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Abstract

Ensemble non-interacting kinetic energy functional is constructed for

spherically symmetric systems. The differential virial theorem is derived for

the ensemble. A first-order differential equation for the functional derivative

of the ensemble non-interacting kinetic energy functional and the ensemble

Pauli potential is presented. This equation can be solved and a special case of

the solution provides the original non-interacting kinetic energy of the density

functional theory.

I. INTRODUCTION

In orbital-free density functional theory [1] one has to solve only the Euler equation,

which is a huge simplification in comparison with solving the Kohn-Sham equations [2].

However, the lack of accurate approximation of the kinetic energy functional highly limits

the applicability of orbital-free calculations.

In this article an exact expression is presented for spherically symmetric systems. In-

stead of treating the original orbital-free problem, we suggest to solve an enlarged task. We

construct ensembles using the original non-interacting Kohn-Sham system. Then the dif-

ferential virial theorem is derived for the ensemble, which is applied to obtain a first-order
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differential equation for the functional derivative of the ensemble non-interacting kinetic

energy functional. This equation can be solved and a special case of the solution provides

the solution of the original orbital-free problem.

In the following section ensembles are constructed in the Kohn-Sham system. In Sec. III.

the differential virial theorem is derived for the ensemble. Sec. IV presents the derivation of

the differential equation for the functional derivative of the ensemble non-interacting kinetic

energy functional. The last section is devoted to discussion. In the appendix the functional

derivative of the ensemble non-interacting kinetic energy is derived in another way.

II. CONSTRUCTION OF ENSEMBLES IN THE KOHN-SHAM SYSTEM

Consider the original Kohn-Sham equations

[−
1

2
∇2 + vKS(r)]ui(r) = εiui(r), (1)

where the electron density has the form

n0(r) =
N
∑

i

ni(r). (2)

ni(r) = |ui(r)|
2 (3)

is the one-electron density. N , ui, and vKS are the number of electrons, the Kohn-Sham

orbitals and the Kohn-Sham potential, respectively. ε1 ≤ ε2 ≤ ... ≤ εN are the one-electron

energies. The Kohn-Sham orbitals satisfy orthonormality

∫

u∗

i (r)uj(r)dr) = δij. (4)

To derive the exact expression for the functional derivative of the kinetic energy func-

tional we first define auxiliary quantities in the non-ineracting Kohn-Sham system. The

most important one is the density defined as

n(r) =
N
∑

i=1

wini(r), (5)

2



where the weighting factors satisfy the inequalities:

w1 ≥ w2 ≥ ... ≥ wN ≥ 0. (6)

This density can be considered as an ensemble density as it is similar to the ensemble

density defined in the real, interacting system. However, it is different in several aspects.

For example, the ’ensemble’ density defined here (Eq. (5) is generally not normalized to the

number of electrons. This is just artificially constructed auxiliary quantity that is used only

to derive the functional derivative of the non-interacting kinetic energy. In the following it

will be referred as ensemble density. Note that if all wi = 1 the ensemble density equals the

electron density: n = n0. In Section 3 the weighting factors are defined by Eq. (34) and

0 < wi ≤ 1.

The second auxiliary quantity is the ensemble non-interacting kinetic energy density

defined as:

t(r) =
N
∑

i=1

witi(r), (7)

where ti are the one-electron kinetic energy density. In this article we use the form

ti(r) = −
1

2
u∗

i (r)∇
2ui(r). (8)

Note that if all wi = 1 the ensemble non-interacting kinetic energy density is equal to the

non-interacting kinetic energy density t0 of the original Kohn-Sham system.

The ensemble non-interacting kinetic energy is defined

T =
∫

t(r)dr (9)

as another auxiliary quantity. From Eqs. (1) - (8) we immediatelly obtain that

T +
∫

n(r)vKS(r)dr = E , (10)

where, the ensemble non-interacting energy

E =
N
∑

i=1

wiεi (11)
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is introduced as another auxiliary quantity. Again, if all wi = 1 the ensemble non-interacting

energy is equal to the total non-interacting energy :

E0 =
N
∑

i=1

εi. (12)

Now, we refer to the generalized Rayleigh-Ritz variational principle [3,4]. Gross et al.

applied this principle for ensembles of ground and excited states to generalize density func-

tional theory to excited states. The principle is valid for non-interacting systems, too. We

apply it to the ensemble non-interacting energy E . The only condition for the variational

principle be valid is that the inequality (6) is satisfied. Any normalization of the ensemble

density is possible. In this paper we use the following normalization.

∫

n(r)dr =
N
∑

i=1

wi = const (13)

is a fixed constant, but it is equal to the number of electrons N only for the case when all

wi = 1, that is, for the originl Kohn-Sham case. From the generalized variational principle

follows the ensemble Euler equation. Making use of Eq. (10), the ensemble Euler equation

takes the form

δT

δn
+ vKS = µ. (14)

Compare it with the Euler equation of the non-interacting system:

δT0

δn0
+ vKS = µ0. (15)

Note that both Eqs. (14) and (15) have the same Kohn-Sham potential. It is because we

are considering a non-interacting system.

Following Liu and Ayers [5] we prove in the Appendix that the functional derivative of

the ensemble non-interacting kinetic energy δT
δn(r)

does exist and up to an arbitrary additive

constant is unique.
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III. ENSEMBLE DIFFERENTIAL VIRIAL THEOREM FOR SPHERICALLY

SYMMETRIC SYSTEMS

The ground-state differential virial theorem for spherically symmetric Kohn–Sham po-

tential was derived by Nagy and March [6]. Now, we generalize the theorem for ensembles.

The Kohn–Sham-like equations for spherically symmetric systems take the form

−
1

2

d2Pi

dr2
+

li(li + 1)

2r2
Pi + vKSPi = εiPi , (16)

where Pi = rRi(r) are the radial wave functions and li are the azimuthal quantum numbers.

They can be rewritten as

d2Pi(r
′)

(dr′)2
Pi(r) − Pi(r)

d2Pi(r)

dr2
= 2

[

vKS(r′) − vKS(r) +
li(li + 1)

2

(

1

(r′)2
−

1

r2

)]

·Pi(r
′)Pi(r) . (17)

Introducing another auxiliary quantity

%(r′, r) =
∑

i

λiwi%i(r
′, r) , (18)

where

%i(r
′, r) = Pi(r

′)Pi(r), (19)

Eq. (17) leads to

∂2%i(r, r
′)

∂(r′)2
−

∂2%i(r, r
′)

∂r2
= 2[vKS(r′) − vKS(r)]%i + li(li + 1)

(

1

(r′)2
−

1

r2

)

%i . (20)

The ensemble radial density is

%(r) =
∑

i

λiwi%i(r), (21)

where

%i(r) = %i(r, r). (22)
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λi are the occupation numbers, that is, λi is the number of electrons with a given li. For

example, for the Be atom with the electron configuration 1s22s2 the occupation numbers

are λ1 = λ2 = 2.

The ensemble non-interacting radial kinetic energy density

τ(r) = 4r2πt(r) (23)

can also be expressed as

τ(r) = −
1

2

∂2%(r′, r)

∂r2

∣

∣

∣

∣

∣

r′=r

+
1

2

∑

i

wiλili(li + 1)
%i(r)

r2
. (24)

Following the derivation in [6] the transformation

ξ =
1

2
(r + r′), η =

1

2
(r′ − r) (25)

is applied. %i(r, r
′) and %(r, r′) are expanded around η = 0:

%i(ξ, η) = %(ξ) +
∞
∑

j=1

η2jbi
2j(ξ), (26)

%(ξ, η) = %(ξ) +
∞
∑

j=1

η2ja2j(ξ), (27)

where

%i(ξ) = %i(ξ, 0) (28)

and

%(ξ) = %(ξ, 0). (29)

From Eqs. (20) - (29) we obtain

da2

dξ
= 2v′

KS%(ξ) − 2
∑

i

wiλi
li(li + 1)

ξ3
%i. (30)

The ensemble non-interacting radial kinetic energy density can also be written as

τ(r) = −
1

4

[

1

2
%′′ + a2 − 2

∑

i

wi
λili(li + 1)

r2
%i

]

. (31)
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After some algebra the differential virial theorem can be obtained

τ ′ = −
1

8
%′′′ −

1

2
%v′

KS +
q̃′

r2
−

q̃

r3
, (32)

where

q̃ =
1

2

∑

i

wiλili(li + 1)%i . (33)

Note that if all wi = 1 the ensemble differential virial theorem reduces to the differential

virial theorem of Nagy and March [6].

Now, we select the following weighting factors:

wi = eβεi−γli(li+1) (34)

with β ≥ 0, γ ≥ 0 and εi < 0. Then we obtain that

q̃ = −
1

2

∂%

∂γ
. (35)

Consequently the ensemble differential virial theorem (32) has the form:

τ ′ = −
1

8
%′′′ −

1

2
%v′

KS −
1

2r2

∂

∂r

(

∂%

∂γ

)

+
1

2r3

∂%

∂γ
. (36)

IV. FUNCTIONAL DERIVATIVE OF THE KINETIC ENERGY FUNCTIONAL

Combining Eqs. (1), (3), (14) and (23) we arrive at the relation:

τ = %
δT

δn
− µ% + g̃, (37)

where

g̃ =
∑

i

wiλiεi%i. (38)

Differentiating Eq. (37) with respect to r and substituting it into the ensemble differential

virial theorem (36) we obtain
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1

2
%

(

δT

δn

)

′

+ %′
δT

δn
= f̃ , (39)

where

f̃ = −
1

8
%′′′ − g̃′ + µ%′ −

1

2r2

∂

∂r

(

∂%

∂γ

)

+
1

2r3

∂%

∂γ
. (40)

From Eq. (38) follows that

g̃ =
∂%

∂β
. (41)

Therefore Eq. (42) takes the form

f̃ = −
1

8
%′′′ −

∂

∂r

(

∂%

∂β

)

+ µ%′ −
1

2r2

∂

∂r

(

∂%

∂γ

)

+
1

2r3

∂%

∂γ
. (42)

The solution of the first-order differential equation (39) provides the functional derivative

of the ensemble non-interacting kinetic energy

δT

δn
=

2

%2

∫ r

∞

%(r1)f̃(r1)dr1. (43)

The total ensemble non-interacting kinetic energy can be partitioned as

T = Tw + Tp , (44)

where Tw is the ensemble Weizsäcker kinetic energy

Tw =
1

8

∫ |∇n|2

n
(45)

and we call the term Tp ensemble Pauli energy. Note that if all wi = 1 the ensemble

Weizsäcker kinetic energy and the ensemble Pauli energy reduce to the Weizsäcker kinetic en-

ergy [7] and the Pauli energy [8–10], respectively. We mention in passing that the Weizsäcker

kinetic energy functional is also the Fisher information (up to a multiplying factor), which

has been of recent research interest as well in the literature [13].

The functional derivatives are

δTw

δn
=

1

8

∣

∣

∣

∣

∇n

n

∣

∣

∣

∣

2

−
1

4

∇2n

n
= n−1/2

(

−
1

2
∇2
)

n1/2 (46)
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and

vp =
δTp

δn
. (47)

Substituting Eqs. (44)-(47) into Eq. (14) the Euler equation can be rewritten

[−
1

2
∇2 + vp + vKS]n1/2 = µn1/2. (48)

Substituting Eqs. (44)-(47) into Eq. (39) we arrive at a first-order differential equation

for the functional derivative of the ensemble Pauli energy, that is, for the ensemble Pauli

potential vp:

1

2
%v′

p + %′vp = f, (49)

where

f = −
∂

∂r

(

∂%

∂β

)

+ µ%′ −
1

2r2

∂

∂r

(

∂%

∂γ

)

+
1

2r3

∂%

∂γ
. (50)

The differential equation (49) can be solved and the Pauli potential can be written as

vp =
2

%2

∫ r

∞

%(r1)f(r1)dr1. (51)

Eqs. (39) and (49) and the solutions (43) and (51) are the main results of this article. If all

wi = 1 Eq. (49) reduce to the differential equation for the Pauli potential of [11].

V. DISCUSSION

As an illustration consider a Be-like system in a bare Coulomb field. For this simple case

the Pauli potential can be analitically given. In this 4-electon, 2-level system the ensemble

density can be written as

% = λ1w1%1 + λ2w2%2, (52)

where
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%1 = 4Z3r2 exp (−2Zr) (53)

and

%2 =
1

2
Z3r2(1 − Zr/2)2 exp (−Zr) (54)

are the 1s and 2s H-like radial orbital densities with atomic number Z. The occupation

numbers are λ1 = λ2 = 2. The weighting factors have the form

w1 = exp (βε1) = exp (−βZ2/2) (55)

and

w2 = exp (βε2) = exp (−βZ2/8). (56)

As the azimuthal quantum numbers l1 = l2 = 0 the parameter γ does not appear in the

weighting factors and in the ensemble density. Calculating the derivatives of the ensemble

density, substituting into Eqs. (50) and (51) and integrating we obtain the ensemble Pauli

potential

vp(r; β) =
3Z2

8
e−

β

2
Z2 8e−4Zr + (1 − Zr + (Zr)2

3
)e−3Zr

[4e−
β

2
Z2

e−2Zr + 1
2
e−

β

8
Z2

(1 − Zr
2

)2e−Zr]2
. (57)

Substituting β = 0 we arrive at the Pauli potential

vp(r) =
3Z2

8

8e−4Zr + (1 − Zr + (Zr)2

3
)e−3Zr

[4e−2Zr + 1
2
(1 − Zr

2
)2e−Zr]2

. (58)

The differential equations (39) and (49) and their solutions (43) and (51) provide the

exact kinetic energy functional for spherically symmetric systems and open the way to

perform orbital free density functional calculations.

We sketch how orbital-free calculations should be done.

(i) Guess an initial ensemble electron density % and the constant µ.

(ii) Using Eq. (50) calculate the function f .

(iii) Solve Eq. (49) for the ensemble Pauli potential vp using Eq. (50) and (51).

(iv) Solve equation (48) to obtain the ensemble electron density %.
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(v) Repeat steps (i)-(iv) until convergence. Calculate the total ensemble non-interacting

kinetic energy from Eq. (37). Then take the case β = γ = 0 to obtain the electron density

and the total non-interacting kinetic energy of the original density functional problem.

Instead of treating the original orbital-free problem, we suggest to solve an enlarged

task, that is to handle an ensemble case. These ensembles are artificial constructions in the

non-interacting scheme. The solution seems to be difficult as the density depends also the

parameters β and γ. But the ensemble kinetic energy functional can be exactly obtained

as it is described in this article and the case β = γ = 0 gives the solution of the original

orbital-free problem.

The weighting factors are selected according to Eq. (34), therefore the ensemble density

is not normalized to the number of electrons except the case where all wi are equal, that

is, β = γ = 0. On the other hand, one can immediatelly see that if a density % satisfies

the differential equations (39) and (49), than any density c% (c > 0) satisfies the differential

equations (39) and (49). Therefore, one can use any appropriate normalization.

As we finally need only the case β = γ = 0, it is enough to do the calculations for small

values of β and γ. Therefore we can write the ensemble density in the form:

%(r) = %0(r) − βg̃(r) − γq̃(r) . (59)

The method can be applied to degenerate states as well. The present author derived

a subspace theory of multiplets [12], in which the Kohn-Sham equations are similar to the

conventional Kohn-Sham equations. The difference is that the subspace density is used

instead of the density and the Kohn-Sham potential is different for different subspaces.

The extension of the present derivation to non-spherically symmetric systems is not

straightforward. In that case, the starting point might be the generalization of the differential

virial theorem of Holas and March [14] for ensembles. It will contain, however, the ensemble

kinetic energy tensor, that will make very difficult to obtain differential equations similar to

(39) and (49). We note that the results presented in this article might be useful not only in

spherically symmetric systems. For example, it can be generalized for muffin-tin orbitals of
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solid-state calculations [15].

It is interesting to note that there is some resemblance between the approach presented

here and the method from [16] where an extra parameter is introduced into the k-electron

distribution functions and used to construct a hierarchy of equations, so that the kinetic-

energy can be approximated.

We would like to mention that the local ionization potential ε̃(r) =
∑

i εini(r)/n(r)

introduced by Politzer et al. [17,18] is closely related to the function g: ε̃(r)n(r) = g(r).

The local ionization potential is a measure of chemical reactivity and is linked to the local

temperature, and thus to the local kinetic energy [19]. So there is a very intimite relationship

between the function g and the local kinetic energy t, as it is demonstrated in this article.

APPENDIX

Following Liu and Ayers [5] we prove that the functional derivative of the ensemble

non-interacting kinetic energy exists. Writing the ensemble non-interacting kinetic energy

T as

T =
N
∑

i=1

wiTi, (60)

where

Ti = 〈ui| −
1

2
∇2|ui〉. (61)

Variation of this equation gives

δTi = 〈δui| −
1

2
∇2|ui〉 + 〈ui| −

1

2
∇2|δui〉. (62)

Applying the Kohn-Sham equations (1) we arrive at

δTi = 〈δui|εi − vKS(r)|ui〉 + 〈ui|εi − vKS(r)|δui〉. (63)

It can be rewritten as
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δTi = εiδ
∫

|ui|
2dr −

∫

vKS(r)δ|ui|
2dr. (64)

Since
∫

|ui|
2dr = 1, the first term on the right-hand side of Eq. (64) vanishes, yielding

δTi = −
∫

vKS(r)δ|ui|
2dr. (65)

Consequently, for the ensemble non-interacting kinetic energy we have

δT =
N
∑

i=1

wiδTi = −
∫

vKS(r)
N
∑

i=1

wiδ|ui|
2dr = −

∫

vKS(r)δn(r)dr. (66)

Therefore, we obtain

δT

δn(r)
= const − vKS(r), (67)

that is, the quantity δT
δn(r)

does exist and up to an arbitrary additive constant is unique.
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