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In the frame structure of stacker cranes harmful mast vibrations may appear due to the inertial forces of acceleration or the
braking movement phase. This effect can reduce the stability and positioning accuracy of these machines. Unfortunately,
their dynamic properties also vary with the lifted load magnitude and position. The purpose of the paper is to present a
controller design method which can handle the effect of varying lifted load magnitude and position in a dynamic model
and at the same time it has good reference signal tracking and mast-vibration reducing properties. A controller design case
study is presented step by step from the dynamic modeling to the validation of the resulting controller. In the paper the
dynamic modeling possibilities of single-mast stacker cranes are summarized. The handling of varying dynamical behavior
is realized via the polytopic L PV modeling approach. Based on this modeling technique a gain-scheduled controller design
method is proposed, which is suitable for achieving the goals set. Finally, controller validation is presented by means of

time domain simulations.
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1. Introduction

These days the advanced stacker cranes of highly
automated  storage/retrieval systems (AS/RS) in
warehouses must meet strict requirements e.g. fast
working cycle and reliable, economical operation. This
material-handling equipment often has more than one ton
pay-load capacity with 50 m lifting height, 250 m/min
velocity and 2m/s? acceleration in the direction of the
aisle. Consequently, the dynamic load on the frame
structure of these machines is very high. Due to the
economical construction and low energy consumption
operation of stacker cranes the dead-weight of these
machines is often reduced. The reduction of dead-weight
may result in decreasing the stiffness of the frame
structure. ~ These structures are more responsive to
dynamical loads, therefore, during operation undesirable
vibrations, low frequency and high amplitude mast sways
may occur because of the different inertial forces. The
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high amplitude mast vibrations may reduce the stability
and positioning accuracy of the stacker crane and in an
extreme case, they may damage the structure.

For the above-mentioned reasons, it is necessary
to reduce undesirable mast vibrations by controlling
the traveling motion of the stacker crane (i.e. the
motion towards the aisle of the warehouse). The
reduction of these harmful mast vibrations has been a
widely studied area in the dynamics of material handling
machinery. For example in (Heptner, 1970) several
passive elements and vibration damper equipment are
introduced. However, most of the publications attempt
to reduce the structural vibrations by applying various
closed-loop control techniques e.g. pole placement with
full state feedback (Dietzel, 1999) or fuzzy control (Fang
et al., 2008). In some papers, the shape-optimization
of prescribed motion-function (as a reference signal),
or the determination of the optimal acceleration time is
introduced to achieve the desired result, see (Schumacher,
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1994). In (Bachmayer et al., 2008) and (Bachmayer et al.,
2009) the authors show that the flatness-based trajectory
planning method is also applicable to vibration free mast
positioning of stacker cranes. The feedforward control
techniques, trajectory planning and filtering methods of
stacker cranes can also be found in (Gorges et al.,
2009) and (Staudecker et al., 2008). In (Sasaki et al.,
2009) the authors introduce a two-degree-of-freedom
control system consisting of a feedforward controller
based on an inverse system and a feedback controller
suppressing the vibrations and stabilizing the crane. In
the paper (Schindele and Aschemann, 2014) an adaptive
L) R-control method, while in (Aschemann et al., 2011)
a robust control method is presented for flexible rack
feeders.

The motion control as well as the estimation of
structural vibrations during the design period of the
stacker cranes or the dynamic investigation of an existing
structure require a dynamic model of a flexible structure.
This model must be sufficiently accurate and at the same
time simple to fulfill the requirements of control synthesis
techniques. However, the dynamical properties, e.g.
resonance frequencies, mode-shapes etc. depend on the
magnitude and position of the lifted load. The dynamic
model must also take this effect into consideration. The
main contribution of this paper is a linear parameter
varying (L PV') modeling method applied for this purpose.
In this model the plant state-space matrices are assumed
to depend affinely on the time varying parameter i.e. the
lifted load position. Based on this modeling approach a
gain-scheduled controller is introduced with guaranteed
‘H oo performance.

The structure of the paper is as follows. In Section
2 after the introduction of single-mast stacker cranes the
dynamic modeling possibilities of these machines are
summarized. The effect of varying lifted load properties is
taken into consideration via the L PV method. In Section
3 the model order reduction method of dynamic models
for LPV systems is presented, which is necessary to
generate a proper LPV model. The controller synthesis
method which generates a gain-scheduling controller with
guaranteed H ., performances is introduced in Section 4.
The operation of the designed control system is illustrated
through simulation examples in Section 5.

2. Dynamic modeling of single-mast stacker
cranes

A schematic drawing of a single-mast stacker crane
with its main components is shown in Fig. 1. The
main structural unit of stacker cranes is the mast, which
is a rectangular-shaped box-girder formed by precisely
manufactured and welded steel sheets. For greater
resistance to torsion and bending effects, the box-girder
is reinforced inside by means of longitudinal stiffeners

welded to the web-plate of the box-girder and horizontal
diaphragms placed evenly along the length of the mast.
The mast is connected to the bottom frame (chassis) via
bolted connection.
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Fig. 1. Single mast stacker crane

The bottom frame is also a box-girder structure
formed by welded steel sheets and reinforced with ribbing
welded inside at regular intervals. The drive wheel and
the free wheel headers are bolted to either end of the
bottom frame via welded end-plates. The drive and free
wheels run on the hot rolled steel rail, which is fastened to
the floor of the warehouse. The purpose of the mobile
lifting carriage (cradle) is to move the payload in the
lifting direction and to perform the pick-up and deposit
cycles with the load handling unit fitted on the carriage.
The lifting carriage is a welded frame structure guided by
special rollers running on the vertical guide rails of the
mast.

The dynamic modeling of the single-mast stacker
crane is based on the planar finite element model
(F'E-model) shown in Fig. 2. In the model the continuum
prismatic beam sections of the mast are modeled by
two-dimensional finite elements (2D-Beams). The further
components are modeled by lumped masses i.e. the total
mass of the bottom frame (with the drive wheel and the
free wheel headers, the electric box, etc.), the masses of
the hoist unit and the top guide frame. The total mass
of the bottom frame is denoted by mg, the mass of the
hoist unit by mp4 and the mass of the top guide frame by
myr. The effect of the lifted load — the mass of payload
(my) and the lifting carriage (m;.) — is also taken into
consideration by a lumped mass. However, the position
of this lumped mass (hy,) can vary over time and defines
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Table 1. Main parameters of the stacker crane

Mast-height: h,, =45m
Height of hoist unit: hpg=3,5m
Payload: mp = 1200 kg
Mass of lifting carriage: mi. = 410kg
Mass of hoist unit: mpq = 470kg
Mass of top guide frame:  my;y = 70kg
Mass of mast: My, = 5998 kg
Mass of bottom frame: msp = 2418 kg
mzf&é‘ .y
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Fig. 2. Finite element model of stacker crane

the lifting height. With the varying lifted load position the
length of finite elements surrounding the lifted load also
changes. Therefore not only the parameters but also the
structure of the governing equations of motion depend on
the lifting height. The main parameters of stacker crane
are presented in Table 1.

The differential equation of motion of the
above-mentioned finite element model can be written as:

MG+ K¢+ Sq=u, ey

where M is the mass matrix, K is the damping matrix, S
is the stiffness matrix, ¢ = [ql coo Qny ] " is the vector
of generalized displacements, ¢ and ¢ are the derivatives
of g, i.e. the generalized velocity and acceleration vectors
and u is the vector of the external forces.

After the eigenproblem for Equation (1) has been
solved the eigenvectors can be arranged into the matrix
® with respect to the ascending order of the related
natural frequencies. Using this matrix the inverse modal
transformation ¢ = ®p is defined, where p is the vector
of modal displacements with ny components, and & is
the so-called modal matrix. Substitute the generalized

displacement vector g into Equation (1), and then multiply
this equation by the transpose of ®. If the matrix ® is
normalized to mass matrix M/ then ®T M & = I. This way
the differential equation of motion (1) can be rewritten as:

b+ Kpp+ Ap = Fyu, 2)

where p is the vector of modal displacements. p and
p denote the modal velocity and acceleration vectors,
respectively, and the matrices are the following: K, =
OTKD, A = TSP and F, = ®T. In the equation A is
the diagonal matrix of the squares of natural frequencies
relating to the applied natural modes.

Since most of the control design methods use the
state space representation of the model, the governing
equation of motion (2) must be transformed into the
state space form. The input signal of above-mentioned
F E-model is the external force © = F}; —i.e. the tractive
force generated by the travel unit — acting on the lumped
mass my, in the horizontal direction. This model is
applied in the synthesis of the controller which realizes the
positioning control of single-mast stacker cranes beside
reduced mast vibrations.

The state space representation of a linear time
invariant (LTT) system in general is described by the
following equations.

i = Ax + Bid + Bou
I z = C’lx + Dlld + D12U 5 (3)
y = Cox + Dard

where z, u, y, d, z are the state vector, control input,
measured output, disturbance input and performance
output vectors, respectively.

Define the state vector in the following way:

“

. T
z=[p p]
Using the definition above the equations of state dynamics
can be formalized as:

P -K, —A||p F,
e IR G

The first output of state space representation is
denoted by z and it is the inclination of mast i.e. the
position difference between the undermost point of the
mast and the mast tip ¢1 — ¢,,. This output is used for
describing and investigating mast vibrations. The second
output is denoted by y and it equals the horizontal position
of bottom frame i.e the generalized displacement ¢ .

An LTI state space presentation is valid only for
models with fixed lifted load magnitude and position.
However, the aim of modeling is to generate a dynamic
model which is able to take the mentioned parameter
dependence into account. Since the lifted load magnitude
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and position can be measured in real time the linear
parameter-varying (LPV’) modeling approach has been
chosen to achieve this aim. The LPV systems are linear
state space models whose matrices depend on the vector
of time-varying parameters p (¢) (Shamma, 1988; Leith
and Leithead, 2000). Hence L PV systems are defined by
state space equations as follows.

Definition 1. (LPV system) The compact set P C R®
and the continuous matrix functions A : RS — R7*7,
B : RS = R (' ; RS = RwXn D : RY -
R™ X"u are given. An nt" order LPV system is given by

E(p):{fc—A(p)HB(p)u

s 6
y=Clp)e+D(p)u ©

where p € P is the so-called scheduling parameter vector.

Unfortunately due to the complex structure of the
stacker crane mast — several kinds of sections with
different cross-sectional properties, lumped masses, etc.
— not only the parameters but also the form of governing
equations of motion vary with the lifted load position.
Another difficulty is that the large scale dynamic model
with high degrees of freedom requires model order
reduction before the control design. Thus it is not
possible to generate the LPV model of the investigated
single-mast stacker crane in one closed form. To solve this
problem a polytopic L PV modeling approach is applied,
see in (Apkarian et al., 1995). The following definitions
and considerations are useful to formulate the polytopic
LPV system.

Definition 2. (Matrix polytope) A matrix polytope is
defined as the convex hull of a finite number of matrices
M; with the same dimensions. This convex hull can be
generated as the convex combination of matrices M; i.e.

Conv{M;,i=1,...,n,} =

{ZO&,’M,' e > O,Zai = 1} . (7)

The investig;tilons are restrictédlto such LPV
systems where the state space matrices A(p), B(p),
C(p) and D(p) depend affinely on the scheduling
parameter vector p and this parameter vector varies in
a polytope © of vertices p1,p2,...,pn,; .. p €
© := Conv{p1,pa,...,pn,}. The consequence of this
restriction is that the state space matrices A(p), B(p),
C(p) and D(p) range in a polytope of matrices whose

vertices are the images of the vertices pi1,p2,...,pn,-
That is,
Alp) Bl(p) Ai Bi\ _
(c<p> o)) €™\ b)) =
Alpi) Blpi)\ . _
(C(pi) Dipy) saa=1,...,ny 0. (8)

Using this property the definition of polytopic LPV
systems (see in (Apkarian et al., 1995)) can be determined
as follows.

Definition 3. (Polytopic LPV system) An LPV system
is called “polytopic” when it can be represented by state
space matrices A(p), B(p), C(p) and D(p), where the
parameter vector p ranges over a fixed polytope and the
dependence of A(.), B(.), C(.) and D(.) on p is affine.
The main benefit of this modeling approach is that the
determination of the L PV model requires the knowledge
of state space matrices only in fixed vertices of parameter
space, i.e. the modeling is based on local LTI models
with “frozen” parameter vector p.

3. Model order reduction for the LPV
system

As mentioned before the aim of the dynamic modeling
of single mast stacker cranes is to generate a dynamic
model which is sufficiently accurate and at the same time
simple to fulfill the requirements of control synthesis
techniques. Due to the growth in the application of
advanced modeling techniques (e.g.  F'E-modeling)
the complex flexible structures — such as single-mast
stacker cranes — are usually modeled by medium- or
large-scale dynamic models with numerous degrees of
freedom. However, applying these high-dimensional
dynamic models in modern control analyses and syntheses
is extremely inefficient. In most cases, the controller order
is related to the order of the controlled system causing
difficulties in controller realization. The modern control
synthesis algorithms can also fail in controller calculation
in the case of large-scale models. Model order reduction
for LPV systems is an extensively studied area with
many challenges. Most of the methods introduced in
the literature are based on the reduction of local LT'1
models of gridded LPV systems (Caigny et al., 2014;
Poussot-Vassal and Demourant, 2012; Poussot-Vassal and
Roos, 2011; Theis et al., 2015). Since the internal
representation of the dynamics — i.e. the basis of the state
space — at different grid points may vary due to the local
reduction an additional state transformation is required to
recover state space consistency. After this transformation
the interpolation of individual LTI models now can be
performed in order to construct the LPV model. In
this section first the model order reduction of local LTI
models is presented, after that, a similarity transformation
is introduced to project the models onto the same basis.
Because of the polytopic LPV modeling approach the
interpolation step can be omitted.

Since the model order reduction for LTI systems is
an active research field several kinds of methods can be
found in the literature (Benner et al., 2003; Nowakowski
et al., 2013). These methods can be grouped into three
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main classes:
e classical reduction methods (e.g. modal truncation),

e singular value decomposition (SVD) based methods
using the controllability and observability Gramians,

e moment-matching methods
subspaces.

based on Krylov

The model order reduction methods listed above can
be classified as projection-based methods. These
methods generate the reduced order model via projecting
the original system onto a reduced one using two
projection matrices whose columns form bases for
relevant subspaces of the state-space (see the problem
below).

Problem 1. (Projection-based approximation) The
following LTI system with z € R™ is given:

9
y=Cx+ Du ©)

5. {a: = Az + Bu
The aim of projection-based approximation problem is to
find T; € R™*"™, T,. € R™*" (with T; T, = L.,r < n) left
and right projectors such that the reduced order system )y
accurately approximates Y. The the reduced order system
3 is defined as:

|

Here the state space matrices can be calculated as: A=
T,AT,,B=T,B,C = CT, and D = D.

Projection methods differ in the way the projection
matrices are chosen. Here the modal truncation (M1T)
method has been chosen to generate these matrices. The
purpose of the MT method is to project the dynamics
of the original model onto an A-invariant subspace
corresponding to the dominant modes of the system.
These dominant modes can be selected by the eigenvalues
of A. The selection of the dominant modes plays an
important role since the accuracy of the approximation is
determined by these modes. In the case of the investigated
stacker crane model the first two eigenvalues (with the
smallest absolute values) correspond to the rigid body
motion of the stacker crane, which must be retained
in the reduced model. Further dominant vibrational
modes (normal modes) corresponding to the next few
complex conjugate eigenvalue-pairs are also involved in
the reduced model. This way the accuracy of the reduced
model in the relevant frequency range will be acceptable.

As presented in (Theis et al., 2015) in the case of
LPV systems the eigenvalues and eigenvectors of the
matrix A(p) are also parameter dependent and hence
the transformation into a modal form would also depend
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38
I
>
+ +

u

zeR". (10)

Qs
b) >

u

<>
Il

on the scheduling parameter vector p. The use of
this global parameter-varying transformation introduces
an explicit dependence on the parameter variation rate
into the state space representation of the LPV system.
This parameter variation rate dependent term may
produce large off-diagonal elements in the transformed
system matrix A(p,p) for non-zero rates which makes
the decoupling impossible. Due to this problem the
above-mentioned LTI model order reduction method
is applied in the fixed points of the parameter space
(i.e. in the vertices pi,p2,...,pn, of polytope O
introduced in Section 2) rather than the parameter-varying
transformation. First a set of LTI models (3;,¢ =
1,...,n,) are generated and the corresponding projector
matrices 1j;,7; are calculated. After applying these
projector matrices a set of locally reduced models (5,0 =
1,...,n,) is given. However, a modal state space basis
calculated for an individual LTI model is not unique,
therefore, the consistence of state space representations
is not ensured. The physical meaning of state vector
components may vary point by point. This makes
it impossible to generate the polytopic LPV model
from the local models. Therefore an additional linear
transformation is needed to force the states to belong to
the same basis.

For this purpose, several methods can be found in
the literature, see e.g. in (Poussot-Vassal and Demourant,
2012; Poussot-Vassal and Roos, 2011; Theis et al.,
2015). From the state space projection presented in the
previous section it is known that x; = T,;%;. By the
method introduced in (Poussot-Vassal and Roos, 2011)
the following linear transformation is defined: & =
RTz;, R € R™". The aim of this projection method
is to force the bases of all state vectors £ to be the
same. For this purpose the linear transformation R must
be generated in such a way that:

RTTuiy = RTTygiy = - = RTTy i, = 27, (11)

Introducing the notation &; = Z g (where Z; =
RTT,,) each transformed reduced-order system f];‘ is
given as:

¥ (Af, B, CF, DY), (12)

(2

where AF = ZTi,AiT. 27", Bf = Z;TuB;, Cf =
CiTZ; L and D} = D;. With the proper selection of
R the above-mentioned transformation forces the local
state vectors to have the same bases, which makes the
generation of polytopic L PV model possible.

The matrix R of linear transformation can be selected
in several ways. It should span all the dynamics of the
local models. For example, it can be the most significant
transformations selected by singular value decomposition
(svd) as follows:

USVT =svd ([Tr1,-..,Trn,]) (13)
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where T,.; denotes the local projectors corresponding to
each local models. In order to keep the most significant
transformations for the columns of R the r first columns
of the unitary matrix U have been chosen, i.e. R = U,..

The verification of the consistence of state space
bases can be performed by checking the modal trajectories
(see in (Poussot-Vassal and Demourant, 2012)), i.e. the
trajectory of each eigenvalue A; with respect to the
scheduling parameters p in the complex plane. In the
case of the consistent state space bases these trajectories
must have regular shapes. Another simple and intuitive
idea to verify the model consistence is to inspect the
regularity of the behavior of system matrix elements w.r.t.
the parameter variation.

In Fig. 3 the system matrices of an example stacker
crane model are analyzed and the trajectories of system
matrix elements are shown. In the example D(p) =

0. The order of the reduced model is r = 4, the
numbers of input and output variables are n,, = 1 and
n, = 2 respectively. The first output variable is the

mast inclination while the second output is the position of
stacker crane. The lifting height as scheduling parameter
varies between 4m and 44m. From Fig. 3 it can be
concluded that the matrix elements vary regularly w.r.t.
the lifting height. Any sudden change or discontinuity can
not be seen in the functions of matrix elements. Therefore
the consistency of dynamic models in the example of Fig.
3 is ensured point-by-point.

4. LPV control design with guaranteed #
performance

In this section the considerations of LPV control design
with guaranteed H., performance are presented, see e.g.
in (Apkarian et al., 1995; Packard and Balas, 1997; Bokor
and Balas, 2005). In (Hoffmann and Werner, 2015b)
authors give a detailed summary of LPV control design
methods and its application areas. Further interesting
applications of LPV control can be found in (Hoffmann
and Werner, 2015a) and (Péni et al., 2015).

The most important tool in formulation and
derivation of the LPV controller is the bounded real
lemma, see e.g. in (Zhou et al., 1996). The bounded real
lemma is originally valid for LTI systems (Gahinet and
Apkarian, 1994). However, it can be extended to LPV
systems using the notation of quadratic H, performance,
see in (Apkarian et al., 1995).

Definition 4. (Quadratic H., performance) The LPV
system of Definition 1 has quadratic H., performance
~ > 0 iff there exist a symmetric matrix X > 0 such
that

A(p)"X + XA(p) XB(p) C(p)"
B(p)"X —I  D(p)"| <0 (14
C(p) D(p) -1

0 20 40 20 40 0 20 40 0 20 40
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(b) Matrix B(p)
0.2 -0.02 1.25 0.1
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0.2
0
-0.25
-0.024 1.15
0.1 03 b
D b
0.2 -0.026 1.1 -0.35
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-0.05 -0.15
0.44 0.35
01 X 0.438 0.3 0.2 D
0.15 0.436 D 0.25 -0.25
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(c) Matrix C(p)

Fig. 3. The structure of system matrices

for all admissible values of the parameter vector p. In this
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Fig. 4. H control configuration

case the Lyapunov function V(z) = 27 Xz establishes
global asymptotic stability and the induced Ls-norm of
the operator mapping from input to output is bounded by
- along all possible parameter trajectories p(t).

Definition 4 gives an infinite number of constraints
because it must be valid for all parameter vector values
p € ©. However, as shown in (Apkarian et al., 1995) in
the case of polytopic LPV systems the infinite number
of constraints can be reduced to a finite set of matrix
inequalities. Due to the convexity property of the polytope
the inequality (14) will hold for all A(p), B(p), C(p)
and D(p), p € O, if and only if it holds at the vertices
(Ai, Bi7 0717 D,), 1= 1, ceey Ny

Before the implementation of the LPV control
synthesis the control configuration for the H ., framework
i.e. the weighting strategy of the control design must be
configured, shown in Fig. 4.

In the figure G denotes the transfer function of the
reduced order dynamic model (12) corresponding to the
vertex p; of polytope ©O:

G(s): = Cf[sI — AY] ' B}, (15)

The mast vibration signal of dynamic model z is preserved
for time domain simulation purposes. The reference
signal r in the introduced augmented plant is the
horizontal position demand of the stacker crane. The ideal
model of the closed-loop system is represented by the
transfer function W,..s (i.e. the so-called model matching
function). Usually, this function is a second-order transfer
function with free parameters w, and (:

w2
Wyef = 54— —. 16
I 2% 2w+ w? (16)

This way the bandwidth and damping of the ideal
closed-loop transfer function can be adjusted. The error

between the ideal and the actual closed-loop transfer
functions is weighted by the penalty function W,.. The
value of this penalty function should be large in a
frequency range where small errors are desired and small
where larger errors can be tolerated. Usually, the more
accurate model is desired in the low frequency range thus
W, is a low pass filter:
Ae

We 15 Tos (I

The control input is limited using the performance
weighting function W,,. By the help of this weight larger
control signals can be penalized and thereby the control
activity can be minimized. The W, transfer function is a
high pass filter with parameters A, and T,:

Ays
W, = .
1+7T,s

(18)

In general, the purpose of weighting function W, is
to reflect the sensor noises. For simplicity of calculation as
well as reduction of conservatism in the actual controller
design setup it is omitted. Thus the transfer function
matrix of augmented plant for control design can be
expressed as:

% WWees | =WeGi ] ¢ o
2 | = 0 W [] , (19
y I | G "

where w = r is the disturbance input of augmented plant,
— T .

Z = [2e z4) 18 the vector of controlled (performance)
outputs and §¥ = r — y is the measured output.

This way, the controller design objective according
to the Definition 4 is that the induced Lo-norm of the
operator mapping of closed-loop system (from w to Z)
must be bounded by 7, i.e.

z
. sup Ll
pEO WEL, ||wH2
llw]|,#0

<7 (20

at the vertices p; of polytope ©.

Taking the feedback relation v = K7¥ into account
the closed-loop transfer function matrix related to the
vertex p; of polytope © can be expressed as follows:

M;

WK (I +GiK)™!

_ We (Wref - Ti)
o W.KS; ’

[We (Weey = GiK (1 + GjK)_lu
1)

where S; and T; are the sensitivity and complementary
sensitivity functions respectively. Thus, the controller
design objective from (20) can be formulated as:

Il = [ st ™

W, KS, ]HOOS% (22)
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It should be noted that the design objective above is
similar to a mixed sensitivity loop shaping problem.

For further considerations the state space realization
of augmented plant in vertex p; is necessary, which can be
constructed as follows:

¥ = A;Z + B1;w + Bau
Zpi . z = Clii‘ —+ Dlli’lf) + Dlgiu N (23)
y = CoiT + Doyw
where 7 = [272T] " with & the state vector of reduced
order stacker crane model and x, the state vector of
weighting functions. Using (8) the polytopic L PV model
of augmented plant can be written as:

i = A(p)2 + Bu(p)i + Ba(p)u
Ep(p) 18 2= Cl(p).’f + D11( ) + Dlg( )u . (29)
y = Ca(p)T + Dar(p)w

The following assumptions for the generalized
(augmented) L PV plant (24) must be made:

(A1) Do2(p) = 0, or equivalently Dyy; = 0fori =
1,...,1;

(A2) Ba(p), Ca(p), Dia(p) and Doi(p) are
parameter-independent, or equivalently By; = Bo,

C2i — 02’ D12i = D12 and D21i = D21 for
t=1,...,n;

(A3) the pairs (A(p),B2) and
quadratically  stabilizable = and
detectable over O respectively.

(A(p),C)  are
quadratically

The assumption (A1) can often be removed by redefining
the plant output y. If the assumption (A2) is not
satisfied, the computation of a solution became not easily
tractable. However, this problem can be solved by pre-
or post-filtering of control input u or measured output ¥,
see in (Apkarian et al., 1995). The third assumption is
necessary and sufficient to allow quadratic stabilization
of the polytopic LPV plant by an output feedback L PV
controller.

The LPV controller is defined in the following form:

u = Cg(p)zr + Di(p )y
where z;, € R", y and w are the state, input and
output of the controller associated with the system (24).
As shown in Equation (25), since the measurements
of p(t) are available in real time, the controller can
be constructed with the same parameter dependence as
the plant. The controller, therefore, can adjust to the
variations in the plant dynamics in order to provide
stability and performance along parameter trajectories

p(t). In other words, the controller is automatically
gain-scheduled according to the parameter variations.
Hence, the closed-loop system X (p) = X,(p) * K(p)

. T. .
with the state vector . = [zT a:ﬂ is given by:

. j:cl:A ( )xcl+Bcl( )
&“”'{z:cammu+4xx>d B
where
_ [A(p) + B2Dy(p)C2 B2Cr(p)
MW‘[ Bi(p)Cs @@}
Bal(p) = [31 () ];rkj(%)g’; Sp )Dﬂ : 27)

Ca(p) = [Ci(p) + D12Dk(p)C2 D1 Cy(p)]
Dei(p) = D11(p) + D12Dg(p) Dar-

Applying (14) on (26) leads to a nonlinear (bilinear)
matrix inequality, since the Lyapunov variable is
multiplied by the controller variables. Via changing of
the controller variables presented in (Scherer et al., 1997)
a new linear matrix inequality LM I that expresses the
same problem in a tractable way can be found, see in
expression (29). The decision matrices of this LMI
are: X, Y, A, B, C and D. Defining the matrices M
and N such that MNT = I, — XY — which can be
solved via singular value decomposition and Cholesky
factorization — the modified controller variables are (in the
sequel the parameter dependency in notation is suppressed
for simplicity):

A=YAX +YByD,CoX + NB,Co X+
+YB,C oM™ + NAMT,

Y ByDy, + N By, (28)
= DpCoX + O M7,

o O
Il I
)

k-

Using these variables the basic characterization of
gain-scheduled  output-feedback  controllers  with
guaranteed H., performance is presented in the
next theorem (for more details see e.g.  (Packard
and Balas, 1997; Bokor and Balas, 2005; Wu, 1996)).

Theorem 1. (Basic characterization) The PLV plant
governed by (24) is given. There exist a gain-scheduled
output-feedback controller (25) enforcing internal stabil-
ity and a bound v > 0 on the induced Lo-norm of
the closed-loop system (26) iff there exist symmetric ma-
trices X, Y and parameter-dependent matrix variables
(/Nl, B,C, ZN)) such that for all p € © the following LM I
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problem holds
Mz (o) (o) (o)
My Mo (o) (o) | _
M3z, Msy —~yI (o) '
My Myz Myz —vI (29)
X I
[ : Y%o_

where o denotes the symmetric completion of the matrix
and the matrix elements are:

My, = AX 4 ByC + (o), My, = A+ AT + T DT BY,
Mayy =Y A+ BCy + (o), M3y = BT + DI, DTBT
M3y = BI'Y + DI BT, My, = C1 X + D15C,

Myz = Cy + D12DCy, Myz = Dyy + D12DDya. (30)

For more details and proof of this theorem see (Apkarian
and Adams, 1998; Chilali and Gahinet, 1995; Scherer,
1995).

Without loss of generality, the LPV controller is
assumed to be polytopic as well. Using the convexity
property of polytope the LPV controller synthesis can be
performed via the following constructive approach:

e By the help of Theorem 1 generate and solve the
LMT problem corresponding to the n, vertices of
polytope © consisting of n,, + 1 pieces LM I-s:

M (o) (o) (o)
M1y Mz (o) (o) -0
Msi; Mgy —~yI (o) ’ 31
My, Myz; Myz; —v1 G
X I
{ : Y]>0,

where 7 = 1,...,nv,, Mlli = AZX + BQZCZ +
(@), ... with the notation (30).

e Using these results determine the controller system
matrices (Apg;, Bi, Cri, Di;) in every vertex of
polytope © by solving the linear system (28).

e Define the LPV controller K(p) as the convex
combination of these vertex controllers:

Ax(p) Br(p)\ ._
(1 5)-

{iai (é:: gzz> Ty > O,Em = 1}.

1=

The resulting polytopic LPV controller guarantees the
stability and performance of closed loop system over the
entire parameter polytope ©.

S. Mast vibration reducing L PV controller
design

In this section a design case study is presented using the
modeling and controller synthesis techniques described in
the previous sections. The aim of this design process is to
find an adequate L PV controller which is able to handle
the variations in the dynamic parameters of the stacker
crane during hoisting/lowering operations. The resulting
controller must provide stability and high performance
of the closed-loop system over the set of admissible
parameter trajectories. Since the magnitude of the lifted
load can vary only during the pick-up and deposit cycles
— while the stacker crane is at a standstill — a higher level
control system can adapt to this load magnitude variation
by the reconfiguration of the controller. Hence, in the
LPV controller synthesis only the lifted load position
(lifting height) is taken into account as a scheduling
variable. This reduction in the number of scheduling
parameters can be very useful in the case of the polytopic
LPV synthesis approach since the number of vertices
grows exponentially with the number of parameters.

The dynamic model for controller synthesis and
time domain simulations are generated by means of
considerations presented in Section 2. Here a 20" order
F E-model is used to generate the local LTI models in
the vertices of the parameter polytope i.e. both endpoints
of the lifted load position. These models are reduced to
4™ order for simplicity — conserving the rigid body motion
capability and first vibrational mode — and projected to the
same basis via the method described in Section 3. Finally,
the LPV model of the stacker crane is defined via the
polytopic approach.

For defining the controller performances the control
configuration shown in Fig. 4 is used. Here the model
matching function is chosen as:

100

Wres = 373505 3 100"

(33)

The performance weighting functions W, and W, are:

10 10~%s

= Wy=——. 34
1+103s 1+105s 4

Analyzing the controller design objective (22) it can
be concluded that this objective implies the following
conditions:

‘We (Wref - T1)| S Y

35

Hence, the norms of the inverses of weighting functions
W, and W,, may be viewed as upper bounds on the
transfer functions W,..y — T; and K S; respectively. This
way the bandwidth of the closed-loop system may be
affected by the proper selection of the parameters of
performance weighting functions. The achievement of

@ ac
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Fig. 5. Achievement of performance objectives

performance objectives for the closed-loop system can be
checked by means of the Fig. 5.

The closed-loop system with the designed controller
is tested by means of simulation-based analysis. In this
simulation the position signal of a general stacker crane
moving cycle is used as a reference signal. In the first
session of the moving cycle the stacker crane has constant
0,5m/s? desired acceleration. In the second session the
desired velocity is 3,5m/s and the deceleration value of
the third session is —0,5m/s?. The distance covered in
the moving cycle is 70 m while the total cycle time is 27
seconds. The lifted load position varies between 5 m and
35 m during the time-domain simulation, as shown in Fig.
6.

The simulation results i.e. diagrams of stacker crane
position ¢; and mast deflection ¢; — g, are shown in
the Fig. 7. For comparison purposes, the simulation
diagrams generated by an LTI controller near the fixed
(uppermost) load position are shown in Fig. 8. This robust
LTI controller is designed with a focus on good reference
signal tracking instead of reducing mast vibration.

6. Conclusions

In the paper a controller design method has been
introduced which is able to generate a gain-scheduled
controller to handle the variation in lifted load parameters

50

451

40t

Lifting Height [m]

I I . . . . . I . .
0 5 10 15 20 25 30 35 40 45 50 55
Time [sec]

Fig. 6. Lifted load position
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Fig. 7. Time-domain simulation results

during stacker crane operation. At the same time the good
reference signal tracking and mast vibration reducing
properties are also relevant aims of the controller design.
After summarizing the dynamic modeling possibilities
of single-mast stacker crane structures a local LT'1
model based polytopic L PV modeling approach has been
presented to describe the parameter dependence of the
dynamic model. Due to the relatively high-dimensional
local dynamic models first they must be reduced
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Fig. 8. Time-domain simulation results of LTI controller

with a suitable method.  During this model order
reduction the consistence of state space representations
between parameter points is guaranteed by an additional
transformation. =~ A gain-scheduling LPV controller
design method has also been introduced which is suitable
for the positioning control of stacker cranes with reduced
mast vibrations in the presence of parameter (e.g. lifted
load position) variations. The analysis of the controlled
system has been carried out via time domain simulations.
The results show acceptable reference signal tracking and
mast vibration reducing properties.
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