
 Carpathian Journal of Electronic and Computer Engineering 14/2 (2021) 11-14

DOI: 10.2478/cjece-2021-0008

ISSN 1844 – 9689 11 https://www.degruyter.com/view/j/cjece

Actuator control using TCP IP communication
under LabVIEW USB6001 environment

Guo Zenan
Department of Mechatronics

University of Debrecen
Faculty of Engineering

Debrecen, Hungary
guozenan@eng.unideb.hu

Buchman Attila
Department of Mechatronics

University of Debrecen
 Faculty of informatics

Debrecen, Hungary
buchman.attila@inf.unideb.hu

Péter Tamás Szemes
Department of Mechatronics

University of Debrecen
Faculty of Engineering

Debrecen, Hungary
szemespeter@eng.unideb.hu

Abstract—This article introduces a basic LED control using
the USB6001 hardware, which is a LabVIEW product. It may
be thought of as an extension device for real-time testing of
simulation results. LabVIEW2014 is the software used. TCP is
the communication technique, which has already been
incorporated in LabVIEW via one of the communication
modules. It might also be done on the same platform. There are
two objects in this article, a server and a client, that may
transport data or messages between these two applications. The
Transmission Control Protocol governs the transmission
process.

Keywords—Internet of Thing (IoT), LabVIEW, USB6001,
Transmission Control Protocol

I. INTRODUCTION
The "Internet of Things Connected" is the Internet of

Things (IoT, Internet of Things). It's an Internet-based
network that's been extended and enlarged. It is a massive
network created by connecting numerous information
detecting devices. The interconnectedness of people,
machines, and things may be achieved at any moment and in
any location[6].

It refers to the collection of sound, light, and heat in real-
time from any objects or processes that need to be monitored,
connected, and interacted with using various information
sensors, radio frequency identification technologies, global
positioning systems, infrared sensors, laser scanners, and
other devices and technologies. Various required information,
such as electricity, mechanics, chemistry, biology, location,
and so on, can be accessed through various possible networks
in order to realize the ubiquitous connection between things
and people, as well as to realize intelligent perception and
recognition of objects and processes. The Internet of Things
(IoT) is a data transport system that uses the Internet,
traditional telecommunications networks, and other
technologies. It enables all common physical things that may
be addressed separately to be joined to form a network[5].

II. ARCHITECTURE AND PROTOCOLS
The Internet of Things (IoT) has the potential to connect

trillions or perhaps billions of objects in a variety of
configurations. As a result, in industrial applications, flexible
design is crucial. The ever-growing number of suggested
architectures has yet to settle on a standard model[4].

A. Objects Layer
The object layer, which is the physical sensor for acquiring

and processing information in the Internet of Things, is the
initial layer. Sensors and actuators are used to perform a
variety of functions, such as location, temperature, motion,
vibration, acceleration, humidity, and so on. Through a secure
link, the perception layer will digitize and transfer data to the
object abstraction layer. At this layer, the Internet of Things
generates big data.

B. Object Abstraction layer
Object abstraction transmits the data generated by the

object layer to the service management layer through a secure
channel[9]. Data can be transferred through various
technologies such as RFID, 3G, GSM, UMTS, WiFi,
Bluetooth Low Energy, infrared, ZigBee, etc[1].

C. Service Management Layer
Based on address and name, the middleware or service

management layer (peering) matches the service with its
requester[1]. Through the network line protocol, this layer
also analyses the received data, makes judgments, and offers
the appropriate services[3].

Fig. 1. IoT architecture[1]

D. Application Layer
Customers might receive services from the application

layer. For example, the application layer may offer customers
the measured temperature and humidity they require[1]. It can
provide high-quality intelligence services to fulfill the needs

Carpathian Journal of Electronic and Computer Engineering 14/2 (2021) 11-14

ISSN 1844 – 9689 12 https://www.degruyter.com/view/j/cjece

of visitors. Intelligent family applications, intelligent
buildings, traffic, industrial automation, and intelligent
medical healthcare are all covered by a vertical expansion[7].

E. Business Layer
The IoT operations and services are managed by the

Business layer. The task include creating a business model,
graph, and block diagram, as well as getting data from the
application layer. The business model allows for the
processing of decisions based on big data analysis. It may also
keep an eye on and regulate the other four levels at the bottom.
It compares the output values to the expected values of each
layer, thereby improving services and protecting customers'
privacy.

Fig. 2. IoT communication protocols[2]

The branches of IoT communication protocols are
depicted in Fig. 2, which may be classified as (A): LPWAN
and (B): Short-range network[2].

III. IOT COMMUNICATION MODELS
From an operational standpoint, it is vital to evaluate the

Internet of Things connectivity and communication paradigm
via technology. In the following, certain frames will be
addressed, and the important points of each model will be
provided in a simple manner[2]. The various models depict
many functions or applications for various communications
scenarios.

A. Device-to-Device Communications
Instead of requiring a middle software application to

communicate, device-to-device models demonstrate the direct
connection and communication between two or more devices.
There are several forms of the web that people use to connect
with one another, including IP networks and the Internet. In
the meanwhile, these devices or applications would link
directly to one another via protocols such as Bluetooth, Z-
Wave, or ZigBee[2].

B. Device-to-Cloud Communications
In the Device-to-Cloud communication model, an Internet

of Things device connects to the internet cloud. For example,
an application program service provider could exchange data
in order to govern the flow of information or messages. This
approach utilizes a communication protocol such as Wifi or
Ethernet to build a link between the network or Internet and

the Cloud service, which is then connected to the Cloud
service via the application and IP networks[2].

The gadget and cloud services are usually provided by the
same company. If there are proprietary protection data
between the device and the Cloud service, the user's or owner's
device might be linked to it. Meanwhile, while utilizing a
gadget that is integrated with a certain platform design, the
user might feel relieved[2].

C. Device-to-Gateway Model
The device-to-gateway model, or the more traditional

device-to-application-layer gateway paradigm, is used. The
ALG services, which is the Cloud service's tunnel, link the
Internet of Things devices to the gateway. It indicates that the
software application program is operating on the local
gateway device and that this software serves as a conduit
between the device and the Cloud service, providing secure
security and other services such as data translation or protocol
conversion[2].

Fig. 3. device to gateway communication[2]

There are numerous stacks of protocols, such as
HyperText Transfer Protocol (HTTP), Transport Layer
Security (TLS), Transmission Control Protocol/Internet
Protocol (TCP/IP), and IPv6, as seen in Fig. 3.

D. Back-End Data-Sharing Model
The back-end data-sharing model is a communication

architecture that may assist users in combining data from
many sources before extracting and analyzing object data
from the Cloud service. Meanwhile, the effective back-end
data sharing structure allows users to exchange data when IOT
services are switched, allowing this architectural structure to
speed up the requirement for data transmission. It dismantles
the usual data-blocking barrier. To ensure interoperability of
intelligent device data housed in the cloud, it is recommended
that a federated Cloud service or cloud application
programming interface be used[2].

IV. METHODOLOGY OF THE LED CONTROL USING USB6001
The USB6001 is a multifunction DAQ device with a

modest price tag. It has analog and digital I/O, as well as a 32-
bit counter. Basic capability is provided by the USB6001 for
applications including simple data logging, portable
measurements, and academic lab studies. The NI USB6001
Pinout is shown in the following Fig. 4.

Carpathian Journal of Electronic and Computer Engineering 14/2 (2021) 11-14

ISSN 1844 – 9689 13 https://www.degruyter.com/view/j/cjece

Fig. 4. NI USB6001 Pinout[10]

On the left side of the NI USB6001 board, the analog input
port 0 and the ground are connected to the potential meter with
the breadboard. The third pin of the potential meter is the 5V
power supply. Then the potential meter could send the signals
to the NI USB6001 device through the analog input port 0.
LabVIEW program will receive the signal and the then send it
to the analog output port on the USB6001 device. Then analog
output port 1 and analog output port 0 provide the enough
voltage to the LED.

When the voltage reaches the limit, the light-emitting
diode (LED) will light up. The potential meter has three ports:
two for positive and negative signals, and one for a 5V power
source. The potential meter is then used to regulate the LED's
input voltage, and the input voltage may convey the signal
through the USB6001's Analog Input connection. The signal
might be sent to the LED using the analog output connector.

Fig. 5. Block diagram of the whole system

The Analog Input and Analog Output loops can be used to
split the function loop into two parts. Because this article is
about the Internet of Things, TCP can offer transmission

between two applications based on the TCP concept. In the
overall system, there is a server and a client. The server is the
host that allows one software to transmit a signal or message
to another. The receiver, or client, is a program that can
receive a message from another program. The software in this
paper is a LabVIEW Virtual Instrument (VI).

The server, client, input, and output loops make up the
entire system. Because the input value is obtained by the
server Loop, the two VIs might be combined into one. The
Client and Output Loops use the same technique. The system's
stages are depicted in the block diagram above (Fig. 1Fig. 5).

The Server Block Diagram in LabVIEW is shown in Fig.
6. in the following. The upper loop is the Analog Input loop,
which gets the voltage from the potential meter, and the lower
loop is the TCP communication module in LabVIEW, where
the port address can be anything as long as it matches the
Client address port.

Fig. 6. The server of the system

In the following, the Client loop is shown in Fig. 7. The
lower loop is the client loop, which receives the signal from
the server and sends it to the top loop, which is the Analog
Output loop. The LED could then function.

Fig. 7. The client of the system

The TCP uses a three-way handshake, which is the
foundation of the LabVIEW Transmission Control Protocol.
It is not contained in the above-mentioned software code. The
USB6001 and the breadboard with the potential meter are
shown in Fig. 8.

The voltage input is controlled by the potential meter,
which then sends the signal to the USB60001. The message is
received by the TCP server LabVIEW code, which then sends
it to the Client. The Client receives the signal and shares it
with the TCP analog output terminal, where the fixed voltage
is then sent out through the USB6001 Analog Output port to
light the LED. The USB6001 may provide the potential meter
with a 5V power source.

Server get the signal and
send it to the client

Client gets the signal and
send it to the analog output

port

Potential meter send signal
through the analog signal LED lights on

HOST CLIENT

Carpathian Journal of Electronic and Computer Engineering 14/2 (2021) 11-14

ISSN 1844 – 9689 14 https://www.degruyter.com/view/j/cjece

Fig. 8. LED control using TCP communication

ACKNOWLEDGMENT
A LED control approach was provided in this work

utilizing LabVIEW and the Transmission Control Protocol.
It's sandwiched between two Loops, but it's on the same
platform. The software might be implemented on different
platforms in the future. One is for the message to be sent by
the server, and the other is for the message to be received by
the client. To achieve communication, the environment might
be WIFI or a cloud service.

REFERENCES

[1] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed
Aledhari, and Moussa Ayyash. Internet of things: A survey on enabling
technologies, protocols, and applications. IEEE communications
surveys & tutorials, 17(4):2347–2376, 2015.

[2] Shadi Al-Sarawi, Mohammed Anbar, Kamal Alieyan, and Mahmood Alzubaidi. Internet of things (iot) communication protocols. In

2017 8th International conference on information technology (ICIT), pages 685–690. IEEE, 2017.
[3] Moumena A Chaqfeh and Nader Mohamed. Challenges in middleware solutions for the internet of things. In 2012

international conference on collaboration technologies and systems
(CTS), pages 21–26. IEEE, 2012.

[4] Srdjan Krco, Boris Pokri ˇ c, and Francois Carrez. Designing iot architecture (s): A european perspective. In ´ 2014 IEEE world
forum on internet of things (WF-IoT), pages 79–84. IEEE, 2014.

[5] Santosh Kulkarni and Sanjeev Kulkarni. Communication models in internet of things: a survey. International Journal of Science
Technology & Engineering, 3:3, 2017.

[6] J Sathish Kumar and Dhiren R Patel. A survey on internet of things: Security and privacy issues. International Journal of Computer
Applications, 90(11), 2014.

[7] Lu Tan and Neng Wang. Future internet: The internet of things. In
2010 3rd international conference on advanced computer theory
and engineering (ICACTE), volume 5, pages V5–376. IEEE, 2010.

[8] Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and Hui-Ying Du. Research on the architecture of internet of things. In 2010 3rd
international conference on advanced computer theory and
engineering (ICACTE), volume 5, pages V5–484. IEEE, 2010.

[9] Zhihong Yang, Yingzhao Yue, Yu Yang, Yufeng Peng, Xiaobo Wang, and Wenji Liu. Study and application on the architecture and key technologies for iot. In 2011 International Conference on
Multimedia Technology, pages 747–751. IEEE, 2011.

[10] Instruments, N. "USER GUIDE NI USB-6001/6002/6003 Low-Cost DAQ USB Device." (2014).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

