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Abstract: Protein phosphatase PP2A is an enzyme complex consisting of C (catalytic), A (scaffold)
and B (regulatory) subunits. B subunits are a large family of proteins that regulate activity, substrate
specificity and subcellular localization of the holoenzyme. Knowledge on the molecular functions of
PP2A in plants is less than for protein kinases, but it is rapidly increasing. B subunits are responsible
for the large diversity of PP2A functioning. This paper intends to give a survey on their multiple
regulatory mechanisms. Firstly, we give a short description on our current knowledge in terms of “B”-
mediated regulation of metabolic pathways. Next, we present their subcellular localizations, which
extend from the nucleus to the cytosol and membrane compartments. The next sections show how B
subunits regulate cellular processes from mitotic division to signal transduction pathways, including
hormone signaling, and then the emerging evidence for their regulatory (mostly modulatory) roles in
both abiotic and biotic stress responses in plants. Knowledge on these issues should be increased in
the near future, since it contributes to a better understanding of how plant cells work, it may have
agricultural applications, and it may have new insights into how vascular plants including crops face
diverse environmental challenges.

Keywords: protein phosphatase PP2A; B subunit; subcellular localization; metabolism; development;
signal transduction; abiotic stress; biotic stress

1. Introduction

The present review intends to give novel insights into the functioning of a family
of eukaryotic regulatory proteins in plants. These are the heterogenous “B” subunits of
protein phosphatases PP2A. As we will see, these subunits have various functions in plant
cells, and in the upcoming years, much knowledge should be acquired on the mechanisms
by which they control subcellular and whole-plant events from the regulation of cell cycle
and development to plant stress responses.

Reversible protein phosphorylation is a crucial type of post-translational modifica-
tion [1,2]. PP2A is a PPP (phosphoprotein phosphatase) type of serine–threonine protein
phosphatase. It is highly abundant in all eukaryotes, which is valid for plants as well [3,4].
PP2A holoenzyme is a heterotrimer consisting of the scaffolding “A” subunits, the reg-
ulatory “B” subunits and the catalytic “C” subunits. “A” and especially “B” are protein
families consisting of multiple isoforms with tissue- and cell-compartment-dependent
expression patterns. This variability is responsible for the multiple ways of localization and
substrate usage of the holoenzyme. The “C” catalytic subunit has a much smaller number
of isoforms than for the other two subunits and a definitely much smaller, than the number
of protein kinase isoforms. For example, Arabidopsis and tomato have only five PP2A/C
variants, while in potato, there are six, and in alfalfa, at least three isoforms [5–8].

PP2A controls a large number of key cellular metabolic and regulatory processes.
Functioning of a significant number of proteins, including enzymes that are key players of
metabolic pathways, depends on their phosphorylation state. Examples for important PP2A
functions in plants include [1,8]: (i) the regulation of primary and secondary metabolism;
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(ii) regulation of polar auxin transport by the PIN proteins [9–11]; (iii) regulation of key
signaling pathways including those mediated by brassinosteroids (BRs) and ABA and hence
of plant development from embryogenesis to the morphogenesis of vegetative organs—
PP2A exerts this function along with other phosphatases; (iv) although we still have little
knowledge on the regulation of the cell cycle by PP2A, a significant number of publications
has recently emerged on this topic [10]; (v) they are involved in the responses of plants to
abiotic and biotic stresses and in immune responses against bacteria and fungi or resistance
against aphids [12–14].

Since most of the studies on PP2A were performed in Arabidopsis, here we give a
brief presentation of its PP2A/C subunits. C1, C2 and C5 catalytic subunits belong to sub-
family I and have important functions in the regulation of stress responses, e.g., oxidative
stress [6,15,16]. C3 and C4 subunits belong to subfamily II [17]. Some of their functions
include: (i) the organization of microtubule (MT) structures—cortical microtubules (CMTs),
the preprophase band (PPB), mitotic spindle and phragmoplast; (ii) the regulation of polar
auxin transport by dephosphorylation of PIN auxin efflux carriers in the embryos and
axial organs, which influence their developmental patterning; (iii) the light-dependent
regulation of nitrate reductase [18–20].

As we stated before, B subunits are responsible for the multiple localizations and
functions of PP2A complexes. Moreover, if a single-substrate protein contains multiple
phosphoserine/threonine dephosphorylation sites, they can modulate the overall catalytic
activity of the complex and determine which sites will be modified and which amino acids
will remain unchanged [4]. B subunits (PP2A/B) have at least 17 isoforms in Arabidopsis
and probably more in soybean. For example, 43 Arabidopsis and 83 soybean genes for
B′′ were identified, and for soybean, many of them were associated with salt/drought
stress [6,8]. As in other eukaryotes, in plants (judging mainly on the basis of studies on
Arabidopsis), they are further subdivided into B (B55/PR55), B′ (B56/PR61, 54–74 kDa) and
B′′ (PR48/PR72/PR130, 72–130 kDa) with a wide range of molecular weights (54–130 kDa),
while not much is known about the B′′′ (PR93/PR110) subunits for plants [3,6,21,22]. These
are subfamilies with multiple members, and there is minimal homology between the
subfamilies. For plants, the following members were proven to occur: B/α, β, B′/α, β, δ,
ε, κ, η (B′η is a subfamily with the following members: γ, ζ, η, θ) and B′′/β, γ, EMB40,
FASS/TON2, GDO [6,21]. The α and β subunits of the B subfamily show 43–48 amino acid
sequence homology with their yeast and animal counterparts [6]. For plants, at least the B′′

subunits were shown to contain the ASBD1 and ASBD2 domains necessary for binding the
PP2A/A-C dimer in eukaryotes [21]

As we will see in this review, the TON2/FASS protein of Arabidopsis is a B′′ subunit
with one of the widest ranges of function among PP2A/B proteins [20,23]. The ton2/fass
mutants have dysfunctional or absent PP2A/B′′(FASS) subunits. The homozygote recessive
phenotypes show severe developmental disorders (incomplete differentiation of axial or-
gans), and their meristematic cells lack the PPB of MTs. PPB is important in the organization
of the mitotic division plane in plants. FASS is known to interact with C3 and C4 catalytic
subunit isoforms [17,20,23]. Dwarfism and altered developmental phenotype (e.g., defects
in the development of axial organs) have been known for a long time for fass mutants [24].

The main objective of the present review is a detailed presentation of the role and
functioning of B subunits in plant life with insights into the current knowledge gaps and
future research directions in the field. Accordingly, we will critically survey their involve-
ment in the regulation of metabolism (Section 2.2), of cell functioning/signal transduction,
whole-plant development (Section 2.3) and of abiotic/biotic stress reactions (Section 2.4).
Although “A” scaffolding subunits are very important in the functioning of PP2A holoen-
zymes as well, they are not the subject of this review. For a start, we will overview the
multiple subcellular localizations of the multiple members of the PP2A/B subunit family.
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2. Roles and Functioning of B Subunits
2.1. Subcellular Localizations of B Subunits

As for the other eukaryotes, diverse members of the B subunit subfamilies have
diverse subcellular localizations in plants. This is largely dependent on the nature of target-
ing/signal amino acid sequences of the given protein [25]. This diversity of localization
is shown in Table 1. Localization is in a close relationship with the target/substrate; thus,
there is functional significance of a given PP2A holoenzyme complex, as we will see in the
subsequent subsections.

Table 1. Summary of principal data for the most important PP2A/B subunits in Arabidopsis.

Subunit
Family

Subunit
Name

Subcellular
Localization

Catalytic
Subunit Partner Function/Mechanism of Action References

B
Bα, Bβ cytosol, nucleus unknown for Bα

male gametophyte development
interacts with nitrate reductase to
activate (dephosphorylate) it and

promotes fertility; delay of flowering

[13,26–30]

Bβ plasma membrane-
bound? C4 ethylene-induced root growth

inhibition [29];

B′

B′α, B′β nucleus, cytosol C5?
sister chromatid cohesion during

meiosis; dephosphorylation of BZR1
and promoting BR signaling

[6,31–33]

B′γ, δ, ε, ζ, κ,
θ, η

nucleus, nucleolus,
cytosol

not known for all
of them (C4 for

B′η, ζ)

interaction of PP2A with BRI1 to
dephosphorylate and inactivate it;
therefore, they negatively regulate

brassinolide signaling

[13,25,32,33]

B′γ
cytosol, nucleus,

plasma membrane not studied here

promotion of flowering; modulation
of PR, e.g., against Botrytis cinerea;

regulation of resistance against aphid
fecundity; inhibition of premature

leaf senescence

[12,13,30,34–36]

B′ζ, η

cytoplasm,
nucleus, nucleolus,
mitochondria; for

η, plasma
membrane as well

C4
inactivates the PRR system

BAK1-Flg22 to reduce plant immune
response

[25,33,37,38]

B′ζ
mitochondria,

cytosol C4
dephosphorylation of CTR1 to

prevent ethylene signaling; regulation
of resistance against aphid fecundity;

[13,25,35,39]

B′θ
nucleus, cytosol,

peroxisomes C2, C5 β-oxidation of IBA and fatty acids;
ABA signaling via the OST1 (SnRK2) [15,16,25]

B′′

TON2/FASS CMTs, PPB, cytosol C3, C4

regulation of MT assembly in mitotic
and non-mitotic cells; control of ROS

levels, Cu/Zn SOD activity and
phosphorylation of histone H2AX;

dephosphorylation of the VIP1 bZIP
TF for the defense against mechanical

stress in roots

[20,40,41]

B′′α, B′′β cytosol, nucleus not studied here

regulation of the mevalonate
pathway under normal and stress

conditions to influence
isoprenoid/plant hormone

metabolism

[13,42]

B′′δ cytosol? not studied here
dephosphorylation of the VIP1 bZIP
TF for the defense against mechanical

stress in roots
[40]

Abbreviations: BR—brassinolide; BRI1—brassinosteroid insensitive 1; BZR1—brassinazole resistant; PR—
pathogenesis response; ROS—reactive oxygen species.
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TON2/FASS is perhaps the most well-known B subunit studied in terms of subcellular
localization in Arabidopsis. Its gene is expressed ubiquitously in the Arabidopsis plant [23].
This B′′ subunit is part of a protein complex called TTP (Ton1-TRM/Ton2 recruiting motif-
PP2A). TRM and Ton1 show sequence homologies with animal centrosomal proteins [20,43].
In this complex, FASS binds both A (all three isoforms) and C (C3, C4) subunits and binds
the holoenzyme to Ton1/TRM, which is important in recruiting the PP2A holoenzyme to
cortical microtubules (CMTs) and to the preprophase band (PPB) by a mechanism described
in detail by Spinner et al. [20], Schaefer et al. [44] and Rasmussen and Bellinger [45].
TRM is a multiprotein family where several members (typically, TRM1) bind MTs, while
others do not [43]. Other B′′ subunits are also known to bind at least the A subunit of
holoenzymes [46]. In light of these statements, GFP-Ton1 was localized to the radial
walls/membranes of Arabidopsis root apical meristem cells [47]. Besides FASS, Ton1
interacts with RCN1, a PP2A/A subunit known to be important in the targeting of PP2A
to PIN1, a polar auxin transporter. Given that the PP2A/C3 and C4 subunits interact
with both FASS and PIN1 [18,20], it is possible that these B′′ subunits play a role in auxin
transport. However, FASS was not localized to the same membrane site, which raises the
possibility that Ton1 interacts with other B subunits as well [48].

Regarding MTs, FASS shows a weak interaction with katanin, an MT-severing enzyme
in the conical cells of Arabidopsis petals [49].

Localization of B subunits at the chromatin level is known for B′α and B′β, which
localize to the centromeres at the initial stages of meiosis I and meiosis II [31]. They are
important in sister chromatid cohesion as described in Section 2.3.

All the above data referring to Arabidopsis and subcellular localizations are given
in Table 1. Waadt et al. [37] and Durian et al. [13] presented the locations for the B sub-
units in Arabidopsis as follows: cytoplasm—Bα, β, B′—all known subunits, B′′α, β, γ, δ;
nucleus—Bα, β, B′α, β, ε, ζ, η, θ, κ, B′′α, β, γ, δ; nucleolus—B′ζ, η, θ, κ; mitochondria—B′ζ;
peroxisomes—B′θ. Since then, other localizations (e.g., plasma membrane) for B subunits
have been found, as specified in Table 1.

2.2. Regulation of Plant Metabolism by B Subunits

Although the metabolic regulatory role of PP2A always influences key developmental
and/or stress defense events (see Section 2.3), we dedicated a separate subsection to several
important metabolic pathways (see Figure 1 as well).

One of the most important metabolic changes induced by B subunits were observed
for Bα and Bβ in Arabidopsis, where they interact with nitrate reductase (NR). NR is
dephosphorylated, thereby activated at a phospho-Ser residue under light conditions,
in a photosynthesis-dependent way. These B subunits are important in targeting PP2A
holoenzymes to NR [26]. Since NR is of crucial importance for nitrogen/amino acid
metabolism, it is not surprising that impairment in the functioning of Bα/Bβ will have
dramatic consequences in whole-plant development, including decrease in fertility [26,27].

B′θ subunit targets the C2 or C5 subunits containing PP2A holoenzymes to the per-
oxisome by its PTS1 targeting signal and regulates peroxisomal β-oxidation of auxins (of
indole-3-butyric acid to the more active IAA) and of fatty acids [16]. Therefore, this subunit
is potentially essential for the regulation of many hormone signaling and stress response
events.

B′′α and B′′β subunits regulate 3-hydroxy-3-methylglutaryl CoA reductase (HMGR),
a key enzyme of the mevalonate pathway under optimal and stress conditions in Ara-
bidopsis. The mechanism is discussed in [42]: Under optimal conditions, B′′β promotes
dephosphorylation and thereby inactivation of HMGR. In contrast, during salt stress, B′′α
will promote an initial decrease, then an increase in HMGR activity through transcrip-
tional regulation of its expression, and it is involved in the reduction of root growth in
mild salt concentrations. HMGR catalyzes the third step of the mevalonate pathway to
produce mevalonic acid, a compound used thereafter for the production of isopentenyl
diphosphate for terpenoid (including isoprenoid) biosynthesis. This pathway provides



Int. J. Mol. Sci. 2023, 24, 5147 5 of 13

sterols (for membrane components and brassinosteroid biosynthesis), phytoalexins and
other important compounds in the plant cell, necessary for both developmental regulation
and stress defense.
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We will discuss several important B-subunit-regulated metabolic pathways during
stress responses in Section 2.4.

2.3. Regulation of Cell Cycle/division and Whole-Plant Development by B Subunits

The roles of “B” subunits in plant metabolism and development are summarized in
Figure 1 and Table 1.

In terms of mitosis regulation, one of the most well-studied PP2A/B subunits is
TON2/FASS of Arabidopsis and its homologues in other species. This is a B′′ subunit
that targets the holoenzyme to CMTs and PPB via the aforementioned Ton1-TRM com-
plex [20,44,45]. This colocalization of PP2A with MTs is important in the regulation of
their de novo polymerization, stability and bundling [10,50]. Ton1 has some homology
with proteins that build up human centrosomes, and it interacts with Centrin, a compo-
nent of Arabidopsis microtubule organizing centers (MTOC) [47]. On the other hand,
MT organization depends on microtubule-associated proteins (MAPs), whose functioning
depends on their binding to this cytoskeletal element [10]. For example, AtMAP65-1 is
a MAP that induces non-mitotic and mitotic MT bundling only when a PP2A complex
dephosphorylates it [50]. For the future, it would be interesting to see whether the phos-
phorylation state of AtMAP65-1 depends on FASS. To summarize the effects of FASS on
the above mentioned two types of MT arrays: (i) regarding CMT, it has been known for
a long time that at least part of the fass mutant lines is characterized by defects in the
formation of normal CMT arrays [51]. Later, it was demonstrated that a lack of functional

BioRender.com
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FASS decreases CMT density, leading to altered shapes of trichomes, epidermal pavement
cells and hypocotyl cells (see Kirik et al., 2012 [52], for an example). (ii) As we mentioned
before, the lack of functional FASS protein leads to the absence of PPBs in premitotic cells,
which may alter division planes, leading to abnormal development of axial organs [52]. If
FASS is present, but several TRM isoforms (that most probably link the PP2A holoenzyme
to MTs) are not functional (the trm678 mutant of Arabidopsis), PPB will be absent, but
division plane anomalies as severe as in some fass mutants cannot be detected. The authors
concluded that TRMs regulate the accuracy of division orientation but have only a partial
effect on the gross regulation of division plane position [44]. However, another possible
explanation is that different TRM variants have different affinities to MTs; for example,
TRM1 is known to induce cell shape alteration and may bind more strongly to cytoskeletal
elements. Meanwhile, there is no evidence for the binding of FASS to mitotic spindles or
phragmoplasts. However, discordia1/alternative discordia1, maize proteins homologous to
FASS, regulate phragmoplast orientation during the formation of stomatal subsidiary cells
in the shoot epidermis [53]. Since FASS regulates MT organization both in dividing and
non-dividing cells, its functioning regulates proper cell division patterning in the embryos
and roots of Arabidopsis. fass mutants with a strongly altered phenotype such as fass-5 are
characterized by altered early embryo development and altered cellular patterning (i.e.,
wrong cell division planes) in the root apical meristem [20,52].

The rice retinoblastoma-related protein (OsRBR1) is dephosphorylated by a complex
containing a Type II PP2A/C subunit and a B′′ subunit. Phosphorylation of B′′ by a CDK
increases its affinity to the PP2A holoenzyme, increasing dephosphorylation of OsRBR1.
This is thought to be a mechanism that contributes to the inactivation of OsRBR1 during
the cell cycle [54].

Other B subunits are important for the formation and normal development of game-
tophytes in Arabidopsis. Bα and Bβ are important in the normal division of microspores,
thereby regulating pollen fertility [28]. The B′α and B′β subunits play a key role in sister
chromatid cohesion during meiosis, with the double mutants being semisterile. These
two subunits play a redundant role in fertility [27,31]. The mechanism: these subunits are
probably responsible for the targeting of the PP2A complex to SYN1 (after its binding to
SGO1/shugoshin), a component of the cohesion complex in meiotic Arabidopsis cells. This
targeting protects SYN1 from phosphorylation-mediated destabilization and consequently
degradation [31].

Several B subunits are known to regulate signaling pathways that affect whole-plant
development. Bβ activates the PP2A/C4+A2 complex in the presence of ethylene. This
complex will remain bound to the auxin efflux carrier PIN2/EIR1 to mediate its dephospho-
rylation and hence auxin transport alongside the root epidermis to cause ethylene-induced
root growth inhibition [29]. B′ζ is proposed to target the PP2A complex to CTR1 (consti-
tutive triple response 1), a kinase [39]. This is a negative regulator of ethylene signaling.
Binding of ethylene to its receptor (e.g., ETR1, located in the ER membrane) will render
CTR1 to be phosphorylated and unstable, and this will finally trigger ethylene-mediated
signaling. However, it is proposed that the B′ζ containing PP2A holoenzyme dephospho-
rylates and stabilizes CTR1, which will dimerize and rebind to ETR1 to block ethylene
signaling and to maintain normal seedling development in Arabidopsis [39].

B′ subunits can regulate brassinosteroid (BR) signaling in diverse and complex ways ([32];
Figure 2). Members of the B′η family target PP2A to BRI1, the brassinosteroid receptor.
Upon promoting its dephosphorylation, they will prevent the formation of the BRI1-BAK
heterodimer and block BR signaling. This signaling pathway will promote the expression
of B′η; thus, this is a negative feedback mechanism that blocks excessive signaling and
maintains normal growth of Arabidopsis [32]. On the other hand, B′α and B′β target PP2A
to BZR1 to be dephosphorylated, which thus can act as a transcription factor to switch on
BR-responsive genes [32,33].
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Figure 2. The roles of PP2A/B subunits in the Arabidopsis responses to abiotic and biotic stresses.
Abbreviations: ACO3—aconitase 3; AOX—alternative oxidase; BAK1—brassinosteroid insensi-
tive 1–associated kinase 1; BES1—BRI1–EMS–suppressor 1; BRI1—brassinosteroid insensitive 1;
BZR1—brassinazole resistant 1; CPK1—calcium-dependent protein kinase 1; ET—ethylene; flg22—
flagellin; FLS2—flagellin sensing receptor 2; ICS—isochorismate synthase; mit—mitochondrion;
NPR1—nonexpresser of PR1; OST1—open stomata 1; PM—plasma membrane; PRR—pattern recogni-
tion receptor; ROS—reactive oxygen species; SA—salicylic acid; SAG1—senescence associated gene 1;
SOD—superoxide dismutase; UPR—unfolded protein response. Figure created with BioRender.com
(accessed on 15 January 2023).

Several B/B′ subunits regulate flowering time in Arabidopsis, and the way of regula-
tion is dependent on the type of B subunit associated with PP2A [26]. Knockout mutants of
Bα and Bβ were characterized by early flowering by an unknown mechanism. Meanwhile,
B′γ inhibits FLC (flowering locus C) expression. The repression of FLC during vernal-
ization is necessary for the induction of flowering integrators (FT and SOC1); therefore,
this subunit seems to be a positive regulator of flowering. Since this work was based on
gene expression studies, we still do not have enough data for the relevant study of PP2A
holoenzyme activity in this case.

An interesting study has revealed that low levels of B′ϕ transcripts are necessary for
the proper formation of mycorrhizal associations in tomato roots to maintain normal plant
development [55].

2.4. Regulation of Plant Responses to Abiotic and Biotic Stresses

Many aspects of PP2A-related stress responses in plants are related to oxidative stress.
This involves the production and subcellular effects of reactive oxygen species (ROS) as
well as their scavenging. We and others have already reviewed many important aspects of
this issue [13,14]. Therefore, in this section, we will concentrate mainly on novel insights
on the B subunit - oxidative (abiotic and biotic) stress relationship (see Figure 2 and Table 1
for a summary). Firstly, we give examples to abiotic stress responses.

BioRender.com
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Regarding the B′γ subunit, aconitase 3, known to be (down)regulated by it, is in-
volved in the tolerance against mitochondrial dysfunction during UV-B or antimycin-A
stress [56]. We provide more details on this subunit in relation to its roles in the functioning
in plant metabolism during biotic stresses/plant pathogen defense. B′γ may regulate plant
responses to heat stress as well [57,58].

OST1 (open stomata 1) is an SnRK2-type protein kinase involved in ABA signaling
that will trigger the expression of ABA-related genes, including RBOH (respiratory burst
oxidase homologue, NADPH2 oxidase) and generates ROS. The activity of this kinase
is inhibited by PP2A with the involvement of the B′θ subunit [14,59,60]. Other authors
have pointed out that the above relationship is not so simple, since whether the PP2A
holoenzyme works as a positive or negative regulator of ABA signaling depends on the
species or organ/cell type (e.g., stomatal opening vs. root development) [37]. ABA induces
the expression of the alfalfa Bβ subunit as well, but the functional implications are yet to be
clarified [5].

FASS is known to be a B′′ subunit involved mostly in microtubule organization to
control cell shape and the cell division plane (See Section 2.3). Based on protein-protein
interaction, PCR analysis and microscopy studies of GFP-fusion proteins, FASS, together
with subunit B′′δ is supposed to regulate, thus activates/targets a basic leucine zipper
transcription factor, VIP1 to the nucleus by dephosphorylation. This will activate genes that
serve in the defense of roots against mechanical and hypo-osmotic stress by reducing its
waving during these conditions in Arabidopsis (Figure 1). Both types of B′′ subunits have
Ca2+ binding EF-hand motifs that help their interaction with VIP1 [40]. A recent study [41]
has revealed that FASS also regulates oxidative stress responses, since it: (i) maintains
normal levels of reactive oxygen species (ROS) both in meristems and differentiated root
tissues; (ii) together with its interacting catalytic subunit partners (C3 and C4), it controls
ROS scavenging by regulating superoxide dismutase (Fe-SOD and Cu/Zn-SOD) activities;
(iii) it regulates the histone H2AX phosphorylation state. Phosphorylation of this histone
variant is important for DNA damage repair by inducing the loss of nucleosomes to make
DNA available for repair enzymes [61]. Much research is needed to reveal the subcellular
locations and exact mechanisms of the above events.

Soybean transcriptome data showed that in this plant, genes for 26 members of
the B′′ family were responsive to drought/salt tolerance [62]. A B′′ subunit from wheat
(TaPP2AbB′′-γ) was found to be localized in the plasma membrane, cytosol and nucleus.
Its transcript level increased during salt, drought, cold and ABA treatments, and its overex-
pression in Arabidopsis seedlings increased abiotic stress tolerance [63].

Concerning biotic stresses, the excellent paper of Durian et al. [13] gives a survey
on the roles of reversible protein phosphorylation in plant immune reactions, featuring
PP2A. It gives an excellent insight into the relevant mechanisms where B subunits are
known to be involved. His general statement is that the levels of at least the C2 and C5
Arabidopsis catalytic subunits increase during biotic stress but decrease during abiotic
stress. As concerning B subunits, B′ζ, η, θ and B′′α transcripts follow this trend, but for
B′α, β, γ and δ, transcript levels increase during abiotic stress as well. During bacterial
(Pseudomonas syringae) attack, the receptor-like kinase FLS2 (flagellin sensing receptor
2) binds to BAK1 (a co-receptor of the BR receptor BRI1). This complex will form a
PRR (pattern-recognition receptor) system. PP2A/C4 bound to B′η and ζ is a negative
regulator of this complex by dephosphorylating and thus inactivating it; hence, it inhibits
PTI (pathogen/PAMP-triggered immunity). PTI should lead to the activation of plasma
membrane NADPH oxidase as well as to intracellular salicylic acid (SA) release and ROS
burst (see [38] and Figure 2). In general, all members of the B′η family investigated to
date (γ, ζ, η, θ) are negative regulators of PTI. Part of them involve the control of salicylic
acid (SA) and jasmonic acid (JA) signaling/regulation of oxidative status of the cell by
regulating ROS production and by often triggering its enzymatic scavenging [12,13]. B′γ
and ζ are also negative regulators of resistance to aphids, but for B′γ, this depends on
light conditions. Negative regulation is true under high irradiance, but the opposite occurs
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at moderate light conditions [34,35]. We can assume that these mechanisms are largely
dependent on environmental conditions such as temperature, light and humidity. For
example, B′γ is an activator of PP2A in general, but under certain conditions, this subunit
is inactivated at pathogen attack; thus, mechanisms triggering the immune responses
will be activated. On the other hand, B′γ activates mitochondrial alternative oxidases
(AOX, important ROS scavengers) via interacting with cytoplasmic aconitase3 (ACO3)
(presumably activating its dephosphorylation at Ser91) and blocking its inhibitory effects
on AOX. We do not have proof on its activation effect on the PP2A holoenzyme in this
case. Basic information of the relevant effects of B subunits can be seen in the works
of [15,34,35,64–67]. Excellent reviews summarizing earlier studies on cellular and molecular
mechanisms are also available [13,14].

More recently, the study of Durian et al. [12] gave a complex view about how cy-
toplasmic PP2A complexes bearing B′γ interfere with PR induced by the necrotrophic
fungus Botrytis cinerea and with leaf senescence. Mutant analysis and protein interac-
tion studies showed that B′γ inhibits SA-dependent and SA-independent pathogenesis
response/resistance (PR expression) and delays SA-dependent and -independent devel-
opmental leaf senescence (inhibits premature aging of leaves). The mechanisms are as
follows ([12,68]; see Figure 2): (i) it interacts with and inhibits the activity of CPK1, a
calcium-dependent protein kinase involved in signaling toward defense- and senescence-
related gene expression in an SA-independent way; (ii) it interacts with and inhibits activity
of SAG1, a cysteine protease related to senescence in an SA-independent way; (iii) it inhibits
the activity of the isochorismate synthase ICS1, a key enzyme in SA biosynthesis, and it
inhibits SA signaling via the positive regulator NPR1 (nonexpresser of PR genes 1).

PP2A/B′γ is also involved in ethylene biosynthesis and signaling. Li et al. [36] found
that ACC2 oxidase is controlled by reversible phosphorylation with a role (presumably
downregulation) of this subunit. This has been related to ethylene-triggered control of
pathogen defense (see [14]).

Yeast two-hybrid assays indicate that the AvrE superfamily of type III effectors
(T3Es) of several plant pathogenic bacteria (e.g., Pseudomonas syringae pv. tomato, Er-
winia amylovora, Pectobacterium carotovorum) suppress PAMP-triggered immunity (PTI) via
activating PP2A, a mechanism that will inhibit plant immune responses, including those
induced by SA [69]. According to a possible model, PP2A subsequently dephosphorylates,
thereby activating ORM proteins that are negative regulators of the sphingolipid pathway
necessary for a hypersensitive response [70]. It was proposed that several Arabidopsis
B′ subunit isoforms are required for the functionality of the PP2A holoenzyme in this
context [71].

The catabolism of glucosinolates, secondary metabolites characteristic for Brassi-
caceae, is regulated by PP2A, with the involvement of B′γ as follows. Indole glucosinolate
catabolism is under the control of indole glucosinolate methyl transferases, which is found
to interact with B′γ that inhibits this activity [72]. The other two enzymes are subject
to reversible phosphorylation under the control of the same subunit. These are myrosi-
nase TGG1 and thiocyanate methyltransferase 1 [36]. Glucosinolate catabolism generates
compounds important for the resistance of plants against pathogens [73].

To add to the multiple functions of B′γ, it also downregulates immune reactions by
triggering a signaling pathway that leads to the dephosphorylation of calreticulin 1 (CRT1),
an ER-localized chaperone that activates its protein unfolding activity [66].

3. Concluding Remarks

As shown in this review, the “B” regulatory subunits are uniquitous in the plant
cell; their different subfamilies can be found from within the plasma membrane to the
endomembrane compartments, mitochondria, nucleus and cytosol, and subunits such as
FASS are of particular importance for the organization and functionality of the microtubular
cytoskeleton (Table 1; Figure 1). The multiple subcellular localizations underline the main
message of this paper: B subunits have many crucial functions in the plant cell. They have
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a wide variety of key regulatory functions from the regulation of basic metabolic processes
and cell cycle regulation to basic hormone-regulated signaling pathways and to whole
plant development. Furthermore, increasing evidence is proving their importance in the
regulation of plant responses to abiotic and biotic stresses. A single member of this subunit
family may have multiple functions. A prominent example is B′γ, with a wide variety of
functions (especially, regulation of stress defense) in Arabidopsis. FASS is a B′′ subunit that
functions both in the regulation of mitotic and non-mitotic cytoskeletal organization and
in oxidative stress responses. In addition, multiple B subunits can function in the same
process. For example, unrelated members of the B′ subfamily have opposite functions in
BR signaling (See Figure 2).

Despite the rapidly increasing knowledge in this field, there are many aspects that are
partially and totally unknown. For example, in the past several years, FASS has proven
to have more functions than previously expected. There is increasing evidence showing
that besides regulating mitotic and non-mitotic microtubule organization, it plays a role
in the control of oxidative stress responses, and future research is needed to answer the
question: does it play a role in the control of defense against pathogens? This issue may
have practical applications, since it can help in the breeding of crop cultivars with modified
functioning of “B” subunits involved in biotic stress responses to increase their resistance.
A challenging question: can we state unequivocally that FASS plays a role in the regulation
of PIN phosphorylation and thus auxin transport? Such questions can be raised for many
other types of B subunits: further research will certainly give more information on their
various subcellular localizations and functions.
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