φ] and the regulator piece

∆Γk[φ] =
1

2

∫
x

φaxR
a,b
k,x,yφ

b
y, where Ra,b

k,x,y = Ra,b
k (−2)δ(x− y). (2.1)

with the infrared (IR) cutoff matrix Ra,b
k (u). Here and below the formulas are cast into

the form that the differential operators act always on the index x and k denotes the
running cutoff. The Wetterich equation (WE) for the rEAA Γk is given as

Γ̇k =
1

2
Tr

(
[Γ

(2)
k +Rk]

−1Ṙk

)
, (2.2)

where the dot over the quantities indicates the scale-derivative k∂k, Γ(2)
k is a shorthand

for Γ
(2)a,b
k,x,y = δ2Γk[φ]

δφa
xδφ

b
y
(a, b = 1, 2, . . . , N). The trace is taken over a complete set of field

configurations. Application of the usual GE techniques involves the split of the field
φax = Φa + ηax into the homogeneous background piece Φa = Φea and the inhomogeneous
fluctuating field ηax (with infinitesimal amplitude), where ea is an arbitrarily fixed unit
vector in the internal space (eaea = 1). For later convenience we introduce the project-
ors Pab

‖ = eaeb and Pab
⊥ = δab − eaeb acting on the N -vectors of the internal space and

define the field components φa‖x = Pab
‖ φbx and φa⊥x = Pab

⊥ φbx of the radial(r-) and trans-
verse/Goldstone(G-) modes, respectively. The Goldstone modes are absent for the case
with N = 1. For the rEAA we make the NNLO ansatz

Γk[φ] =
1

2

∫
x,y

φa‖xD
−1
‖x,y(−2)φa‖y +

1

2

∫
x,y

φa⊥xD
−1
⊥x,y(−2)φa⊥y +

∫
x

Uk(rx)

(2.3)

with

D−1
Ax,y(−2) = ZA k(−2)δx,y = (−ZAk2+ YAk2

2)δx,y, (2.4)

where ZA k(−2) are the momentum-dependent wave function renormalizations for the
radial (A =‖) and transverse modes (A = ⊥) and rx = 1

2φ
a
xφ

a
x. The r-dependence of the

potential is parameterized as truncated polynomial expansion

Uk(rx) =
M∑
n=0

un
n!

(rx − κ)n, (2.5)



14 Chapter 2.

where κ denotes the position of the minimum of Uk(rx), where U ′
k(rx)|rx=κ = 0. In the

symmetry broken phase u1 = 0 and κ 6= 0 evolves, while in the symmetric phase u1
evolves and κ = 0. So that the potential is approximated by a polynomial of degree
M of the O(N)-invariant variable rx. The ansatz (2.3) treats the r- and G-modes of
the field separately. This explicit breaking of O(N) symmetry provides the flexibility
to our RG approach that in the symmetry broken phase the dynamics may govern the
system to states in which the momentum-dependent wave function renormalizations for
these modes evolve differently with the gliding scale k, although one starts the evolution
with the initial condition Z⊥Λ(−2) = Z‖Λ(−2) at the ultraviolet (UV) scale Λ ensuring
unbroken O(N) symmetry of the bare action. In this manner spontaneous symmetry
breaking may be mimicked partially by an explicit one.

The ansatz (2.3) with eqs. (2.4)-(2.5) has been inserted into the WE (2.2), then
evolution equations derived for the couplings of the gradient terms and those of the local
potential by using usual GE techniques. The r- and the G-modes were split as φa‖x =

Φea+ηa‖x and φa⊥x = ηa⊥x, respectively. Both sides of the WE have been functional Taylor-
expanded in powers of the fluctuating fields ηa‖x, ηa⊥x and the evolution equations for
the local potential Uk(r) and the momentum-dependent wave function renormalizations
Zk‖(Q

2) and Zk⊥(Q
2) read off. The explicit evaluation of the traces on the right-hand

side of the WE has been performed in the momentum representation. Denoting by Qµ the
momentum of the Fourier modes of the fluctuating field and by pµ the loop-momentum
appearing in the explicit expressions of the traces, the regulator matrix has been specified
as a block-diagonal one Ra,b

k (p2) =
∑

A=‖,⊥RAk(p
2)Pa,b

A choosing the regulator functions
RAk(p

2) in the form of Litim’s optimized regulator,

RAk(p
2) = [ZAk(k

2 − p2) + YAk(k
4 − p4)]Θ(k2 − p2)

(2.6)

with the Heaviside function Θ(u). With this choice the loop-integrals reduce to integrals
over the Euclidean sphere of radius k and can be taken analytically.

Truncating the functional Taylor-expansion at the quadratic term, the left-hand
side of the WE takes the form

Γ̇k[Φ + η] = Γ̇k[Φ] +
1

2

∫
x,y

ηaxȦ
a,b
k,x,yη

b
y, (2.7)

while the matrix Γ
(2)a,b
k,x,y [Φ + η] can be expanded as

Γ
(2)a,b
k,x,y [Φ + η] = Aa,b

k,x,y + (ηB)a,bk,x,y +
1

2
(ηCη)a,bk,x,y, (2.8)
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where

Aa,b
k,x,y = Γ

(2)a,b
k,x,y [Φ], (2.9)

(ηB)a,bk,x,y =

∫
z

ηcz
δ3Γk

δφaxδφ
b
yδφ

c
z

∣∣∣∣
φz=Φ

, (2.10)

(ηCη)a,bk,x,y =

∫
z,u

ηcz
δ4Γk

δφaxδφ
b
yδφ

c
zδφ

d
u

∣∣∣∣
φz=Φ

ηdu. (2.11)

The first-order term on the left-hand side vanishes because ηx contains no zero mode. The
field-independence of the gradient terms leads to the great simplification that the third
and fourth functional derivatives of the rEAA come from the derivatives of the potential
alone. The functional Taylor-expansion of the trace on the right-hand side of the WE
is then achieved by performing the truncated Neumann-expansion of the inverse matrix
[Γ(2)[φ] +Rk]

−1 at the IR cutoff propagator

Ga,b
p,q = ([Γ(2)[φB ] +Rk]

−1)a,bp,q =
∑

A=‖,⊥

GA(p
2)Pa,b

A , (2.12)

where

G‖(p
2) = [Z‖ k(p

2) + U ′
k(r) + 2rU ′′

k (r) +R‖ k(p
2)]−1, (2.13)

and

G⊥(p
2) = [Z⊥ k(p

2) + U ′
k(r) +R⊥ k(p

2)]−1 (2.14)

with r = 1
2Φ

2 are the propagators of the r- and G-modes, respectively. Here and in what
follows the notation of the r-dependence of the propagators has been suppressed in order
to make our formulas more transparent. The trace on the right-hand side of the WE (2.2)
can then be rewritten as

Tr

(
[Γ(2) +Rk]

−1Ṙk

)
= T0 + T1 + T2B + T2C , (2.15)

where

T0 = Tr[GṘk],

T1 = −Tr[G · (ηB) ·GṘk],

T2B = Tr[G · (ηB) ·G · (ηB) ·GṘk],

T2C = −1

2
Tr[G · (ηCη) ·GṘk]. (2.16)

(Here the dot ‘·’ indicates matrix product both in the external and the internal spaces.)
One finds T1 = 0 because the background is homogeneous and ηx exhibits no zero mode.
The other terms are given as

T0 = V
∑

A=‖,⊥

dA

∫
p

GA(p
2)ṘA k(p

2), (2.17)
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T2B =

∫
Q,p

2r

{[
[G‖(p

2)]2G‖(q
2)δ2(r)Ṙ‖k(p

2)

+(N − 1)[G⊥(p
2)]2G⊥(q

2)ε2(r)Ṙ⊥k(p
2)

]
q=Q−p

η‖Qη‖−Q

+ε2(r)

[
[G‖(p

2)]2G⊥(q
2)Ṙ‖k(p

2) + [G⊥(p
2)]2G‖(q

2)Ṙ⊥k(p
2)

]
q=Q−p

ηa⊥Qη
a
⊥−Q

}
,

(2.18)

T2C = −1

2

∫
Q,p

{[
[G‖(p

2)]2γ(r)Ṙ‖k(p
2) + (N − 1)[G⊥(p

2)]2δ(r)Ṙ⊥k(p
2)

]
η‖Qη‖−Q

+

[
[G‖(p

2)]2δ(r)Ṙ‖k(p
2) + (N + 1)[G⊥(p

2)]2ε(r)Ṙ⊥k(p
2)

]
ηa⊥Qη

a
⊥−Q

}
(2.19)

with the degeneracies d‖ = 1 and d⊥ = N − 1 of the r- and G-modes, respectively and

γ(r) = 4r2U ′′′′
k (r) + 12rU ′′′

k (r) + 3U ′′(r),

δ(r) = 2rU ′′′
k (r) + U ′′

k (r),

ε(r) = U ′′
k (r). (2.20)

The comparison of the terms of the orders O(η0) and O(η2) on both sides of eq. (2.15)
results in the evolution equations

U̇k(r) =
1

2

∑
A=‖,⊥

dA

∫
p

GA(p
2)ṘA k(p

2) (2.21)

for the local potential,

Ż‖k(Q
2) =

∫
p

2r

{[
[G‖(p

2)]2G‖(q
2)[2rU ′′′

k + 3U ′′
k ]

2Ṙ‖k(p
2)

+(N − 1)[G⊥(p
2)]2G⊥(q

2)[U ′′
k ]

2Ṙ⊥k(p
2)

]
q=Q−p

−[G‖(p
2)]3[2rU ′′′

k + 3U ′′
k ]

2Ṙ‖k(p
2)− (N − 1)[G⊥(p

2)]3[U ′′
k ]

2Ṙ⊥k(p
2)

}
r=κ

(2.22)

for the momentum-dependent wave function renormalization of the r-mode, and

Ż⊥k(Q
2) =

∫
p

{
2r[U ′′

k ]
2

[
[G‖(p

2)]2G⊥(q
2)Ṙ‖k(p

2)

+[G⊥(p
2)]2G‖(q

2)Ṙ⊥k(p
2)

]
q=Q−p

− [G⊥(p
2)]2U ′′

k Ṙ⊥k(p
2)

}
r=κ

(2.23)

for the momentum-dependent wave function renormalization of the G-modes. The right-
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hand sides of eqs. (2.22) and (2.23) should be taken at the minimum of the potential
r = κ in accordance with the usage of field-independent derivative couplings. Since there
are propagators in eqs. (2.22) and (2.23) taken at the momentum p − Q where p is the
loop-momentum, one has to Taylor-expand both sides of these equations in powers of Qµ

and make use of O(d) symmetry when performing integrals of the types∫
p

pµpνf(p
2) = d−1δµν

∫
p2f(p2),∫

p

pµpνpκpλf(p
2) = [d(d+ 2)]−1

∫
p

(p2)2f(p2). (2.24)

Then the comparison of the terms of the orders O(Q2) and O(Q4) on both sides of eqs.
(2.22) and (2.23) provide the evolution equations for the various couplings ZA k and YA k,
respectively. The introduction of the dimensionless quantities shall be discussed below
separately for the cases N = 1 and N ≥ 2. The explicit forms of the evolution equations
for the dimensionless couplings have been generated by a computer algebraic program.
At this point one has to emphasize once again the price one has to pay for working with
the simplified ansatz (2.3) instead of a one containing more complete sets of quadratic
and quartic derivative terms like it is done in Refs. [6, 17] at the NLO level. In our case
the introduction of the homogeneous background field Φa pointing into an arbitrary, but
fixed direction ea in the internal space leads necessarily to different diagonal derivative
pieces for the radial ηa‖ and the Goldstone ηa⊥ modes, and finally to evolution equations
of different forms even if identical momentum-dependent wave function renormalizations
Z‖k(Q

2) = Z⊥k(Q
2) (and identical cutoffsR‖k(p

2) = R⊥k (p2)) would have been assumed.
In the latter case, however, eqs. (2.22) and (2.23) would have been in contradiction.
Therefore, one can not avoid the introduction of different momentum-dependent wave
function renormalizations Z‖k(Q

2) 6= Z⊥k(Q
2) for the r- and G-modes. This breaks the

O(N) symmetry of the rEEA explicitly, but can be considered as a kind of bookkeeping
the consequences of the existence of the nontrivial minimum of the potential at r = κ in
the symmetry broken phase. Our ansatz allowing for different RG evolutions of Z‖k(Q

2)
and Z⊥k(Q

2) makes the RG scheme more flexible and raises the question that starting
the evolution from a symmetric initial state with Z‖Λ(Q

2) = Z⊥Λ(Q
2) at the UV scale,

whether the critical theories at the WF FP for N ≥ 2 exhibit this symmetry or not.

The ansatz (2.3) with eq. (2.4) enables one to discuss various truncations of the
GE: the LPA for Z‖k = Z⊥k ≡ 1, Y‖k = Y⊥k ≡ 0, the NLO of the GE with scale-dependent
wave function renormalizations Z‖k, Z⊥k and Y‖k = Y⊥k ≡ 0, whereas the running of all
derivative couplings Z‖k, Z⊥k, Y‖k, and Y⊥k corresponds to the NNLO of the GE. These
truncations of the GE with given M of the truncation of the field-dependence of the
local potential shall be referred to below as NLOM and NNLOM approximations. Our
results are obtained with uniform wave function renormalization, i.e., field-independent
derivative couplings. This will not be indicated in the notation of the approximation
except of the cases when it should be emphasized with comparison of results from the
literature obtained by the usage of either uniform (NLOu, NNLOu) or field-dependent
(NLOf, NNLOf) derivative couplings. We have performed the numerical calculations with
the polynomial truncation M = 6. It has been tested that our results for the exponents
are stable for truncations 6 ≤ M ≤ 12 in the whole investigated range of N (see more
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details below). This justifies that the findings in Refs. [14, 18, 19] on the convergence
of the polynomial expansions in O(N) theories, obtained in the LPA, can be applied to
the NLO and NNLO approximations of the GE. The scale-derivatives of the derivative
couplings have been neglected when evaluating Ṙk(p

2).”

2.2 O(1) model in continuous dimensions 2 < d < 4

Here, I made use of my program for deriving the explicit form of evolution equations. Once
it was done, I have wrote a program, for numerically integrating the evolution equations,
generalized to accept the derived evolution equations for arbitrary order of the polynomial
truncation M . This was used to show the behavior of the different couplings in close to
critical trajectories. I have also performed the 4− ε expansion around the Wilson-Fisher
fixed point as well as computed the critical exponents ν and η in continuous dimensions
2 < d < 4 with particular emphasis on the d = 3 case. The numerical integration of the
flow equations employed the fourth order Runge-Kutta method. The WF FP has been
located by Newton-Rhapson’s method.

2.2.1 Evolution equations

Our formulas for the flow of the local potential and the wave function renormalizations
contain N as a continuous parameter. Setting N = 1, removes eq. (2.23) for Z⊥(Q

2),
since in this case we have only one component of the field variable in the internal space.
Therefore we work with Zk = Z‖k and Yk = Y‖k, belonging to the r-mode. The evolution
eqs. (2.21) and (2.22) reduce to

U̇k(r) =
1

2

∫
p

G(p2)Ṙk(p
2) (2.25)

for the potential Uk(r) and

Żk(Q
2) = 2κ[2κU ′′′

k (κ) + 3U ′′(κ)]2

×
∫
p

(
G2(p2)[G(q2)]q=Q−p −G3(p2)

)
Ṙk(p

2) (2.26)

for wave function renormalization Zk(Q
2), where G(p2) = G‖(p

2) and Rk(p
2) = R‖k(p

2).

As a next step, one turns to the dimensionless quantities (as discussed in Sec.
1.2): r̄ = Zkk

−(d−2)r, κ̄ = Zkk
−(d−2)κ, ūn = Z−n

k k−d+n(d−2)un, and Ȳk = Z−1
k k2Yk.

These definitions of the dimensionless quantities incorporating appropriate powers of the
uniform wave function renormalization are advantageous, because they clear the coupling
Zk from the beta-functions. The effect of Zk is not neglected, it affects the flow equations
through the anomalous dimension.

The explicit flow equations are generated in a computer algebraic program. The
evolution equations (with λ̄ = ū2) in the symmetry broken phase and the approximation



2.2. O(1) model in continuous dimensions 2 < d < 4 19

scheme NNLO2 are

˙̄κ = −(d− 2 + η)κ̄+ a(1 + 2Ȳk)ḡ
2 ≡ βκ̄, (2.27)

˙̄λ = (d− 4 + 2η)λ̄+ b(1 + 2Ȳk)λ̄
2ḡ3 ≡ βλ̄, (2.28)

˙̄Yk = (2 + η)Ȳk + 18αdκ̄λ̄
2(1 + 2Ȳk)ḡ

4

{[
48

d(d+ 2)(d+ 4)
+

576Ȳk
d(d+ 2)(d+ 6)

+
192

d(d+ 8)

(
1

d
+

12

d+ 2

)
Ȳ 2
k +

1280

d(d+ 10)

(
1

d
+

3

d+ 2

)
Ȳ 3
k

+
1

d(d+ 12)

(
1792

d
+

6144

d+ 2

)
Ȳ 4
k

]
ḡ3 −

[
12

d(d+ 2)
+

40

d(d+ 4)

(
3 +

2

d

)
Ȳk

+
160

d(d+ 6)

(
3 +

4

d

)
Ȳ 2
k +

192

d(d+ 8)

(
5 +

6

d
+

12

d+ 2

)
Ȳ 3
k

]
ḡ2

+

[
1

d
+

8

d+ 2

(
1 +

6

d

)
Ȳk +

24

d+ 4

(
1 +

12

d

2

d2
+

6

d(d+ 2)

)
Ȳ 2
k

]
ḡ − 3Ȳk

d

}
≡ βȲ ,

(2.29)

with the anomalous dimension

η = −36αdκ̄λ̄
2

(
1 + 2Ȳk

)
ḡ4
{
4

d

[
1

d+ 2
+

8Ȳk
d+ 4

+
24Ȳ 2

k

d+ 6

]
ḡ − 1 + 6Ȳk

d

}
≡ η(κ̄, λ̄, Ȳk)

(2.30)

and the notations

ḡ = [1 + Ȳk + 2κ̄λ̄]−1 (2.31)

and a = 6αd/d, b = 6a, αd = 1
2Ωd(2π)

−d with the d-dimensional solid angle Ωd. In
order to acquire the RG trajectories, one has to integrate the coupled set of first order
ordinary differential equations (2.27)-(2.29) for initial conditions given at the UV scale
k = Λ by using eq. (2.30) as η, and then integrate the evolution of the wave function
renormalization Zk by

Żk = −ηZk. (2.32)

Here, it is assumed that Zk ∼ k−η is satisfied close to criticality. The evolution equations
for the more restrictive truncations of the GE can be obtained from the NNLO equations,
as described above. In the truncation of the EAA with field-independent wave function
renormalization Zk(Q

2), the wave function renormalization Zk does not evolve in the
symmetric phase, it keeps its UV value Zk = 1. The modification of the wave function
renormalization in the symmetric phase occurs as a two-loop effect in the perturbative
approach, in the FRG approach it is only present, if we account its field dependence.
That is, the numerical work is concentrated on the symmetry broken phase of the model.
There, the scale-dependence of Zk may occur because of the RG flow of the non-trivial
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minimum of the potential.

2.2.2 Crossover scaling

The WF crossover region has been explored numerically by integrating the RG evolution
equations (2.27)-(2.29) and (2.32) (taking eqs. (2.30) and (2.31) into account) for a bunch
B of close to critical RG trajectories running in the symmetry broken phase but in the
close vicinity of the separatrix between the symmetric and symmetry broken phases. The
trajectories in B were chosen to belong to the UV couplings λ̄Λ = 0.1, ZΛ = 1, and
ȲΛ = 0, with varied κ̄Λ. The value κ̄sepΛ corresponding to the separatrix was determined
by fine tuning. In an ideal case, the renormalized trajectory emanated form the Gaussian
FP converges to the WFFP and reaches it at k = 0. In our case, we can only get arbitrary
close to the renormalized trajectory but not exactly on it. The system is in the vicinity
of the WFFP for a given interval of the physical scale and eventually, it evolves from it
as it tends to the infrared. The closer the trajectory is to the separatrix, the wider the
aforementioned interval. In our case, we looked for trajectories, where the bare potential
has non-trivial minimums, but in the IR the minimums become the trivial one. I fine-
tuned RG trajectories, on which the vanishing of κ̄ occurs at very low scales, namely at
kc ∼ 10−7 for κ̄(kc) = 0. The numerical investigation has been performed in various
orders of truncations M , both in the NLO and NNLO. It has been established, that
M = 6 provides stable numerical values for the exponents η and ν. The typical flow of
the couplings κ̄, λ̄ ,Zk, Ȳk and the anomalous dimension η are shown in Fig. 2.1 for d = 3.
Similar behavior was obtained for d = 4 − ε as well. Beyond the quite short UV scaling
region, there occurs a crossover scaling region stretched over ∼ 3 orders of magnitude
change of the running scale k, where κ̄ and λ̄ keep their constant (fixed point) values κ̄∗
and λ̄∗. Naturally, this length of the plateaus depends on the particular fine-tuned value
of kc. The function Ȳk turned out to be rather flat at its minimum, with the value Ȳ∗ and
that flat region is in agreement with the position of the plateaus of the functions κ̄(k)
and λ̄(k). The anomalous dimension η∗ = η(κ̄∗, λ̄∗, Ȳ∗) is determined by means of eq.
(2.30) and it turns out to be scale-independent in the very same region of the scale k. All
these plateau values are independent on the particular trajectory in the bunch B. This
signals, that the trajectories in B are indeed get close to the WFFP, and their plateaus
correspond to the fixed point values corresponding to the WF FP.

At the scale kc, the minimum of the potential is shifted to vanishing homogeneous
background field, as mentioned earlier. That is, the symmetry of the vacuum state is
restored in the infrared. The couplings λ̄ and Ȳk keep their finite non-vanishing values
λ̄∗ and ∼ Ȳ∗, respectively, at the scale kc. This means that the theory does not become
trivial. The wave function renormalization Zk goes to infinity on the separatrix while it
only reaches finite values on the various trajectories of the bunch B. Below the scale kc, the
anomalous dimension vanishes and the field-independent wave function renormalization
freezes at its value Zkc

reached at kc, since κ(k < kc) = 0 and Żk ∼ κ̄. The couplings of
the potential and the coupling Ȳk show up tree-level scaling (see eqs. (2.27), (2.28) and
(2.29) for κ̄ = 0) in the IR for k < kc.
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Figure 2.1: Typical scale-dependence of κ̄, λ̄, Zk, Ȳk, and η on close to critical RG
trajectories with ZΛ = 1 and ȲΛ = 0, determined in the approximation scheme NNLO6
for d = 3.

A convenient way to identify the correlation length is as the reciprocal of the
scale kc. This was signalled by the fact that the closer we got to the separatrix - where the
correlation length diverges - the smaller kc became, and wider the plateaus in the evolution
of the couplings. Let the separatrix be given by the initial conditions (κ̄sepΛ , λ̄Λ, ZΛ =
1, ȲΛ = 0). Then the system can be tuned to criticality by setting κ̄Λ to minimise the
distance |κ̄sepΛ − κ̄Λ| = t2 of the particular RG trajectory (with (κ̄Λ, λ̄Λ, ZΛ = 1, ȲΛ = 0))
from the separatrix. This distance can be identified with the square of a kind of reduced
temperature t for any given initial value λ̄Λ [20]. It has been found, that the correlation
length scales with the reduced temperature as ξ ∝ t−ν , ν turned out to be constant for
the bunch of the trajectories B (see Fig. 2.2 for that typical scaling behavior). This
qualitative behavior is the same in the NLO and NNLO for dimensions d = 3 as well as
d = 4− ε.
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Figure 2.2: Dependence of the correlation length ξ on the reduced temperature t at the
lower end of the WF crossover region in the approximation scheme NNLO6 for d = 3.

2.2.3 Fixed points

The fixed points (κ̄∗, λ̄∗, Ȳ ∗) are solutions of the equations

βκ̄ = βλ̄ = βȲ = 0. (2.33)

As it was discussed above, Zk is not present in the flow equations of the couplings, Żk

completely decouples from the other equations. The fixed point equations were solved
with the definition of η, which depends on the couplings (κ̄, λ̄, Ȳ ) only. Therefore, the an-
omalous dimension, corresponding to the FP is η∗ = η(κ̄∗, λ̄∗, Ȳ ∗). This work is restricted
to dimensions 2 < d < 4 and to the parameter region Zk > 0, Ȳk ≥ 0, λ̄ ≥ 0 excluding
unphysical solutions, such as the trivial fixed-point solution Zk = Ȳ = λ̄ = κ̄ = 0 and
the ones with Euclidean action unbounded from below. The fixed-point equations (2.33)
have a solution with λ̄∗G = 0 and Ȳ ∗

G = 0 implying η∗ = 0 and κ̄∗G = a for arbitrary fixed
value of Zk = Z. This represents the Gaussian FP in the LPA, when the wave function
renormalization is restricted to Zk = 1. In the approximation schemes, NLO and NNLO
there exists a Gaussian fixed line in the theory space.

Eqs. (2.33) were solved for the WFFP in various approximation schemes with
a root-finder routine, using the Newton-Rhapson method. Its advantage is that, it con-
verges rapidly because the roots are calculated from gradients avoiding the calculation of
numerical derivatives. The method works well if the initial conditions for the roots are
close to the actual solution, especially, if one seeks the FP for high order of truncation
M . These guesses for the initial conditions are the ’plateau’ values (κ̄∗, λ̄∗, Ȳ∗), exploited
from the crossover scaling.
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2.2.4 Numerical results

Dimension d = 3

Figure 2.3: The dependence of the critical exponent ν, the subleading scaling exponent
ω, and the anomalous dimension η on the order of truncation M . The LPA (rectangle)
the NLO (triangle) and the NNLO (circle) results are compared. In the case of ν the
NLO and NNLO results are very close, the corresponding points coincide on the diagram.

The calculations have been performed with the order of polynomial truncation M = 6.
The dependence of the critical exponents ν, η, and the first subleading scaling exponent
ω are rather stable for the truncations in the range 6 ≤ M ≤ 12 in any investigated
order of the gradient expansion, as shown in Fig. 2.3. The stability of the results against
the particular choice of M are quantified in Table 2.1. Upon comparing the variations
of the exponents investigated here - with increasing M - to the ones obtained in LPA in
[14], it has to be concluded, that higher order approximations in the GE do not spoil the
convergence of the polynomial expansion. Indirectly meaning, that the findings in Refs.
[18] and [19] on the convergence of the polynomial expansions in O(N) theories governed
by poles in the complex field plane,are applicable at the NLO and NNLO levels even in
the case N = 1, when the RG-flow is accompanied by notable renormalization of the
gradient couplings.

This work’s results for the quantities, characterizing the WF FP are shown in
Table 2.2 for various approximation schemes. It has been established, that the dynamic-
ally obtained (numerical integration of the equations) values κ̄∗, λ̄∗, etc. and the values
κ̄∗, λ̄∗, etc. obtained as the solution of the fixed-point equations agree well in all cases.
That is, we do not make any distinction between these below. It can be seen, that the
WF FP is accompanied by a non-vanishing value Ȳ ∗ of the higher-derivative coupling
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δν δω δη

LPA 0.071 0.730 −
NLO 0.060 0.680 0.03

NNLO 0.068 0.950 0.05

Table 2.1: The relative declination δα = 100 × |αM=12 − αM=6|/αM=12 of the value
αM=6 from the value αM=12 of the various exponents α = ν, ω, η in per cents.

Approxi- κ̄∗ λ̄∗ Ȳ∗ η∗ ν
mation
NLO6 0.027 6.23 − 0.057 0.615

NLOu [17] 0.041 9.25 − 0.045 0.638

NLOf [21] 0.036 +0.008
−0.005

0.631 +0.018
−0.006

NLOf [16] − 0.044 0.628
NNLO6 0.031 6.02 0.0005 0.059 0.634

NNLOf [21] 0.034 +0.005
−0.003

0.630 +0.002
−0.005

NNLOf[15] 0.033 0.632

Table 2.2: The FP values of the various couplings, the anomalous dimension η∗, and the
critical exponent ν characterizing the WF scaling region for d = 3, obtained in various
approximation schemes. For comparison the NLO results taken from Refs. [16, 17, 21]
and the NNLO results taken from Refs. [15, 21] are shown as well.

Ȳk. This UV irrelevant coupling becomes relevant at the WF FP. One can find similar
result in [21], where the field-dependencies of the derivative couplings have been taken
into account. This work’s NLOu (u stands for uniform, field-independent Zk) results for
η and ν obtained with the optimized regulator overestimate the ones obtained in [17]
with the use of an exponential regulator (with similar scheme at the NLO level), thus the
difference has to occur due to the use of different regulators. The results presented here
in NLO6u and NNLO6u show, that the NNLO effect increases the values of η and ν by
∼ 2 per cents. Comparing of the NLOu result from Ref. [17] and the NLOf (f stands for
field-dependent Zk) ones of Ref. [16] (computed with the exponential regulator) shows,
that the field-dependence of the wave function renormalization alters the values of η and
ν by not more than ∼ 10 and ∼ 2 per cents, respectively. When the field-dependence of
the derivative couplings are not neglected, the NNLO effect seems to be about ∼ 6 and
∼ 0.2 per cents in η and ν, respectively, according to the results in [21]. However, upon
comparing the NLOf[16] and NNLOf[15] data, one can see a larger NNLO effect: ∼ 30
and ∼ 0.6 per cents on η and ν, respectively. This work’s estimates of the NNLO effect
(computed with uniform wave function renormalization) are closer to the results of [21].
Our NNLO6u values of η and ν are overestimates the ones in NNLOf [15] and NNLOf
[21]. This strongly suggests, that this originates from neglecting the field-dependence of
the derivative couplings, since - as the literature showed - using exponential and Litim’s
regulators gave results within the error bars given in Ref. [21]. In spite of their stability
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against M , this work’s NLO6u and NNLO6u results for the anomalous dimension overes-
timate the NLOf and NNLOf results of Ref. [21], while the critical exponent ν is rather
close to the values found in NLOf and NNLOf.

The first few eigenvalues of the stability matrix at the WF FP [22] (see Table
2.3) have also been computed in this work. The smallest eigenvalue is negative and it
corresponds to −ν−1, the other eigenvalues are positive and they give scaling corrections
to the WF FP. It was found, that the results become stable for M = 10 (see δω in Table
2.1). ω, ω2, and ω3 seem to converge with going further in the GE. This work’s NNLO10
result for ω is close to the value 0.8303(18) given in [23], where it was computed by
conformal bootstrap method and also close to the estimate 0.84(4) given in [24] following
a thorough discussion of various approaches.

ω ω2 ω3

LPA10 0.6984 3.270 5.936
NLO10 0.7838 3.072 5.680

NNLO10 0.8421 3.061 5.675
LPA5 [22] 0.6557 3.180 5.912

Table 2.3: This work’s results for the first few eigenvalues of the stability matrix at the
WF FP compared to the ones given in Ref. [22].

Dimension d = 4− ε

The ε-expansion performed here has been performed at the level of truncation M = 2.
The analytic solution of Eqs. (2.33) was sought in the form

κ̄∗ = κ0 + κ1ε+O(ε2), λ̄∗ = λ0 + λ1ε++O(ε2),

Ȳ ∗ =

3∑
n=0

1

n!
Ynε

n +O(ε4), η∗ = η0 + η1ε+
1

2
η2ε

2 +O(ε3). (2.34)

The truncations of the ε-expansions were set in accordance with the order-by-order suc-
cessive solution of the fixed-point equations. The expansion yielded

κ̄∗ =
3

4
α4

[
1 +

1

2

(
11

3
− 2γ + ln(16π2)

)
ε

]
,

λ̄∗ =
16π2

9
ε, Ȳ ∗ =

1

6 · 192
ε3, η∗ =

1

36
ε2, (2.35)

where γ is the Euler-Mascheroni constant γ ≈ 0.577. These analytic results are summar-
ized in the second column of Table 2.4.

The result for λ̄∗ agrees with the two-loop perturbative result in [25]. Note, that
the quartic coupling λ̄∗K in [25] is related to this work’s definition via λ̄∗K = 3λ̄∗. The two-
loop result for the anomalous dimension obtained in [25] differs from the result presented
here by the factor 2/3. The difference originates from that the EAA RG method sums up
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Quantity Analytic result Numerical result
κ̄∗ 0.0047 + 0.009ε 0.0048 + 0.01ε
λ̄∗ 17.5ε 16.5ε
Ȳ ∗ 8.7× 10−4ε3 8.9× 10−4ε3

η∗ 0.028ε2 0.028ε2

ν 0.5 + 0.083ε[25] 0.51 + 0.095ε

Table 2.4: Position of the WF FP in the theory space (κ̄, λ̄, Ȳ ) as well as the correspond-
ing η∗ and ν (truncation M = 2) in the NNLO level of the GE for dimension d = 4 − ε
(for ε� 1). The two-loop analytical result for ν is taken from Ref. [25].

an infinite number of loop corrections in a nonperturbative way. The Eq. (2.30) for the
anomalous dimension here is the NNLO generalization of the NLO Eq. (5) in [26], thus,
this discrepancy is independent of specific scheme, it should be generally present in the
EAA method.

It is shown in Table 2.4, that the position of the WF FP and the critical exponent
ν depend linearly, the anomalous dimension η depend quadratically on ε in the limit ε→ 0,
in agreement with [25, 27, 28]. It is also established here, that the WF FP is characterized
by a non-vanishing coupling of the O(∂4) term which is of order ε3 in the ε-expansion.
Therefore, the inclusion of Ȳk into the gradient expansion does not affect the leading-order
terms of κ̄∗, λ̄∗, and η∗ in their ε-expansion.

The WF FP has also been found numerically for several (O(100)) values of ε in
the interval [10−7, 10−1], with equal logarithmic steps in ε. Plotting the fixed point values
of the couplings and the critical exponents on log-log plots gave linear curves, hence their
power law dependence ε has been established. This was followed by a polynomial fitting
according to Eq. (2.34). The error of the fitting has been neglected, because the point
was to reinforce the analytic results. This has been successful, the analytic and numerical
results agree well, as can be seen in Table 2.4.

Dependence on the continuous dimension d

The dependence of the various quantities corresponding to the WF FP are presented here
as functions of the continuous dimension d in the interval 2 < d < 4. The RG evolution
equations were solved numerically for trajectories in the bunch B and identifying the
WF crossover region. The truncation M = 6 was employed and the correlation length’s
exponent ν was computed from the derivative relation ν−1

β = −∂βκ̄/∂κ̄|κ̄∗,λ̄∗,Ȳ ∗ as in Ref.
[26]. It is less time consuming to calculate this, than computing the entire eigenvalue
spectrum of the stability matrix. The price is that the effect of the subleading and higher
order scaling corrections are neglected. The results are summarized in Fig. 2.4. The
qualitative behavior of η∗(d) and ν(d) agree with the literature. It is known from Ref.
[26]. The NNLO coupling Ȳ ∗ exhibits positive values for d0 ≈ 2.7 < d < 4 with a
maximum at dmax ≈ 3.0 and has a zero at d0. It descends to negative values as the
dimension d is lowered, d0 > d > 2 indicating that the Euclidean action is unbounded
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from below in this range in the RG scheme used here. It was found in the generalized

Figure 2.4: This works results for the typical quantities corresponding to WF FP plotted
against the continuous dimension d in NNLO6. The values taken at d = 4 agree with the
ε-expansion, eq. (2.35) for ε = 0. The insets compare the NNLO effects to the NLO ones
δη = 100× (ηNNLO − ηNLO)/ηNNLO and δν = 100× (νNNLO − νNLO)/νNNLO on η and
ν, respectively. For guiding the eye Onsager’s exact results (full squares), the NNLOf
results of [21] (full triangles), and the NLOu values taken from Table 5 of [17] (empty
circles) have been shown on the plots.

proper-time RG framework, that when d decreases below d ≈ 8/3 ≈ 2.67, a competing
critical point emerges in addition to the WF FP. In this scenario, the identification of
the WF FP becomes numerically more involved [21]. The specific reason of the critical
action becoming unbounded from below is not investigated here, it is out of the scope of
the present work.

The trend of η∗ obtained here shows quite a similar one as in the high-precision
NNLO data in Table 5 in Ref. [21]. The insets of the plots of η∗(d) and ν(d) in Fig. 2.4
show that the NNLO effect results in corrections not exceeding 2 per cents of the values
of η and ν in the validity range d0 < d < 4 of the applied RG scheme and it becomes
increasingly important with decreasing dimension d in the interval 2 ≤ d < d0. For d = 2,
the presented results (at d = 2.1) deviate significantly from Onsager’s exact values, but
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one has to keep in mind that d = 2 lies out of the range of the validity of the employed
RG scheme. The insets of Fig. 2.4 show also, that the NNLO effect on η∗ tends to zero
for dimensions d = 4 − ε with ε → 0+, as an effect of O(ε3) on the quantity of O(ε2).
Despite being small, the NNLO effects on η∗ and ν may be comparable to the effect of the
field-dependence of the wave function renormalization see for example, Refs. [15, 26]).

2.3 O(N) models for N ≥ 2 and d = 3

This section shows the reader, how the evolution equations generalize to the O(N > 1)
model. The numerical results contain the double-checking the stability of the polynomial
expansion of the local potential as well as the analysis of the behavior of the higher
derivative couplings. I also provide here the most valuable results of this chapter, the
NNLO level results on the critical exponents of the O(N > 1) models. Finally, I briefly
examine the asymptotic behavior N → ∞ of the O(N) models.

2.3.1 Evolution equations

In the case of O(N > 1) models, the dimensionless field-variable r̄ is set to be defined
via r̄ = Z⊥kk

−(d−2)r. The wave function renormalization of the G-mode is chosen to be
absorbed into the scale dependence of the field rather the one of the r-mode. The reason
behind this is the resulting simplification of the terms in the flow equations, corresponding
to the G-modes.

The flow equations are generated by my aforementioned code, from Eqs. (2.21)-
(2.23). It is useful to show the evolution equations in the simple, NLO2 case,

βκ̄ = −(d− 2 + η)κ̄+
2αd

d
(3ẑḡ2 +N − 1), (2.36)

βλ̄ = (d− 4 + 2η)λ̄+
2αd

d
λ̄2[9ẑḡ3 + 2(N − 1)], (2.37)

βẑ = −ẑ(η̄ − η), (2.38)

here ḡ is the propagator corresponding to the radial mode ḡ = (ẑ + 2κ̄λ̄)−1 and the ratio
ẑ = Z‖k/Z⊥k, as well as the anomalous dimensions via the relations

Ż‖k = −η̄Z‖k, Ż⊥k = −ηZ⊥k, (2.39)

where

η̄ =
4αd

d
κ̄λ̄2

[
d− 2

d+ 2

N − 1

ẑ
+ 9ẑḡ4

(
1− 4ẑḡ

d+ 2

)]
, (2.40)

η =
16αd

d(d+ 2)
κ̄λ̄2ẑḡ2[d− 2ẑḡ]. (2.41)

We see that assuming uniform wave function renormalization, one can work with the
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single coupling ẑ instead of the wave function renormalizations Z‖k and Z⊥k separately.
This holds for the NNLO approximation too. However, the effect of both couplings are
incorporated into ẑ. Should one take the field dependence of Zk into account, it would be
possible to distinguish the r- and G- modes’ inverse propagator with one field dependent
wave function renormalization. However, it is more intuitive, to distinguish the wave
function renormalization of the radial field component and that of the transverse field
components with different couplings.

2.3.2 Numerical results

Figure 2.5: The dependence of ν, the subleading scaling exponent ω, and η on M in the
NNLO approximation for the O(5) (rectangle), O(10) (triangle), and the O(100) (circle)
models.

The numerical investigation of the O(N) models has been restricted to d = 3. The calcu-
lations have been performed with the polynomial truncation M = 6. The convergence of
the various calculated exponents with increasing polynomial truncation M (see Fig. 2.5
and Table 2.5) have been tested. The effect of higher orders of the GE become negligible
for asymptotically large N [29], and the results on the convergence of the polynomial
expansion obtained at the LPA level in Refs. [14, 18, 19] get increasingly better for
asymptotically large N . In the N = ∞ case, the LPA becomes exact.

The numerical integration of the RG flow has always been started from an O(N)
symmetric state, Z‖Λ = Z⊥Λ = 1 (ẑ(Λ) = 1) and with vanishing higher-derivative terms,
Ȳ‖Λ = Ȳ⊥Λ = 0. The WF FP and computation of the corresponding quantities has been
located numerically and performed by applying two different procedures: Procedure A
and Procedure B. Both procedures had two steps like the one in the O(1) case. Firstly, the
RG evolution equations for the bunch B of the trajectories have been solved and thus the
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δν δω δη

O(5) 0.060 0.072 0.037
O(10) 0.001 0.022 0.0005
O(100) 0.0001 0.0019 0.00007

Table 2.5: The relative declination δα of the exponents α = ν, η, ω in per cents, with
the definition in Table 2.1.

crossover region identified. Secondly, the fixed-point equations were solved. In Procedure
A (i), the O(N) symmetry of the EAA has been enforced on the NLO level by setting
ẑ = 1 at all scales, (Z‖k = Z⊥k) during the numerical integration of the trajectories and
the FP was sought by setting ẑ∗ = 1; and (ii) the evolution equations and the fixed-point
equations have been solved by using of the explicit formulas for η and η̄. The critical
exponent ν has also been determined for various N values applying the same numerical
procedure as in the case of the 3-dimensional O(1) model. Let us emphasize, that by
enforcing ẑ∗ = 1, the β-function βẑ decouples from the flow equations, as well as η̄,
the anomalous dimension of the radial mode. Only the G-mode anomalous dimension ,
η is present in the flow equations, hence only η affects the RG flow besides the higher
derivative couplings. In Procedure B, (i) the ratio ẑ has been set free to evolve, i.e., Eq.
(2.38) has been included into the set of the evolution equations; and (ii) the fixed-point
equations have been solved with setting ẑ∗ = ẑ(kc), which was determined in the first
step of the procedure; The scale kc is the one for which κ̄(kc) = 0. The NNLO effect was
investigated by means of both procedures.

Figure 2.6: Scale-dependencies of the couplings κ̄ and λ̄ as well as η̄ (solid black line)
and η (dashed line) of the r- and G-modes, on the close-to-critical trajectories of the O(2)
model for dimension d = 3 in NNLO6 approximation, evaluated with ẑ(k) = 1.

The results of Procedure A are shown in Figs. 2.6, 2.7, 2.8, and 2.9 and the
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obtained values for the characteristics of the WF FP obtained in NNLO6 are listed in
Table 2.6.

N κ̄∗ λ̄∗ 104 × Ȳ ∗
‖ 104 × Ȳ ∗

⊥ η̄∗ η∗ ν

0 0.014 9.40 11.0 7.0 0.045 0.0264 0.587
1 0.031 6.02 5.0 − 0.059 − 0.634
2 0.043 6.03 ≈ 0.0 2.0 0.077 0.0320 0.700
3 0.057 5.35 2.0 0.4 0.085 0.0300 0.739
4 0.072 4.73 2.4 −0.6 0.088 0.0280 0.775
5 0.087 4.19 5.5 −1.0 0.090 0.0260 0.806
10 0.168 2.54 16.0 −1.6 0.095 0.0165 0.896
100 1.680 0.29 33.0 −0.3 0.099 0.0020 0.990

Table 2.6: The coupling’s fixed point value at the WF FP, the critical exponent ν, and
the anomalous dimensions η̄∗ and η∗ for the r- and G-modes, respectively, for various
values of N in NNLO6 evaluated with ẑ = 1.

Figure 2.7: RG flow of the higher-derivative couplings Ȳ‖k and Ȳ⊥k for the r- and
G-modes, respectively on near-critical trajextories. The different curves correspond to
different values of N , all computed in the NNLO6 approximation, with ẑ = 1.

Figure 2.8: N -dependencies of the fixed point values of the higher-derivative couplings
Ȳ‖∗ and Ȳ⊥∗ for the r- and G-modes, respectively, evaluated with ẑ = 1.

The couplings κ̄, λ̄ and the anomalous dimensions η̄ and η show similar scale-
dependencies for different N values in the region 2 ≤ N ≤ 100 (see Fig. 2.6 for the typical
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scaling). The trajectories at different N > 2, were fine-tuned to be equally close to the
separatrix. It means, that we set the desired plateau width of κ̄ and λ̄ to be 4 orders of
magnitude wide. The kc values - which correspond to κ̄(kc) = 0 - decrease monotonically,
for increasing N at a fixed plateau width. The ‘plateau’ values given in Table 2.6 differ
from the corresponding fixed point solutions obtained by solving the fixed-point equations
in the fourth digit of precision.

The crossover region is also present in the RG flow of the higher-derivative
couplings Ȳ‖k and Ȳ⊥k (see Fig. 2.7). The ’plateaus’ of the higher-derivative couplings
are more susceptible to N . They broaden with increasing N (with the above discussed
condition). Fig. 2.8 shows the N dependence of the values of the higher-derivative
couplings at the WF FP. It means, that the ‘plateau’ values of Ȳ‖k increase monotonically
and saturate, while those of Ȳ⊥k have a minimum at around N ≈ 10 and saturate for large
N too. It was found, that the higher-derivative coupling Ȳ⊥k of the G-modes exhibits
negative fixed point values at the WF FP for N > 3 (see Figs. 2.7 and 2.8), hence the
approximations used by us lead to a critical theory with action unbounded from below
for N > 3. The origin of this problem is either the restriction to field-independence
of the derivative couplings or the lack of even higher derivative terms in the EAA or
the neglection of other higher derivative couplings, corresponding to independent NNLO
level operators. The clarification of this problem requires further investigations in more
sophisticated RG frameworks, which is out of the scope of the present work.

Figure 2.9: N -dependence of the NNLO effect on η̄∗, η∗, and ν in the NNLO6, evaluated
with ẑ = 1. The NNLO effect in per cents is given by δf = 100×(fNNLO−fNLO)/fNNLO

for f = η̄ (solid line), f = η (dashed line) in the left plot, and f = ν in the right plot.

Fig. 2.9 shows the NNLO effect in the O(N) models with varying N . The
running higher-derivative terms generally increase the values of the anomalous dimensions
η̄∗, η∗ and decreases ν. The NNLO effect δη on the anomalous dimension of the r-
mode saturates for asymptotically large N values, but does not exceed 1 per cent, while
the NNLO effect δη̄ on the anomalous dimension of the G-modes dies out for large N
values and never exceeds ∼ 0.2 per cents. The NNLO effect δν, on ν dies out too with
asymptotically increasing N , as LPA becomes asymptotically better approximation with
increasing N .

The results presented here and obtained in Procedure A by means of the ansatz
(2.3) (with eq. (2.4)) show a striking feature. The critical values of η̄∗ and η∗ turn out
to be different, even in the NLO, despite the setting of ẑ = 1, which constraints the wave
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function renormalizations for the r-mode and the G-modes to stay identical at all scales.
The higher-derivative couplings Ȳ‖k and Ȳ⊥k for these modes differ as well, although their
critical values remain 4 orders of magnitude smaller than the value ẑ = 1. A double-check
to the validity of this procedure would be that the anomalous dimensions at the WF FP
are identical and βẑ = 0 is fulfilled. However, the fixed-point equation βẑ = 0 is not
satisfied even for ẑ = 1. When the WF FP values of κ̄∗, λ̄∗, Ȳ⊥∗, Ȳ‖∗ are inserted in the
explicit formulas for η̄ and η (like those in Eqs. (2.40) and (2.41)), the right-hand side of
Eq. (2.38) is ∼ (η− η̄), which is ≈ −η̄∗ for large N . In the the presented RG framework,
the critical theory preserves the O(N) symmetry with the accuracy of −η̄.

N ν ν[6] ν ’best’ η∗ η [6] η ’best’
0 0.587 0.589 0.5882 [25] 0.026 0.040 0.0284[25]

0.58759700(40) [30]
1 0.634 0.643 0.629971(4)[31] 0.059 0.044 0.0362978(20) [31]
2 0.700 0.697 0.6717(1) [32] 0.032 0.042 0.0381(2) [32]
3 0.739 0.747 0.7112(5)[33] 0.030 0.038 0.0375(5) [33]
4 0.775 0.787 0.749(2)[34] 0.028 0.034 0.0365(10)[34]
10 0.896 0.904 0.859 [35] 0.017 0.019 0.024 [35]
100 0.990 0.990 0.989[36] 0.002 0.002 0.0027[36]

Table 2.7: Comparison of this work’s NNLO6u results (left columns) with LPA’ results
(see data f in Table 2 in Ref. [6]) of Wetterich’s group (right columns), the latter computed
with the usage of the exponential regulator.

Setting ẑ = 1 corresponds to an O(N) symmetric ansatz for the EAA at the NLO
level and allows one to make comparisons with LPA’ results taken from Ref. [6]. The
LPA’ is also used in the literature to refer to approximation schemes, which - in hearth
- are similar to the NLO approximation used here. Those LPA’ results were computed
without taking into account the term (~φ∂~φ)2 in the ansatz, with different index structure
so that LPA’ agrees with the NLOu for N ≥ 2 of this work. One can see in Table 2.7,
that the present NNLOu results does not agree with the LPA’ results of Ref. [6] although
they show the same qualitative dependencies on N . For ν, the discrepancy is less than
2 per cents, while for the anomalous dimension η∗ of the Goldstone modes, it is about
20 - 30%, but disappears for large N . These discrepancies are larger than the NNLO
effect (see Fig. 2.9), they occur at the NLO level and are caused by the usage of different
regulators. The RG results shown in Table 2.7 disagree generally with the world’s best
estimates without showing a monotonic dependence of these discrepancies on N . The
most accurate FRG results seem to be achieved in the BMW approximation [37, 38] for
the N -dependence of the scaling exponents and in NLOf and NNLOf of the GE for the
critical exponents for N = 1 [21].

The N -dependence of the first three subleading scaling exponents have also been
computed here, by diagonalizing the stability matrix at the WF FP [22]. The results are
summarized in Table 2.8 and plotted in Fig. 2.10. The convergence of the calculated
exponents with increasing order of polynomial truncation has been demonstrated (see
δω in Table 2.5). This work’s LPA results show a smooth N -dependence like the LPA
results of [19]. However, for N = 1, they spring out from the general trend of the data
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at NLO and NNLO. The following explanation can be given: At NLO, thetheory space
has to be extended with the wave function renormalization Zk of the ‘r-mode’ for N = 1
and with the wave function renormalization Z⊥k of the G-modes for N ≥ 2 (with the
choice ẑk = 1). One can recognize in Table 2.6, that the anomalous dimension η̄∗ = 0.059
governing the flow of Zk for N = 1 does not fit smoothly into the N -dependence of η
governing the flow of Z⊥k. This kind of difference of the N = 1 case may cause the
different magnitude of the NNLO corrections for N = 1 and N ≥ 2. Table 2.8 also shows
that the flow of the gradient couplings affects the calculated values of ω, ω2, and ω3 in
that order more and more significantly. Their NNLO results however tend to the LPA
ones for increasing N and reproduce the correct asymptotic limits found in [19] (see Fig.
2.10).

N ωLPA ωNNLO ωLPA
2 ωNNLO

2 ωLPA
3 ωNNLO

3

0 0.693 0.751 3.601 3.294 7.246 6.347
1 0.704 0.842 3.525 3.061 4.938 5.675
2 0.716 0.784 3.373 3.081 4.140 5.551
3 0.736 0.800 3.100 3.003 4.179 5.395
4 0.765 0.819 3.011 2.944 4.295 5.250
5 0.794 0.837 2.975 2.905 4.395 5.138
10 0.886 0.905 2.927 2.881 4.700 4.953
20 0.944 0.953 2.950 2.923 4.885 4.932
30 0.963 0.970 2.965 2.946 4.936 4.947
50 0.978 0.982 2.978 2.967 4.967 4.965
100 0.989 0.9910 2.988 2.983 4.986 4.980

Table 2.8: This work’s LPA6 and NNLO6 results for the first three subleading scaling
exponents.

Figure 2.10: N -dependencies of the first three subleading scaling exponents at NNLO6.

It was reasonable, to repeat the analysis with Procedure B, when the ratio ẑ also
evolved, since Procedure A has shown the flaw of minimal explicit symmetry breaking.
Even in Procedure B, a clear identification of the crossover scaling region in the vicinity
of the WF FP can be made, independently of N . The r-mode propagators contain ẑ,
which has a non-trivial scale dependence, it doesn’t approach a plateau near the WF
FP. It causes all the investigated quantities to exhibit a power-law scale-dependence akα



2.3. O(N) models for N ≥ 2 and d = 3 35

in the crossover region instead of keeping constant values. The ratio ẑ increases strictly
monotonically with decreasing scale k and evolves to the peak value ẑ(kc) - which is
significantly larger than 1 - when the lower end of the WF crossover region is reached
at the scale kc, where κ̄(kc) = 0. The numerical values of the parameters a and α
characterizing the power-law scaling of the various quantities were determined by fitting
the scale-dependencies on the WF crossover region of close-to-separatrix trajectories. It
has been established, that there exist WF FP solutions for fixed values of ẑ∗ = ẑ(kc)
for any N , where kc belongs to the lower end of the crossover region. The fixed-point
solutions reproduced the values of the corresponding parameters a with high precision.
The ratio ẑ has been found to scale as ẑ(k) = ẑ∗k−[η̄(kc)−η(kc)] in the WF crossover region,
in agreement with eq. (2.38).

Making use of the power-law dependencies of the various investigated quantities
in the crossover scaling region, one my search for the WF FP, by using the results of the
numerical integration of close to separatrix trajectories. For finding the FP, the initial
conditions ẑ(ks), κ̄(ks), etc. can be taken at some intermediate scale ks ∈ [kc, ku], where
ku is the scale at which the crossover region starts, i.e., the smallest value at which
ẑ(ku) = 1. It was found, on one hand, for ks = ku these fixed-point values coincide the
ones obtained in Procedure A. On the other hand, the inconsistency of the employed RG
scheme, i.e., the non-vanishing of the beta-function |βẑ(ks)| ∼ O(ẑ(ks)η̄(ks)) is present
for all scales ks and for any N ≥ 2. However, it is minimal at ks = ku, i.e., for Procedure
A.

It can be seen that in the theory space, there is a quasi WF fixed line. The
points of which can be parameterized by the values ẑ∗ = ẑ(ks), the term quasi-fixed
line refers to the presence of the increasing inconsistency with the choice of decreasing
ks values (which correspond to increasing values of ẑ). Holding on to the principle of
minimal inconsistency, i.e., that explicit breaking of the O(N) symmetry of the critical
theory should be minimal, one has to identify the best estimate for the parameters of the
WF FP as the ones obtained in Procedure A.

2.3.3 Asymptotic behavior for large N

ẑ∞ = 1 ẑ∞ = 5
eq. (2.43) NNLO6u eq. (2.43) NNLO6u

κ∞ 0.017 0.0168 0.017 0.019
λ∞ 29.6 29.0 29.6 30.0
η̄∞ 0.10 0.099 0.020 0.11
η∞ 0.20 0.20 0.074 0.32

Table 2.9: Comparison of the asymptotic behavior of our NNLO6u results with those
evaluated on the asymptotic formulas in Eq. (2.43) for the ratios ẑ = 1 and ẑ = ẑ∗, at
N = 100.

The behavior of the WF FP and the corresponding exponents have also been
investigated for asymptotically large values of N . This suggests, that the critical theory
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obtained in Procedure A should be favored as the physically realistic one. Neglecting
the higher-derivative couplings, the trend of the data in Tab. 2.6 suggests the large N
behavior

κ̄∗ ∼ κ∞N, λ̄∗ ∼ λ∞
N
, η∗ ∼ η∞

N
, η̄∗ ∼ η̄∞, ẑ∗ = z∞,

(2.42)

where the star refers to the values corresponding to kc, where the WF crossover region
ends. Inserting the assumptions (2.42) into the fixed-point equations βκ̄ = βλ̄ = 0 and
into (2.40) and (2.41), results in the constants

κ∞ =
2αd

d(d− 2)
, λ∞ =

d(4− d)

4αd
,

η̄∞ =
(4− d)2

2(d+ 2)z∞
, η∞ =

2(4− d)2

d2 − 4
z∞g

2
∞(d− 2z∞g∞),

g∞ =

(
z∞ +

4− d

d− 2

)−1

(2.43)

for arbitrary value of ẑ∗ = ẑ(kc) = z∞ in the leading order of N . These asymptotic
relations have been checked on the base of this work’s numerical NNLO results at N = 100
and d = 3 in Procedure A with z∞ = 1 and in Procedure B with z∞ = 5. The constants
occurring in the asymptotic relations (2.42) are given in Table 2.9. The comparison shows
that the Procedure A NNLO6 values for the anomalous dimensions are in agreement with
the analytically predicted large N behavior, while there is discrepancy for Procedure B.

In order to locate fixed points of the O(N) models for large N , the flow equations
(2.21), (2.22), and (2.23) can be rewritten into

u̇k(r̄) =
1

2

∫
p

G⊥(p
2)Ṙ⊥k(p

2) +O(1/N), (2.44)

Ż‖k(Q
2) =

∫
p

r̄

[
2[u′′k ]

2G2
⊥(p

2)G⊥((Q− p)2)Ṙ⊥k(p
2)

−
(
2u′′kG

3
⊥(p

2)− u′′′k G
2
⊥(p

2)

)
Ṙ⊥k(p

2)

]
+O(1/N), (2.45)

Ż⊥k(Q
2) = O(1/N), (2.46)

respectively, in terms of the rescaled variable r̄ = r/N and potential uk = Uk/N . The
r- and G-mode propagators keep their form given in Eqs. (2.13) and (2.14), but with
Uk(r) replaced by uk(r̄). It is easy to spot, that during the RG-flow, the momentum
dependent wave function renormalization of the G-modes, Z⊥k(Q

2) does not pick up
quantum corrections, while the flow of the wave function renormalization of the r-mode
decouples from the flow of the potential in the limit N → ∞, because the flow equations
contain only the anomalous dimension corresponding to the transverse modes and the
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propagators of the transverse modes, which are independent of ẑ. In the N → ∞ limit,
there are infinitely many transverse modes, which suppress completely the single radial
mode.

In agreement with Procedure A, the FP equations even in NLO and NNLO
reduce to the single FP equation for the potential in the limit N → ∞ and this provides
the flow equations (2.12)-(2.14) in [39] for the couplings for the polynomial truncation
M = 3. We can also recover the Bardeen-Moshe-Bander fixed point [40, 41] for the
polynomial truncations M ≥ 3 for κ̄ = 1, λ̄ = 0, and ḡ3 =arbitrary (accommodating the
notations of [39]). We have found, that the higher-order couplings of the potential are
polynomials of ḡ3, e.g., ḡ4 = −6ḡ23 , ḡ5 = 60ḡ33 , ḡ6 = −30(28ḡ43 − ḡ33), etc. The fixed points
for O(N) models with finite but large N has also been looked for in this work. The range
from 100 to 105 has been scanned, by solving the flow equation (2.21), (2.22), and (2.23)
as well as the corresponding fixed-point equations. The presence of the Gaussian and WF
FPs have been recovered, but no other nonperturbative fixed points like those suggested
in [29] have been found.



Chapter 3

Phase structure of the O(2)
ghost model with higher-order
gradient term

This chapter is based on [B] and [C]. I talk about the motivation of this work first, which
is followed by the outlining of the results. The outline is then followed by the detailed
derivation and analysis of the premised results.

3.1 Motivation

Models, which contain gradient terms with alternating signs give rise to periodic ground
state configurations. There are various models in solid state physics and quantum field
theory, in which the ground state exhibits a periodic structure, because the periodic va-
cuum provides a deeper minimum of the effective action than the homogeneous one. Such
cases are, for example, the Larkin-Ovchinnikov-Fulde-Ferrell type spatially inhomogen-
eous superconducting states [64, 65], the phase with periodically modulated chiral fields in
effective chiral quark models [66, 67], the spin waves in the Heisenberg ferromagnet [68],
and the charged massive Schwinger model [69] (see further examples for periodic ground
states in Ref. [7] of [69]). It has been speculated that the Liouville field theory also pos-
sesses a periodic ground state [42, 43, 44]. Inhomogeneity of the ground state suggests that
strongly distance-dependent interactions should be present in the system. It is reasonable
to expect that for such interactions the gradient terms with sufficiently strong couplings
are responsible rather than the ultralocal potential terms in the effective action. In such
models, the expectation value of the kinetic-energy operator is nonvanishing, which is
constructed from the derivatives of the fundamental fields. The nonvanishing expecta-
tion value arises generally due to the alternating signs of the gradient terms of various
orders (see [53, 54, 55, 56] and Ref. [7] of [69]). This so-called kinetic condensation means

38
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that quasiparticles with non-zero momentum appear and condense forming a periodic
classical background field, which breaks spatial symmetries of the system spontaneously.
As opposed to this, in the case of the Nambu-Goldstone type spontaneous symmetry
breaking quasiparticles with vanishing momentum condense into a homogeneous classical
background field.

In modern quantum gravity research much attention has been paid to the role of
such ghosts, e.g. [70]-[77], [78]-[85], [86, 87, 88, 89, 90, 91]. In various cosmological scen-
arios close to the Planck scale and beyond it the conformal factor in the Einstein-Hilbert
action makes the action unbounded from below and appears to be a ghost scalar model
[45, 46]. The kinetic condensation of the conformal factor can cure the unboundedness.
The kinetic condensation in the simple ghost complex scalar U(1) model has some relev-
ance in studies of the conformal degree of freedom in gravity and has been discussed in
[90, 91]. There, the simplicity of the model allowed to find analytically the true ground
state and to calculate the scale dependence of the EAA and therefore the scale depend-
ence of the dressed inverse propagator by the means of the saddle-point approximation.
The ground state has proven to be a family of plane waves which causes the spontaneous
breaking of the U(1) symmetry and also that of the rotational and translational symmet-
ries in spacetime, because of the fixed phase and wave vector of the given ground state.
They have also found, that the renormalization effects are dominated by the instability
of the trivial saddle point, rather than by the quantum fluctuations. It is shown in [B],
that in the terms of the WH RG scheme, an U(1) symmetric model is equivalent with a
O(2) symmetric one. The goal of [B] and [C] is to pursue the investigation of the ghost
condensation on a more sophisticated O(2) symmetric model than in [90, 91] in the terms
of the FRG.

3.2 Outline

The purpose of this chapter is to discuss the appearance and the behavior of a possible
ghost condensate. The two articles both discuss the phase structure of the Euclidean,
3-dimensional O(2) symmetric ghost model in two different approaches. For better trans-
parency, they are merged here into a single chapter. Wegner and Houghton’s renormal-
ization group (WH RG) framework and the tree-level renormalization procedure (TLR)
have been applied to investigate the model, with special attention to its infrared (IR)
behavior. The advantage of Wegner and Houghton’s scheme is the clear distinction of
handling the ultraviolet (UV) and the infrared (IR) modes of the field variable. The
applicability of the WH RG however, may break down at certain cases and scales (see
Sect. 1.3.1), from where the RG flow is handled by the TLR procedure in order to map
the deep IR behavior of the trajectories. It is also known, that the WH RG scheme is
restricted to the local potential approximation (LPA). The investigated model consists of
two pieces, a local O(2) symmetric potential term and of course, the kinetic energy term:

Sk[φ] =
1

2

∫
d3x

(
φxΩ(−2)φx

)
+

∫
d3xUk(φ

2), (3.1)
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where 2 refers to the 3-dimensional Laplace operator and the bare action is defined on
the UV scale k = Λ. The ordinary O(2) symmetric model possesses the kinetic energy
operator Ω(2) = Z(−2), with Z = 1. We, however modified it to

Ω(2) = −Z2+ Y22. (3.2)

The usual quadratic gradient term is complemented with a quartic one. The reason
of this, is that we want to study not the ordinary model, but its ghost counterpart.
Throughout both [B] and [C], when the ghost (ordinary) model is discussed, the coupling
Z is going to be set Z = −1 (Z = +1). This would cause the action to be unbounded
from below as well as the appearance of propagators with ‘wrong’ sign, which are called
ghosts in the quantum field theory jargon. The quartic gradient term, with Y > 0 is
added in order to stabilize the model energetically and thus to acquire physically sensible
results. I mentioned, that Z is kept constant throughout the work presented here so is
the higher order gradient coupling. The natural dimension of Y corresponding to 22 is
mass−2. The coupling Y is therefore UV irrelevant, i.e. perturbatively nonrenormalizable.
Nevertheless, ghost condensation – when it takes place at some scale k2 ≈ (Z/Y ) – plays a
definitively decisive role in the low energy (IR) physics of the model, that is, the coupling
Y may become IR relevant. The wave function renormalization Z is dimensionless in
LPA, thus it can be kept constant unambiguously. There occurs, however, an ambiguity
when the couplings of higher-derivative terms are accounted for which have non-vanishing
momentum dimensions. It corresponds to different approximations or RG schemes to keep
either the dimensionful, or the dimensionless higher-derivative couplings constant. The
difference between [B] and [C] lies in how Y is treated.

In article [B], the dimensionful higher order gradient coupling Y is kept on
constant value. Throughout this chapter, in order to avoid discrepancy, this is going to
be referred to as Case Y . In this case, the dimensionless coupling Ỹ = Y k2 tends to
zero during the RG flow. Its interplay with the flow of the mass term of the potential
severely affects the scale at which the dimensionless inverse propagator may vanish. Note,
that with a dimensionful coupling in the β-functions, no fixed points can be determined.
Nevertheless, the global RG flow enables one to identify the phases determining their
different infrared scaling behavior and/or sensitivity to the bare parameters of the model.
The massive sine-Gordon model was successfully treated in a similar approach in [52].
With this treatment, we have found a symmetric phase, where no ghost condensation
occurs and a phase with restored symmetry but with a transient presence of a ghost
condensate have been identified. It has also been established, that the correlation length
remains finite when the phase boundary is approached in the restored symmetry phase.
As opposed to this, it diverges in the symmetric phase. This discontinuity hints to a
phase transition of first order. The results for the ghost model are compared with its
ordinary counterpart.

In article [C], the dimensionless higher order gradient coupling Ỹ is kept on
constant value. This scenario is going to be referred in the present chapter as Case Ỹ .
In this approach, the dimensionful coupling blows up in the IR, according to Y = Ỹ k−2.
It is now possible, to identify fixed points. It is established here, that the addition of
the higher derivative coupling provides three phases with an emergent triple point. We
have also identified the types of phase transitions. Phase I is present for any values
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Ỹ > 0, it is similar to the symmetric phase of the ordinary O(2) model. Phase II is
present, when 0 ≤ Ỹ ≤ 1. The dimensionful effective potential in phase II is quasi-
universal, it depends on Ỹ , yet it is independent of the other bare couplings. Phase II
has no analogue in the ordinary O(2) model, however it has the same properties as the
symmetry restored phase, found in [B]. Its existence is based on the ghost-condensation
mechanism available in the model with Z < 0 and Ỹ > 0. Phase III can be found in
the range 1 < Ỹ ≤ 2. Here, the dimensionful effective potential is universal, it exhibits
the Maxwell cut which is accompanied with the non-vanishing amplitude of the periodic
spinodal instability for scales k → 0. Therefore phase III is the one in which spontaneous
symmetry breaking occurs, just like in the symmetry breaking phase of the ordinary O(2)
model. The phase boundaries III-I and III-II intersect in a triple line. It has been found,
that phase transitions II → I and III → II are of first order, while III → I is a continuous
one.

The phase structure of the model turned out to be richer, when the dimensionless
higher-derivative coupling Ỹ is kept constant along the RG flow than in the case when
the dimensionful coupling Y is kept constant. Thus, it remains an open question, whether
the model exhibits two or three phases. The ambiguity of keeping constant either the
dimensionful or the dimensionless higher-derivative coupling is an essential feature of
the LPA and it cannot be avoided in the WH RG approach [11]. Articles [B] and [C]
demonstrates that such an ambiguity may affect the physical results severely when higher-
derivative terms are included into the model. No such ambiguity should occur if one goes
beyond the LPA in the gradient expansion.

In these works, I have contributed to the derivation of the formulas. I have
written programs, one which is able to integrate the flow equations of the model, and one
in which I implemented the algorithm for the tree level renormalization, both applicable to
the different approaches of the two articles. I provided the numerical data and contributed
to its analysis and interpretation as well as I made the plots present in the papers.

3.3 One component scalar field models

This section introduces the ghost and ordinary O(1) models, the former will be straight-
forwardly generalized in the following section, while the latter is used as a benchmark for
testing the numerical apparatus of the tree level renormalization. The two dimensional,
Euclidean sine-Gordon model is also used for further testing.
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3.3.1 Blocking transformation

In the LPA, the blocked action for the one-component scalar field φ(x) in 3-dimensional
Euclidean space is

Sk[φ] =
1

2

∫
d3x

(
φxΩ(−2)φx

)
+

∫
d3xUk(φ

2), (3.3)

where k is the running cutoff, Z = 1 or −1, Y ≥ 0, and Uk(φ) is the blocked potential.
Note that the ordinary O(1) model is retained by setting Z = 1 and Y = 0. There may
be two qualitatively different situations, depending on whether the second functional
derivative of the blocked action (i) is positive definite or (ii) it starts to develop zero
eigenvalues. In case (i), the saddle point is at φ′ = 0 and in the limit ∆k → 0 one arrives
to the WH equation

k∂kUk(Φ) = −αk3 ln
(
Ω(k2) + ∂2ΦUk(Φ)

)
(3.4)

in the LPA, where Ω(k2) = Zk2 + Y k4 and α = Ω3/[2(2π)
3] = 1/(4π2) with the solid

angle Ω3 = 4π. In the LPA, the spatial dependence of the field variable is neglected which
means, that

φx ≡ Φ, or in momentum space φ̃p = Φδp,0, (3.5)

where Φ is a constant with momentum dimension [Φ] = d−2
2 in d Euclidean dimensions.

Practically, Eq. (3.4) is the Eq. (1.10) taken at d = 3, and ~ = 1 with the modified
kinetic energy operator.

Given the Z2 symmetry is unbroken, the RG trajectories can be followed up by
means of Eq. (3.4) from the UV scale k = Λ down to the IR limit k → 0. In the symmetry
broken phase, at some finite scale kc the situation (ii) comes in effect. This is signaled
by the vanishing of the argument of the logarithm in the right-hand side of Eq. (3.4).
The system develops a new, non-trivial saddle point, that minimizes the blocked action.
Eq. (3.4) loses its validity when k ≤ kc and one has to turn to the TLR procedure and
rewrite the blocking relation (1.6) into the form

Sk−∆k[φ] = minφ′Sk[φ+ φ′], (3.6)

It is convenient to reduce the functional space to one which contains plain waves as
saddle-point configurations φ′:

ψk(x) = 2ρ cos(knµ(k)xµ + θ(k)). (3.7)

Now, the action Sk[φ+ψk] becomes a function of the amplitude ρ. Here nµ(k) is a spatial
unit vector and θ(k) is a phase shift. We are going to denote the value of the amplitude
of the saddle-point configuration for which the action Sk[φ+ψk] takes its minimum value
with ρk. Note, that various saddle points of the system corresponding to various values
of nµ(k) and θ(k) are physically not equivalent but are expected to belong to the same
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minimal value of the blocked action. Upon inserting ansatz (3.7) into (3.6) one finds

Uk−∆k(Φ) = min{ρ}

(
Ω(k2)ρ2 +

1

2

∫ 1

−1

duUk

(
Φ+ 2ρ cos(πu)

))
. (3.8)

Due to spatial O(3) symmetry, the expression in the braces in the right-hand side of Eq.
(3.8) only depends on ρ.

3.3.2 Polynomial potential

For the local potential chosen in the Taylor-expanded form, the most commonly used
expansion is Eq. (1.11). For convenience, we are going to use the following equivalent
expansion

Uk(Φ) =

M∑
n=0

vn
n!
rn, (3.9)

with r = 1
2Φ

2. The couplings from eq. (1.11) are related to the ones in (3.9) g2n = (2n)!
n!2n vn.

For truncation M = 2, one finds the following β-functions for the running dimensionless
couplings in Case Y :

β
(Z)
1 = k∂kṽ1 = −2ṽ1 − aα

ṽ2
ṽ1 + Z + Y k2

,

β
(Z)
2 = k∂kṽ2 = −ṽ2 + bα

ṽ22
(ṽ1 + Z + Y k2)2

(3.10)

In the other scenario, Case Ỹ , the β-functions are

β
(Z)
1 = k∂kṽ1 = −2ṽ1 − aα

ṽ2

ṽ1 + Z + Ỹ
,

β
(Z)
2 = k∂kṽ2 = −ṽ2 + bα

ṽ22
(ṽ1 + Z + Ỹ )2

(3.11)

with a = 1 and b = 3; the upper index Z indicates the dependence of the beta-functions on
the wave function renormalization Z. The dimensionless couplings ṽ1 and ṽ2 are defined
by v1 = k2ṽ1 and v2 = kṽ2 through their natural dimension. The phase structure and
the scaling laws in the various scaling regimes do not alter qualitatively with increasing
truncation M , beyond M = 2. That is, we shall work with M = 2 when solving the
WH RG equations in Case Y . However, we have improved this to M = 10 in Case Ỹ
(chronologically, the investigation of Case Ỹ happened after Case Y ). In both cases we
solve the WH RG equations with fourth order Runge-Kutta method.

The RG trajectories belonging to the symmetry broken phase can be followed
by the WH RG equation down to the scale kc, where the right-hand side of Eq. (3.4)
becomes singular. In order to determine the IR scaling laws in this phase, one has to
exploit the tree-level renormalization. This allows to follow the RG trajectories below the
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critical scale kc down to the IR limit k → 0. The same TLR procedure can be extended
for ghost models with kinetic energy operator Ω(−2) in a straightforward manner as
follows. For scales k < kc, the spinodal instability occurs in Case Y , when the logarithm
in the right-hand side of Eq. (3.4) satisfies the inequality

Z + Y k2c + ṽ1(kc) +
3

2
ṽ2(kc)Φ̃

2 ≤ 0, (3.12)

while in Case Ỹ it occurs, when

Z + Ỹ + ṽ1(kc) +
3

2
ṽ2(kc)Φ̃

2 ≤ 0, (3.13)

The last term in the left-hand side of the inequalities is positive, thus the singularity
first occurs at Φ = 0 with decreasing scale k, when the condition Z + Y k2c + ṽ1(kc) = 0
or Z + Ỹ + ṽ1(kc) = 0 is satisfied, respectively. For Z = +1 and Y = 0, this results
1 + ṽ1(kc) = 0 in both cases. Generally, there exists such a scale kc in the symmetry
broken phase. This critical scale is governed by the negative (dimensionless) mass squared
in the potential. For Z = −1 and Y = 0 we find the condition −1 + ṽ1(kc) = 0 for
kc in both cases again. Notice, that this condition is met with positive mass term of
the potential. Straightforwardly, with Z = −1, Y > 0 the condition for occurring the
singularity becomes −1 + ṽ1(kc) + Y k2c = 0 or −1 + ṽ1(kc) + Ỹ = 0 for Cases Y and Ỹ ,
respectively, meaning that an interplay of the quartic gradient term and the mass term
determines the scale kc. In Case Y , supposing that ṽ1(kc) < 0 holds, the critical scale is
k2c = [1−ṽ1(kc)]/Y and for a small mass squared, i.e. |ṽ1(kc)| � 1, it yields k2c ∼ O(1/Y ).
In such cases ghost condensation in the modes with k < kc takes place and may play a
decisive role in the behavior of the phase in the deep infrared region. In Case Ỹ , kc is not
present explicitly in (3.13), so the critical scale is determined solely through the numerical
integration of the β-functions. Below kc, an interval in Φ emerges and expands as k is
further decreased. The borders of this interval are symmetric and their magnitude, the
critical field value is denoted as Φc(k) =

√
kΦ̃c(k). Φ̃c is acquired from (3.12) and (3.13)

in Cases Y and Ỹ respectively if one replaces the inequality with equality and kc with k.
In Case Y , it is

Φ̃c(k) =
√

2[−Z − Y k2 − ṽ1(k)]/3ṽ2(k), (3.14)

while in Case Ỹ , it is

Φ̃c(k) =

√
2[−Z − Ỹ − ṽ1(k)]/3ṽ2(k), (3.15)

The interval |Φ| ≤ Φc(k) survives the limit k → 0 if and only if
√
kΦ̃c(k) assumes a

non-zero or infinite limit which restricts the IR scaling of the couplings ṽ1(k) and ṽ2(k).

For scales k < kc and background fields Φ ∈ [−Φc,Φc] one has to turn to the
tree-level blocking relation (3.8). Inserting the ansatz (3.9) into it, it yields the recursion
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equation in Case Y

Uk−∆k(Φ) = min
{ρ}

(
Uk(Φ) + (Z + Y k2)k2ρ2 +

M∑
n=1

ρ2n

(n!)2
∂2nΦ Uk(Φ)

)
, (3.16)

In Case Ỹ , the recursion equation is

Uk−∆k(Φ) = min
{ρ}

(
Uk(Φ) + (Z + Ỹ )k2ρ2 +

M∑
n=1

ρ2n

(n!)2
∂2nΦ Uk(Φ)

)
, (3.17)

for the running couplings [47]. For given scale k with given couplings vn(k) and for given
homogeneous field Φ ∈ [−Φc,Φc], one determines the value ρk(Φ), which minimizes the
right-hand side of Eq. (3.16). This minimization has to be iterated for several Φ values in
the critical interval, yielding several Uk−∆k(Φ) values. Lastly, these Uk−∆k(Φ) values are
fitted by the polynomial (3.9) in the critical interval, in order to read off the value of the
couplings in the lower scale vn(k −∆k). In such an iterative manner the behavior of the
RG trajectories can be investigated in the deep infrared region. This numerical procedure
converges for sufficiently small values of the ratio ∆k/k. The blocked potential Uk<kc

(Φ)
outside of the interval −Φc ≤ Φ ≤ Φc should be set to be identical to Ukc(Φ), because no
tree-level renormalization occurs there[47]. In Sec. 3.4.1 it is argued, that the TLR of the
ghost scalar field with O(2) symmetry can be reduced to the case of the TLR of the real
one-component ghost scalar field, when one one is looking for the non-trivial saddle-point
configuration in an appropriately reduced functional space. Numerical study of that case
can be found in Sec. 3.4.2.

Here, the numerical procedure for TLR is tested, by applying it to the 3-
dimensional Euclidean polynomial model of the ordinary one-component scalar field with
O(1) symmetry (Z = 1, Y = 0). The truncation of the polynomial potential was set to
M = 10 for the fitted potential, this way good numerical convergence was achieved when
the step size ∆k/k = 0.001 was used. The least square fitting method was applied with
the number 60 of equidistant grid points in the interval −Φc(k) ≤ Φ ≤ Φc(k). It has been
established, that the results are stable against increasing the number of grid points. Nu-
merically, in order to get a better least square fit, the TLR procedure has been performed
in a wider interval Φ ∈ [−Φ̄, Φ̄] (than the critical interval) with Φ̄ =

√
−2v1(kc)/3v2(kc).

The latter approximates Φc(k) well for k � kc [47]. It has been found numerically, that
the blocked potential does not pick up any tree-level correction outside of the interval of
instability Φ ∈ [−Φc(k),Φc(k)].

According to this work’s numerical results shown in Fig. 3.1, the dimensionful
blocked potential Uk(Φ) tends to and reaches the Maxwell-construction in the limit k → 0,
as expected from the literature [47, 48].

Fig. 3.2 shows the numerically computed ρk(Φ) for the scale k ≈ 10−6, it is
compared with the curve ρk(Φ) = (−Φ + Φc)/2, from Ref. [47]. The slope of the shown
ρk(Φ) is −0.53, which agrees with its theoretical value −0.5 very well. The dimensionful
amplitude ρk of the spinodal instability survives the IR limit with 2ρk→0(Φ = 0) ≈
Φc. This means, that on vanishing background Φ = 0, the instability pushes the field
configuration to the homogeneous one at either ψk→0 = 2ρk→0(0) = Φc or −Φc, both of



46 Chapter 3.

k ® 0

0 2 4 6 8 10 12
-5

-4

-3

-2

-1

0

F

U
k
HF
L

Figure 3.1: The blocked potential at various scales k.

them belonging to the same constant value of the effective potential.
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Figure 3.2: This works numerical result for ρk(Φ) in the IR limit k → 0 (solid line) in
comparison with the one shown in [47] (dashed line).

The infrared scaling of the couplings has also been established. The scaling of
the dimensionless couplings ṽ1 + 1 ∼ kα1 , ṽ2 ∼ kα2 , and ṽ3 ∼ kα3 have been numerically
determined corresponding to Φ2, Φ4, and Φ6, respectively (see Fig. 3.3) yielding the
following scaling exponents: α1 = 0.08 ± 0.08, α2 = 1 ± 0.001, and α3 = 1.34 ± 0.01.
The errors of α2 and α3 arise from the double logarithmic fit. Note, that the RG flow of
1+ ṽ1(k) is slowed down tremendously in the deep infrared region, that is, the numerical
computation of the exponent α1 may have an error comparable to its magnitude. However,
the numerical results established, that Φc(k) ∼

√
kkα1−α2 is infrared finite. This restricts

α1 with the equation 1 + α1 − α2 = 0, which implies α1 ≈ 0 with high accuracy.

It is known, that ṽ1(k) → −1 and ṽn>1 → 0 in the IR limit k → 0, thus, the
limit corresponds to the RG invariant effective potential Ũk→0(Φ̃) = − 1

2 Φ̃
2 in the interval

[−Φ̃c, Φ̃c] [47]. In the presented numerical calculations, the coupling ṽ1(k) tends to a
constant value in the infrared limit, close to −1. It turned out, that this value tends to
−1 linearly with decreasing step size ∆k/k. The IR limit of ṽ1(k) was calculated for five
different step sizes, and the extrapolation to ∆k/k ≈ 0, shown in Fig. 3.4 resulted the
extrapolated value ṽext1 (0) = −1.005.

This work’s numerical results for the IR behavior of the ordinary O(1) scalar
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Figure 3.3: Scaling of the dimensionless couplings g̃2 = ṽ1 (solid black line), g̃4 = 3ṽ2
(solid gray line) and g̃6 = 15ṽ3 (dashed black line).
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Figure 3.4: The value of g̃2 = ṽ1 in the limit k → 0 at effectively zero step size from
extrapolation.

model is in complete agreement with the ones reported and argued for in Ref. [47].

3.3.3 Tree-level renormalization of the sine-Gordon model

A second step for the verification of our numerical apparatus for TLR is presented here.
In this scenario, it has been applied to the 2-dimensional Euclidean sine-Gordon model
given by the classical action

S[φ] =

∫
d2x

[
1

2
(∂µφ)

2 + u1 cos(βφ)

]
, (3.18)

in the phase with spontaneously broken symmetry with β2 < 8π, the so-called molecular
phase. The results of the TLR of the sine-Gordon model are well known [49, 51, 50],
this provides an excellent benchmark for the TLR numerical procedure. The tree-level
blocking relation (3.8) for the ansatz

Uk(Φ) =
M∑
n=0

un(k) cos(nβΦ) (3.19)
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is rewritten in the form of the recursion equation

Uk−∆k(Φ) = minρ

[
k2ρ2 +

M∑
n=0

un(k) cos(nβφ)J0(2nβρ)

]
(3.20)

(for details, see Ref. [50]) J0 stands for the Bessel function, M is the truncation of the
potential at the M -th upper harmonic.

As for the numerical calculations, the following settings were employed: β2 = 4π,
M = 10. My numerical results match with the ones in the literature. Below the scale kc,
where the spinodal instability occurs, the amplitude ρ(Φ) of the periodic field configura-
tions, which minimizes the action, is given by ρk(Φ) = − 1

2 (|Φ| −
2π
β ) [50]. As well as in

the spontaneously broken phase of the one-component scalar field theory with polynomial
interaction, the amplitude of the spinodal instability is IR finite. Our numerical result
for ρk(Φ) is compared to the one obtained in Ref. [50] in Fig. 3.5.
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Figure 3.5: Comparison of the function ρk(Φ) obtained in this work numerically (solid
line) to the one in Ref. [50] (dashed line) for the molecular phase of the SG model for
β2 = 4π.

The magnitude of the first four dimensionless couplings is plotted in Fig. 3.6.
They are, in fact, renormalizable and tend to a constant value in the k → 0 limit.
That is, the dimensionful effective potential becomes vanishing in accordance with the
requirements of convexity and periodicity [50].

This work’s numerical TLR procedure, applied to compute the infrared behavior
of the sine-Gordon model, produces results, which are in complete agreement with the
ones obtained in Refs. [49, 51, 50].
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Figure 3.6: The scale-dependence of the dimensionless running couplings of the SG model
in the deep IR region for β2 = 4π, obtained with TLR. The solid black line corresponds
to |ũ1|, the solid grey line to |ũ2|, the dashed black line to |ũ3| and finally, the dashed
grey line to |ũ4|.

3.4 O(2) ghost model in Case Y

This section is going to elaborate my work on the analysis of the O(2) ghost model, when
the dimensionful higher derivative coupling was kept constant.

3.4.1 Application of the WH RG approach

We now turn to the main goal of [B], the investigation of the 3-dimensional, Euclidean,
O(2) symmetric ghost model with polynomial potential at the level of the LPA. The
ansatz for the blocked action is

Sk[φ] =
1

2

∫
d3xφTΩ(−2)φ+

∫
d3xUk(φ

Tφ), (3.21)

where φ =

(
φ1
φ2

)
denotes the two-component real scalar field and Uk(φ

Tφ) is the blocked

potential. For the latter, the ansatz (3.9) is applied with r = φTφ. The behavior of the
model for ordinary scalar field with Z = 1 is also discussed here for comparison.

The phase diagram of the O(2) symmetric scalar ghost model is mapped with
the WH RG method. The scale dependence of the blocked potential is given by

k∂kUk(r) = −αk3
[
ln[Ω(k2) + U ′

k(r) + 2rU ′′
k (r)] + ln[Ω(k2) + U ′

k(r)]

]
, (3.22)

with U ′
k(r) = ∂rUk(r) and U ′′

k (r) = ∂2rUk(r). Eq. (3.22) with settings Z = 1, Y = 0 is
merely the WH equation for ordinary O(2) symmetric models,

k∂kUk(Φ) = −αk3
[
ln[k2 + ∂2ΦUk(Φ)] + ln[k2 +

1

Φ
∂ΦUk(Φ)]

N−1

]
, (3.23)

at N = 2, given in Ref. [47]. The agreement between Eq. (3.22) with Eq. (3.23) for
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N = 2, is realized with the substitution Φ =
√
2r.

It is worth mentioning, that the U(1) symmetric ansatz

Sk[φ
∗, φ] =

∫
ddxφ∗Ω(−2)φ+

∫
ddxUk(φ

∗φ) (3.24)

for the blocked action of the one-component complex scalar field φ = 1√
2
(φ1 + iφ2) is

equivalent with the ansatz (3.21).

The WH RG equation ceases to be applicable at some scale kc, when the argu-
ment of the logarithm on the right-hand side of Eq. (3.22) reaches zero. This happens,

either due to s−(k) =
[
Ω(k2) + U ′

k(r)

]
≤ 0 or s+(k) =

[
Ω(k2) + U ′

k(r) + 2rU ′′
k (r)

]
≤ 0

[47]. This refers to spontaneously broken symmetry. The loop expansion is inapplicable
when k ≤ kc. The expression s−(k) corresponds to the inverse propagator of the lightest
excitations of the field, the Goldstone-bosons. In the O(N) symmetric models with a
homogeneous vacuum field configuration pointing into a given direction of the internal
space, there are N − 1 transverse excitations or Goldstone-bosons, as it can be seen from
the power N − 1 of the eigenvalue s−(k) under the logarithm in the right-hand side of
Eq. (3.23). In the O(1) case, when there are no transverse modes, the vanishing of s+(k)
signals the occurrence of spinodal instability. For N ≥ 2, the vanishing of s−(k) takes
over that role, since it corresponds to the lightest excitations of the field. The critical
scale kc is given by s−(kc)|Φ=0 = 0, which implies Z + Y k2c + ṽ1(kc) = 0, similarly to
N = 1. In the case of local potentials, for asymptotically large values of |Φ| and for scales
below kc, the unstable interval 0 ≤ |Φ| ≤ Φc(k) (with Φc(k) =

√
kΦ̃c(k)) may open up.

It is determined via the vanishing of s−(k) as

Φ̃c(k) =

√
−2[Z + Y k2 + ṽ1(k)]

ṽ2(k)
. (3.25)

Given that a non-trivial saddle point φ′ = ψ
k

appears in the integrand in the
right-hand side of Eq. (A.5), the integral can be approximated by the contribution of that
saddle point. This yields a tree level blocking relation, the generalization of Eq. (3.6),

Sk−∆k[φ] = min{φ′}Sk[φ+ φ′] = Sk[φ+ ψ
k
], (3.26)

where ψ
k
(x) 6= 0 represents the non-trivial saddle-point configuration, which minimizes

the action Sk[φ+φ
′]. We have to restrict ourselves to looking for non-trivial saddle-point

configurations in a particular subspace of the configuration space for practical purposes.
That subspace is the periodic configurations of the type given in Eq. (3.7).

In the O(N) case there are more than one possible choices for the non-trivial
saddle-point configuration, with various orientations in the internal space. In LPA, the
background configuration should be a homogeneous one, φ = Φ = Φe pointing to given
direction according to the unit vector e in the internal space. Generally, the non-trivial
saddle-point configuration might have components both parallel and orthogonal to e. The
question is how to choose these components in order to minimize the value of the action.
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It was argued in Ref. [47], that the TLR of ordinary O(N) models for N ≥ 2 can be
reduced to the TLR of the ordinary O(1) model, based on the positivity of the quadratic
gradient term. The field configuration Φ+ ψ

k
can be rewritten as

Φe+ ψ
k
(x) = ηk(x)R(x)e, (3.27)

without loss of generality, in terms of an appropriately chosen amplitude function ηk(x)
with the SO(N) matrix R(x). The quadratic gradient term of the action assumes the
form

1

2

∫
ddx

(
∂µ[ηk(x)R(x)e

)T(
∂µ[ηk(x)R(x)e]

)
=

1

2

∫
ddx

(
[∂µηk(x)][∂µηk(x)] + η2k(x)[∂µR(x)e]T [∂µR(x)e]

)
. (3.28)

Here, the identities [R(x)e]TR(x)e = 1 and [R(x)e]T∂µ[R(x)e] = 0 have been used. This
means that any inhomogeneity of the vector R(x)e contributes to increasing the action,
that is, the non-trivial saddle point should be such that R(x)e is homogeneous. According
to this, the relation (3.27) implies that both of the vectors R(x)e and ψ

k
(x) should be

parallel to e, the direction of the background field. Thus, the periodic ansatz for the
non-trivial saddle-point configuration (similar to Eq. (3.7)) is

ψ
k
(x) = e2ρk cos(knµ(k)xµ + θk). (3.29)

This is inserted into the tree-level blocking relation (3.26), which yields Eq. (3.8). This
can be recast in the form of the recursion relation (3.16). Thus, TLR procedure of the
ordinary O(N) model indeed reduces to the one for the ordinary O(1) model.

For the O(N) ghost models (with Z = −1) the above given argumentation
fails. This originates from the fact, that the terms in Eq. (3.28) acquire negative signs,
therefore no conclusion can be made for the homogeneity of Re. Nevertheless, we shall
make the ansatz (3.29) for the non-trivial saddle point. It might happen, that similar
periodic saddle-point configurations with more complex orientations in the internal space
give smaller value of the blocked action. When the ansatz (3.29) is applied, the TLR
of the O(2) ghost model reduces to the one of the O(1) ghost model, except that the
interval of constant background fields, where the spinodal instability occurs is now set by
the critical value Φ̃c(k) given in Eq. (3.25) instead of Eq. (A.3). The tree-level blocking
relation (3.26) results in the recursion equation (3.16) for the blocked potential.
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3.4.2 Phase structure and IR scaling laws

Identification of the phases
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Figure 3.7: Phase diagrams in the parameter plane (ṽ1(Λ), ṽ2(Λ)) for several given
values of Y for the ghost (left) and the ordinary (right) O(2) models. The empty regions
correspond to the symmetric phase I, the dotted and shadowed regions correspond to
regions IIA and IIB of phase II, respectively.

The dimensionful coupling Y is kept at various given constant values during the WH RG
flows. The different phases in the parameter plane

(
ṽ1(Λ), ṽ2(Λ)

)
of the bare dimensionless
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couplings is distinguished by considering where the global RG flow started in that plane
both for the ghost and ordinary O(2) models. The symmetric phase of the model (referred
to as phase I here), is the region in the parameter plane, where the RG trajectories can be
followed by the WH RG equation (3.22) from the UV scale down to the IR scale k → 0.
This is characterized by the fact, that the inverse propagator G−1(k) ≡ s−(k)|Φ=0 =
Zk2 + Y k4 + v1(k) is positive, all along those RG trajectories. In this regard, phase II is
realized as the region in the parameter space, where the inverse propagator vanishes at
some finite scale kc or it is already negative in the UV (k = Λ). In order to distinguish
these latter two cases, in phase II it comes handy to denote them IIA and IIB. IIA with
G−1(k) > 0 for Λ ≥ k > kc > 0 and IIB with G−1(Λ) = ZΛ2 + Y Λ4 + v1(Λ) < 0 or
−Z−Y > v1(Λ) for Λ = 1. For the bare values satisfying the inequalities |v1(Λ)| < Λ2 = 1
and Y > 0, region IIB is not present for the ordinary O(2) model, but it does occur for
the ghost model for v1(Λ) ≤ 1− Y when Y < 2.

The first objective is to identify the regions corresponding to phases I and IIA
in the parameter plane. Region IIA can be discovered by solving the WH RG equation
(3.22) and detecting if the inverse propagator vanishes at a finite scale kc. Eq. (3.22) with
ansatz (3.9) reduces to the set of coupled ordinary first-order differential equations with
the forms (3.10) and (3.11), with a = 3 and b = 5 for M = 2. Region IIA was searched for
numerically. A number of 1000 random starting points of the RG trajectories have been
been generated in the parameter region

(
ṽ1(Λ), ṽ2(Λ)

)
∈ [−1, 1]⊗ [0, 10]. Fig. 3.7 shows

the phase diagrams for various values of the dimensionful higher-derivative coupling Y ;
the empty, dotted, and shadowed regions correspond to phase I, region IIA, and region
IIB, respectively.

Numerical analysis has uncovered, that phase II of the ghost model is bounded
in the ṽ1(Λ) direction, namely a trajectory in the phase space is in phase II, if ṽ1(Λ) ≤
ṽu(Y, ṽ2(Λ)). In the other direction, ṽ2(Λ) in the plane

(
ṽ1(Λ), ṽ2(Λ)

)
, it is unbounded.

For Y ≥ 1, the phase boundary at ṽu > 1 − Y depends on Y and ṽ2(Λ), so that region
IIA is also present for 1 − Y < ṽ1(Λ) ≤ ṽu, while for Y < 1 only region IIB appears
with the boundary ṽu = 1 − Y . Therefore, the symmetric phase I starts at larger and
larger values of ṽ1(Λ) in the parameter plane for decreasing Y values, For Y → 0, it
practically disappears. In the case of the ordinary O(2) model, phase II consists of region
IIA only. The phase diagrams of the ordinary and ghost models are compared in Fig.
3.7. Approximately, the phase boundary ṽu

(
Y, ṽ2(Λ)

)
has a linear dependence on ṽ2(Λ),

given by ṽu ≈ −c(Y )ṽ2(Λ), where c(Y ) is monotonically increasing with increasing value
of the higher-derivative coupling Y . Thus, the phase boundary is at ṽu ≈ 0 for ṽ2(Λ) � 1
for all values 0 ≤ Y ≤ 2.

IR scaling in phase I

The IR scaling laws in phase I have been determined by means of the WH RG Eq.
(3.22). Several RG trajectories were started at various ‘distances’ t = ṽ1(Λ) − ṽu and
for ṽ2(Λ) = 0.01, 0.1 repeated for all investigated values of Y . It has been established,
that the dimensionful couplings vn(k) tend to constant, finite positive values in the IR
limit k → 0, for both the ghost and the ordinary O(2) models. Therefore, the effective
potential in phase I is convex (paraboloid) for both the ghost and the ordinary models,
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which is sensitive to the choice of the bare potential. In the ghost model’s case the linear
relation

v1(0) = at+ b(Y ) (3.30)

has been identified, where the slope a is independent of Y , while the mass squared b(Y )
at the phase boundary - for t → 0 - monotonically decreases with the increasing values
of Y (see Fig. 3.8). The coupling v2(0) decreases with decreasing coupling Y for given
t and it tends to zero as the phase boundary is approached but independently of Y . In
the ordinary model’s case, the effective potential seems to be insensitive to the value of
the higher-derivative coupling in the range 0 ≤ Y < 2, but keeps its sensitivity to the
parameters of the bare potential.
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Figure 3.8: The IR values of the dimensionful couplings v1(0) = at + b (left) and v2(0)
(right) vs. the ‘distance’ t = ṽ1(Λ)− ṽu from the phase boundary for v2(Λ) = 0.01. The
dots, boxes, and rhombuses correspond to Y = 0.7, 1.0, 1.5, respectively, the lines are
only for guiding the eyes. The dependence of the coefficient b on the higher-derivative
coupling Y is shown in the inset.

IR scaling laws in phase II

The RG trajectories, which belong to region IIA are tracked by the WH RG equation
(3.22) from the UV scale Λ to the critical scale kc. The scaling of the couplings in
the deep IR region, i.e. below kc are obtained by TLR which has been initiated from the
potential obtained at the critical scale kc by the solution of Eq. (3.22). In order to acquire
RG trajectories in region IIB, the TLR should be started already at the UV scale. In both
scenarios, the ansatz (3.9) with the order of truncation M = 10 has been applied for the
potential(also in the TLR, and not in the WH RG method, where we used M = 2). As
for the specifications of the TLR procedure, the scale k has been decreased from either
the critical one (kc) for region IIA or from the UV scale Λ for region IIB by 3 orders
of magnitude with the step size ∆k/k = 0.01. The numerical precision was set to 40
digits, the numerical minimization of Uk(ρ,Φ) with respect to ρ, at given values of Φ took
maximally 500 iteration steps. The TLR procedure is quantitatively sensitive to the choice
of the interval |Φ| ≤ Φ̄, where the minimization process of the potential Uk(ρ,Φ) and the
least square fit of the blocked potential at scale k − ∆k take place. For the ‘Mexican
hat’-like potential Ukc

(Φ) in region IIA or UΛ(Φ) in region IIB, the choice Φ̄ ≈ 1.5Φm

was made, where ±Φm are the positions of the minimums of the potential with Φm =
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√
−2v1(kc)/v2(kc) or Φm =

√
−2v1(Λ)/v2(Λ), respectively. As for convex potentials,

where v1(kc) > 0 in region IIA or v1(Λ) > 0 in region IIB, the setting Φ̄ & 30 has been
used. In this case, no obvious region of the instability can be selected, numerically the
smallest interval in Φ has been chosen given that further expanding the interval doesn’t
alter the result of the TLR process. It was found numerically, that the blocked potential
does not acquire tree-level corrections outside of the interval |Φ| ≤ Φc with Φc given by
Eq. (3.25), but the choice of a slightly wider interval makes the minimization and fitting
numerically stable.

For each given value of Y and for both values ṽ2(Λ) = 0.01 and 0.1 I have
computed the RG trajectories for 3 to 5 bare values of ṽ1(Λ) distributed equidistantly in
the interval −1 < ṽ1(Λ) < ṽu. I found, that the couplings of the dimensionful blocked
potential tend to constant values in the IR limit. Furthermore, it has also been observed
that for any given value of Y , the effective potential is universal, it does not depend on at
which point in the parameter space (v1(Λ), v2(Λ)) the RG trajectories have been initiated.
Thus, I have computed the mean values v1(0) and v2(0) of the couplings v1(0) and v2(0),
respectively, with their variances by averaging them over all evaluated RG trajectories
belonging to a given value of Y . It has been revealed, that v1(0) decreases strictly
monotonically with increasing values of Y as shown in Fig. 3.9. As for the mean values
v2(0), they take randomly positive and negative small values with variances comparable
with their magnitudes when the coupling Y is altered. Thus, we concluded that the
quartic coupling of the effective potential vanishes, an averaging over all considered values
of Y yields 〈v2(0)〉 = 0.004 ± 0.01. That is, the dimensionful effective potential is an
upside facing paraboloid with a single minimum, at Φ = 0 in phase II. Moreover, the
nonrenormalizable, UV irrelevant coupling Y turns out to be IR relevant in phase II.

The ratio r characterizes how large part of the sum of the negative terms can-
cel totally or partially by the positive higher derivative term in the inverse propagator
G−1(ks). It is given by,

r =

{
Y k4

s

Y k4
s+v1(ks)

, if v1(ks) ≥ 0

1, if v1(ks) < 0
, (3.31)

where ks = kc and ks = Λ for regions IIA and IIB, respectively. This ratio has been
evaluated for each RG trajectories computed in region II. The quantity r is a precursor
of how significant is the role played by the ghost condensation in this cancellation at ks,
where TLR is started. For v1(ks) < 0, the ghost condensation is the only mechanism that
can be accounted for the above mentioned cancellation. Numerical results has shown that
r ≈ 1 in most of the parameter region belonging to phase II, but it generally decreases
abruptly when ṽ1(Λ) approaches the phase boundary ṽu. The IR values of the couplings
in the effective potential seem, however, to be insensitive of r, i.e., of the importance of
the ghost condensation at the scale ks. The role of the ghost condensation during the
global RG flow during TLR rather makes its imprint on the value of v1(0) through its
dependence on Y .
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Figure 3.9: The dependence of the means v1(0) on Y in phase II. The lines are only for
guiding the eyes.
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Figure 3.10: The flow of v1(k) (left column), obtained from TLR and the corresponding
ρk(Φ = 0) for t = ṽ2(Λ) = 0.1 (right column) and Y = 0, 0.7, 1.0, and 1.5 (from the top
to the bottom) in phase II of the ghost O(2) model.
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The numerical TLR procedure has revealed, that ρk, the amplitude of the
spinodal instability suddenly acquires a large value just below the scale ks = Λ for region
IIB as can be seen on cases Y = 0 and 0.7 in Fig. 3.10. This is very similar to what
happens at the scale ks = kc for region IIA as the reader can verify from cases Y = 1.0
and 1.5 in Fig. 3.10. However, after a small amount of (∼ 30) blocking steps the con-
densate is rapidly washed out and does not survive the infrared limit, so it acquires zero
for its amplitude. The disappearance of ρk(0) is accompanied by the saturation of v1(k)
at its IR limiting value v1(0). Generally, with regards to the running scale, a rather short
scaling region (with finite, non-zero ρk) is followed by a long and stable IR scaling region.
The plots in Fig. 3.10 belong to RG trajectories, which are characterized by the ratio
r ≈ 1. This signals, that the ghost condensation should be responsible for the existence
of the finite amplitude ρk(Φ) of the spinodal instability when TLR is started, although,
as numerical results have shown, the RG flow of the local potential starts to dominate the
IR scaling after a small decrement of the scale k. Nevertheless, the presence of the con-
densate seems to be left behind, affecting the curvature of the effective potential through
the dependence of the mass parameter v1(0) on the higher-derivative coupling Y . Fig. 3.9
shows the exponential dependence of v1(0) on Y changing slope at around Y ≈ 1. Fig.
3.10 corroborates the claim, that the ghost condensation reigns the global RG flow, when
the higher-derivative coupling is at around Y ≈ O(Λ−2 = 1). Fig. 3.10 shows the reader,
that the width of the k-interval, in which ρk(Φ = 0) is nonvanishing, increases for Y
increasing from 0 towards 1, but it remains unchanged for Y & 1. This can be tied to the
following circumstances. The kinetic sector Ω(k2) of the inverse propagator is an upside
facing parabola with zeros at k2 = 0 and k2 = 1/Y and has its minimum at k2 = 1/(2Y ).
Should Y � Λ−2 = 1 hold, the modes, which can give negative contributions to the action
through ghost condensation, represent a small amount of the modes below the UV cutoff
Λ = 1. In the extreme limit Y → ∞ these modes are housed in an interval of vanishing
width at zero momentum, and the instability is governed by the potential. In the other
extremity, when Y � Λ−2 = 1, all modes below the UV cutoff are available for ghost
condensation, however for 1/(2Y ) � 1 all they may give is a small negative contribution
to the action and in the limit Y → 0 this contribution becomes negligible. According to
this naive reasoning, one may arrive to the conclusion that the ghost condensation may
only play significant role at forming v1(0) when Y ≈ O(Λ−2 = 1).

It has also been shown by numerical means, that qualitatively the range Φc(k)
of the homogeneous background field, in which spinodal instability is present opens up
gradually when the scale k decreases from ks. Its width reaches a maximum and then
abruptly falls to zero at some finite scale k0. This means, that the amplitude ρk vanishes
as well and the couplings v1(k) and v2(k) saturate at their IR values. The TLR does not
yield any nontrivial contributes to the RG flow below k0. This behavior is rather different
of the one present in the ordinary O(2) symmetric model in its symmetry broken phase.

Besides breaking the internal O(2) symmetry, the ghost condensation breaks
the Euclidean rotational symmetry in the 3-dimensional space as well as the translation
symmetry in the x1 direction in the Euclidean space. However, these symmetries are
restored in the IR limit, since the ghost condensate dies out by then. Therefore, one has
to come to the conclusion, that even phase II of the ghost model is a symmetric one. The
difference between phases I and II can only be realized by considering the global RG flow:
the effective potential has no sensitivity to the couplings of the bare potential in phase
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II, as opposed to phase I, where such a sensitivity is essential.

Numerical effort has been made to check if in phase II of the ordinary O(2)
model with non-vanishing Y the TLR reproduces the Maxwell-cut for the dimensionful
effective potential. The result was, that it does indeed reproduce the Maxwell-cut.

Correlation length

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

Y=1.5

1.5´ 10-5 10-4
1.672

1.675

1.678

t

1
�k

c

Figure 3.11: Scaling of the correlation length ξ ∼ 1/kc with the reduced temperature
t = ṽu − ṽ1(Λ) (on a lin-lin plot) at the boundary of phases I and II of the ghost O(2)
model for Y = 1.5 and ṽ2(Λ) = 0.1.

The behavior of the correlation length ξ ∼ 1/kc is investigated, when one approaches
the boundary of phases I and II from the side of phase II for the ghost model. This is
only possible for region IIA, when kc can be detected by solving the WH RG equation
(3.22). Fig. 3.7 shows, that for a given ṽ2(Λ), the ‘distance’ ṽu − ṽ1(Λ) measures how
close an RG trajectory is to the boundary of the phases I and II. Thus, one may identify
ṽu − ṽ1(Λ) as the reduced temperature t up to a constant factor. The dependence of the
correlation length ξ on the difference ṽu − ṽ1(Λ), was computed by solving the WH RG
equations with various initial conditions ṽ2(Λ) = 0.01, 0.1 and ṽ1i(Λ) = [1 − (i/100)]ṽu
(i = 1, 2, . . .) for Y = 1.0, 1.5, 2.0, 4.0, 10.0. I have found, that the correlation length
depends linearly on the reduced temperature,

ξ ∼ 1/kc = ξ0 − κ[ṽu − ṽ1(Λ)], (3.32)

for any fixed values of the coupling Y , as shown in Fig. 3.11. The coefficient κ seems to
rise almost linearly with increasing higher-derivative coupling Y (see Fig. 3.12).

The correlation length increases for trajectories closer and closer to the phase
boundary from the side of phase II. It does not diverge however and remains finite arbit-
rarily close to the phase boundary. This suggests that the phase transition of the ghost
O(2) model is of first order, as opposed to the ordinary O(2) model where the correlation
length blows up according to the power law ξ ∼ t−ν (see for example the result for the
ordinary O(N) models on Fig. 2.2), when the phase boundary approached. The latter
indicates a continuous phase transition, while the former most certainly not.
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for guiding the eyes.

3.5 O(2) ghost model in Case Ỹ

This analysis was conducted after Case Y . In the present section, the order of truncation
of the polynomial potential (3.9) has been increased to M = 10 from M = 2 for the
solution of the WH RG equations. These equations were solved with the fourth order
Runge-Kutta method again. I have found that, the TLR procedure had to be refined in
the means of digits of precision and the maximal iteration steps required for minimizing
the potential. Generally, scale k has then been decreased from the singularity scale of
the WH equations, by at least two orders of magnitude with the step size ∆k/k = 0.005.
The numerical precision was increased to 80 digits from 40 digits. In general, ∼ 1000
iteration steps have been performed at each value of the constant background Φ for the
numerical minimization of the blocked potential Uk(ρ,Φ) with respect to the amplitude ρ
of the spinodal instability. The minimization process with respect to ρ in the right-hand
side of Eq. (3.17) and the determination of the couplings at the lower scale k −∆k with
least-square fit are performed in the interval 0 ≤ Φ ≤ Φ̄ of the background fields which has
been chosen similarly as in Case Y . For ‘Mexican hat’ like potential Uks

(Φ), Φ̄ ≈ 1.5Φm

has been set, where ±Φm are the positions of the local minimums of the potential with
Φm =

√
−2v1(ks)/3v2(ks). As for convex potentials Uks(Φ), the choice Φ̄ & 30 has been

made similarly to the Case Y .
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3.5.1 Phase diagram

Figure 3.13: Various planar slices of the phase diagram of the ghost O(2) model with
a few typical RG trajectories in the parameter space (ṽ1, ṽ2, Ỹ ): the slice (ṽ1, ṽ2) for
Ỹ = 0.7 (top left), the slice (ṽ1, ṽ2) for Ỹ = 1.5 (top right) with the fixed points (dots),
the slice (ṽ1, Ỹ ) for ṽ2 > 0 (bottom left), and the slice (ṽ1, Ỹ ) for ṽ2 = 0 (bottom right).
The phase boundaries II- I, III-I and III-II are shown by thick dashed-dotted, thick full,
and dashed lines, respectively. The dotted line corresponds to a section of the straight
line ṽ1 = 1− Ỹ , which is the IR fixed line in the slice with ṽ2 = 0; the full square stands
for the triple point. The dotted circles represent RG trajectories flowing perpendicularly
to the ṽ2 =const. planes.

The phase structure has been examined for RG trajectories started in the volume [−1,+1]⊗
[0, 10] ⊗ [0, 2] in the 3-dimensional parameter space (ṽ1, ṽ2, Ỹ ). Four slices of the phase
diagram are shown in Fig. 3.13, to convey better understanding of the location of the
phases and the behavior of the corresponding trajectories. The identification of the dif-
ferent phases was conducted with the help of the sensitivity matrix [11, 52]. The matrix
Sn,m consists of the derivatives of the running couplings with respect to the bare ones

Sn,m =
∂gn(k)

∂gm(Λ)
. (3.33)

Should a singularity take place in the IR (k → 0) and the UV (Λ → ∞) limits of the
elements of Sn,m, one would be able to locate different phases. In this scenario, we can
find different phases in the model when the effective potential depends on different sets
of bare couplings. Using this technique, we found, that there exist three phases and a
triple point in all planar slices of the phase space at constant ṽ2. The three phases are
a symmetric phase (phase I), a phase with restored symmetry (phase II), and a phase
with spontaneously broken symmetry (phase III), they are going to be analyzed in detail
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below. In the present WH RG approach, all the RG trajectories lie in one of the Ỹ =const.
planes. The RG trajectories, which belong to phase II arrive perpendicularly to the plane
ṽ2 = 0, where they take a turn with 90o and run away to plus infinity parallel to the
ṽ1 axis. This is due to the non-vanishing constant value of the dimensionful coupling
v1 in the IR limit k → 0. Thus, the phase boundary II-I is the 2-dimensional surface(
ṽ1 = 1 − Ỹ , ṽ2 > 0, 0 < Ỹ < 1

)
∪
(
1 − Ỹ < ṽ1 ≤ 1, ṽ2 = 0, 0 < Ỹ < 1

)
. The

Gaussian and Wilson-Fisher fixed points shown in the top-right of Fig. 3.13. These fixed
points stand for fixed lines with arbitrary values of Ỹ ∈ [0, 2]. The IR fixed point (line) is
located in phase III and occurs only for Ỹ ∈ [1, 2]. The positions of the fixed points can
be calculated analytically for M = 2, which are summarized in Table 3.1. The inclusion
of further couplings in the determination of the fixed points give quantitative numerical
corrections for the Wilson-Fisher fixed point only. However, the linear and quadratic
Ỹ dependence of the WF fixed point solution of ṽ1 and ṽ2 (respectively) would be still
intact. One can see in the top-right sub-figure in Fig. 3.13, that both the Gaussian and

Fixed point ṽ1 ṽ2

Gaussian 0 0

Wilson-Fisher 3
13 (1− Ỹ ) 80π2

169 (1− Ỹ )2

IR 1− Ỹ 0

Table 3.1: The fixed point couplings ṽ1 and ṽ2 for given values of Ỹ .

Wilson-Fisher fixed points lie on the phase boundary III-I and act for the RG trajectories
as cross-over points. The RG flow of trajectories in phase I is qualitatively the same
independently of the value of Ỹ in the interval 0 < Ỹ ≤ 2. In the slice (ṽ1, ṽ2) for
1 < Ỹ ≤ 2 the trajectories in phase III flow into the IR fixed point (line), but their
evaluation gets numerically unstable in the vicinity of the fixed point. The phase boundary
III-II lies in the plane Ỹ = 1. Finally, in slices (ṽ1, Ỹ ) for constant ṽ2 > 0 (sub-figures
at the bottom in Fig. 3.13) all the three phases can be seen, as well as the triple point.
In the 3-dimensional parameter space, there is a triple line, the line of intersection of
the phase boundaries III-II and III-I. The IR scaling laws have been studied in detail,
revealing the symmetry properties of the various phases. They are elaborated in the
following subsections.

3.5.2 Phase I

This is the symmetric phase of the model. In phase I, the RG flow of the trajectories,
computed by the WH RG equation (3.22), do not acquire any singularity. As mentioned
before, the RG flows of the dimensionful couplings are qualitatively the same in phase
I, independently of the value of Ỹ . They increase strictly monotonically with decreasing
scale k in a short UV scaling region ∼ 0.3 < k ≤ Λ = 1 and then tend asymptotically
to certain constant, positive values vn(0) in the IR regime. That is, the dimensionful
effective potential is convex, but sensitive to the bare potential. The IR limiting values of
the dimensionful couplings v1(0) and v2(0) have been computed on several RG trajectories,
started at various given ‘distances’ t = ṽ1(Λ) − ṽu from the phase boundary ṽu (I-II for



62 Chapter 3.

0 ≤ Ỹ < 1 and I-III for 1 < Ỹ ≤ 2) for given v2(Λ) = 0.01, 0.1 and several Ỹ values. It
has been established, that the IR limiting value of the dimensionful mass squared satisfies
a similar linear relation as it does in Case Y

v1(0) = at+ b(Ỹ ), (3.34)

with the slope a = 1 ± .001. The latter, a is independent of Ỹ , whereas, at the phase
boundary (t→ 0),

b(Ỹ ) = (1− Ỹ )b(0)Θ(1− Ỹ ) (3.35)

decreases approximately linearly to zero at Ỹ = 1 (see Fig. 3.14) and vanishes for Ỹ > 1.

For k → 0, the coupling v2(k) increases drastically with respect to its bare value
v2(Λ), which is set to be close to the phase boundary I-II for t → 0 and 0 < Ỹ � 1.
However, it slightly acquires loop-corrections near the boundary I-III for t → 0 and
1 < Ỹ ≤ 2. In the latter, the behavior of v2(k) resembles to the behavior of the same
type of coupling in the symmetric phase of the ordinary O(2) model near the boundary
of the symmetry broken phase. Far enough from the phase boundary ṽu, i.e., at larger
values of t, the loop-corrections are suppressed by the large values of the mass squared
v1(0). That is, the coupling v2(k) as well as all higher-order couplings vn>2(k) stay very
close to their bare values in the IR. For t→ 0, i.e., when approaching the phase boundary,
the IR value v2(0) shows a strong dependence on Ỹ . This relation is nonlinear and has a
minimum v2(0) = 0 at Ỹ = 1 (Fig. 3.14).

Figure 3.14: The parameters b of the IR coupling v1(0) in Eq. (3.34) (left) and the
IR coupling v2(0) (right) against Ỹ at the ‘distance’ t = ṽ1(Λ) − ṽu = 0.001 from the
boundary of phase I.

3.5.3 Phase II

Phase II is present, when 0 < Ỹ < 1. Phase II is a phase with restored symmetry in the
IR limit, similarly to Case Y . A periodic structure – breaking O(2) symmetry as well as
3-dimensional translation and rotation symmetries – occurs below the singularity scale
ks, but it is vanishes in the limit k → 0. In this phase ks = Λ, so that the RG flow can
be computed by the TLR procedure, started at the UV scale Λ. It has been established,
that the couplings of the dimensionful blocked potential assume constant values along
their IR scaling.
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Figure 3.15: The flow of the inverse propagator G−1(k) (left) and the corresponding
amplitude of the spinodal instability ρk at vanishing homogeneous background field Φ = 0
(right) along the RG trajectory with Ỹ = 0.7, ṽ1(Λ) = −0.1, ṽ2(Λ) = 0.01 and the step
size ∆k/k = 5 · 10−5.

The typical behavior of the inverse propagator G−1 = (−1 + Ỹ )k2 + v1(k) and
the corresponding amplitude of the spinodal instability ρk(0) for vanishing homogeneous
background field Φ = 0 are shown in Fig. 3.15. One can see, that below ks (which is the
scale at which the TLR procedure is initiated) the inverse propagator is negative. As the
running scale is lowered, the value of G−1 increases, while the value of ρk(0) decreases
until the running scale k reaches a finite scale k′ < ks. At the scale k′, the propagator
becomes vanishing and the amplitude of the spinodal instability abruptly jumps to zero.
This refers to the fact, that below the scale k′, no further tree-level renormalization
occurs and neither does the periodic condensate survive the IR limit. The flow of ρk is
qualitatively the same as it was found in the Case Y study of the restored symmetry
phase. There, the periodic configuration emerges below the scale ks but it is washed out
at some non-vanishing scale k′.

It has also been observed, that for any given value of Ỹ , the effective potential is
quasi-universal in the sense, that it does not depend on at which point (v1(Λ), v2(Λ)) the
RG trajectories have been started. This suggested me, to compute the mean values v1(0)
and v2(0) of the couplings v1(0) and v2(0) with their variances by averaging them over all
evaluated RG trajectories, which belong to a given value of Ỹ . Table 3.2 summarizes the
results. It shows, that the dimensionful mass squared decreases with increasing values of
Ỹ linearly as

v1(0)(Ỹ ) = [v1(0)]Ỹ→0(1− Ỹ ) (3.36)

(see Fig. 3.16). The small non-vanishing value of v2(0) is accompanied by an error, with
magnitude as big as the mean itself. Thus, we can state, that the coupling of the quartic
term vanishes in the infrared limit. Similarly to the latter, all the higher-order couplings
ṽn>2(0) vanish. One should remember to the fact, that the theory in the limit Ỹ → 0 is
energetically unbounded from below.

The following idea came after the publication of the work about Case Y . Namely,
it is not an impossible scenario, that the loop corrections become significant for scales
k < k′ again, since no more tree-level correction occurs there. To this end, I inserted the
values of the couplings ṽn(k′) (1 ≤ n ≤ 10) obtained by the TLR procedure as initial



64 Chapter 3.

Ỹ v1(0)±∆v1(0) v2(0)±∆v2(0)

.0 .92± .03 −.016± .036

.3 .69± .01 −.010± .016

.5 .50± .01 −.007± .016

.7 .25± .05 .002± .050
1.0 .025± .007 −.016± .018

Table 3.2: Mean IR values of the dimensionful couplings of the quadratic and quartic
terms of the effective potential with their errors in phase II for various values of the
higher-derivative coupling Ỹ .
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Figure 3.16: The dimensionful mass squared v̄1(0) against the higher-derivative coupling
Ỹ in phase II.

conditions into the WH RG equation for k < k′. It has been established numerically, that
the loop-corrections can be accounted for less than 0.1 per cent change in the value of
v1(k

′) and ∼ 30 per cent change in v2(k
′) on any particular RG trajectory. It has been

argued above, that the non-vanishing values of vn(k′) for n ≥ 2 is caused by numerical
inaccuracies. This is why I conclude, that the TLR result obtained at the scale k′ is stable
against further loop-corrections in the region 0 ≤ k < k′.

3.5.4 Phase III

Phase III is present for Ỹ > 1. Initially, it was divided into two subregions in the
parameter plane (ṽ1, ṽ2) specified by the singularity scale ks = Λ in the region with
−1 ≤ ṽ1 ≤ −1+Ỹ and ks = kc < Λ for −1+Ỹ < ṽ1 < ṽu, where ṽu is the phase boundary
III-I. It has been found, that phase III is characterized by spontaneous breaking of O(2)
symmetry and a quasi-universal dimensionless effective potential. It is quasi-universal in
the sense, that it depends only on the particular value of Ỹ . It is given by

Ũk→0(Φ̃) = −1

2
(−1 + Ỹ )Φ̃2, (3.37)

providing the Maxwell-cut like universal dimensionful effective potential of the symmetry
breaking phase of the ordinary O(2) model. Fig. 3.17 shows an example of the blocking
of the dimensionful potential along with the IR limit of the amplitude of the spinodal
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instability. Numerical data of the TLR procedure is summarized in Table 3.3. It contains
the value ṽ1(0), which can be compared with its theoretical value 1− Ỹ .
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Figure 3.17: The dimensionless blocked potential Ũk(Φ) (left) and the amplitude ρ0(Φ)
of the spinodal instability (right) against the homogeneous background field Φ for Ỹ = 1.5
in phase III.

The dimensionless effective potential (3.37) being a downside facing parabola
with curvature 1− Ỹ < 0 is the generalization of that with curvature −1 in the symmetry
breaking phase of the ordinary O(2) model without higher order derivative terms. The
latter case is recovered as a limiting one for Ỹ = 2. The presence of the higher-derivative
coupling Ỹ > 1 decreases the magnitude of the curvature. Similarly to the ordinary O(2)
model, the amplitude of the spinodal instability was found to survive the IR limit and
depend linearly on the homogeneous background field Φ,

ρk→0(Φ) = β(−Φ+ Φc(0)). (3.38)

The values of the slope β are computed numerically for various values of Ỹ . They are
compared in Table 3.3. These values do not show dependence on Ỹ and yield the mean
β̄ = −.53±.01. According to this result and assuming, that the limit Ỹ → 2 is continuous,
it is sensible to suggest, that the exact value is β = 1/2. However, our TLR procedure
has some systematic error.

The scaling of the dimensionless couplings in the deep IR region has also been
determined. Referring to this, Fig. 3.18 shows the RG flow of ṽ1, ṽ2 and ṽ3 on double
logarithmic plots, computed by the TLR procedure.
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Figure 3.18: Scaling of the dimensionless couplings ṽ1(k) (solid black line), ṽ2(k) (solid
gray line) and ṽ3(k) (dashed black line) for Ỹ = 1.5 in phase III.

According to Fig. 3.18, there clearly exists an IR scaling region in which the
couplings ṽn(k) with n ≥ 2 scale down to zero according to the power law ṽn≥2 ∼ kαn ,
while ṽ1(k) − ṽ1(0) ∼ kα1 remains essentially zero in the same region. The numerical
values of the scaling exponents αn turned out to be independent of Ỹ , as shown in Table
3.3. This shows, that all the dimensionful couplings reach their constant IR values with
the power law vn(k)− vn(0) ∼ k2.

Ỹ ṽ1(0) ṽ2(0) α1 α2 α3 α4 β

1.3 −.281 < 10−5 0 1 2 3 .534
1.5 −.469 < 10−5 0 1 2 3 .531
1.8 −.75 < 10−5 0 1 2 3 .521
2 −.94 < 10−5 0 1 2 3 .531

Table 3.3: The IR limiting values of the first two couplings of the dimensionless potential,
the coefficient β of the amplitude in Eq. (3.38) along with the first few scaling exponents
αn for phase III.

3.5.5 On the phase transitions

A finite jump of the free energy G, i.e., the presence of latent heat in phase transitions
means a first order phase transition, while those with continuous G but singularities in
the derivatives of G are called continuous phase transitions. The transition from phase
III to phase I in the present case is rather straightforward to identify, it is continuous.
One determines the behavior of the correlation length ξ ∼ 1/kc in the vicinity of the
boundary of phases I and III from the side of phase III. This approach, however, can only
be applied at the phase boundary III-I, because the singularity scale kc can be detected
by solving the WH RG equation (3.22). This scale lies above the UV cutoff Λ for phase
II, which means, that we cannot make such calculations at the phase boundaries II-I
and II-III. The reduced temperature t = ṽu − ṽ1(Λ) is identified as the ‘distance’ of the
starting point of the RG trajectories from the phase boundary ṽu. Pursuing the goal, to
compute the dependence of the correlation length ξ on the reduced temperature t, I have
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solved the WH RG equation (3.22) for several initial conditions ṽ1i(Λ) = ṽu − i · 10−4

(i = 1, 2, . . . , 500) for ṽ2(Λ) = 0.01, 0.1 and Ỹ = 1.2, 1.5, 2.0. It has been found, that
the correlation scales according to the power law

ξ ∼ 1/kc ∼ t−ν , (3.39)

near the phase boundary for any fixed values of Ỹ , Fig. 2.2 shows an example of the
qualitative behavior of ξ at several t values. This signals, that the phase transition III
→ I is continuous, just as the phase transition in the ordinary O(2) model. The critical
exponent ν is found to be insensitive to the bare parameters Ỹ and ṽ2(Λ), its mean value
is ν̄ = 0.46 ± 0.03. The φ4 model can be considered as the textbook example of the RG
technique. Therefore, it is widely investigated in various dimensions and in various levels
of truncations [17, 57, 58, 15, 59, 60, 61, 62, 63]. Let us remember, that the purpose of
this work was not to precisely calculate ν (which is ν = 0.67 in the ordinary 3-dimensional
O(2) symmetric model), rather than that, it was to explore the phase structure and phase
transitions of Case Ỹ .

Let us now move on to the transitions II → I and III → II. The difficulty of the
identification of these transitions has already been elaborated. Let us turn to an other
way to study the continuity of these phase transitions. One can compute the jump of
the free-energy density (or latent heat) per unit volume directly. To be more precise,
the jump of the minimum of the effective potential passing from one phase to another
through the phase boundary. In order to do this, I determined the IR limit of the constant
term vA0 (0) of the effective potential in phases A =I, II, III at both sides of the phase
boundary and compared them. For the comparison one has to consider RG trajectories
on which the bare potential has the same minimum value. Otherwise, the jump can be
accounted to the correction of the IR values vA0 (0) by the minimum value of the bare
potential (UA

Λ )min, i.e., by the replacement vA0 (0) −→ (vA0 )corr = vA0 (0)− (UA
Λ )min.

When bare potentials with equal minimum values in A and B are selected, the
transition from phase B to phase A is going to be accompanied by a jump of the potential
(Euclidean action per volume) ∆vA→B = (vB0 )corr − (vA0 )corr. The non-vanishing or
vanishing value of ∆vA→B signals, whether the phase transition is a first order one or a
continuous one, respectively. In the present setting, (UA

Λ )min is non-vanishing only for RG
trajectories belonging to the bare potential of a double-well form (those starting close to
the phase boundaries III-I and III-II in phase III, and close to the phase boundary II-III
in phase II). For the numerical computation of ∆vII→I, I have selected RG trajectories
which start at the ‘distance’ t = 0.001 from the phase boundary, i.e., very close to it.
When evaluating ∆vIII→I, I took RG trajectories with the values of v1(Λ) increased in
steps t = 0.001 and by this, the phase boundary is crossed. Lastly, ∆vIII→II has been
calculated from the comparison of RG trajectories for Ỹ = 1.1 and 0.9 and various values
of ṽ1(Λ). All calculations have been conducted with the setting ṽ2(Λ) = 0.01. Fig. 3.19
shows the results. In the plot on the left, one can notice, that there is a jump of the
free-energy density of 2 orders of magnitude larger for 0 < Ỹ < 1 than for 1 < Ỹ < 2.
Along with the finding on the correlation length, this enables one to conclude, that the
phase transition III→ I is continuous, while II→ I is of first order. The plot to the right
in Fig. 3.19 shows that the phase transition III→II is a first order one, with a latent heat
per unit volume decreasing to zero, when the triple point is approached.
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Figure 3.19: The jump of the ‘free-energy density’ ∆vA→B for B =I, A =II (0 < Ỹ < 1)
and A =III (1 < Ỹ < 2) (left), and for A =III, B =II (right).



Chapter 4

Modified effective average
action renormalization group
method applied to the O(1)
ghost model with periodic
condensate

This chapter is based on [D]. The work presented here is the continuation of Chapter
3, they share the motivation. However, it deserves an own chapter for the following
reasons. I moved on from Wegner and Houghton’s scheme to the effective average action
approach, pursuing the goal to examine the ghost condensation in the higher orders of
the gradient expansion. Namely, the numerical calculations were conducted in the NLO
order of the GE. In the present chapter I consider the 3-dimensional, Euclidean scalar
O(1) ghost model, where the usual quadratic gradient term has the wrong sign, i.e., the
wave function renormalization Z = −1 is negative and the positive quartic gradient term
with the coupling Y > 0 ensures the boundedness of the action from below. It is a
rather simple model in which a periodic vacuum state may occur. The O(1) symmetric
model has been chosen over the O(2) symmetric one of the previous section, because
of its simplicity: the formulas derived are very involved even in the O(1) symmetric
case and become increasingly more difficult when an O(N)-vector field is considered.
In the 3-dimensional, Euclidean ordinary O(2) models, the phase structure does not
alter qualitatively compared to the O(1) case, both models exhibit a symmetric and a
symmetry broken phase. The critical behavior of the system changes, since different
critical exponents correspond to the Wilson-Fisher fixed point, however the heart of this
work is the study of the periodic condensates rather than the critical behavior. The
introduction of [D] summarizes neatly the scheme we used in the work presented in this
chapter: ”We developed a modified version of the EAA RG approach [12] in order to

69
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investigate the possibility of spatially periodic vacuum states in 3-dimensional Euclidean
O(1) ghost model and discussed the methodology in detail in [5]. Numerical results are
obtained for the characteristics of the WF FP and the phase structure of the model in
LPA and in NLO of the GE. The field-dependence of the derivative couplings is neglected
for the sake of simplicity. However, the flow equations are expanded around the nontrivial
minimum of the local potential (if there is any), which provides reliable results when the
functional RG is applied to the ordinary O(N) models, see Appendix A of [A]. In the
O(1) ghost model the opposite signs of the quadratic and quartic derivative terms ensure
that at any value of the gliding scale k, there may exist Fourier-modes of the field with
a particular momentum Pk. Then it may happen that for a field configuration with
periodic condensate of momentum Pk, the value of the Euclidean action gets smaller than
that for any homogeneous field configurations. The purpose of this work is to apply the
modified EAA RG framework and study the scale-dependence of the periodic condensate.
The basic idea of the modification is that the dynamical symmetry breaking - caused
by the appearing of the periodic condensate - can be mimicked by explicit breaking of
translation symmetry of the EAA. Mimicking dynamical symmetry breaking by an explicit
one is a widely used approach in ordinary O(1) scalar models when the Z2 symmetric
double-well potential is approximated by its truncated Taylor-expansion around one of
its minimums [17, 6], and has also been successfully used in the case of the ordinary
O(N) scalar models, when spontaneous breaking of O(N) symmetry has been partially
mimicked by the inclusion of explicit symmetry breaking gradient terms into the EAA
[A]. In a phase with a periodic condensate in the vacuum, the EAA should have its
minimum at the corresponding periodic field configuration. Therefore we shall try to
expand the EAA around the periodic field configuration minimizing it. It seems to be
a too involved task to determine the exact form of the field configuration minimizing
the EAA. Therefore, we shall look for it in a restricted subspace of field configurations,
namely among the ones characterized by the particular momentum Pk at the gliding
scale k and being periodic in the single spatial direction of the unit vector eµ. The
higher harmonics of the fundamental momentum Pk correspond to condensate modes of
smaller wavelengths and are supposed to be gradually suppressed by the dynamics with
decreasing scale k. Therefore, one expects that even the approximation containing only
the fundamental Fourier mode with amplitude σk(Φ) and momentum Pk may provide
physically reliable results for the low-energy behavior of the model. Therefore, we restrict
ourselves to the one-mode approximation, where the homogeneous background Φ (the
zero-mode) and the fundamental periodic mode of the background are taken into account.
The modified EAA includes extra derivative terms and potentials induced by the periodic
condensate which describe a kind of a back-reaction of the periodic condensate on the
quantum fluctuating component of the scalar field. They do this in a self-consistent
manner, because the induced terms are functionals of the total field, the sum of the
background and the fluctuating piece. Whenever the Fourier-amplitude σk(Φ) vanish at
some scale kfr, the corresponding induced terms are assumed to freeze out for k < kfr. As
a further simplification we neglect the effect of the condensate induced on the derivative
terms.” The periodic condensation is a more general phenomenon, the condensates of
ghost models may be periodic, but the periodic condensates are not restricted to ghosts.
I have contributed in the derivation of the formulas as well as in the establishing of
the algorithm for solving the equations. I have implemented a numerical code for this
algorithm and performed the numerical computations. After this, I have also contributed
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to the analysis of the numerical data.

4.1 Fourier-Wetterich renormalization group approach

This section elaborates the method used to achieve the RG-equations as well as the specific
treatment one has to use to solve these equations.

4.1.1 Structure of the RG equation

In the process of applying the EAA RG approach to the one-component scalar field φx,
one splits the EAA Γ̄k[φ] = Γk[φ] + ∆Γk[φ] into the reduced EAA (rEAA) Γk[φ] and the
regulator term

∆Γk[φ] =
1

2

∫
x,y

φxRk x,yφy, (4.1)

where

Rk x,y = Rk(−∆⊥,−∂2‖)δ(x− y), (4.2)

with a field-independent infrared (IR) cutoff functionRk(u⊥, u‖). Throughout this chapter,
the differential operators act always on the spatial coordinates xµ (µ = 1, 2, 3), with the
parallel coordinate x‖ = x1 = xµeµ and the transverse vector x⊥ = (x2, x3) and k stands
for the running cutoff, while ∂‖ = ∂x‖ . Lastly, ∆⊥ =

∑3
µ=2 ∂

2
xµ

denote the Laplacian in
the 2-dimensional plane perpendicular to the symmetry axis (x1-axis). The WE for the
rEAA Γk is

Γ̇k =
1

2
Tr

(
[Γ

(2)
k +Rk]

−1Ṙk

)
, (4.3)

where the ˙ shows the scale-derivative k∂k, Γ
(2)
k is a shorthand notation for the second

functional derivative matrix Γ
(2)
k,x,y = δ2Γk[φ]

δφxδφy
. The trace operation is over a complete set

of field configurations. Let us now make an ansatz for the rEAA, also keeping the gradient
terms up to the quartic ones. The application of the usual GE technique involves the
division of the field φx = φBx+ηx into the background piece φBx and the inhomogeneous
fluctuating field ηx. The background field φBx = Φ + χx consists of the homogeneous
background Φ and the periodic background

χx =

Nm∑
n=1

2σn k(Φ) cos(nPkx1) (4.4)
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representing the periodic condensate. For the rEAA, our general general ansatz is

Γk[φ] =
1

2

∫
x,y

Nm∑
n=0

φxD
−1
n x,yφy cos(nPkx1) +

∫
x

Nm∑
n=0

Un k(φx) cos(nPkx1),

(4.5)

where for each of the n-th modes, the kernels

D−1
n x,y(−∆⊥,−∂2‖) = Zn k(−∆⊥,−∂2‖)δx,y (4.6)

have been introduced with the momentum-dependent but field-independent wave function
renormalizations Zn k(−∆⊥, −∂2‖). The Fourier-amplitudes σn k(Φ) and the momentum
Pk are the ones that minimize the EAA at any given scale k for a given homogeneous
background Φ.

The one-mode approximation stands for the truncation Nm = 1, when

χx = 2σk(Φ) cos(Pkx1) (4.7)

and the notation can be shortened to Z0 k = Zk, Z1 k = Ek, U0 k = Uk, U1 k = Vk, and
σ1 k = σk. We keep the terms containing Ek in the general formulas for the flow equations,
but our numerical results are obtained by setting Ek ≡ 0, due to the complexity of the set
of flow equations otherwise. The potentials and the amplitude of the periodic condensate
are chosen to be polynomials,

Uk(φ) =

M∑
n=2

gn(k)

n!
φn, Vk(φ) =

M−1∑
n=2

vn(k)

n!
φn, σ(φ) =

M−2∑
n=0

σn(k)

n!
φn.

(4.8)

The lowest-order derivatives U ′′
k (φ) and V ′′′

k (φ) of the potentials present in the propagator
(the prime denoted differentiation with respect to the variable Φ) select the first nonvan-
ishing terms. The flow of the ordinary potential Uk with the accuracy up to the term
O(φM ) means, that the induced potential and the amplitude σk(φ) should be given the
accuracy up to the term O(φM−1) and O(φM−2), respectively. The truncation M = 4
is used in this chapter. It is assumed, that the ordinary potential displays Z2 symmetry,
Uk(φ) = Uk(−φ), i.e., g3 = 0 and g4 > 0 for a physically reliable theory. When g2 < 0,
the ordinary potential exhibits nontrivial minimums at Φ = ±Φ∗ for homogeneous field
configurations. In this case, the expansion around the nontrivial minimum φ = Φ∗ yields

Uk(φ) =

M∑
n=1

un(k)

n!
ψn, Vk(φ) =

M−1∑
n=1

wn(k)

n!
ψn, (4.9)

where Φ = φ − Φ∗ and Φ∗ =
√
−6g2/g4, u1 = 0, u2 = −2g2, u3 = g4Φ∗, u4 = g4 and

w1 = 1
2v3Φ

2
∗, w2 = v3Φ∗, w3 = v3. In this way, our calculations can be conducted in

terms of Φ∗, u4 and w3.

In the one-mode approximation the momentum-dependence of the wave function
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renormalization is chosen as

Zk(−∆⊥,−∂2‖) = −Z⊥ k∆⊥ − Z‖ k∂
2
‖ + Y⊥ k∆

2
⊥ + 2YX k∆⊥∂

2
‖ + Y‖ k∂

4
‖

(4.10)

and a similar assumption is made for the momentum-dependence of Ek. The ansatz
(4.10) takes the axial symmetry into account, induced by the periodic condensate, but it
respects the reflection symmetry x1 ↔ −x1. At the UV scale, the initial conditions are
set to be Z⊥Λ = Z‖Λ = −1, Y⊥ Λ = Y‖ Λ = YX Λ > 0 (that ensure boundedness of the
bare Euclidean action from below) and EΛ = 0.

The truncation of the functional Taylor-expansion at the quadratic term of the
order O(η2) results in the left-hand side of the WE taking the form

Γ̇k[φB + η] = Γ̇k[φB ] +

∫
x

Ḟk xηx +
1

2

∫
x,y

ηxȦk x,yηy, (4.11)

while the expansion of the second functional derivative of the EAA is

Γ
(2)
k x,y[φB + η] = Ak x,y + (ηB)k x,y +

1

2
(ηCη)k x,y, (4.12)

where

Fk x =
δΓk

δφx

∣∣∣∣∣
φ=φB

(4.13)

Ak x,y = Γ
(2)
k,x,y[φB ], (4.14)

(ηB)k x,y =

∫
z

ηz
δ3Γk

δφxδφyδφz

∣∣∣∣
φ=φB

, (4.15)

(ηCη)k x,y =

∫
z,u

ηz
δ4Γk

δφxδφyδφzδφu

∣∣∣∣
φ=φB

ηu. (4.16)

The terms linear in η on the left-hand side of the WE should vanish, i.e., Fk = 0, because
the amplitude σk(Φ) and the characteristic momentum Pk of the periodic background
χx are determined via minimizing the rEAA Γk[φB ] for given scale k and homogeneous
background Φ. The first few functional derivatives of the rEAA were derived explicitly
in the one-mode approximation. Every term proportional to cos(Pkx1) including the
ones from the product cos(Pkx1) cos(2Pkx1) were kept. After that, the left-hand side
of the WE was expanded in the powers of the fluctuating field ηx at the background
configuration φBx, while keeping the terms up quadratic in the fluctuating field ηx. The
latter is a technical tool to divide the flow of the potentials from the ones of gradient
terms in the EAA. We supposed, that ηx does not contain Fourier-modes ηQ =

∫
x
eiQxηx

with zero momentum and with the longitudinal momenta Pk and its upper harmonics,
implying that the terms linear in ηQ vanish exactly on both sides of the WE. The induced
derivative piece with Ek(−∆⊥,−∂2‖) when not zero, would violate Z2 symmetry of the
rEAA. Therefore, we set Ek(−∆⊥,−∂2‖) = 0. The left-hand side of the WE after the
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lengthy but straightforward analytic manipulations is

Γ̇k[φB + η] = Γ̇k[φB ] + γ
(1)
k (ηPke + η−Pke)

+

∫
Q

γ
(2)0
k (Q2

⊥, Q
2
‖)ηQη−Q +

∑
τ=±

∫
Q,Q′

γ
(2)1
k (Q2

⊥, Q
2
‖)δQ+Q′+τPke,0ηQηQ′

(4.17)

where the rEAA at the background configuration φBx is

Γk[φB ]V
−1 = σ2

kZk(0, P
2
k ) +

1

2
ΦσkEk(0, P 2

k ) + Uk(Φ) + σkV
′
k(Φ)

+σ2
kU

′′
k (Φ) +

1

2
σ3
kV

′′′
k (Φ) +

1

4
σ4
kU

′′′′
k (Φ), (4.18)

and the integral kernels are given as

γ
(1)
k = σkŻk(0, P

2
k ) +

1

4
ΦĖk(0, P 2

k ) +
1

2
V̇ ′
k(Φ) + σkU̇

′′
k (Φ) +

3

4
σ2
kV̇

′′′
k (Φ) +

1

2
σ3
kU̇

′′′′
k (Φ),

(4.19)

γ
(2)0
k (Q2

⊥, Q
2
‖) =

1

2
Żk(Q

2
⊥, Q

2
‖) +

1

2
U̇ ′′
k (Φ) +

1

2
σkV̇

′′′
k (Φ) +

1

2
σ2
kU̇

′′′′
k (Φ),

(4.20)

and

γ
(2)1
k (Q2

⊥, Q
2
‖) =

1

4
Ėk(Q2

⊥, Q
2
‖) +

1

4
V̇ ′′
k (Φ) +

1

2
σkU̇

′′′
k (Φ) +

3

8
σ2
kV̇

′′′
k (Φ).

(4.21)

The scale-derivative Γ̇k[φB ] of the rEAA at the given configuration φB should be evaluated
by taking the scale-derivatives of the couplings in the expression (4.18) at given σk(Φ)
and momentum Pk since the latter are parameters in φB .

The Z2 symmetry is realized as follows. The ordinary Z2 symmetric potential
is an even function, Uk(Φ) = Uk(−Φ). The symmetry of the rEAA demands σk(Φ) to be
even accordingly (see the ordinary gradient piece in the right-hand side of Eq. (4.18).)
The terms containing the induced potential in Eq. (4.18) are symmetric if and only if
Vk(Φ) is an odd function, Vk(Φ) = −Vk(−Φ). Moreover, the induced gradient term would
only be symmetric if Ek(0, P 2

k ) would change its sign under the transformation Φ → −Φ,
but for background-independent induced derivative piece this implies Ek(0, P 2

k ) = 0 as
the sole option. Hence, we are going to assume, that the induced gradient piece in the
one-mode approximation vanishes, although we shall write down formally, how the RG
flow equation could be derived for it.

The trace on the right-hand side of the WE (4.3) is sorted into terms by increas-
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ing powers of ηx,

Tr

(
[Γ(2) +Rk]

−1Ṙk

)
= T0 + T1 + T2B + T2C , (4.22)

with

T0 = Tr[G · Ṙk], (4.23)
T1 = −Tr[G · (ηB) · G · Ṙk], (4.24)
T2B = Tr[G · (ηB) · G · (ηB) · G · Ṙk], (4.25)

T2C = −1

2
Tr[G · (ηCη) · G · Ṙk]. (4.26)

Here G is the IR regulated full propagator described Appendix B.1. The matrices B and
C are obtained explicitly, by the Fourier-transformation of the third and fourth functional
derivatives of the rEAA at the field configuration φB . We need the values of the matrices
B and C only at φ = Φ∗ in the flow equations for the derivative terms, because we are
restricted to field-independent derivative couplings,

Bp,q,r|Ψ=0 = b0δp+q+r,0 + b1
∑
τ=±1

δp+q+r+τPe,0, (4.27)

Cp,q,r,s|Ψ=0 = c0δp+q+r+s,0 + c1
∑
τ=±1

δp+q+r+s+τPe,0, (4.28)

with Ψ = Φ− Φ∗

b0 = U ′′′
k (0) + σk(0)V

′′′′
k (0) = u4Φ∗,

b1 =
1

2

(
V ′′′
k (0) + σk(0)U

′′′′
k (0)

)
=

1

2

(
w3 + σ0u4

)
,

c0 = u4, c1 = 0, (4.29)

the prime ′ denotes the differentiation with respect to the variable Ψ. The traces contrib-
uting to the flow equations are listed in Appendix B.2.

We assumed, that the RG transformations integrate out the various modes ηQ of
the fluctuating field gradually in cylindrical momentum shells of thickness dk at momenta
Q with Q⊥ = | ~Q⊥| = k/

√
2 and Q‖ = ±k/

√
2. This choice is made in order to reconcile

with the axial symmetry of the system implied by the periodic condensate. A Litim-type
regulator is used and adjusted to the cylindrical symmetry of the system. The traces
contain the loop-integrals∫

p

f(p2⊥, p‖) = α3

∫ k/
√
2

−k/
√
2

dp‖

∫ k/
√
2

0

dp⊥p⊥f(p
2
⊥, p‖) (4.30)

in cylindrical momentum coordinates with α3 = (2π)(2π)−3 = (4π2)−1. Appendix B.1 is
about the propagator and its regularization in greater detail.
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4.1.2 Parameters of the periodic condensate

One needs two parameters Pk and σk(Φ) to describe the periodic condensate in the one-
mode approximation. The former is the characteristic momentum, while the latter is
the amplitude of the aforementioned condensate. The rEAA Γk[φB ] given by Eq. (4.18)
should be considered as the function of and minimized with respect to the parameters P
and σ at any given scale k and homogeneous background Φ. The full set of the necessary
conditions of the extremums are

∂Γk[φB ]/∂P
2 = 0, (4.31)

∂Γk/∂σ = 0, (4.32)

with their solutions being

P 2
k = −

Z‖k

2Y‖k
, (4.33)

0 = V ′
k(Φ) + 2σk(Φ)

(
U ′′
k (Φ)−

Z2
‖k

4Y‖k

)
+

3

2
σ2
k(Φ)V

′′′
k (Φ) + σ3

k(Φ)U
′′′′
k (Φ).(4.34)

The equation for σ is solved by using Cardano’s formulas. The solution either has one
or three real roots. At every value of the running scale k, the root providing the deepest
minimum for the rEAA is used. This is achieved by substituting into the different roots
and comparing the resulting value of the rEAA.

4.1.3 Strategy for solving the RG equations

The flow equations for the potentials and the wave function renormalizations are exploited
by equating the terms of the order O(η0) and those of O(η2) on both sides of the WE,
respectively. The setting σk = 0 in the flow equation for the potentials allows one to
obtain the flow equation for the ordinary potential Uk(Φ). The original equation for the
potentials with σk(Φ) corresponding to the (deepest) minimum of the EAA is considered
to be the flow equation for the induced potential Vk(Φ). The couplings of the potentials are
determined by the expansion of the both sides of the flow equation for Uk and that for Vk in
powers of Ψ = Φ−Φ∗. The flow equations for the wave function renormalizations Z‖ and
Z⊥ are obtained by equating the second partial derivatives with respect to the momenta
Q‖ and ~Q⊥ on both sides of the flow equation for the wave function renormalization
when Φ = Φ∗ is set. The explicit flow equations for the various couplings were generated
by a computer algebraic code, written by me. The RG flow of the various couplings
can be computed numerically, by iterating the list of steps below, starting from the UV
scale k = Λ with given initial conditions for the couplings and with a given resolution
δk = ∆k/k =const. (∆k is step in k in every iteration). An example step, taken after
the scale k is given as

1. Calculate the couplings of the ordinary potential Uk−∆k at the lower scale k −∆k
from the flow equation for the ordinary potential (with σk = 0).
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2. Determine Pk and σk(Φ), by solving Eqs. (4.33) and (4.34) and finding the root
minimizing the EAA at the scale k.

3. Insert σk(Φ) into the flow equation for the induced potential and into the flow
equation for the wave function renormalizations and determine the couplings of
Vk−∆k, Z⊥(k − ∆k) and Z‖(k − ∆k) at the lower scale k − ∆k. If the amplitude
σk(Φ) calculated in the second step happens to be zero, then do not change the
induced potential and compute the values Z⊥(k−∆k) and Z‖(k−∆k) of the wave
function renormalizations for σk = 0.

4.2 Numerical results

4.2.1 On our numerical approach

The phase structure of the Euclidean 3-dimensional O(1) ghost model in various ap-
proximations of the Fourier-Wetterich RG framework is explored by numerical means in
a successive manner. The LPA of the zero-mode approximation (LPA0) was examined
first, then the LPA of the one-mode approximation (LPA1). As for the next step, we
moved on to the NLO, where the NLO of the zero-mode approximation (NLO0), and the
NLO of the one-mode approximation (NLO1) were studied. The zero-mode approxima-
tion is basically the ordinary EAA approach. For NLO1, the flow equations of the wave
function renormalizations include several terms proportional to different (up to third)
powers of the induced vertex V. The induced vertex V is introduced in the expression
of the full propagator via the resummation of elementary interaction processes between
the fluctuating field ηx and the periodic background field χx, in which interactions an
intermediate shift of the longitudinal momentum with ±Pk occurs (see Appendix B.1). In
the present case, the backreaction of the periodic condensate of the gradient terms of the
EAA is neglected, i.e., Ek = 0 is chosen. Hence, the induced vertex becomes independent
of the momenta. Furthermore, the induced vertices are nonvanishing in the flow equations
for the wave function renormalizations Z‖ and Z⊥, if the field-dependencies are expanded
around the nontrivial minimum Φ∗ of the ordinary potential Uk.

The phase diagram is spanned in the space {c̃i} of the dimensionless couplings.
In order to determine it, several RG trajectories - with different initial conditions - have
been computed numerically and their infrared behaviors have been compared. The tra-
jectories lie in the same phase, when their infrared behavior is qualitatively the same. In
the scenario when the local potential has nontrivial minimums, the space of the couplings
in LPA0 is {Φ̃∗, ũ4}, in NLO0 it is {Φ̃∗, ũ4, Z‖, Z⊥}, while in the case of a trivial minimum
it is {g̃2, g̃4} for LPA0 and {g̃2, ũ4, Z‖, Z⊥} for NLO0. In the one-mode approximation
these spaces also include the coupling ṽ3. The final results below are presented in terms
of the coupling g̃2 (which is just the coupling proportional to Φ2), rather than Φ̃∗ for the
sake of transparency.

Generally, the initial conditions were set to be Z‖ Λ = Z⊥ Λ = 1 and Ỹ‖ =

ỸX = Ỹ⊥ = Ỹ ∈ (0, 2] and ṽ3(Λ) = 0 corresponding to a Z2 symmetric model at the UV
scale Λ = 1, only ũ4(Λ) and Φ̃∗ were varied in order to explore the phase structure of
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the model.I implemented the fourth order explicit Runge-Kutta method to solve the RG
equations with the numerical resolution set to δk = 5× 10−3.

In LPA0 and LPA1 the fixed points were calculated with the usage of the
Newton-Rhapson method. In NLO1, we were keen on the effect of the periodic con-
densate on the RG flow of the wave function renormalizations and due to this, we did
not absorb Z‖ or Z⊥ into the definitions of the dimensionless couplings. This makes the
location fixed points from the vanishing of the beta-functions impossible, since the wave
function renomalizations do not display constant, plateau-type scaling in the vicinity of
the fixed points. Therefore, the initial conditions were fine-tuned numerically to get RG
trajectories approaching a fixed point sufficiently close. The LPA0 at Z‖ Λ = Z⊥ Λ = 1,
where the wave function renormalizations do not exhibit nontrivial RG-flow, has two fixed
points,

ũG
4 = 0, Φ̃G

∗ =
1

2π

[
3√
2

2Ỹ − 1

(Ỹ − 1)2

] 1
2

, (4.35)

ũWF
4 =

9π2

√
2

(Ỹ − 1)3

2Ỹ − 1
, Φ̃WF

∗ =
1

π

[
1

3

2Ỹ − 1

(Ỹ − 1)2

] 1
2

, (4.36)

the Gaussian and the Wilson-Fisher fixed points, respectively, where g̃4 = ũ4 and g̃2 =
− 1

6 Φ̃
2
∗ũ4. The LPA1 results are very similar, there the above results are extended with the

fixed point values ṽG
3 = ṽWF

3 = 0 and the vanishing amplitude of the periodic condensate.
Therefore in LPA we can state, that the critical theory has no periodic condensate. Fur-
thermore in the Ỹ ∈ (0, 2] range, the WF fixed point is only present for 1 < Ỹ < 2 with
g̃WF
2 < 0 and for 0 < Ỹ < 1

2 with g̃WF
2 > 0. In the NLO1 approximation, we clearly found

the IR repulsive Gaussian fixed point, which can clearly be identified on the planar slices
on Fig. 4.1. The existence of the WF fixed point is also established in NLO1, however
it behaves differently in the cases with g̃WF

2 > 0 and g̃WF
2 < 0, see the rightmost figure

in Fig. 4.3 and Fig. 4.4, respectively. The difference can be explained with the contri-
butions of the induced vertex V: (1) for g̃WF

2 > 0 one has to use the expansion around
the trivial minimum of the ordinary potential, because the critical potential is a parabola
with a trivial minimum. In this case, the induced vertex vanish V(Φ̃ = 0) = 0; (2) for
g̃WF
2 < 0 one has to use the expansion around the nontrivial minimum of the ordinary

potential. In this scenario, the critical potential is the ’Mexican-hat’ type potential with
two nontrivial minimums. The induced vertex does not vanish now V(Φ̃ = Φ̃∗) 6= 0. In
the (1) case, the periodic condensate assumes complex values in a short interval, when
the trajectory is sufficiently close to the WF fixed point. The imaginary part of σ̃ is
found to be of the same order of magnitude as its real part, thus it should be a systematic
error of the employed method, rather than a numerical one. When the imaginary part
becomes nonvanishing, we switch to the usage of σ̃k = 0 and freeze the evolution of ṽ3,
the latter frozen value tends to zero on trajectories, which pass the WF fixed point closer
and closer. This is agrees with the findings of the LPA1, that the critical theory has no
periodic condensate in it.
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4.2.2 The phase structure

The phase diagram projected on the (g̃2, Ỹ ) plane at g̃4 = 0 in the NLO1 approximation
is shown on the top on Fig. 4.1. This is supplemented with various planar slices on
the (g̃2, g̃4) plane at fixed, constant Ỹ . The subscripts in the roman numbers denote,
whether the trajectories in that given phase had to be computed with the expansion
around the trivial minimum of the local potential (1) or with the nontrivial one (2). The
NLO1 approximation has non-negligible effect on the behavior of several phases compared
to the LPA1. Furthermore in NLO1, the induced vertices V (compared to no vertices
included) further affect the behavior of some phases. The vertical line at g̃2 = 0 on the
top figure of Fig. 4.1 stand for the Gaussian fixed line. On the horizontal line at Ỹ = 1
the momentum dependence of the inverse propagators cancel, while on the line Ỹ = 1

2

the quantum corrections vanish in the flow equations due to the factor 1− 2Ỹ . Also, the
straight line g̃2 = 1− Ỹ is shown for Ỹ ∈ [0, 1]. These lines represent phase boundaries in
the plane g̃4 = 0. The intersection of these lines are the multicritical points, connecting
3 to 4 phases. The typical RG-flow of the coupling of the induced potential ṽ3, the
anomalous dimensions ηA = −βZA

/ZA (A =‖,⊥), and the dimensionless amplitude of
the periodic condensate σ̃0 = σ̃k(Φ = 0) are shown in every phase and subspace.

Figure 4.1: The phase diagram on the (g̃2, Ỹ ) plane at g̃4 = 0 (top) and various planar
slices on the (g̃2, g̃4) plane in the NLO1 approximation. The full lines denote the phase
boundaries, the arrows show the flow of the RG trajectories in the given phase, the dots
correspond to the multicritical points. The dashed line is the projection of the WF fixed
point onto the (g̃2, Ỹ ) plane. Lastly, the different phases are labeled with roman numbers.
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Symmetric Phase I1

This phase is present for all Ỹ in the range (0, 2] and is characterized by the following
three attributes: (i) the couplings g̃2 and g̃4 tend to positive infinities in the infrared
scaling region, with tree-level scaling laws g̃2 ∼ k−2 and g̃4 ∼ k−1, so the dimensionful
ordinary potential is convex in the IR limit; (ii) the periodic condensate dies at an in-
termediate scale and this freezes the evolution of ṽ3, see Fig. 4.2; (iii) the wave function
renormalizations Z‖ and Z⊥ saturate at constant values after a rather short intermediate
scaling. The symmetric phase stays unaltered beyond LPA1. Trajectories, which belong-
ing to this phase can also be found for Ỹ > 1 and for some values g̃2(Λ) < 0, when one
has to use the expansion around the nontrivial minimum of the local potential. In that
scenario, the symmetric phase is identified by trajectories which reach Φ̃∗ = 0 at finite
k′ scales. Whenever Φ̃∗ = 0 occurs, one has to turn to the expansion around the trivial
minimum of the potential to continue the RG flow below k′.

Figure 4.2: A typical RG flow of ṽ3, ηA (A =‖,⊥) and σ̃0 in Phase I1 at Ỹ = 1.6. The
dashed and the continuous lines correspond to η‖ and η⊥, respectively.

Symmetry breaking Phases II1 and II2

Two subspaces II1 and II2 show the characteristics of a symmetry breaking phase, although
they behave differently in the IR. Subspace II1 can be found at g̃2 > 0 and 0 < Ỹ < 1

2 ,
see the bottom left figure on Fig. 4.1. In subspace II1, the expansion around the trivial
minimum of the potential had to be used. The WF fixed point controls the RG flow in
subspace II1. It deflects the RG flow of the trajectories to ultimately terminate in the
point g̃2 = 1−Ỹ and g̃4 = 0, this way, the dimensionful ordinary potential becomes convex
and universal and its dimensionful counterpart vanishing in the IR limit. Subspace II2 is
present for g̃2 < 0 and 0 < Ỹ < 1

2 and 1 < Ỹ < 2 as can be seen on the bottom left and
right figures on Fig. 4.1. The trajectories there end up assuming their tree-level infrared
scaling laws, with g̃2 ∼ −k−2, g̃4 ∼ k−1 and ṽ3 ∼ −k3/2, with the IR dimensionful
ordinary potential being concave. This has to be the fault of the approximations used
by us. The WF fixed point can only be found in Phase II2 for 1 < Ỹ < 2 as the dashed
line on the top figure of Fig. 4.1 shows the position of the WF fixed line on the (g̃2, Ỹ )
plane. Wherever the WF fixed point can be found, there is a separatrix on the plane
(g̃2, g̃4) connecting the Gaussian and the WF fixed points and separating the phases II1
and I1 for 0 < Ỹ < 1

2 and II2 and I1 for 1 < Ỹ < 2. Wherever possible, we have
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investigated the behavior of the scaling of the amplitude of the periodic condensate in
the vicinity of the Wilson-Fisher fixed point along fine-tuned trajectories flowing in the
close neighborhood of the separatrix. In Phase II1 the results show, that the periodic
condensate is present in trajectories passing very close to the WF fixed point, with both
the dimensionless σ̃ and its dimensionful counterpart diverging in the IR scaling regime
as g̃4 → 0 (see Fig. 4.3). Contrarily, in Phase II2 (for < Ỹ < 2) the periodic condensate
dies out for trajectories sufficiently close to the WF fixed point and it revives when the
RG trajectory flows away from the WF fixed point (see Fig. 4.4). The dimensionless
amplitude σ̃ assumes a constant value in the IR scaling region, so that the dimensionful
amplitude vanishes as k → 0. As for phase II2 for 0 < Ỹ < 1

2 , one can find no WF
fixed point, however the IR scaling laws of the couplings and that of the amplitude of the
periodic condensate are exactly the same as the ones for phase II2 for 1 < Ỹ < 2.

Figure 4.3: A typical RG flow of ṽ3, ηA (A =‖,⊥) and σ̃0 in Phase II1 at Ỹ = 0.4. The
dashed and the continuous lines correspond to η‖ and η⊥, respectively.

Figure 4.4: A typical RG flow of ṽ3, ηA (A =‖,⊥) and σ̃0 in Phase II2 at Ỹ = 1.6. The
dashed and the continuous lines correspond to η‖ and η⊥, respectively.

Phase III

This phase cannot be found on the phase diagrams, shown on Fig. 4.1. Phase III can
only be observed in LPA0 for g̃2 < 0 and 0 < Ỹ < 1

2 . The coupling g̃4 here has the
infrared scaling g̃4 ∼ k1, i.e. it dies out in the IR limit. Moving beyond LPA0, in LPA1
and NLO1, this phase turns into Phase II2, which means, that the couplings assume the
following scaling laws g̃2 ∼ −k−2, g̃4 ∼ k−1 and ṽ3 ∼ −k3/2.
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Phases IV1 and IV2

Phases IV1 and IV2 are located in the range 1
2 < Ỹ < 1. The subspaces IV1 and IV2

are similar regarding their qualitative behavior. The corresponding quantities are shown
on Fig. 4.5 for Phase IV1 and in Fig. 4.6 for Phase IV2. The trajectories are computed
by using the expansion around the trivial and nontrivial minimum of the local potential,
respectively. This phase is characterized by the blowing up of g̃4 in subspace IV1 and
that of the wave function renormalizations in subspace IV2 hand-in-hand with the abrupt
vanishing of the dimensionless amplitude of the periodic condensate in both cases. The
blowing up also means the termination of the RG flow at some intermediate scale.

Figure 4.5: A typical RG flow of ṽ3, ηA (A =‖,⊥) and σ̃0 in Phase IV1 at Ỹ = 0.6. The
dashed and the continuous lines correspond to η‖ and η⊥, respectively.

Figure 4.6: A typical RG flow of ṽ3, ηA (A =‖,⊥) and σ̃0 in Phase IV2 at Ỹ = 0.6.The
dashed and the continuous lines correspond to η‖ and η⊥, respectively.



Chapter 5

Conclusions

This chapter summarizes the content and the results of the present PhD thesis in English
language.

Chapter 1 introduces the reader to the Functional Renormalization Group to-
gether with a brief reminder on the features of the 3-dimensional, O(N) symmetric models.

Chapter 2 is about mastering the methodology of the gradient expansion in the
context of Wetterich’s RG equation. The employed ansatz, alongside the approximations
provide results in the fourth order of gradient expansion (NNLO) for the critical exponents
of the O(N) models. Firstly, the O(1) model has been investigated. I have determined the
stability of the polynomial expansion by computing the truncation dependence of ν, η and
the first subleading scaling correction ω. The d = 4−ε expansion has been performed and
the results agree very well with the literature and I have established as a new result, that
the dimensionless quartic gradient coupling scales as Ȳ ∼ ε3. In continuous dimensions
2 < d < 4, I have determined the dimension dependence of ν and η and the trends of
these functions are in excellent accordance with the literature. The effect of the NNLO
on the critical exponents compared to the second order of the gradient expansion (NLO)
was found to never exceed 5%, the magnitude of this effect varies in the literature. I
deducted, that this variation possibly originates from the choice of regulator function and
whether the field dependence of the wave function renormalization is neglected or not. I
have compared the results of our highest level approximation in d = 3 with that of the
literature. I have found, that my result ν = 0.634 is rather close to FRG’s most accurate
0.630+0.002

−0.005. My result for the anomalous dimension η = 0.059 exceeds the FRG’s most
accurate 0.034+0.005

−0.003 by about 60%. The reason behind this deviation is argued to be the
same as the one behind the variation of the magnitude of the NNLO effect in different
schemes. I have established, that the quartic gradient coupling Ỹ assumes zero fixed point
value at the Wilson-Fisher fixed point WFFP at d ≈ 8/3 and falls to negative ones for
lower dimensions 2 < d < 8/3. On one hand, this causes the action to be unbounded from
below. On the other hand, it is argued to be caused by the emergence of a new, multi-
critical point. For the first time in the literature, I have calculated the critical exponents
ν and η of the O(N) models for N > 1 in NNLO in dimension d = 3. The RG evolution
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of the wave function renormalizations for the Goldstone modes and the radial mode was
found to be different on trajectories, which are close to the separatrix. I have followed the
principle of minimal symmetry breaking, i.e., computed the results at fixed ratio ẑ = 1 of
the wave function renormalizations and have arrived to results, that are consistent with
the literature in NLO. The difference between the evolution of the Goldstone and radial
modes’ wave function renomalizations is the most prominent on trajectories, which are
close to criticality. There, in the vicinity of the WFFP, the β-function of their ratio ẑ
should tend to zero, however it has the magnitude O(η), which is small (< 10−1), in
the case of the 3-dimensional O(N > 1) models. The NNLO corrections for the critical
exponents in the range 100 > N > 1 were found to be the following. δη is the relative
NNLO correction of the radial mode’s anomalous dimension and it never exceeds 1%,
while δη̄ corresponding to the Goldstone modes never exceeds 0.2%. Lastly, the relative
NNLO correction for ν, δν was found to be tiny and asymptotically vanishing for large
N . I have also provided data on the N -dependence of the first three scaling corrections in
NNLO. As my personal contribution to the paper, which is the basis of this chapter, I have
contributed to the derivation of the flow equations, I have written computer programs
for the numerical calculations and have provided the numerical data and contributed to
its analysis and I have also made the figures in the paper [A], which is the basis of this
chapter.

In chapter 3, the motivation was to study the so called periodic condensation in
terms of the FRG. Models with periodic groundstates are relevant in many fields of phys-
ics. Such periodic condensation can be observed in models where the sign of the gradient
terms alternate. Such a model is presently studied ghost O(2)-model. This chapter elabor-
ates the phase structure and the infrared behavior of the 3-dimensional ghost O(2) model
in two different approaches in the local potential approximation (LPA), using Wegner and
Houghton’s RG equation and the tree-level renormalization procedure. I denote the first
approach with Case Y , where the dimensionful higher derivative coupling, corresponding
to the quartic gradient term in the action is kept constant. Where the dimensionless
counterpart of Y is kept constant is denoted with Case Ỹ . The phase structure of the
model turned out to be richer in Case Ỹ with three phases, than in Case Y with two
phases. Thus, it remains an open question, whether the model exhibits two or three
phases. The ambiguity of keeping constant either the dimensionful or the dimensionless
higher-derivative coupling is an essential feature of the LPA and cannot be avoided in
the WH RG approach. Articles [B] and [C] exemplify, that such an ambiguity may heav-
ily affect the physical results, when higher-derivative terms are included into the model.
This ambiguity is lifted beyond the LPA in the gradient expansion. As a first step of
the work, I have implemented a program for the numerical computation of the tree-level
renormalization, which was used to study the deep-infrared scaling of the RG-trajectories
and ultimately to identify phases. This has been tested on the 3-dimensional ordinary
O(1) models and the 2-dimensional sine-Gordon model with success. I have reproduced
the known infrared scaling laws of the couplings of those models. Nextly, we have moved
on to the actual subject of the investigation, the 3-dimensional ghost O(2) model. In Case
Y , I have found two phases. A symmetric one, where no ghost condensation occurs and
a phase with ’restored’ symmetry. In the latter the periodic condensate was present at
intermediate scales but washed out in the low energy limit. It has also been established,
that the correlation length remains finite when the phase boundary is approached in the
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phase with restored symmetry, this suggests the presence of a first order phase transition.
In Case Ỹ , I have identified three phases (I, II and III) with an emergent triple point
and have also identified the types of phase transitions. Phase I is present for any positive
Ỹ , it is similar to the symmetric phase of the ordinary O(2) model. Phase II is present,
when 0 ≤ Ỹ ≤ 1. The dimensionful effective potential in phase II is quasi-universal, it
depends on Ỹ , yet it is independent of the other bare couplings. Phase II has no analogue
in the ordinary O(2) model, however it has the same properties as the symmetry restored
phase, found in [B]. Its existence is based on the ghost-condensation mechanism available
in the model with Z < 0 and Ỹ > 0. Phase III can be found in the range 1 < Ỹ ≤ 2.
Here, the dimensionful effective potential is universal. It exhibits the Maxwell cut, which
is accompanied with the non-vanishing amplitude of the periodic spinodal instability for
scales k → 0. Phase III is the one, where spontaneous symmetry breaking occurs similarly
to the symmetry breaking phase of the ordinary O(2) model. The phase boundaries III-I
and III-II intersect in a triple line. It has been found, that phase transitions II → I and
III → II are of first order, while III → I is a continuous one. My personal contribution
to this part of the work have been the following: I have written computer programs for
the numerical calculations, have provided the numerical data and have contributed to its
analysis and I have also made the figures for papers [B, C].

Chapter 4 is based on [D]. There, I employed a modified version of the EAA
RG method, called by the authors the Fourier-Wetterich RG scheme. The method is not
elaborated in this chapter due to its length, but can be found on the arXiv [5]. This
scheme has been developed in order to study condensates displaying spatial periodicity
in terms of FRG, but at higher levels of the gradient expansion. The 3-dimensional,
Euclidean O(1) ghost model was studied in detail, in the action of which the usual O(∂2)
kinetic term appears with the ‘wrong’ sign and also a positive definite quartic O(∂4)
derivative term has been included. This alternating sign of the gradient terms in this
ghost model may cause the formation of a periodic condensate. It is assumed, that
the condensate can be approximated with a truncated Fourier-series with Nm modes,
among them the zero-mode with N0 includes the homogeneous background Φ, while
the first mode of the scale-dependent wave number Pk and the amplitude σk(Φ) is the
fundamental mode. The scheme allows one to take upper harmonics into account, but
their role is argued to be suppressed for decreasing running scale k. The parameters of
the periodic condensate are determined by the minimization of the EAA at each value
of the scale k during the solution of the RG flow equations. The periodic condensate is
supposed to reveal periodicity in one spatial direction, meaning that the system exhibits
cylindrical symmetry. Hence, the direction parallel to the condensate’s axis and those
perpendicular to it should be distinguished in the kinetic terms of the EAA. In the NLO
of the GE, this manifests as wave function renormalizations Z‖ and Z⊥, differing in the
longitudinal and transverse directions. In order to close the set of the flow equations for
the truncation Nm of the Fourier series, additional potentials and additional derivative
terms are incorporated into the ansatz for the EAA. These represent the terms induced
by the various Fourier-modes of the periodic condensate. The zero-mode approximation
(Nm = 0) corresponds to the ordinary EAA RG approach, when the periodic condensate
is neglected. The proposed Fourier-Wetterich RG scheme allows one to study, when the
periodic condensate occurs and how it evolves during the RG flow and to show in which
of the phases the condensate survives the IR limit. I performed numerical calculations
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to determine the characteristics of the WF FP and the phase structure of the model
in the one-mode approximation in the NLO of the GE. The phase diagram has been
studied at constant values of Ỹ ∈ (0, 2] and depicted on the plane, spanned by the
couplings g̃2 and g̃4 corresponding to the dimensionless mass squared and the quartic
coupling of the ordinary potential, respectively. Although whenever it was possible, we
expanded our equations around the nontrivial minimum of the local potential, and used
the dimensionless couplings Φ̃∗ =

√
−6g̃2/g̃4 and g̃4 in our numerical work. In the

scenario of the potential having nontrivial minima, this provides physically more reliable
results than the expansion around the vanishing background field. Moreover, in this case,
all the terms and contributions corresponding to the induced vertex V are taken into
account. Due to this, the RG flow of the wave function renormalizations is very strong,
compared to my previous, preliminary numerical analysis [5] and it indeed affects the
phase structure. The calculations show the existence of five phases: A symmetric one
called Phase I1 present for Ỹ ∈ (0, 2], with no periodic condensate in the IR. In the
IR scaling region g̃2 and g̃4 show their tree-level scaling laws; Two symmetry breaking
breaking phases II1 and II2 for 0 < Ỹ < 1

2 and 1 < Ỹ < 2, where the O(1) symmetry is
spontaneously broken. The symmetry breaking is governed in both cases by the WF fixed
point, but the phase behaves differently when g̃WF

2 > 0 or g̃WF
2 < 0. In the g̃WF

2 > 0 case
(II1), the dimensionless amplitude of the periodic condensate assumes nonvanishing value
in the close vicinity of the WF fixed point and both the dimensionless and dimensionful
amplitudes blow up in the IR. In the g̃WF

2 < 0 case (II2), the dimensionless amplitude
of the periodic condensate vanishes in the close neighborhood of the WF fixed point but
becomes nonvanishing and saturates at a constant value in the IR. Hence, the dimensionful
amplitude vanishes in the IR; Finally, two nonperturbative phases. The Phase IV has no
counterpart for ordinary O(N) models. It is present for 1

2 < Ỹ < 1 and characterized
by the blowing up of either the coupling g̃4 (IV1) or the wave-function renormalizations
(IV2) at an intermediate scale, which also causes the dimensionless amplitude of the
periodic condensate to vanish abruptly. Further possible improvements of this scheme
are elaborated in [5]. Among those, the one with the highest impact would be taking
the momentum dependence of the induced vertex into account, because the inclusion of
that vertex - even without the momentum dependence taken into account - affects the
phase structure severely. In this work, I contributed to the derivation of the formulas,
written computer programs for the numerical calculations, provided the numerical data
and contributed to its analysis and I also made the figures for paper [D]



Chapter 6

Összefoglaló

Ez a fejezet magyar nyelven foglalja össze a jelen, angol nyelven íródott doktori disszer-
táció tartalmát és eredményeit.

Az 1. fejezet bemutatja az olvasónak a funkcionális renormálási csoportot, illetve
felidézi az euklideszi, 3-dimenziós O(N) szimmetrikus modellek tulajdonságait.

A második fejezet fő célja a gradienskifejtés alkalmazásának elsajátítása a Wette-
rich-séma keretein belül. Az ansatz, az általam alkalmazott közelítésekkel a gradienskifej-
tés negyedik rendjét figyelembe vevő (a továbbiakban NNLO) eredményeket szolgáltat az
euklideszi O(N)-modellek kritikus exponenseire. Első lépésként az O(1)-modellt vizsgál-
tam. Megbizonyosodtam a polinomiális kifejtés stabilitásáról azáltal, hogy kiszámoltam
a ν, η kritikus exponensek és a Wilson-Fisher-fixponthoz tartozó ω vezető skálázási kor-
rekciók értékeinek függését a polinomiális sor csonkolásának a rendjétől. Elvégeztem a
d = 4− ε kifejtést, melynek eredményei remekül egyeznek a szakirodalommal. Ezen belül
új eredményként kiszámoltam, hogy a dimenziótlan, magasabb rendű gradienshez tar-
tozó tag csatolása Ȳ ∼ ε3 módon skálázik. Meghatároztam ν és η dimenziófüggését a
2 < d < 4 tartományban, ezen függvények trendje kiválóan egyezik a szakirodalommal.
Azt találtam, hogy a gradienskifejtés második rendjét figyelembe vevő közelítéshez (NLO)
képest az NNLO közelítés kritikus exponenseken vett hatásának a nagysága nem haladja
meg az 5%-ot, ám ennek a korrekciónak az értéke változó a szakirodalomban. Arra ju-
tottam, hogy ennek az oka a regulátorfüggvény explicit alakja, illetve a hullámfüggvény
renormálás térfüggésének elhanyagolása/figyelembe vétele lehet. Összehasonlítottam a
legpontosabb d = 3-ban vett eredményeimet a szakirodalommal és a következőket talál-
tam. Az általam számolt korrelációs hossz kritikus exponense ν = 0.634 meglehetősen
közel van a funkcionális renormálási csoport módszerével számolt legpontosabb értékhez
0.630+0.002

−0.005. Az anomális dimenzióra az η = 0.059 értéket kaptam, ez körülbelül 60%-al
meghaladja a funkcionális renormálási csoport legpontosabbját 0.034+0.005

−0.003-et. Más szak-
irodalmi eredményeket megnézve, arra jutottam, hogy ennek a fő oka az lehet, hogy a
sémánkban elhanyagoltuk a hullámfüggvény renormálás térfüggését. Érdekesség, hogy
számolásaimban a magasabb rendű gradienshez tartozó csatolás értéke a Wilson-Fisher-
fixpontban nullává válik d ≈ 8/3-nál és negatív értékeket vesz fel alatta. Ettől megszűnik

87



88 Chapter 6.

a hatás alulról korlátossága. Érvelésem szerint ezt, az alkalmazott közelítések mellett, egy
új, d ≈ 8/3-nál megjelenő multikritikus pont okozhatja. A szakirodalomban először szá-
moltam ki az euklideszi, 3-dimenziós O(N)-modellek (N > 1) kritikus exponenseit NNLO
szinten. Azt találtam, hogy a radiális és Goldstone módusok hullámfüggvény renormálá-
sa máshogyan skálázik a közel kritikus trajektóriákon. A Wilson-Fisher-fixponthoz közel
eső trajektóriákon, az arányukhoz, ẑ-hez tartozó β-függvénynek nullához kellene tartani,
de ez az eltérő skálázás miatt nem történik meg. Számolásaim során a ẑ arány értékét
rögzítettem 1-re, ezzel a minimális szimmetriasértés elvét szem előtt tartva. Ekkor a fix-
pontegyenletek teljesültek a Wilson-Fisher-fixpontban, kivéve βẑ = 0 egyenletet, ez utóbbi
legkisebb értéke a fixpontban βẑ ≈ −O(η). Az η értéke az O(N) szimmetrikus modellek
esetében kicsi, kevesebb mint 10−1. Az euklideszi O(N)-modellek (100 > N > 1) esetében
az NNLO korrekciók értékére a következőket kaptam. A radiális módus anomális dimen-
ziójára eső relatív NNLO korrekció nem haladja meg az 1%-ot, míg ugyan ez a Goldstone
módus esetében nem haladja meg a 0.2%-ot. A korrelációs hossz kritikus exponensére
vett NNLO korrekcióra csekély értéket kaptam, amely aszimptotikusan eltűnik nagy N
értékekre. Az ezen fejezetben taglalt munkához való hozzájárulásomként részt vettem
a folyási egyenletek levezetésében, programkódokat írtam a numerikus számolásokhoz,
illetve én biztosítottam a numerikusan számolt adatokat. Ezeken felül részt vettem az
adatok elemzésében és értelmezésében, továbbá én készítettem a második fejezet alapjául
szolgáló cikkben [A] az ábrákat.

A harmadik fejezet motivációja a periodikus kondenzáció vizsgálata a funkcio-
nális renormálási csoport keretein belül. A periodikus alapállapottal rendelkező modellek
fontos szerepet játszanak a fizika számos területén. Ismert, hogy olyan modellekben,
ahol a kinetikus energiában szereplő különböző gradienstagok előjele váltakozik, felléphet
ilyen periodikus kondenzáció. Ebben a fejezetben egy ilyen modellt vizsgálok negatív
másodrendű és pozitív negyedrendű gradienstaggal, az előbbi miatt az ilyen modelleket
szellemteres modelleknek nevezzük. Az euklideszi 3-dimenziós szellemteres O(2)-modell
fázisszerkezetét és infravörös viselkedését vizsgálom a lokálispotenciál-közelítés szintjén a
Wegner-Houghton-egyenlettel és a faszintű renormálás alkalmazásával. Két szemléletmó-
dot vizsgálok ki: Y eset és Ỹ eset. Az Y esetben a magasabb rendű gradienshez tartozó
dimenziós csatolást, Y -t tartom állandó értéken. Az Ỹ esetben az Y -nak megfelelő di-
menziótlan csatolást rögzítem állandó értéken. A két szemléletmód által szolgáltatott
fázisszerkezet eltérőnek adódott. Az Ỹ eset gazdagabbnak bizonyult az Y esetnél. Ezért
még nem tisztázott, hogy a modellnek valójában milyen a fázisszerkezete. A lokálispo-
tenciál közelítés szintjén a két szemléletmód közül nem lehet egyértelműen kiválasztani a
‘helyeset’, továbbá ezt a kettősséget nem lehet megkerülni a Wegner-Houghton-sémában.
A jelen fejezet alapjául szolgáló cikkek [B] és [C] jól példázzák, hogy ez milyen mélyen
befolyásolhatja egy modell fázisszerkezetét. A különbség viszont megszűnik a gradienski-
fejtés magasabb rendjeiben. A munka első részeként a faszintű renormálás procedúrájátt
kivitelező programot implementáltam és teszteltem az euklideszi, 3−dimenziós normál
O(1)-modellen és az euklideszi, 2−dimenziós sine-Gordon-modellen. A teszt sikeres volt,
a szakirodalmi eredményeket nagy pontossággal reprodukáltam. Ezek után az euklide-
szi, 3−dimenziós szellemteres O(2)-modellt kezdtem vizsgálni a két fenti esetben. Az Y
esetben két fázist találtam. Egy szimmetrikust, ahol nem jelentkezik a szellemtér konden-
zációja, illetve egy olyan fázist, ahol átmeneti skálákon fellép a szellemtér kondenzációja,
de kihal az infravörös, alacsonyenergiás skálán. Az utóbbi fázist ezért visszaállt szim-
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metriájú fázisnak neveztem el. Megbizonyosodtam róla, hogy a visszaállt szimmetriájú
fázisban a korrelációs hossz véges marad a fázishatárhoz tetszőlegesen közel is. Ebből
arra következtettem, hogy elsőrendű fázisátmenet van a két fázis között. Az Ỹ esetben
három fázist találtam, egy hármasponttal. Az I. fázis a szimmetrikus fázis, amely ugyan
olyan tulajdonságokkal bír mint a normál O(2)-modell szimmetrikus fázisa, ez minden Ỹ
értéknél jelen van. A II. fázis csak akkor fordul elő, ha 0 ≤ Ỹ ≤ 1. Ezen fázis tulajdon-
ságai hasonlóak a visszaállt szimmetriájú fáziséhoz. A dimenziós effektív potenciál kvázi
univerzális, függ Ỹ -tól, de független a csupasz csatolások értékétől. Ennek a fázisnak
nincs normál O(2)-modellbeli megfelelője. A fázis jelenléte azon alapul, hogy a szellemtér
kondenzációja akkor léphet fel, ha Z < 0 és Ỹ > 0 teljesül. A III. fázis a 1 < Ỹ ≤ 2
tartományban lelhető fel és a normál O(2)-modell szimmetria sértő fázisához hasonló tu-
lajdonságokkal bír. A dimenziós effektív potenciál univerzális, mutatja a Maxwell-vágást
és a periodikus spinodális instabilitás amplitúdója túléli az infravörös limeszt k → 0. A
III-I és a III-II fázishatárok metszete adja a hármas vonalat. Utolsó lépésként megállapí-
tottam a fázisátmenetek fajtáit. A számolásaim azt mutatják, hogy a II → I és III → II
fázisátmenetek elsőrendűek, míg III → I folytonos. A személyes hozzájárulásom a mun-
ka ezen részéhez a következő volt: programkódot írtam a numerikus számolásokhoz és én
szolgáltattam a numerikus adatokat, részt vettem ezeknek az adatoknak a feldolgozásá-
ban és értelmezésében, továbbá én készítettem a harmadik fejezet alapjául szolgáló cikkek
[B, C] ábráit.

A negyedik fejezet a [D] cikken alapszik. A Wetterich-séma egy módosított
változatát, az általunk Fourier-Wetterich-sémának nevezett módszert alkalmaztam. A
módszert nem részletezem ebben a fejezetben a hossza miatt, ám kifejlesztésében döntő
szerepet játszottam. A részletes elemzés megtalálható az arXiv-on [5]. A módszert térbeli
periodicitást mutató kondenzátumok tanulmányozására fejlesztettük ki. Pontosabban egy
FRG módszert, amely alkalmazható a gradienskifejtés magasabb rendjeiben. Részletesen
tanulmányoztam az euklideszi 3-dimenziós szellemteres O(1)-modellt, amelynek a hatá-
sában a kinetikus energia szokásos O(∂2)-rendű tagjának ‘rossz’ az előjele, ugyanakkor
tartalmaz egy pozitív definit O(∂4)-rendű deriváltas tagot is. A gradienstagok váltakozó
előjele ebben a szellemteres modellben is előidézheti a periodikus kondenzátum megje-
lenését. Azt feltételezzük, hogy a kondenzátum közelíthető egy csonkolt Fourier-sorral
amely Nm módust tartalmaz. Ebben a zérómódus a Φ homogén hátteret tartalmazza,
az egymódus - amely a fundamentális módus - pedig a Pk skálafüggő hullámszámot és a
σk(Φ) amplitúdót foglalja magába. A kifejlesztett séma ugyan lehetővé teszi a magasabb
harmonikusok figyelembe vételét, ám ezek szerepe nagyban csükken, csökkenő k skálá-
val. Az effektív átlagos hatás (EAA) minden k skálán való minimalizálásával határozzuk
meg a periodikus kondenzátum paramétereit. Azt feltételezzük periodikus kondenzátum
térbeli periodicitást mutat egy térbeli irányba, amely azt jelenti, hogy a rendszer hen-
gerszimmetriával rendelkezik. Ez azt jelenti, hogy az EAA kinetikus tagjaiban meg kell
különböztetni a kondenzátum tengelyével párhuzamos és az arra merőleges irányokat. Ez
azt jelenti a gradienskifejtés NLO rendjében, hogy két futó hullámfüggvény renormálás
jelenik meg Z‖ és Z⊥, melyek az előbb említett párhuzamos és merőleges irányokban kü-
lönböznek. Annak érdekében, hogy zárttá tegyük a folyási egyenleteket Nm csonkolásra,
további úgynevezett indukált potenciálokat és deriváltas tagokat adunk az EAA-ra tett
ansatzhoz. Ezen tagokat a periodikus kondenzátum Fourier-módusai gerjesztik. A zeró-
módus közelítés a hagyományos EAA sémát jelenti, ahol nincs periodikus kondenzátum.
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A Fourier-Wetterich séma alkalmazása lehetővé teszi, hogy a periodikus kondenzátum ki-
alakulásának a körülményeit, RG-folyását - különös tekintettel az infravörös viselkedésére
- vizsgáljuk. Numerikus számolásokat végeztem abból a célból, hogy a Wilson-Fisher-
fixpont és a fázisszerkezet jellemzőit feltárjam az egymódus közelítésben, NLO rendben.
A fázisdiagramot a Ỹ csatolás konstans Ỹ ∈ (0, 2] értékeinél vizsgáltam és a g̃2 és g̃4 csa-
tolások által kifeszített síkon ábrázoltam. Az előbbi a dimenziótlan tömegnégyzet, míg
az utóbbi a negyedrendű önkölcsönhatás csatolása a hagyományos potenciálnak. Amikor
csak lehetséges volt a számolások során, az egyenleteket az Uk hagyományos potenciál
Φ̃∗ =

√
−6g̃2/g̃4 nem triviális minimuma körül fejtettem ki. Abban esetben, ha az Uk

potenciálnak van nem triviális minimuma, ez a kifejtés fizikailag megbízhatóbb eredmé-
nyeket szolgáltat, mint az eltűnő háttér körüli kifejtés. Továbbá, ebben az esetben, minden
járulék, amit a V indukált kölcsönhatási vertex okoz figyelembe van véve. Ez azt is jelenti,
hogy egyrészt a hullámfüggvény-renormálás sokkal nagyobb szerepet kap, mint a [5]-ban
szereplő előzetes vizsgálatomban (ahol végig eltűnő háttér mellett fejtettem ki az egyenle-
teket), másrészt V figyelembe vétele nem elhanyagolható hatással van a fázisszerkezetre.
A számítások öt fázis létét fedték fel. Van egy szimmetrikus fázis I1, amely Ỹ ∈ (0, 2] ese-
tén van jelen. Itt az infravörös skálázási tartományban kihal a periodikus kondenzátum,
a g̃2 és g̃4 csatolások pedig faszintű skálázást mutatnak. Két szimmetriasértő fázist II1
és II2 is találtam a 0 < Ỹ < 1

2 és 1 < Ỹ < 2 tartományon. Mind a két fázisban spontán
sérül az O(1) szimmetria. A szimmetriasértésre a Wilson-Fisher-fixpont jelenléte utal,
ugyanakkor g̃WF

2 > 0 és g̃WF
2 < 0 más kvalitatív viselkedést jelent. Ezt a két esetet olyan

trajektóriákon keresztül mutatom be, amelyek nagyon közel kerülnek a Wilson-Fisher-
fixponthoz RG-folyásuk során ezen két tartományon. Abban az esetben, amikor g̃WF

2 > 0
(II1) a periodikus kondenzátum dimenzótlan amplitúdója véges (és nem nulla) marad a
Wilson-Fisher-fixpont közvetlen környezetében, de a dimenziós megfelelőjével együtt fel-
robban az infravörös limeszben. Abban az esetben, amikor g̃WF

2 < 0 (II2) a periodikus
kondenzátum dimenzótlan amplitúdója eltűnik a Wilson-Fisher-fixpont közvetlen környe-
zetében, ugyanakkor alacsonyabb k skálákon újra megjelenik és állandó értékre áll be az
infravörös skálázás során, így a dimenziós amplitúdó eltűnik a k → 0 határesetben. A IV
fázisnak nincs megfelelője a klasszikus O(N) modellekben. Ez a fázis 1

2 < Ỹ < 1 esetén
van jelen és a dimenziótlan g̃4 csatolás (IV1) vagy a hullámfüggvény-renormálások (IV2)
felrobbanása jellemzi amely mindkét esetben a periodikus kondenzátum hirtelen eltűné-
sét is okozza. A séma tovább javítható néhány közelítés feloldásával, vagy enyhítésével,
ezeket részleteztem [5]-ben. Ezek közül a legnagyobb hatással az indukált vertexek im-
pulzusfüggésének a figyelembevétele van, ugyanis amint láthattuk a indukált vertexek -
még impulzusfüggés nélkül is - komolyan befolyásolják a fázisszerkezetet. A jelen fejezet-
ben taglalt munkában a hozzájárultam a formulák levezetéséhez, programkódokat írtam
a numerikus számolásokhoz, valamint én végeztem el azokat.
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Appendix A

Tree-level renormalization and
the Wegner-Houghton equation

A.1 Tree-level renormalization of Euclidean one-com-
ponent scalar field theory with polynomial poten-
tial

This appendix is a short summary ho the tree-level renormalization technique (TLR)
works in the one-component scalar field theory with ordinary kinetic term. A more in-
depth discussion on TLR can be found in Ref. [47]. For scales k < kc, the spinodal
instability occurs when the logarithm in the right-hand side of Eq. (3.4) fulfills the
inequality

Z + ṽ1(kc) +
3

2
ṽ2(kc)Φ̃

2 ≤ 0. (A.1)

Since the last term in the left-hand side of the inequality (A.1) is always positive, the
critical scale is given via the equation

Z + ṽ1(kc) = 0. (A.2)

One can estimate the interval Φ ∈ [−Φc(k),Φc(k)], in which instability shows up for scales
k < kc from inequality (A.1) as

Φ̃c(k) =

√
−2[Z + ṽ1(k)]

3ṽ2(k)
, Φc(k) =

√
kΦ̃c(k). (A.3)

For scales k < kc and background fields Φ ∈ [−Φc(k),Φc(k)], one turns to the tree-level
blocking relation (3.8) and inserting the ansatz (3.9) into it and obtains the following
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recursion relation

Uk−∆k(Φ) = min
{ρ}

(
Uk(Φ) + Zk2ρ2 +

M∑
n=1

ρ2n

(n!)2
∂2nΦ Uk(Φ)

)
(A.4)

for the blocked potential. For given scale k with given couplings vn(k) and for given
homogeneous field Φ ∈ [−Φc(k),Φc(k)], one calculates the value ρk(Φ), which minimizes
the right-hand side of Eq. (A.4). Then one iterates this process for several values of Φ
and determines the corresponding Uk−∆k(Φ) potential. Lastly, these discrete values of
Uk−∆k(Φ) are fitted by the polynomial (3.9) in the interval Φ ∈ [−Φc(k),Φc(k)] in order to
acquire the new couplings vn(k−∆k). This way, the behavior of the RG trajectories can
be investigated in the deep IR region. This numerical procedure converges for sufficiently
small values of the ratio ∆k/k. It is shown in Ref. [47], that for Z = 1, the amplitude
ρk(Φ) of the spinodal instability is a linear function of the homogeneous background Φ,
2ρk(Φ) = −Φ + Φc(k). Outside of the interval −Φc(k) ≤ Φ ≤ Φc(k) the dimensionful
blocked potential Uk−∆k(Φ) is just Ukc(Φ). In the IR limit k → 0 and in the interval
−Φc(0) ≤ Φ ≤ Φc(0) the tree-level blocking results in the downside facing parabola
Ũk→0(Φ̃) = − 1

2 Φ̃
2 for the dimensionless blocked potential corresponding to ṽ1(0) = −1,

ṽn(0) = 0 for n ≥ 2. Therefore, the dimensionful potential flattens, taking a constant
value in the interval −Φc(k) ≤ Φ ≤ Φc(k) that represents the so-called Maxwell cut.

A.2 Wegner-Houghton equations for φ4 models with
O(2) symmetry

The Wegner-Houghton equation for the O(2) symmetric scalar field theory is derived here
by using the ansatz for the blocked action (3.21). The blocking relation

e−Sk−∆k[φ] =

∫
Dφ′e−Sk[φ+φ′] (A.5)

is the straightforward generalization of the relation (1.6) for the 2-component scalar field.
The Wegner-Houghton equation can only be applied in the LPA, the lowest order of the
gradient expansion, therefore it is sufficient to Taylor-expand the action Sk[φ+φ′] in the
exponent of the integrand around the homogeneous field configuration φ(x) = Φ,

Sk[Φ + φ′] = Sk[Φ] +
1

2

∫
ddxφ′

T
S
(2)
k [Φ]φ′ +O((φ′)3),

(A.6)
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where the matrix of the second functional derivative of the blocked action is given by

S
(2)
k [Φ] =

 δ2S[Φ+φ′]

δφ′
1(x)δφ

′
1(y)

δ2S[Φ+φ′]

δφ′
1(x)δφ

′
2(y)

δ2S[Φ+φ′]

δφ′
2(x)δφ

′
1(y)

δ2S[Φ+φ′]

δφ′
2(x)δφ

′
2(y)

∣∣∣∣
φ′=0

=

(
S11 S12

S21 S22

)
δ(x− y). (A.7)

By abandoning the terms of order O(φ′3) and higher, we can carry out the Gaussian path
integral and reduce Eq. (A.5) to the blocking relation for the blocked action

Sk−∆k[Φ] = Sk[Φ] +
~
2
tr lnS

(2)
k [Φ]. (A.8)

In the limit ∆k/k → 0 the neglected terms, corresponding to higher orders in φ′ give van-
ishing contributions. Taking this into account, one arrives to the exact Wegner-Houghton
equation

∂kSk[Φ] = − lim
∆k→0

~
2∆k

tr lnS
(2)
k [Φ]. (A.9)

In order to cast Eq. (A.9) into a more explicit form, one has to evaluate the trace log in
its right-hand side. The matrix S(2)

k [Φ] is diagonal in the momentum space, consisting of
2 × 2 block matrices in the internal space. For the purpose of the determination of the
elements of those block matrices for given momentum p let us impose the LPA ansatz

S[φ] =
1

2

2∑
a=1

∫
ddp

(2π)d
φa,−pΩ(p

2)φa,p +

∫
ddxUk(φ

Tφ)

(A.10)

for the blocked action. The elements of the matrix are

S11 = Ω(p2) + U ′
k(r) + Φ2

1U
′′
k (r),

S22 = Ω(p2) + (U ′
k(r) + Φ2

2U
′′
k (r)),

S12 = Φ1Φ2U
′′
k (r) = S21, (A.11)

with U ′
k(r) = ∂rUk(r) and U ′′

k (r) = ∂2rUk(r) and r = 1
2Φ

TΦ = 1
2 (Φ

2
1+Φ2

2). The eigenvalues
s+ and s− of the block matrices of S(2)

k [Φ] can be determined from the vanishing of the
determinant of the corresponding eigenvalue equations s2−s(S11+S22)+S11S22−S2

12 = 0
and are

s+(p) = Ω(p2) + U ′
k(r) + 2rU ′′

k (r),

s−(p) = Ω(p2) + U ′
k(r). (A.12)

The trace log of the matrix S(2)
k [Φ] consists of the sum of the logarithms of the eigenvalues

of the matrix. The trace operation in the right-hand side of Eq. (A.9) can be performed
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by summing over the degrees of freedom of the internal space and integrating over the
modes in the infinitesimally thin momentum shell |p| ∈ [k −∆k, k]. Thus, the resulting
Wegner-Houghton equation is

k∂kUk(r) = −αkd ln[s+(k)s−(k)]. (A.13)

From this formula, one obtains the Wegner-Houghton equation (3.22).



Appendix B

Fourier-Wetterich approach

B.1 Regulated full propagator

The full propagator Gp,q in the one-mode approximation is given through the relation

G−1
p,q = Γ

(2)
k p,q|φB

= G−1(p2⊥, p
2
‖,Φ)δp+q,0 +V p,q, (B.1)

where

G−1(p2⊥, p
2
‖,Φ) = Zk(p

2
⊥, p

2
‖) + U ′′

k (Φ) + σV ′′′(Φ) + σ2U ′′′′(Φ) (B.2)

means the inverse of the reduced propagator and V represents the interaction vertex
induced by the periodic condensate,

Vp,q = V(p2⊥, p
2
‖, q

2
⊥, q

2
‖,Φ)

∑
τ=±1

δp+q+τPe,0 (B.3)

with

V(p2⊥, p
2
‖, q

2
⊥, q

2
‖,Φ) = (B.4)

1

2

(
1

2
Ek(p2⊥, p2‖) +

1

2
Ek(q2⊥, q2‖) + V ′′

k (Φ) + 2σU ′′′
k (Φ) +

3

2
σ2V ′′′′

k (Φ)

)
. (B.5)

The reduced propagator can be understood as a kind of particle propagator with the
momentum-independent self-energy piece σV ′′′(Φ) + σ2U ′′′′(Φ) acquired by the particle,
because of the presence of the periodic condensate with the amplitude σ = σk(Φ) and the
induced potential Vk. The induced vertex Eq. (B.3) is the momentum-dependent piece of
the self-energy and comes from elementary processes when the propagating particle pick
up the longitudinal momentum shift P , these are the ‘Umklapp’ processes in solid-state
physics terms. It is worth to mention, that the factor Eq. (B.4) of the induced vertex
Eq. (B.3) loses its momentum-dependence when Z2 symmetry of the model is strictly
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demanded, i.e., the backreaction of the periodic condensate on the derivative terms is
neglected by setting Ek = 0. Furthermore, one has to set φ = Φ∗ in the flow equations
for the wave function renormalizations, which means that when the ordinary potential
has its minimum at Φ∗ = 0, the factor V vanishes and zero contributions come from the
‘Umklapp’ process.

The full propagator can be obtained in the one-mode approximation - by the
inversion of G−1

p,q - in a closed form by resumming the Neumann-series,

Gp,q = G(p2⊥, p‖,Φ)
[
δp+q,0 −G(q2⊥, q

2
‖,Φ)V(p2⊥, p

2
‖, q

2
⊥, q

2
‖,Φ)

∑
τ=±

δp+q+τPe,0

]
(B.6)

with

G(p2⊥, p‖,Φ) =(
1−G(p2⊥, p

2
‖,Φ)

∑
τ=±

G(p2⊥, (p‖ + τP )2,Φ)×V2(p2⊥, p
2
‖, p

2
⊥, (p‖ + τP )2,Φ)

)−1

×G(p2⊥, p2‖,Φ). (B.7)

The full propagator includes a Dyson-type resummation of the contributions of the suc-
cessive repetition of Umklapp processes

G(p2‖)

(∑
τ=±

V(p2‖, (p‖ + τP )2)G((p‖ + τP )2)V((p‖ + τP )2, (p2‖)

)
G(p2‖). (B.8)

The dependencies on the transverse momenta and the homogeneous background have
been suppressed for better transparency. In this elementary amplitude, the first vertex
V shifts the longitudinal momentum p‖ with τP and after an intermediate propagation,
the second vertex V resets the longitudinal momentum to its original value.

The right-hand side of the WE is expressed in terms of the IR regulated full
propagator Greg p,q = (Γ

(2)
k [φB ]) + R)−1

p,q. The comparison with Eq. (B.1) shows that
one has to regulate the reduced propagator G(p2⊥, p2‖,Φ) by adding the corresponding
regulator function to its inverse, i.e., perform the replacement of G(p2⊥, p2‖,Φ) given in
Eq. (B.2) via

Greg(p
2
⊥, p

2
‖,Φ) =

(
Z(p2⊥, p

2
‖) + U ′′(Φ) + σ2U ′′′′(Φ) + σV ′′′(Φ) +Rk(p

2
⊥, p

2
‖)

)−1

.(B.9)

For the sake of simplicity, below we shall not indicate the regulation of the propagators
in the notation explicitly, i.e., G and G shall stand for the regulated expressions.

As for the regulator function, a generalization of Litim’s optimized regulator
is employed, which is adapted to the cylindrical symmetry of the periodic condensate.
Litim’s regulator [58, 92, 93] acts only below the running momentum scale k by compens-
ating the momentum-dependence of the inverse propagator. For ordinary fields (i.e., those
with Zk > 0) it has to satisfy the criterion of nonnegativity. For nonshifted longitudinal



98 Chapter B.

momenta, it is chosen as

Rk(p
2
⊥, p

2
‖) =[

Z⊥ k

(
1

2
k2 − p2⊥

)
+ Z‖ k

(
1

2
k2 − p2‖

)
+ Y⊥ k

(
1

4
k4 − p4⊥

)
+ 2YX k

(
1

4
k4 − p2⊥p

2
‖

)
+Y‖ k

(
1

4
k4 − p4‖

)]
×Θ(

1

2
k2 − p2⊥)Θ(

1

2
k2 − p2‖), (B.10)

while for shifted longitudinal momenta p‖ ± Pk it is

R
[±]
k

(
p2⊥, (p‖ ± Pk)

2
)
={

Z⊥ k

(
1

2
k2 − p2⊥

)
+ Z‖ k

[(
k√
2
+ Pk

)2

− (p‖ ± Pk)
2

]
+ Y⊥ k

(
1

4
k4 − p4⊥

)
+2YX k

[
k2

2

(
k√
2
+ Pk

)2

− p2⊥(p‖ ± Pk)
2

]
+ Y‖ k

[(
k√
2
+ Pk

)4

− (p‖ ± Pk)
4

]}
×Θ(

1

2
k2 − p2⊥)Θ(

1

2
k2 − p2‖). (B.11)

B.2 Traces contributing to the flow equations

The regulated propagators lose their dependencies on the loop-momenta at zero fluctuat-
ing momentum QA = 0. One can exploit this and introduce simplifying notations, such
as

G(p2⊥, p‖) ≡ G,

G(p2⊥, p‖ − τP ) ≡ G(τP ),

G((p⊥ −Q⊥)
2, p‖ −Q‖) ≡ G(Q),

G((p⊥ −Q⊥)
2, p‖ −Q‖ − τP ) ≡ G(Q+ τP ).

(B.12)

This can be generalized trivially for the full propagator G. Applying this notation and the
fact, that the scale derivative of the regulator Ṙ and the induced vertex V are independent
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of the loop momentum, one can identify five types of integral

ζ0 =

∫
p

1, (B.13)

ζ1 =

∫
Q,Q′,p

G(Q), (B.14)

ζ2 =

∫
Q,Q′,p

[G(Q+ P ) + G(Q− P )], (B.15)

ζ3 =

∫
Q,Q′,p

G(Q)[G(Q+ P ) +G(Q− P )], (B.16)

ζ4 =

∫
Q,Q′,p

G(Q)[G(Q+ P ) + G(Q− P )], (B.17)

Accommodating these notations, we can finally write the traces in a transparently. The
trace

T0 =
1

8
√
2π2

ṘGζ0 (B.18)

contributes to the flow equations of the potentials Uk and Vk. The trace T2B =
∑3

n=0 T
[n]
2B

contributes to the flow equations of Z‖ and Z⊥. Its pieces are

T
[0]
2B = b20ṘG2ζ1 + b21ṘG2ζ2, (B.19)

T
[1]
2B = −b0b1V(Φ)ṘG

(
GG(P ) +G(P )G

)(
2ζ1 + ζ2

)
−b0b1V(Φ)ṘG2

(
ζ3 + ζ4

)
, (B.20)

T
[2],0
2B = b20ṘV

2G
{
GG(P )G(P )ζ2 +GG(P )ζ3 + GG(P )ζ4

}
+b21ṘV

2G
{
2GGG(P )ζ2 + 2G[G(P )]2ζ3 + 2GG(P )ζ4

}
, (B.21)

T
[3],0
2B = −b0b1ṘV3GG

{
2G(P )G(P )ζ3 + 2G(P )G(P )ζ4

}
. (B.22)

The factors b0 and b1 are given in Eqs. (4.29) The pure loop integral
∫
p
, when performed

yields a k-dependent factor (8
√
2π2)−1k3.
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