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Abstract

During the course of Graves’ orbitopathy (GO), orbital fibroblasts are exposed to factors 

that lead to proliferation and extracellular matrix (ECM) overproduction. Increased 

levels of tissue plasminogen activator inhibitor type 1 (PAI1 (SERPINE1)) might promote 

the accumulation of ECM components. PAI1 expression is regulated by cell density and 

various cytokines and growth factors including transforming growth factor β (TGF-β). 

We examined the effects of increasing cell densities and TGF-β on orbital fibroblasts 

obtained from GO patients and controls. Responses were evaluated by the measurement 

of proliferation, PAI1 expression, and ECM production. There was an inverse correlation 

between cell density and the per cell production of PAI1. GO orbital, normal orbital, 

and dermal fibroblasts behaved similarly in this respect. Proliferation rate also declined 

with increasing cell densities. Hyaluronan (HA) production was constant throughout 

the cell densities tested in all cell lines. In both GO and normal orbital fibroblasts, but 

not in dermal fibroblasts, TGF-β stimulated PAI1 production in a cell density-dependent 

manner, reaching up to a five-fold increase above baseline. This has been accompanied 

by increased HA secretion and pericellular HA levels at high cell densities. Increasing cell 

density is a negative regulator of proliferation and PAI1 secretion both in normal and GO 

orbital fibroblasts; these negative regulatory effects are partially reversed in the presence 

of TGF-β. Cell density-dependent regulation of PAI1 expression in the orbit, together with 

the local cytokine environment, may have a regulatory role in the turnover of the orbital 

ECM and may contribute to the expansion of orbital soft tissue in GO.

Q4
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Introduction

Graves’ orbitopathy (GO) is the extrathyroidal 
manifestation of Graves’ disease characterized by an 
autoimmune inflammation resulting in an increased 
volume of the orbital connective tissue and enlargement 
of the extraocular muscles (Bahn 2010, Wang & Smith 

2014). Orbital fibroblasts (OFs) are the main target cells 
in GO due to their expression of autoantigens specific to 
GO (Otto et al. 1996, Bahn 2010, Wang & Smith 2014). 
Macrophages, T and B lymphocytes, and mast cells 
infiltrate the orbit and activate the OFs (Bahn 2010). 

Q5

Journal of Endocrinology  
(2016) 229, 1–10

mailto:nagy@internal.med.unideb.hu
http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-15-0524
Line
Please check and approve the title.

Line
Please check and approve the author list.

Line
Please check and approve the affiliation details.

Line
Please check that only approved gene and protein nomenclature is used in your paper (human genes in uppercase italics, human proteins in uppercase roman; mouse/rat genes with initial uppercase italics, mouse/rat proteins all uppercase roman). For more details, see http://joe.endocrinology-journals.org/site/misc/For-Authors.xhtml#genes and correct if necessary.

Line
We have introduced the updated symbol ‘SERPINE1’ for ‘PAI-1’ as per gene nomenclature. Please check and approve.

Line
Please check and approve the identification of the section level headings.



PROOF ONLY
229:2 2Research e galgoczi and others PAI1 in the pathogenesis of 

Graves’ orbitopathy

http://joe.endocrinology-journals.org 2016 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.
DOI: 10.1530/JOE-15-0524

Jo
u

rn
al

o
f

En
d

o
cr

in
o

lo
g

y

Cytokine-dependent activation of OFs augments the 
inflammatory and autoimmune processes and accounts 
for orbital tissue remodeling (Smith 2005).

Altered synthesis and degradation of extracellular 
matrix (ECM) components by activated OFs play a key role 
in the pathogenesis of GO (Smith 2005). Hyaluronan (HA) 
is the major ECM glycosaminoglycan, a high-molecular-
weight polysaccharide with essential role in cell–ECM and 
cell – cell interactions. HA is synthesized at the plasma 
membrane by three isoenzymes named hyaluronan 
synthase (HAS) 1, 2, and 3, which possess different 
biochemical properties (Vigetti et al. 2014). HA has a high 
turnover rate; hyaluronidase (HYAL) 1 and 2 are the major 
hyaluronidases expressed in human tissues (Girish & 
Kemparaju 2007). HA is retained as a pericellular coat after 
its synthesis, anchored to the cell surface via the synthase 
enzyme or through binding to a surface receptor, and 
certain amount cleaved by hyaluronidase is released from 
the pericellular matrix and incorporated as an integral 
component of the ECM. Alterations in this process could 
affect the physiological role of HA in the surrounding 
tissue (Monslow et  al. 2015). In GO, OFs secrete large 
amounts of HA in response to, as of now, only partially 
characterized cytokines and antibodies (Bahn 2010). Due 
to its hydrophilic nature, HA accumulation accelerates 
expansion of the orbital connective tissues (Wang & Smith 
2014). In addition, the interaction between HA and its 
receptor on the surface of most immune cells is important 
for the infiltration of leukocytes into the inflamed tissue 
(DeGrendele et al. 1997).

In addition to ECM molecules, fibroblasts synthesize 
and secrete proteases capable of degrading the ECM 
(McAnulty 2007). The plasminogen activator/plasmin 
system and its main negative regulator, the plasminogen 
activator inhibitor type 1 (PAI1 (SERPINE1)), have 
important roles in ECM degradation and remodeling 
(Smith & Marshall 2010). PAI1 is a single-chain 
glycoprotein and a member of the serine protease 
inhibitor family. PAI1 inhibits tissue and urokinase-type 
plasminogen activators, thus inhibiting the plasminogen-
plasmin conversion as well as plasmin-dependent 
matrix metalloprotease activation. Therefore, PAI1 is a 
primary regulator of plasmin-driven proteolysis of the 
ECM. The increased expression of PAI1 results in ECM 
accumulation (Małgorzewicz et al. 2013). The expression 
of PAI1 is regulated by various cytokines and growth 
factors including transforming growth factor β (TGF-β) 
(Ghosh & Vaughan 2012). Strong TGF-β expression has 
been found in the orbital tissue of patients with mild and 
severe GO, which correlated positively with the clinical 

activity score (CAS) (Pawlowski et  al. 2014). It has been 
demonstrated that OFs synthesize PAI1, and that PAI1 
expression is up-regulated by TGF-β, interferon-γ (IFN-γ), 
and leukoregulin (Smith et al. 1992, Cao et al. 1995, Hogg 
et al. 1995); however, the role of PAI1 in the pathogenesis 
of GO is still unclear. 

PAI1 expression has been shown to be dependent on cell 
density in various cell types including human preadipocytes 
(Crandall et al. 1999), dermal fibroblasts (McFarland et al. 
2011), and NIH/3T3 cells (Tanaka et al. 2013). Those studies 
revealed that PAI1 synthesis decreased during the process of 
growth toward confluency, which was consistent with the 
observation that PAI1 transcription occurred during the G0 
to G1 transition (Qi et al. 2006). However, it is unknown 
how PAI1 expression is altered by the increased fibroblast 
proliferation during the course of GO.

The aim of this study is to investigate whether cell 
density alone or in combination with TGF-β affected 
the secretion of PAI1 and the accumulation of the ECM 
component HA in OF cultures originating from normal 
and GO orbits. 

Materials and methods

Materials

Recombinant human TGF-β1, fetal bovine serum (FBS), 
Medium 199 with Earles’ salts and GlutaMAX supplement, 
penicillin/streptomycin, Dulbecco’s phosphate-buffered 
saline without calcium and magnesium (DPBS), 
trypsin – EDTA solution, freezing medium, and TrypLE 
Express were purchased from Gibco (Thermo Fisher 
Scientific). DuoSet ELISA Human Serpin E1/PAI-1 Kit 
and DuoSet Hyaluronan Kit were purchased from R&D 
Systems (R&D Systems). Cell proliferation ELISA and BrdU 
(colorimetric) were purchased from Roche (F. Hoffmann-La 
Roche Ltd). RNeasy Protect Cell Mini was purchased from 
QIAGEN (QIAGEN GmbH). High Capacity cDNA Reverse 
Transcription Kit and TaqMan Gene Expression Assays 
were purchased from Applied Biosystems (Thermo Fisher 
Scientific).

Tissue samples and cell cultures

Orbital connective tissue explants were obtained from five 
patients (three females and two males) undergoing orbital 
decompression surgery for GO. The mean age of patients 
at the time of surgery was 45.4 (range 37 – 55) years. The 
mean duration of Graves’ disease in GO was 5.6 ± 4.2 
(range 1 – 11) and 3.0 ± 2.9 (range 1–8) years respectively. 

http://dx.doi.org/10.1530/JOE-15-0524
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All but one patient was in the inactive phase of GO. The 
patient with active GO and one patient with inactive 
GO were positive to thyroid-stimulating hormone (TSH) 
receptor antibody. Before surgery, two patients underwent 
thyroidectomy, two patients got radioactive iodine 
treatment, and all but one patient has been on antithyroid 
drugs for some time during the course of the disease. All 
patients had received corticosteroid treatment in the 
past, and two patients received orbital irradiation. During 
the last 2 months before orbital surgery, patients used 
only diuretics, β-blockers, thyroxine supplementation, 
and local measures. Patients at the time of surgery had 
suppressed TSH levels and high-normal thyroid hormone 
levels. Control normal orbital tissues (five patients: two 
females and three males, mean age: 63.4 years; range 
47 – 72 years) were obtained during surgery (enucleation) 
for non-orbital eye diseases, and control dermal connective 
tissues (three patients: two females and one male, mean 
age: 64.7 years; range 50 – 80 years) were obtained during 
abdominal hernia operations from patients with no 
history of thyroid diseases. The study was approved by 
the Ethics Committee of the University of Debrecen. All 
patients gave their written informed consent.

Human OFs were cultured as described previously in 
detail by Bahn et al. (1987). Briefly, the tissues were cut 
into 2 × 2 mm pieces and inoculated into culture dishes 
containing Medium 199 with Earle’s salts with 20% 
(v/v) FBS and penicillin–streptomycin, and cultured at 
37°C, 5% CO2, in a humidified incubator. Medium was 
changed every 3 – 4 days. After 2 – 3 weeks, depending 
on the proliferative rate of the culture, the tissue pieces 
were removed and the cell cultures were maintained 
in Medium 199 with 10% (v/v) FBS under the same 
conditions. After gentle treatment using TrypLE Express 
dissociating reagent, cells were stored in freezing medium 
in liquid nitrogen until needed. The cells were studied 
between passages 2 and 8. 

For experiments, orbital and dermal fibroblasts 
were plated in 24-well plates, in various cell densities 
(6.24 × 104, 3.12 × 104, 1.56 × 104, 7.8 × 103, 3.9 × 103, 
and 1.95 × 103 cells/cm2) in Medium 199 supplemented 
with 10% (v/v) FBS. Densities of 1.56 × 104 cells/cm2 and 
above represent confluent and post-confluent cultures 
respectively. The cultures were synchronized with serum 
starvation for 24 h (Khammanit et  al. 2008) followed 
by treatment with medium containing 10% (v/v) FBS 
with or without TGF-β (1 ng/mL) for an additional 24 h. 
The conditioned media were collected and centrifuged 
at 3500 rpm for 5 min to remove any cellular debris 
and stored at –20°C until used. All experiments were 

performed at least three times and carried out in 
triplicate.

Cell proliferation assay

Cells were treated as described above. The assay was 
performed in 96-well plates according to the manufacturer’s 
instructions. Briefly, the 5-bromo-2′-deoxyuridine (BrdU) 
solution was added to the cell cultures and incubated for 
2 h. After removing the medium, cells were fixed using 
FixDenat solution for 30 min. Then, peroxidase-conjugated 
anti-BrdU antibody was added for 90 min. Finally, 
3,3′,5,5′-tetramethylbenzidine substrate was introduced for 
10 min, and after the addition of 2 N H2SO4, the absorbance 
at 450 nm (reference wavelength: 620 nm) was detected 
using a Beckman Coulter, DTX 880 Multimode Detector 
(Beckman Coulter Inc., Brea, CA, USA). 

Quantitation of PAI1 protein and HA

Secreted PAI1 protein and HA levels in cell culture 
supernatants were measured by using DuoSet ELISA 
Human Serpin E1/PAI-1 Kit and DuoSet Hyaluronan 
Kit respectively. For pericellular HA measurement, cells 
were washed twice with DPBS and treated with 0.05% 
(w/v) trypsin–EDTA solution at 37°C for 20 min, and the 
reaction was stopped by addition of FBS (10% v/v final 
concentration). After centrifugation at 3500 rpm for 
5 min, supernatants were used for HA determination. In 
each case, results were adjusted for the HA content of FBS. 
In all experiments, the PAI1 and HA productions per cell 
were expressed as ng/105 cells.

Real-time polymerase chain reactions (RT-PCR)

The supernatants were removed and cells were washed 
twice with DPBS. RNeasy Protect Cell Mini Kit was 
used for the isolation of RNA from cells. We used 
the QIAcube robotic workstation (QIAGEN) for the 
isolation of RNA. The purified RNA samples were 
reverse transcribed by High Capacity cDNA Reverse 
Transcription Kit. The TaqMan Gene Expression Assays 
was used for the detection of the expression of PAI1, 
HAS1, HAS2, HAS3, HYAL1, HYAL2, and glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) (assay IDs: 
SERPINE1–Hs01126603_m1, HAS1–Hs00987418_m1, 
HAS2–Hs00193435_m1, HAS3–Hs00193436, HYAL1–
Hs00201046_m1, HYAL2–Hs01117343_g1, and GAPDH–
Hs02758991_g1 respectively). The reactions were 
performed by the StepOnePlus Real-time PCR System 

Q7
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(Applied Biosystems). Results were normalized to GAPDH 
mRNA levels by the ΔCT method.

Statistical analysis

Statistical analysis was performed using the STATISTICA 
12 software (Statsoft Inc. Tulsa, OK, USA). Data are 
expressed as mean ± s.e.m. Repeated measures analysis of 
variance (ANOVA) with density as the within-subjects 
factor and origin of fibroblasts (dermal fibroblasts, 
normal OFs, and GO OFs) as between-subjects factor 
and LSD post hoc analysis were performed to evaluate the 
differences. Correlation analysis was performed to study 
the relationship between continuous variables. The level 
of statistical significance was set at P < 0.05. 

Results

Dermal fibroblasts, normal OFs, and GO OFs secreted 
comparable amounts of PAI1 protein at each density. 
Cell culture synchronization by serum starvation for 24 h 
before experiments resulted in slightly but significantly 
higher amounts of secreted PAI1 at the end of 24-h tests 
in medium re-supplemented with serum and led to less 
variance between repetitions (data not shown). PAI1 
secreted by individual cells (expressed as ng/105 cells) 
decreased significantly (P < 0.000001) with increasing 
cell densities (Fig. 1A); however, the origin of fibroblasts 
was not a significant factor; normal OFs and GO OFs 
behaved similarly in this respect. RT-PCR confirmed that 
PAI1 mRNA level decreased in parallel with PAI1 protein 
concentration with increasing cell density (P < 0.0001) 
(Fig. 2A). PAI1 mRNA expression was different in cell 
lines with different origin (P < 0.01): in descending order, 
dermal fibroblasts, normal OFs, and GO OFs (dermal 
fibroblasts vs normal OFs, P < 0.01; dermal fibroblasts vs 
GO OFs, P < 0.001; normal OFs vs GO OFs, P = 0.03).

HA secretion into the medium and pericellular HA 
levels did not show cell density-dependent behavior 
(P = 0.6 and P = 0.2 respectively), and the origin of 
fibroblasts was the main predictor of HA synthesis 
(P < 0.001) (Fig. 1B and C). Post hoc analysis showed 
that dermal fibroblasts secreted significantly higher 
amounts of HA than OFs (dermal fibroblasts vs normal 
OFs, P < 0.01; dermal fibroblasts vs GO OFs, P < 0.001). 
In OFs, higher HA producers (>500 ng/105 cells) only 
occur among normal OFs (two out of five), and lower 
HA producers (<300 ng/105 cells) only occur among 
GO OFs (three out of five). Similar results were found 

Figure 1
Influence of cell density on (A) PAI1 secretion, (B) hyaluronan (HA) 
secretion, (C) pericellular HA level, and (D) proliferation rate of dermal 
fibroblasts, normal orbital fibroblasts (OFs), and Graves’ orbitopathy 
orbital fibroblasts (GO OFs). Results shown are the mean ± s.e.m. 

http://dx.doi.org/10.1530/JOE-15-0524
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in pericellular HA levels (dermal fibroblasts vs normal 
OFs, P = 0.013; dermal fibroblasts vs GO OFs, P < 0.001), 
although there was a tendency toward lower pericellular 
HA in GO OFs than in normal OFs (P ± 0.06). We found 
significant positive correlation between HA released into 
the medium and HA retained in the pericellular matrix 
(dermal fibroblasts: r = 0.72, P < 0.01; normal OFs: r = 0.77, 
P < 0.00001; GO OFs: r = 0.97, P < 0.000001). Results of the 
RT-PCR showed that HAS1 and HAS3 expressions were in 
the same order of magnitude, whereas HAS2 expression 
was the predominant HAS enzyme in all cell lines studied 
(Fig. 2B, C and D). The expression pattern of HAS enzymes 
was different in fibroblasts with distinct type of origin. 
Dermal fibroblasts had higher expression levels of HAS1 
and HAS2 mRNA than OFs (dermal fibroblasts vs normal 
OFs, P = 0.05 and P < 0.0001, dermal fibroblasts vs GO OFs, 
P = 0.02 and P < 0.0001, respectively), whereas OFs had 
higher HAS3 expression than dermal fibroblasts (dermal 
fibroblasts vs normal OFs, P = 0.03, dermal fibroblasts vs 

GO OFs, P < 0.0001). GO OFs had higher HAS3 expression 
than normal OFs (P < 0.001). The expression of HAS1 and 
HAS2 decreased with increasing cell density in dermal 
fibroblasts. The expression of HYAL1 was more diverse 
than the expression of HYAL2 (Fig. 2E and F). Dermal 
fibroblasts had the lowest HYAL1 expression, and GO OFs 
had lower HYAL1 expression than normal OFs (dermal 
fibroblasts vs normal OFs, P < 0.001, dermal fibroblasts 
vs GO OFs, P < 0.01, normal OFs vs GO OFs, P < 0.001).  
There was a tendency for lower HYAL1 and HYAL2 
expression in confluent cultures than in pre- and  
post-confluent cultures.

The proliferation rate of fibroblasts declined 
significantly (P < 0.000001) with increasing cell densities 
in all fibroblasts tested, irrespective of the site of origin 
(Fig. 1D). Accordingly, significant positive correlation 
was found between proliferation and PAI1 secretion 
in all fibroblasts studied (dermal fibroblasts: r = 0.81, 
P < 0.01; normal OFs: r = 0.71, P < 0.0001; GO OFs: r = 0.70, 

Figure 2
Influence of cell density on (A) PAI1, (B) HAS1, (C) 
HAS2, (D) HAS3, (E) HYAL1, and (F) HYAL2 mRNA 
expression in dermal fibroblasts, normal orbital 
fibroblasts (OFs), and Graves’ orbitopathy orbital 
fibroblasts (GO OFs). Results were adjusted for the 
expression of GAPDH. Results shown are the 
mean ± s.e.m. 
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P < 0.0001). The proportion of proliferating cells was 
significantly higher in OFs than in dermal fibroblasts at all 
but one density (normal OFs vs dermal fibroblasts, P = 0.03; 
GO OFs vs dermal fibroblasts, P = 0.02). No differences 
were observed between OFs derived from normal and GO 
orbital connective tissues (P = 0.8) according to the post 
hoc tests. 

Next, our model was completed with TGF-β treatment. 
Dose–response experiments were performed in a range of 
0.01–10 ng/mL; 1 ng/mL TGF-β had the maximal effect 
on PAI1 secretion during the 24-h treatment, and this 
concentration was selected for further experiments. 

At each density, TGF-β stimulated PAI1 secretion 
in all tested cell lines, irrespective of the site of origin 
(P < 0.000001). In both GO and normal OFs, but not 
in dermal fibroblasts, the extent of the stimulation by 
TGF-β strongly depended on cell density (P < 0.00001); 
more marked stimulation of PAI1 secretion was seen 
with increasing densities (Fig. 3A). The same stimulation 
pattern was detected when PAI-1 mRNA levels were 
examined under the effect of TGF-β (Fig. 4A). Thus, the 
PAI-1-lowering effect of high cell densities (Fig. 1A) has 
been partially reversed by TGF-β. 

Significant stimulatory effect of TGF-β on HA secretion 
into the medium was seen at the highest cell densities, 
irrespective of the origin of fibroblasts (P < 0.0001) (Fig. 3B). 
The same was true for pericellular HA of OFs (Fig.  3C), 
whereas dermal fibroblasts responded to TGF-β with a 
pericellular HA rise at all densities. The positive correlation 
between HA in the medium and pericellular HA seen in 
unstimulated cultures (Fig. 1B and C) remained significant in 
cell cultures after 24 h TGF-β treatment (dermal fibroblasts: 
r = 0.58, P = 0.02; normal OFs: r = 0.95, P < 0.000001; GO 
OFs: r = 0.89, P < 0.000001). The expression of HAS2, HAS3, 
HYAL1, and HYAL2 did not changed or slightly decreased in 
TGF-β-treated cells (data not shown), whereas HAS1 mRNA 
expression increased markedly in a cell density-dependent 
manner (P = 0.03), especially in OFs (Fig. 4B).

In OF cultures, TGF-β-induced increase in PAI1 
secretion was directly proportionate to the changes of 
both HA secretion (normal OFs: r = 0.78, P < 0.000001; GO 
OFs: r = 0.56, P < 0.01) and pericellular HA level (normal 
OFs: r = 0.67, P < 0.0001; GO OFs: r = 0.73, P < 0.00001).

There was only a minor effect of TGF-β on the 
proliferation rate (Fig. 3D), which was dependent on cell 
density (P < 0.01). A slight non-significant increase was 
only observed at the highest density of orbital cultures 
(P = 0.051 in normal and P = 0.22 in GO OFs). At other 
densities, mild inhibitory effect of TGF-β was detected 
(most pronounced in dermal cultures at the lowest density 

Figure 3
Influence of TGF-β treatment (1 ng/mL) on (A) PAI1 secretion, (B) 
hyaluronan (HA) secretion into the medium, (C) pericellular HA levels, 
and (D) proliferation rate at increasing cell densities. The 100% line 
represents the respective untreated cultures. Results are shown as% of 
untreated (mean ± s.e.m.). 
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with 70% of untreated, P < 0.01, and in orbital cultures 
82% of untreated, P = 0.04).

Discussion

Orbital fibroblasts are considered to be the primary 
targets of the autoimmune process in GO, activated by 
cytokines released by immune cells infiltrating the orbital 
connective tissue (Bahn 2010, van Steensel et  al. 2012). 
Stimulated OFs deposit ECM components and proliferate 
in an unregulated manner (Wang & Smith 2014). HA is 
the major overproduced glycosaminoglycan in the GO 
orbit (Hufnagel et al. 1984, Smith et al. 1989, Bahn 2010). 
HA accumulation in the orbital connective tissue causes 
edematic swelling (Natt & Bahn 1997) and facilitates 
inflammatory cell infiltration (Guo et  al. 2011, Evanko 
et al. 2012), thereby promoting disease progression. ECM 
remodeling requires proteolytic enzyme activity (Lu 

et  al. 2011). The plasminogen activator system plays a 
key role in ECM remodeling in many physiological and 
pathophysiological processes (Mignatti & Rifkin 1993), 
as PAI1 is the main negative regulator of the conversion 
of plasminogen to plasmin; inhibits fibrinolysis and 
plasmin-dependent pericellular proteolysis (Ghosh & 
Vaughan 2012); modulates cellular adhesion, migration, 
and wound healing. As a consequence, the balance 
between ECM synthesis and degradation is regulated, to a 
great extent, by PAI1. However, cell–cell contacts regulate 
proliferation and PAI1 expression in non-transformed 
cells (Comi et  al. 1995, Tanaka et  al. 2013). During the 
course of GO, overproduction of HA creates a loose, 
highly hydrated environment, which has an impact on 
cell–cell contacts and cell–ECM interactions.

In this study, we have shown that cell density is 
a negative regulator of both proliferation and PAI1 
production in OFs, regardless of whether they are derived 
from normal or GO orbital tissue. Contact inhibition of 
proliferation is typical of non-transformed cells (Küppers 
et al. 2010) and is considered to be continuously active, 
regulating cell proliferation and organ size in adult tissues 
(Zeng & Hong 2008). Therefore, we have hypothesized 
that confluent cultures correspond to the healthy orbit, 
whereas pre-confluent cultures represent the expanding, 
high ECM orbital tissue with higher fibroblast proliferation 
rate. We found that OFs, both from control and GO orbits, 
had higher proliferative capacity than dermal fibroblasts 
(Fig. 1D). This means that OF cultures are characterized 
by higher cell turnover compared with dermal fibroblasts. 
Others made similar observations under the same 
conditions in confluent cultures of OFs (Heufelder & Bahn 
1994). In our experiments, a progressive transcriptionally 
regulated reduction in PAI1 synthesis with increasing cell 
densities was detected using fibroblasts of both dermal 
and orbital origin; PAI1 synthesis per cell was inversely 
proportional to cell density. This is in agreement with 
similar studies in non-orbital cultures (Crandall et  al. 
1999, Tanaka et al. 2013). However, we are the first to show 
that OFs behave in the same manner. We assume that the 
growth state of OFs at different cell densities is the main 
determinant of PAI1 expression. Elevated PAI1 synthesis 
during G0 to G1 transition maintains a supporting scaffold 
for proliferation by limiting pericellular proteolysis. It was 
found in human keratinocytes that a dynamic occupancy 
of the E box site in the PE2 region of PAI-1 gene promoter 
by upstream stimulatory factor (USF) subtypes (USF1 vs 
USF2) determine the transcriptional status of the PAI-1 
gene in quiescent versus cycling cells (Qi et  al. 2006). 
Further studies are needed to confirm whether these 

Figure 4
Influence of TGF-β treatment (1 ng/mL) on (A) PAI1 and (B) HAS1 mRNA 
expression at increasing cell densities. Results are shown as fold increase 
relative to the respective untreated cultures (mean ± s.e.m.).
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transcription factors play a role in the proliferation rate-
dependent PAI1 expression of OFs. 

We assumed that TGF-β may be one of the cytokines 
that is responsible for the connective tissue changes in 
the orbit. TGF-β is known to transcriptionally regulate 
cell growth, motility, matrix remodeling, and pericellular 
proteolytic activity (Samarakoon et  al. 2013); TGF-β 
is also known to stimulate PAI1 transcription and to 
up-regulate the expressions of certain genes that encode 
elements of the ECM, such as fibronectin, collagen I, and 
proteoglycans in non-orbital tissues (Matrisian & Hogan 
1990, Wight & Potter-Perigo 2011). Furthermore, TGF-β 
has been shown to be present in the orbits of GO patients 
(Pawlowski et al. 2014). Indeed, we found that TGF-β was a 
potent stimulator of PAI1 synthesis at all densities in OFs, 
resulting in up to a fivefold PAI1 increase above baseline 
at high cell densities (Fig. 3A). The cell density-dependent 
stimulation of PAI1 expression by TGF-β may occur due to 
the interference or cooperativity of transcription factors 
(Samarakoon & Higgins 2008). Only mild and non-
density-dependent effect was seen in dermal fibroblasts 
(Fig. 3A). We think that the high PAI1 concentration in 
the GO orbit acts toward increased matrix stability, which 
may contribute to matrix expansion.

Enhanced HA synthesis was described in OFs cultured 
in serum-free medium with TGF-β (Wang et al. 2005, Guo 
et al. 2011). We found that under basic circumstances, HA 
production per cell did not show a cell density-dependent 
pattern but was highly dependent on the origin of 
fibroblasts (Fig. 1B and C). This was supported by the 
different expression patterns of HAS enzymes in the cell 
lines with different origins. The three HAS isoforms have 
distinct enzymatic properties, such as rate of synthesis 
(HAS1 < HAS2 < HAS3), produced HA size (HAS1 and HAS3, 
200 – 2000 kDa; HAS2 over 2000 kDa), and capability for 
retaining HA in the pericellular coat (HAS1 overexpression 
leads to smaller pericellular coat); however, changes in the 
transcriptional level of HAS do not always correlate with 
changes in the HA secretion (Itano & Kimata 2002). During 
the turnover of HA, HYAL2 initiates the degradation of 
HA at the cell surface to smaller chains, which are then 
further degraded by HYAL1 (Girish & Kemparaju 2007). 
Despite the higher expression of the HAS3, the isoform 
with highest activity, and lower expression of HYAL1, 
we observed lower HA production of GO OFs compared 
with normal OFs, an observation similar to that of others 
(Krieger & Gershengorn 2014). When exposed to TGF-β,  
the same cells responded with increased HA secretion 
at high cell densities, in parallel with PAI1 rise (Fig. 3B 
and C). We confirmed that TGF-β treatment up-regulates 

HAS1 mRNA expression. Elevated HA synthesis induced 
by HAS1 overexpression is known to increase HA cable 
formation and promote HA-dependent monocyte binding 
in vascular smooth muscle cells (Wilkinson et al. 2006). 

From the point of disease course, the matrix 
overproducing responses of OFs to TGF-β at high cell 
densities may be detrimental in GO. HA overproduction 
can diminish contact inhibition and lead to elevated 
proliferation (Itano et  al. 2002). HA increases PAI1 
expression in a concentration-dependent manner 
in human vascular smooth muscle cells (Marutsuka 
et  al. 1998) and a positive correlation exists between 
HA and PAI1 produced by human aortic endothelial 
cells incubated with C-reactive protein (Devaraj et  al. 
2009). In human umbilical vein endothelial cells,  
high-molecular-weight HA induces activation of the 
TGF-β receptor I and expression of PAI1 (Park et al. 2012). 
In combination with these previous findings, our data 
suggest that the TGF-β-induced HA secretion at high cell 
densities may facilitate the cell density-dependent PAI1 
stimulation in OFs.

Based on our results, contact inhibition is an important 
negative regulator of PAI1 synthesis in OFs. High 
proliferation rate is associated with high PAI1 synthesis 
(Fig. 1A and D). As HA production of OFs did not depend 
on contact inhibition and/or proliferation, its excessive 
production in GO is most probably under the influence 
of locally produced cytokines. OFs may respond to certain 
cytokines by elevated HA production and increased 
proliferation; we found that TGF-β had such effect at high 
cell densities. HA accumulation provides a stimulating 
environment for further fibroblast proliferation and 
leukocyte infiltration (Wight & Potter-Perigo 2011). 
Our results show that the diminution of PAI1 synthesis 
caused by increasing cell density is partially reversed 
by TGF-β (compare Figs 1A and 3A). From the point of 
the pathogenesis of GO, it is remarkable that PAI1 can 
directly promote the infiltration of macrophages and T 
cells (Samarakoon et al. 2013). However, the plasminogen-
plasmin conversion decreases; therefore, the degradation 
of ECM is also reduced. The ECM stabilization by PAI1 and, 
as of now, unidentified factors may alter local cytokine 
levels by trapping cytokines and further influencing the 
course of GO. The ability of PAI1 to inhibit the conversion 
of the latent form of TGF-β to its active form (Ghosh & 
Vaughan 2012) may act in the opposite direction. 

The data presented here are preliminary and may not 
be related to the initiating factors of orbital autoimmunity. 
Connective tissue expansion is most probably several 
steps down from the early immune regulatory derailment 
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of the autoimmune process. However, connective tissue 
expansion is a major contributor to disease outcome, and 
therapeutic interventions that could interfere with ECM 
overproduction may have a beneficial effect in GO. 

Here, we have shown for the first time that increasing 
cell density is a negative regulator of both proliferation 
and PAI1 secretion in OFs, regardless of whether they 
are derived from normal or GO orbital tissues, and these 
negative regulatory effects are partially inhibited in the 
presence of TGF-β. We conclude that TGF-β is a potent 
inducer of PAI1 and HA expression in OFs in culture. This 
effect of TGF-β on PAI1 synthesis is specific to fibroblasts 
of orbital origin. As both GO and normal OFs responded 
the same way to TGF-β, we assume that it is rather the 
presence of immune cells and cytokines in the GO orbits, 
than any inherent difference between GO and non-GO 
orbital tissues, that contributes to the development of the 
disease in GO. 

Declaration of interest
The authors declare that there is no conflict of interest that could be 
perceived as prejudicing the impartiality of the research reported.

Funding
This work was supported by the Hungarian National Research, 
Development and Innovation Office – NKFIH, grant number: K105733, 
and by the University of Debrecen, Faculty of Medicine Research Fund 
(Bridging Fund). E G was supported by TÁMOP-4.2.2.B-15/1/KONV-2015-
0001 project that is co-financed by the European Union and the European 
Social Fund.

References
Bahn RS 2010 Graves’ ophthalmopathy. New England Journal of Medicine 

362 726–738. (doi:10.1056/NEJMra0905750)
Bahn RS, Gorman CA, Woloschak GE, David CS, Johnson PM & 

Johnson CM 1987 Human retroocular fibroblasts in vitro: a model for 
the study of Graves’ ophthalmopathy. Journal of Clinical Endocrinology 
and Metabolism 65 665–670. (doi:10.1210/jcem-65-4-665)

Cao HJ, Hogg MG, Martino LJ & Smith TJ 1995 Transforming growth 
factor-beta induces plasminogen activator inhibitor type-1 in cultured 
human orbital fibroblasts. Investigative Ophthalmology & Visual Science 
36 1411–1419.

Comi P, Chiaramonte R & Maier JA 1995 Senescence-dependent 
regulation of type 1 plasminogen activator inhibitor in human 
vascular endothelial cells. Experimental Cell Research 219 304–308. 
(doi:10.1006/excr.1995.1232)

Crandall DL, Quinet EM, Morgan GA, Busler DE, McHendry-Rinde B 
& Kral JG 1999 Synthesis and secretion of plasminogen activator 
inhibitor-1 by human preadipocytes. Journal of Clinical Endocrinology 
and Metabolism 84 3222–3227. (doi:10.1210/jcem.84.9.5987)

DeGrendele HC, Estess P & Siegelman MH 1997 Requirement for CD44 in 
activated T cell extravasation into an inflammatory site. Science 278 
672–675. (doi:10.1126/science.278.5338.672)

Devaraj S, Yun JM, Adamson G, Galvez J & Jialal I 2009 C-reactive 
protein impairs the endothelial glycocalyx resulting in endothelial 
dysfunction. Cardiovascular Research 84 479–484. (doi:10.1093/cvr/
cvp249)

Evanko SP, Potter-Perigo S, Bollyky PL, Nepom GT & Wight TN 2012 
Hyaluronan and versican in the control of human T-lymphocyte 
adhesion and migration. Matrix Biology 31 90–100. (doi:10.1016/j.
matbio.2011.10.004)

Ghosh AK & Vaughan DE 2012 PAI-1 in tissue fibrosis. Journal of Cellular 
Physiology 227 493–507. (doi:10.1002/jcp.22783)

Girish KS & Kemparaju K 2007 The magic glue hyaluronan and its eraser 
hyaluronidase: a biological overview. Life Sciences 80 1921–1943.

Guo N, Woeller CF, Feldon SE & Phipps RP 2011 Peroxisome proliferator-
activated receptor gamma ligands inhibit transforming growth 
factor-beta-induced, hyaluronan-dependent, T cell adhesion to 
orbital fibroblasts. Journal of Biological Chemistry 286 18856–18867. 
(doi:10.1074/jbc.M110.179317)

Heufelder AE & Bahn RS 1994 Modulation of Graves’ orbital fibroblast 
proliferation by cytokines and glucocorticoid receptor agonists. 
Investigative Ophthalmology & Visual Science 35 120–127.

Hogg MG, Evans CH & Smith TJ 1995 Leukoregulin induces plasminogen 
activator inhibitor type 1 in human orbital fibroblasts. American 
Journal of Physiology 269 C359–C366.

Hufnagel TJ, Hickey WF, Cobbs WH, Jakobiec FA, Iwamoto T & 
Eagle RC 1984 Immunohistochemical and ultrastructural studies 
on the exenterated orbital tissues of a patient with Graves’ disease. 
Ophthalmology 91 1411–1419. (doi:10.1016/S0161-6420(84)34152-5)

Itano N & Kimata K 2002 Mammalian hyaluronan synthases. 
International Union of Biochemistry and Molecular Biology: Life 54 
195–199. (doi:10.1080/15216540214929)

Itano N, Atsumi F, Sawai T, Yamada Y, Miyaishi O, Senga T, Hamaguchi M 
& Kimata K 2002 Abnormal accumulation of hyaluronan matrix 
diminishes contact inhibition of cell growth and promotes cell 
migration. PNAS 99 3609–3614. (doi:10.1073/pnas.052026799)

Khammanit R, Chantakru S, Kitiyanant Y & Saikhun J 2008 Effect 
of serum starvation and chemical inhibitors on cell cycle 
synchronization of canine dermal fibroblasts. Theriogenology 70 
27–34. (doi:10.1016/j.theriogenology.2008.02.015)

Krieger CC & Gershengorn MC 2014 A modified ELISA accurately 
measures secretion of high molecular weight hyaluronan (HA) by 
Graves’ disease orbital cells. Endocrinology 155 627–634. (doi:10.1210/
en.2013-1890)

Küppers M, Ittrich C, Faust D & Dietrich C 2010 The transcriptional 
programme of contact-inhibition. Journal of Cellular Biochemistry 110 
1234–1243. (doi:10.1002/jcb.v110:5)

Lu P, Takai K, Weaver VM & Werb Z 2011 Extracellular matrix 
degradation and remodeling in development and disease. Cold Spring 
Harbor Perspectives in Biology 3.

Malgorzewicz S, Skrzypczak-Jankun E & Jankun J 2013 Plasminogen 
activator inhibitor-1 in kidney pathology (Review). International 
Journal of Molecular Medicine 31 503–510.

Marutsuka K, Woodcock-Mitchell J, Sakamoto T, Sobel BE & Fujii S 1998 
Pathogenetic implications of hyaluronan-induced modification of 
vascular smooth muscle cell fibrinolysis in diabetes. Coronary Artery 
Disease 9 177–184. (doi:10.1097/00019501-199809040-00002)

Matrisian LM & Hogan BL 1990 Growth factor-regulated proteases and 
extracellular matrix remodeling during mammalian development. 
Current Topics in Developmental Biology 24 219–259. (doi:10.1016/
S0070-2153(08)60089-7)

McAnulty RJ 2007 Fibroblasts and myofibroblasts: their source, function 
and role in disease. International Journal of Biochemistry and Cell Biology 
39 666–671. (doi:10.1016/j.biocel.2006.11.005)

McFarland KL, Glaser K, Hahn JM, Boyce ST & Supp DM 2011 Culture 
medium and cell density impact gene expression in normal skin and 
abnormal scar-derived fibroblasts. Journal of Burn Care & Research 32 
498–508.

Q8

Q9

http://dx.doi.org/10.1056/NEJMra0905750
http://dx.doi.org/10.1210/jcem-65-4-665
http://dx.doi.org/10.1006/excr.1995.1232
http://dx.doi.org/10.1210/jcem.84.9.5987
http://dx.doi.org/10.1126/science.278.5338.672
http://dx.doi.org/10.1093/cvr/cvp249
http://dx.doi.org/10.1093/cvr/cvp249
http://dx.doi.org/10.1016/j.matbio.2011.10.004
http://dx.doi.org/10.1016/j.matbio.2011.10.004
http://dx.doi.org/10.1002/jcp.22783
http://dx.doi.org/10.1074/jbc.M110.179317
http://dx.doi.org/10.1016/S0161-6420(8434152-5)
http://dx.doi.org/10.1080/15216540214929
http://dx.doi.org/10.1073/pnas.052026799
http://dx.doi.org/10.1016/j.theriogenology.2008.02.015
http://dx.doi.org/10.1210/en.2013-1890
http://dx.doi.org/10.1210/en.2013-1890
http://dx.doi.org/10.1002/jcb.v110:5
http://dx.doi.org/10.1097/00019501-199809040-00002
http://dx.doi.org/10.1016/S0070-2153(0860089-7)
http://dx.doi.org/10.1016/S0070-2153(0860089-7)
http://dx.doi.org/10.1016/j.biocel.2006.11.005
http://dx.doi.org/10.1530/JOE-15-0524
Line
We have been unable to find the DOI for these references; please provide if possible.

Line
Please provide page range for the reference Lu et al. 2011.



PROOF ONLY
229:2 10Research e galgoczi and others PAI1 in the pathogenesis of 

Graves’ orbitopathy

http://joe.endocrinology-journals.org 2016 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.
DOI: 10.1530/JOE-15-0524

Jo
u

rn
al

o
f

En
d

o
cr

in
o

lo
g

y

Mignatti P & Rifkin DB 1993 Biology and biochemistry of proteinases in 
tumor invasion. Physiological Reviews 73 161–195.

Monslow J, Govindaraju P & Puré E 2015 Hyaluronan - a functional and 
structural sweet spot in the tissue microenvironment. Frontiers in 
Immunology 6 231.

Natt N & Bahn RS 1997 Cytokines in the evolution of 
Graves’ ophthalmopathy. Autoimmunity 26 129–136. 
(doi:10.3109/08916939709003857)

Otto EA, Ochs K, Hansen C, Wall JR & Kahaly GJ 1996 Orbital tissue-
derived T lymphocytes from patients with Graves’ ophthalmopathy 
recognize autologous orbital antigens. Journal of Clinical Endocrinology 
and Metabolism 81 3045–3050.

Park D, Kim Y, Kim H, Kim K, Lee YS, Choe J, Hahn JH, Lee H, 
Jeon J, Choi C, et al. 2012 Hyaluronic acid promotes  
angiogenesis by inducing RHAMM-TGFβ receptor interaction via 
CD44-PKCd. Molecules and Cells 33 563–574. (doi:10.1007/s10059-
012-2294-1)

Pawlowski P, Reszec J, Eckstein A, Johnson K, Grzybowski A, 
Chyczewski L & Mysliwiec J 2014 Markers of inflammation and 
fibrosis in the orbital fat/connective tissue of patients with Graves’ 
orbitopathy: clinical implications. Mediators of Inflammation 2014 
412158.

Qi L, Allen RR, Lu Q, Higgins CE, Garone R, Staiano-Coico L & Higgins PJ 
2006 PAI-1 transcriptional regulation during the G0 → G1 transition 
in human epidermal keratinocytes. Journal of Cellular Biochemistry 99 
495–507. (doi:10.1002/(ISSN)1097-4644)

Samarakoon R & Higgins PJ 2008 Integration of non-SMAD and SMAD 
signaling in TGF-beta1-induced plasminogen activator inhibitor 
type-1 gene expression in vascular smooth muscle cells. Thrombosis 
and Haemostasis 100 976–983.

Samarakoon R, Overstreet JM & Higgins PJ 2013 TGF-β signaling in tissue 
fibrosis: redox controls, target genes and therapeutic opportunities. 
Cellular Signalling 25 264–268. (doi:10.1016/j.cellsig.2012.10.003)

Smith TJ 2005 Insights into the role of fibroblasts in human autoimmune 
diseases. Clinical & Experimental Immunology 141 388–397.

Smith HW & Marshall CJ 2010 Regulation of cell signalling by uPAR. 
Nature Reviews Molecular Cell Biology 11 23–36. (doi:10.1038/nrm2821)

Smith TJ, Bahn RS & Gorman CA 1989 Connective tissue, 
glycosaminoglycans, and diseases of the thyroid. Endocrine Reviews 10 
366–391. (doi:10.1210/edrv-10-3-366)

Smith TJ, Ahmed A, Hogg MG & Higgins PJ 1992 Interferon-gamma is an 
inducer of plasminogen activator inhibitor type 1 in human orbital 
fibroblasts. American Journal of Physiology 263 C24–C29.

Tanaka S, Nakao K, Sekimoto T, Oka M & Yoneda Y 2013 Cell density-
dependent nuclear accumulation of ELK3 is involved in suppression 
of PAI-1 expression. Cell Structure and Function 38 145–154. 
(doi:10.1247/csf.13007)

van Steensel L, Paridaens D, van Meurs M, van Hagen PM, van den 
Bosch WA, Kuijpers RW, Drexhage HA, Hooijkaas H & Dik WA 2012 
Orbit-infiltrating mast cells, monocytes, and macrophages produce 
PDGF isoforms that orchestrate orbital fibroblast activation in Graves’ 
ophthalmopathy. Journal of Clinical Endocrinology and Metabolism 97 
E400–E408.

Vigetti D, Viola M, Karousou E, De Luca G & Passi A 2014 Metabolic 
control of hyaluronan synthases. Matrix Biology 35 8–13. 
(doi:10.1016/j.matbio.2013.10.002)

Wang Y & Smith TJ 2014 Current concepts in the molecular pathogenesis 
of thyroid-associated ophthalmopathy. Investigative Ophthalmology & 
Visual Science 55 1735–1748.

Wang HS, Tung WH, Tang KT, Wong YK, Huang GJ, Wu JC, Guo YJ 
& Chen CC 2005 TGF-beta induced hyaluronan synthesis in 
orbital fibroblasts involves protein kinase C betaII activation in 
vitro. Journal of Cellular Biochemistry 95 256–267. (doi:10.1002/
(ISSN)1097-4644)

Wight TN & Potter-Perigo S 2011 The extracellular matrix: an active 
or passive player in fibrosis? American Journal of Physiology-
Gastrointestinal and Liver Physiology 301 G950–G955.

Wilkinson TS, Bressler SL, Evanko SP, Braun KR & Wight TN 2006 
Overexpression of hyaluronan synthases alters vascular smooth 
muscle cell phenotype and promotes monocyte adhesion. Journal of 
Cellular Physiology 206 378–385. (doi:10.1002/(ISSN)1097-4652)

Zeng Q & Hong W 2008 The emerging role of the hippo pathway in cell 
contact inhibition, organ size control, and cancer development in 
mammals. Cancer Cell 13 188–192. 

Received in final form 6 March 2016
Accepted 15 March 2016
Accepted Preprint published online 15 March 2016

http://dx.doi.org/10.3109/08916939709003857
http://dx.doi.org/10.1007/s10059-012-2294-1
http://dx.doi.org/10.1007/s10059-012-2294-1
http://dx.doi.org/10.1002/(ISSN1097-4644)
http://dx.doi.org/10.1016/j.cellsig.2012.10.003
http://dx.doi.org/10.1038/nrm2821
http://dx.doi.org/10.1210/edrv-10-3-366
http://dx.doi.org/10.1247/csf.13007
http://dx.doi.org/10.1016/j.matbio.2013.10.002
http://dx.doi.org/10.1002/(ISSN1097-4644)
http://dx.doi.org/10.1002/(ISSN1097-4644)
http://dx.doi.org/10.1530/JOE-15-0524


PROOF ONLY
Author Queries

JOB NUMBER: 150524

JOURNAL: JOE

Q1  Please check and approve the title.
Q2 Please check and approve the author list.
Q3 Please check and approve the affiliation details.
Q4  Please check that only approved gene and protein nomenclature is used in your paper (human genes in uppercase italics, 

human proteins in uppercase roman; mouse/rat genes with initial uppercase italics, mouse/rat proteins all uppercase roman). 
For more details, see http://joe.endocrinology-journals.org/site/misc/For-Authors.xhtml#genes and correct if necessary.

Q5 Please check and approve the identification of the section level headings.
Q6 We have introduced the updated symbol ‘SERPINE1’ for ‘PAI-1’ as per gene nomenclature. Please check and approve.
Q7 Please provide a value in g for the value given in r.p.m.
Q8 Please provide page range for the reference Lu et al. 2011.
Q9 We have been unable to find the DOI for these references; please provide if possible.

http://joe.endocrinology-journals.org/site/misc/For-Authors.xhtml#genes

	Abstract
	Materials and methods
	Results
	Discussion
	References
	Abstract
	Materials and methods
	Results
	Discussion
	References

