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Introduction

The following dissertation compiles the results that have been achieved
during my PhD studies in the Doctoral School of Physics in Debrecen
between 2014 and 2017, complemented by the results of another year
of research conducted from 2017 to 2018. Most compelling to me with
these works was the deep and direct links to possible experimental setups,
either already done, planned or expected in the future.

In my research I studied the dynamics, particularly non-adiabatic dy-
namics of the nuclei of small diatomic systems such as D+

2 , MgH+ or LiF.
Non-adiabatic effects play an important role in several biological, chem-
ical and physical processes. Their significance becomes more and more
apparent as the potential energies of the electronic states included in the
dynamical description approach each other more and more closely, even-
tually becoming degenerate. Their impact on the nuclear dynamics can
then be quantitatively addressed by comparing, for example, the results
of a calculation made within the framework of the Born-Oppenheimer-
approximation which neglects the non-adiabatic couplings, and different
calculations which take them into account. The breakdown of the BO-
approximation has been studied extensively over the past decades giving
rise to the theory and reviews that go past the BO-method [1–4].

It has also been shown, first by Hund [5], that potential energy curves
of diatomic molecules cannot cross in general, unless the corresponding
electronic states differ either in their symmetry, multiplicity or some other
important property [6]. In general, there are two independent conditions
that are needed to be satisfied so that a crossing can be formed. This
requires at least two degrees of freedom to be present in the system and
diatomic systems provide only one, the vibrational degrees of freedom
associated to the relative motions of atoms constituting the molecule.
Therefore, only avoided crossings can be formed, as stated by the non-
crossing rule [7].

On the other hand, in polyatomic systems, due to the large number
of degrees of freedom present, the crossings between electronic states are
more abundant and they give rise to several non-adiabatic processes. In
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polyatomic molecules these degeneracies are given by nature and they
are intrinsic properties of the system.

It has been shown recently that light-induced crossings can be formed
even in diatomic molecules, when the molecule is subjected to an external
laser field [8, 9]. In this case the angle between the polarisation direc-
tion of the field and the direction of the transition dipole can deliver the
missing degree of freedom that is needed to form a crossing between the
electronic states. These resulting degeneracies are called light-induced
conical intersections (LICIs) and they behave similarly to their naturally
present counterpart, except for a significant difference. For conical in-
tersections that are intrinsic to the molecule, the position and strength
of the degeneracy can not be easily modified. In contrast, the position
of a light-induced CI can be shifted to different internuclear positions
by varying the frequency of the laser field and their strength, on the
other hand, can be controlled by the intensity of the laser field. This
makes the manipulation of LICIs by the above means possible, establish-
ing new prospects in the field of quantum control of molecular dynamics
and processes.

Although in my research I only studied simple diatomic systems, what
made these works interesting is, that all of them was focused on some
aspect of light-induced non-adiabatic effects.

My results include the calculation of Berry’s phase of a LICI for which
there are only a few results [10, 11] in the literature. My objective was
to complement those earlier findings with the implementation of an adi-
abatic time-dependent approach. Within this framework I calculated
Berry’s phase for a LICI.

Another study was focused on the so called vibrational trapping ef-
fect. The vibrational trapping presents a straightforward explanation for
the findings where using a particular field frequency leads to suppressed
dissociation rates. The explanation relies on the difference of diabatic
and adiabatic eigenenergies and the similarity of the diabatic and adi-
abatic eigenfunctions. The main purpose of my work here was to put
the bases of the above explanation to a quantitative test in the case of
D+

2 . A new finding of this work is also presented that claims the nodal
structure of the diabatic eigenstates to be of importance.

Two other, in several ways more complex systems discussed in this
dissertation are the LiF and MgH+ molecules. In case of the former,
an electronic state that is often neglected in the literature was included
in the dynamical calculations. This system also possesses an avoided
crossing between its two lowest lying Σ electronic states, resulting in
non-adiabatic dynamics even under field-free conditions.
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As for the case of MgH+, the dynamical studies were motivated by the
fact that beside the system having a permanent dipole moment (PDM),
it has also got a transition dipole moment (TDM) that is perpendicular
to the PDM of the molecule. Utilising a model system in which the
TDM is artificially rotated in such a way that it becomes parallel to the
PDM, I found significant differences in the angular distribution of the
photofragments.

The main parts of this dissertation are structured as follows.

Chapter 1 provides some general theoretical background that are either
frequently used in computational chemistry/physical chemistry or hold
some special historical significance. Describing these parts, I will mostly
confine the discussion to the elements of theory which are the most rel-
evant to the computational methods I have used throughout my simula-
tions.

From Chapter 2 through Chapter 5, the results of my research dealing
with the vibrational trapping in D+

2 , calculation of Berry’s phase, the
studies with MgH+ and LiF will be presented and discussed in detail.
A common feature of these chapters is that all of them sets off by touching
on some of the works relevant to my results and I also describe what
motivated the project at hand.

Chapter 6 gives a brief summary of my results with Chapter 7 repeating
the same in Hungarian.
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Chapter 1

Theoretical background

This chapter summarizes the most important elements of the theory
which are, at least in some aspects, relevant to my results. These in-
clude the cornerstone of the earliest results of computational chemistry,
the Born-Oppenheimer-approximation. From now on, I will often use the
abbreviation BO to refer to quantities obtained within this framework,
eg. BO-eigenenergies, BO-states. Although many challenges of modern
computational chemistry require more sophisticated methods than the
BO-approximation [12], still, its results can be useful in several cases, for
example BO-wave functions may serve as initial states to more sophis-
ticated analyses. Additionally, its historical significance can be hardly
overemphasized and in many introductory courses to atomic physics or
quantum chemistry it serves as the first approximation that is discussed.

My simulations of nuclear dynamics often needed supporting calcu-
lations to be made that provide the potential energy surfaces, electronic
dipoles (PDM, TDM) or non-adiabatic coupling terms (NACT). I de-
termined these quantities with the help of the MOLPRO package [13]
which is widely used for electronic structure calculations. There are
many methods in electronic structure theory that can be used to obtain
the above quantities. I will mention three of them that I have used to
support the nuclear dynamical calculations with LiF and MgH+. These
are the Hartree-Fock (HF), Complete Active Space Self-Consistent Field
(CASSCF) and Multi-Reference Configurational Interaction (MRCI) meth-
ods. The HF-method is considered in more details due to its role as a
stepping-stone in all of the electronic structure calculations I have carried
out.

Once the proper quantities from an electronic structure calculation
have been obtained, they serve as an input to the quantum dynamical
simulations of the nuclei and the time-dependent Schrödinger equation

4



is solved. To carry out these, I have utilised the Heidelberg Multi-
Configurational Time-Dependent Hartree [14–16] (MCTDH) package.
The details of this method will be discussed in detail as well.

In the case of the calculation of Berry’s phase, I wrote a computer
code in C language that relied on the numerical integrators implemented
in the GNU Scientific Library [17] (GSL) to evaluate the path integrals
needed.

The chapter of the background theory closes with a brief description
of the Floquet-method, a framework I used during different phases of my
studies.
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1.1 Born-Oppenheimer approximation
Let us consider a molecular system consisting of NC nuclei and ne elec-
trons. Let ~Rα , Mα and Zαe denote the position, mass and charge of
the αth nuclei, respectively. Similarly, ~ri stands for the position of the
ith electron in the system and me is the mass of the electron. Then the
Hamiltonian of the full system takes the form

Ĥ =
NC∑
α=1
− ~2

2Mα

∇2
Rα +

ne∑
i=1
− ~2

2me

∇2
ri

+

+
NC∑
α=1

NC∑
β=1
β>α

1
4πε0

ZαZβe
2

|~Rα − ~Rβ|
+

ne∑
i=1

ne∑
j=1
j>i

1
4πε0

e2

|~ri − ~rj|
+

−
NC∑
α=1

ne∑
i=1

1
4πε0

Zαe
2

|~Rα − ~ri|
,

(1.1.1)

where ∇2
Rα and ∇2

ri
stands for derivation with respect to the coordinates

of the αth nuclei and ith electron, respectively. ~ and ε0 as usual, denote
the reduced Planck’s constant and the vacuum permittivity. The first
two terms in Ĥ constitute the kinetic energy operators of the system
for the nuclei and the electrons, T̂ = T̂N + T̂e. The next pair of terms
describe the repulsive Coulomb-interaction between any pair of nuclei,
VNN , and electrons, Vee. The last term is responsible for the interaction
holding the system together, the attraction between the electrons and
nuclei, VNe.

It is favorable in atomic physics and quantum chemistry calculations
to use the system of atomic units. In this case ~,me,

1
4πε0 and e are all

taken to be unity. This way eq. (1.1.1) takes a simpler form. From now
on, I will continue using atomic units.

The Born-Oppenheimer-approximation takes advantage of the fact
that me/Mα ≈ 1/1860, that is, the nuclei are much heavier, therefore,
slower than the electrons. This makes reasonable to imagine the dynam-
ics determined by eq. (1.1.1) from the perspective of the electrons as one
where the nuclei are frozen: the electrons, since they are much lighter,
can instantaneously respond to any change in the arrangement of the
nuclei. In this situation it is possible to separate the dynamics of the
electrons and nuclei. The wave function ψ({~R}, {~r}) can be written as

ψ({~R}, {~r}) = χ({~R}) · φ({~r}; {~R}). (1.1.2)

Here {~R} and {~r} denote the set of coordinates of all nuclei and all
electrons, respectively. χ is the nuclear wave function and φ signs the
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electronic wave function which contains only a parametric dependence on
the positions of all nuclei. Substituting the ansatz eq. (1.1.2) into the full
Hamiltonian in eq. (1.1.1), the time-independent Schrödinger-equation
(TISE), Ĥψ = Eψ, gives,

Ĥψ =
{
T̂N + Ĥe

}
ψ =

{
T̂N + Ĥe

}
χ · φ = T̂Nχφ+ χĤeφ = Eχφ.

(1.1.3)

Evaluating T̂Nχφ yields

T̂Nχφ =
NC∑
α=1
− 1

2Mα

∇2
Rα
χ · φ =

NC∑
α=1
− 1

2Mα

{
∂2

∂X2
α

+ ∂2

∂Y 2
α

+ ∂2

∂Z2
α

}
χ · φ =

= φT̂Nχ+
NC∑
α=1
− 1

2Mα

{
χ∇2

Rα
φ+ 2 · (∇Rαχ) · (∇Rαφ)

}
=

= φT̂Nχ+
NC∑
α=1
− 1

2Mα

D
φχ
Rα .

(1.1.4)

In the last term a shorthand-notation DφχRα for the quantity in braces is
introduced. Since φ depends on the nuclear geometry {~R} parametrically,
D
φχ
Rα differs from 0 in general. On the other hand, it is also weighted

by 1
2Mα

, therefore, the sum can be assumed to be small and neglected.
Doing so results in the approximation

T̂Nχφ ≈ φT̂Nχ. (1.1.5)

Substituting this result back into eq. (1.1.3) yields

φT̂Nχ+ χĤeφ = φT̂Nχ+ χT̂eφ+ V χφ = φT̂Nχ+ (T̂eφ+ V φ)χ = Eχφ

(1.1.6)
Following standard procedures [18], eq. (1.1.6) is solved in two steps.
First the electronic TISE,

T̂eφ+ V φ = Ee({~R})φ (1.1.7)

is to be solved, where Ee({~R}) is the electronic energy corresponding
to a particular {~R} arrangement of the nuclei. Eq. (1.1.7), being an
eigenvalue-equation, has in general several φi({~r}; {~R}) and Eei({~R})
(i = 1, 2, . . . ) solutions for a fixed nuclear geometry {~R}. Moreover, the
procedure of solving eq. (1.1.7) must be repeated for several different
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nuclear geometries {~R} of interest. This procedure provides the BO-
potential energy surfaces as the geometry is varied.

In the second step, the electronic BO-eigenenergies Eei({~R}) are put
into eq. (1.1.6)

φiT̂Nχ+ Eei({~R})φiχ = Eχφi (1.1.8)
which, upon canceling by φi, simplifies to

T̂Nχ+ Eei({~R})χ = Eχ. (1.1.9)

This is the TISE for the nuclei in the ith (BO) electronic state, where
the electronic eigenenergies provide the potential energy for the nuclear
motion and E is the eigenenergy of the nuclei in the BO-scheme.

Since the approximation in eq. (1.1.5) was used, it is clear that the
solutions acquired are not exact. In particular, neglecting

NC∑
α=1
− 1

2Mα
D
φχ
Rα

in the effect of T̂N on χ · φ means neglecting the so called non-adiabatic
effects between the electronic states. These can be very significant around
geometries where different electronic states get very close to each other
energetically, as it was mentioned in the introduction earlier. This also
means a stronger parametric dependence of φ on the geometry {~R}. The
electronic and nuclear degrees of freedom become more strongly coupled,
eventually leading to the breakdown of the BO-approximation and the
separation in eq. (1.1.2) does not hold anymore.

In some cases it might be reasonable to take into account an average of
non-adiabatic effects with respect to a particular electronic eigenfunction
φ′:

〈 NC∑
α=1
− 1

2Mα

D
φ′χ
Rα

〉
=

NC∑
α=1
− 1

2Mα

×

×
∞̂

−∞

. . .

∞̂

−∞

φ′
∗
(χ∇2

Rα + 2 · (∇Rαχ) · ∇Rα)φ′
ne∏
i=1

d~ri =

=
NC∑
α=1
− 1

2Mα

(
χ 〈φ′|∇2

Rα|φ
′〉+ 2 · (∇Rαχ) · 〈φ′|∇Rα|φ′〉

)
,

(1.1.10)

making use of the bracket notation in the last equality. This average
can then be added to the left hand side of eq. (1.1.9) when solving the
nuclear TISE. Using an average such as above is often called adiabatic
approximation.
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1.2 Adiabatic and diabatic frameworks
In some cases of chemical and physical interest, the approximation used
in eq. (1.1.5) cannot be justified. Typically these are systems that inher-
ently contain some source of non-adiabaticity, for example systems with
avoided crossings (AC) or conical intersections (CI). In those situations,
the full expression for T̂Nχφ, as it is shown in eq. (1.1.4), must be taken
into account. However, by treating those terms accordingly, one admits
off-diagonal elements into the kinetic energy part of the Hamiltonian of
the system.

In the simple case of two electronic states, the evolution of the nuclei
that takes place on the two electronic states gets coupled by off-diagonal
elements of kinetic energy terms. Since these are operators and contain
derivatives, it is worth considering a unitary transformation that is ca-
pable of getting rid of these terms and makes the equations of motion
easier to handle numerically. The corresponding transformation is called
the adiabatic-to-diabatic transformation (ADT) [2–4, 19]. For two-state
systems, this transformation UADT can be given by

UADT =
(

cos γ(~R) sin γ(~R)
− sin γ(~R) cos γ(~R)

)
, (1.2.1)

where γ(~R) is the ADT angle and depends on the geometry {~R} of all
nuclei. With the aid of UADT the transformation UADTĤN,adiU

†
ADT is

applied to the nuclear Hamiltonian ĤN,adi

ĤN,adi = T̂N,adi + V̂N,adi. (1.2.2)

ĤN,adi is similar to the BO nuclear Hamiltonian given in eq. (1.1.9) but,
in contrast to that, the T̂N,adi kinetic operator also contains terms in the

form of
NC∑
α=1
− 1

2Mα
D
φχ
Rα and V̂N,adi denotes the diagonal matrix contain-

ing the adiabatic potential energy surfaces calculated within the Born-
Oppenheimer-scheme.
UADT is specifically chosen such that it diagonalises T̂N,adi. Although
performing the above transformation removes the off-diagonal kinetic en-
ergy terms from T̂N,adi, it is achieved at the expense of the appeareance
of off-diagonal potential energy terms in the V̂N,dia = UADTV̂N,adiU

†
ADT

transformed diabatic potential energy.
Although the diabatic framework derived with the ADT transforma-

tion cannot be done in every cases exactly, but an approximately diagonal
form of T̂N,dia can be obtained with small enough off-diagonal terms so

9



that neglecting them is justifiable. Due to this, the diabatic framework
is widely used in the field of non-adiabatic dynamics. However, since
the transformation angle γ(~R) needs to be determined at every possi-
ble nuclear geometry, its calculation proves to be challenging in higher
dimensions and it is one of the important tasks of computational non-
adiabatic chemistry.
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1.3 Electronic structure calculations
Working with molecular dynamics always requires one to prepare precise
data characterising the potential energy surfaces and dipole moments of
the system under investigation. These then can be used in subsequent
simulations of molecular dynamics. In some cases there are analytical
functions available that can be used, but more often than not, provid-
ing such data (commonly summed up as the electronic structure of the
system) is a very challenging task computationally. This is even more
pronounced in cases when the system possesses features that requires en-
hanced precision, as it may happen in close vicinity of avoided crossings
or conical intersections, for example.

1.3.1 Hartree-Fock method
The Hartree-Fock (HF) method presents the simplest approach to elec-
tronic structure calculations as it only takes a single Slater-determinant
into account to describe the wave function of the system. The resulting
equations that can be derived using variational theory from the Brillouin
theorem carry very expressive physical meaning; each of the electrons
present in the system perceive an averaged potential due to the pres-
ence of all the other electrons. That is the reason why the HF method is
also often called the independent electron approximation. Although, this
is a rather crude way of treating the interaction between the electrons,
nonetheless the HF method is still very useful and in most cases serves
as the starting point for calculations that are more refined. This alone
validates a brief description of the HF method in works that are related
to electronic structure calculations.
At several points throughout the derivations I am leaning on [20] for the
more crucial considerations leading up to the most important results.

The starting point is a Slater-determinant of the form

ψ(1, 2, . . . , N) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(1) ψ2(1) · · · ψN(1)
ψ1(2) ψ2(2) · · · ψN(2)

... ... . . . ...
ψ1(N) ψ2(N) · · · ψN(N)

∣∣∣∣∣∣∣∣∣∣
. (1.3.1)

The above is an N electron, single-determinant wave function. It is
constructed from the one-electron functions ψi called the spin orbitals
which themselves can be decomposed into two parts: a spatial-part ϕi ≡
ϕi(~ri), that only depends on the coordinates ~ri of the ith electron, and
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a spin-part depending only on the spin σi of the ith electron. According
to these spatial and spin-dependence of the spin-orbitals, a shorthand
i may be used in the argument of the spin-orbitals. i in the argument
denotes the compound formed from the spatial coordinates and the spin
of the electrons, i ≡ {~ri, σi}. The spin function mirrors the fact that the
projection of the spin of an electron along an axis – commonly chosen to
be the z axis – is either 1

2~ or −1
2~ or, when working with atomic units,

±1
2 . The "up" and "down" spins are associated with the spin-functions

α(σ) and β(σ), respectively, where σ is a discrete variable with values
±1

2 . The spin-functions as a function of σ are then

α(σ) = δσ, 12
(1.3.2)

and
β(σ) = δσ,− 1

2
. (1.3.3)

A general spin orbital can be built up as

ψi(i) ≡ ψi(~ri, σi) = ϕi,1(~ri)α(σi) + ϕi,2(~ri)β(σi), (1.3.4)

where ϕi,1 and ϕi,2 are some spatial functions in the combinations. For
simplicity’s sake, however, one often uses spin-orbitals whose spin-part
corresponds to pure "up" or "down" spins, so spin orbitals in the form

ψi(i) = ϕi(~ri)α(σi) (1.3.5)

or
ψi(i) = ϕi(~ri)β(σi) (1.3.6)

are commonly used.
Utilising determinant wave functions in the form of eq. (1.3.1) is advan-
tageous for multiple reason. The biggest advantage is that ψ being a
determinant, it possesses every properties a determinant has. Changing
any two rows of a determinant causes it to change its sign; in ψ this is
equivalent to interchanging two electrons. The electrons being fermions,
the anti-symmetry with respect to interchanging any two electrons i
and j is expected from the wave function. Moreover, a determinant
also changes sign upon swapping two of its columns. If ψ contains two
identical columns, then the determinant ψS that has those two columns
swapped must satisfy the requirement ψS = −ψ = ψ which results in
ψ ≡ 0. It is prohibited for the electrons to occupy the same spin-orbital;
this is the consequence of the Pauli principle and the determinant wave
functions automatically satisfy this requirement.

12



To get the HF working equations, a determinant wave function ψ is
variationally optimised so that its energy E is stationary. For a wave
function ψ this means the optimisation of the energy

E = 〈ψ|Ĥ|ψ〉〈ψ|ψ〉 . (1.3.7)

Requiring the first variation δE of E to vanish results in the equation

δE = 0 = δ
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 = 〈δψ|Ĥ|ψ〉 〈ψ|ψ〉+ 〈ψ|Ĥ|δψ〉 〈ψ|ψ〉

〈ψ|ψ〉2

− 〈ψ|Ĥ|ψ〉 〈δψ|ψ〉 − 〈ψ|Ĥ|ψ〉 〈ψ|δψ〉
〈ψ|ψ〉2

= 〈δψ|Ĥ|ψ〉 〈ψ|ψ〉 − 〈ψ|Ĥ|ψ〉 〈δψ|ψ〉
〈ψ|ψ〉2

+ c.c.

(1.3.8)

where c.c., as usual, stands for the complex conjugate of every terms
appearing on the right-hand side. Due to the variations δψ on the right
hand side are arbitrary, the requirement can also be expressed in a more
compact form

〈δψ|Ĥ − E|ψ〉 = 0. (1.3.9)
Eq. (1.3.9) is the most useful formulation of the variational principle
required for the energy of a wave function ψ to be stationary. Applying
this to the single-determinant wave function in eq. (1.3.1) means varying
the spin-orbitals ψi and substituting them with

ψi → ψi + δψi. (1.3.10)
The variation δψi is arbitrary and can be written as the sum of two
variations,

δψi = δψi‖ + δψi⊥ = ηψ′i‖ + ηψ′i⊥ , (1.3.11)
where η is an arbitrary complex parameter and the indices ‖ and⊥ denote
variations lying in the subspace of the spin-orbitals ψi and perpendicular
to it, respectively. Putting this back into the determinant wave function
ψ yields

ψ + δψ = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(1) + δψ1(1) ψ2(1) + δψ2(1) · · · ψN(1) + δψN(1)
ψ1(2) + δψ1(2) ψ2(2) + δψ2(2) · · · ψN(2) + δψN(2)

... ... . . . ...
ψ1(N) + δψ1(N) ψ2(N) + δψ2(N) · · · ψN(N) + δψN(N)

∣∣∣∣∣∣∣∣∣∣
= 1√

N !
∑
P∈SN

(−1)p
N∏
i=1

(ψPi(i) + δψPi(i)),

(1.3.12)
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where P is a permutation of parity p that reorders the N electrons
{1, 2, . . . , N} and the sum is to be performed over all possible permu-
tations, resulting in N ! terms. The set of all possible such permutations
is denoted by SN , the symmetric group of N elements. After performing
a permutation P that reorders the elements in the set {1, 2, . . . , N}, the
ith element of the reordered set is Pi. Keeping only terms up to first
order of the variations δψi, the expansion can be written as

ψ + δψ = ψ +
N∑
i=1

ψ(1)(ψi → δψi) (1.3.13)

and
δψ =

N∑
i=1

ψ(1)(ψi → δψi). (1.3.14)

ψ(1)(ψi → δψi) is a determinant wave function much similar to eq.
(1.3.1), but it has the spin-orbital ψi swapped for δψi. The condition
for the energy to be stationary is then

〈δψ|Ĥ − E|ψ〉 = 〈
N∑
i=1

ψ(1)(ψi → δψi)|Ĥ − E|ψ〉 =

= 〈
N∑
i=1

ψ(1)(ψi → ηψi‖)|Ĥ − E|ψ〉+ 〈
N∑
i=1

ψ(1)(ψi → ηψi⊥)|Ĥ − E|ψ〉 =

= η∗
N∑
i=1
〈ψ(1)(ψi → ψi‖)|Ĥ − E|ψ〉+ η∗

N∑
i=1
〈ψ(1)(ψi → ψi⊥)|Ĥ − E|ψ〉 .

(1.3.15)

Since ψi‖ lies in the subspace of the occupied orbitals ψi, used to build
ψ up, ψi‖ can be written as

ψi‖ =
N∑
n=1

cinψn = ciiψi +
N∑
n=1
n 6=i

cinψn. (1.3.16)

Expanding the determinant ψ(1)(ψi → ψi‖) then gives

ψ(1)(ψi → ψi‖) = ψ(1)(ψi → ciiψi) + ψ(1)(ψi →
N∑
n=1
n6=i

cinψn). (1.3.17)

The last term in eq. (1.3.17) is a determinant whose ith column is ex-
panded as a linear combination of all the other columns j 6= i, thus,
yields 0. The determinant

ψ(1)(ψi → ciiψi) (1.3.18)
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only differs from ψ in its normalisation and it is proportional to ψ,
ψ(1)(ψi → ciiψi) = αψ. Due to this, the variation of the energy cor-
responding to δψi‖ vanishes

〈ψ(1)(ψi → ciiψi)|Ĥ − E|ψ〉 = 〈αψ|Ĥ − E|ψ〉 = 0. (1.3.19)

The requirement for E to be stationary is therefore

〈δψ|Ĥ − E|ψ〉 = η∗
N∑
i=1
〈ψ(1)(ψi → ψi⊥)|Ĥ − E|ψ〉 = 0. (1.3.20)

In order for this requirement to be fulfilled, the contributions correspond-
ing to each i must be equal to zero. Moreover, since η is an arbitrary
small, but non-zero complex variational parameter, one may divide both
sides by it and acquire the condition

〈δψ|Ĥ − E|ψ〉 = 〈ψ(1)(ψi → ψi⊥)|Ĥ − E|ψ〉 = 0. (1.3.21)

At this point one can make use of Slater’s rules for the overlap of two
determinant wave functions that differ in a single spin orbital that is
orthogonal to all other spin orbitals. Such an overlap is zero, therefore

〈ψ(1)(ψi → ψi⊥)|ψ〉 = 0 (1.3.22)

with which the condition for δE = 0 gives

〈ψ(1)(ψi → ψi⊥)|Ĥ|ψ〉 = 0. (1.3.23)

The above equation is Brillouin’s theorem for single determinant wave
functions.

In the simplest cases, the Hamiltonian does not act on the spins of the
electrons and can be written as the sum of one-electron Hamiltonians ĥi
acting on functions depending on the coordinates of the ith electron and
the sum of two-electron Hamiltonians corresponding to the interaction
between any pair of electrons (i, j). Then such an expansion yields

Ĥ =
N∑
i=1

ĥi +
N∑

i,j=1
j<i

ĝij. (1.3.24)

A simple example for ĥi can be formed from the Hamiltonian in eq.
(1.1.1) by including the terms containing the kinetic energy of the ith
electron and the interaction between it and the nuclei. On the other hand,
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ĝij could be taken as the Coulomb interaction 1
rij

of any two electrons.
Putting the above in order provides

〈ψ(1)(ψi → ψi⊥)|Ĥ|ψ〉 = 〈ψ(1)(ψi → ψi⊥)|
N∑
i=1

ĥi|ψ〉+

+ 〈ψ(1)(ψi → ψi⊥)|
N∑

i,j=1
j>i

ĝij|ψ〉 .
(1.3.25)

The Slater-rules for matrix elements between determinant wave functions
allow for evaluating eq. (1.3.25). With their aid one can write

〈ψ(1)(ψi → ψi⊥)|
N∑
i=1

ĥi|ψ〉 = 〈ψi⊥|ĥi|ψi〉 = 〈ϕi⊥γi⊥ |ĥi|ϕiγi〉 =

=
∑
σ

γ∗i⊥(σ)γi(σ) 〈ϕi⊥|ĥi|ϕi〉 = δγi⊥γi 〈ϕi⊥ |ĥi|ϕi〉 .
(1.3.26)

The summation over σ assumes discrete values σ = ±1
2 and due to the

spin functions γ∗i⊥ and γi being orthonormal, this yields δγi⊥γi . Choosing
the spin orbital γi⊥ to have different spin-part than γi automatically
satisfies eq. (1.3.26) for every i in the condition eq. (1.3.25). The same
can be shown for the case of the two-electron part of the requirement.
Due to this, it is sufficient to require the condition in eq. (1.3.25) to be
fulfilled for those spin-orbitals only that have the same spin-part in ψi⊥
and ψi. Thus one may restrict the problem to those variations for which

ψi = ϕiγi → ψi⊥ = ϕi⊥γi (1.3.27)

holds and then prescribing

〈ψi⊥|ψj〉 = 0 (1.3.28)

for all spin-orbitals ψi and ψj that have the same spin as ψi⊥ . Doing so
yields

〈ψ(1)(ϕiγi → ϕi⊥γi)|
N∑
i=1

ĥi|ψ〉 = 〈ϕi⊥|ĥi|ϕi〉 (1.3.29)

for the one-electron part of the requirement and

〈ψ(1)(ϕiγi → ϕi⊥γi)|
N∑

i,j=1
j>i

ĝij|ψ〉 =
N∑
j=1
j 6=i

(
[ϕi⊥ϕj|ϕiϕj]− [ϕi⊥ϕj|ϕjϕi] · δγiγj

)
,

(1.3.30)
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where [ϕiϕj|ϕkϕl] denotes the two-electron integral

[ϕiϕj|ϕkϕl] =
ˆ ˆ

ϕ∗i (~r1)ϕ∗j(~r2)ϕk(~r1)ϕl(~r2)
r12

dV1dV2, (1.3.31)

dVi = dxidyidzi. Commonly eq. (1.3.30) is the introductory point to the
Coulomb operator Ĵj

Ĵjϕ(~r1) =
ˆ
ϕ∗j(~r2)ϕj(~r2)

r12
dV2ϕ(~r1) (1.3.32)

and the exchange operator K̂j

K̂jϕ(~r1) =
ˆ
ϕ∗j(~r2)ϕ(~r2)

r12
dV2ϕj(~r1). (1.3.33)

With their definition the condition for stationary energy is commonly
written as

ˆ
ϕ∗i⊥(~r1)

([
ĥ+

N∑
j=1
j 6=i

(Ĵj − K̂jδγiγj)
]
ϕi(~r1)

)
dV1 = 0. (1.3.34)

As Mayer points out in [20], the requirements of (1.3.34) being zero and
ϕ∗i⊥ being orthogonal to every ψj in ψ that has the same spin as ψi can
only be satisfied at the same time if

[
ĥ+∑N

j=1
j 6=i

(Ĵj − K̂jδγiγj)
]
ϕi does not

have contribution from the subspace orthogonal to the space formed by
the occupied orbitals {ψj} that have the same spin as ψi. Otherwise, ψi⊥
would not be orthogonal to it and eq. (1.3.34) would be non-zero.
Thus a more general form of the HF equations may be written as

[
ĥ+

N∑
j=1
j 6=i

(Ĵj − K̂jδγiγj)
]
ϕi =

N∑
j=1

αjiϕj δγiγj . (1.3.35)

Although eq. (1.3.35) can be referred to as the condition for the energy of
the single-determinant ψ to be stationary, in most cases it is too general.
In order to get working equations that are more fitting for practical use
cases, one may introduce the spin orbitals

χi(~r, σ) = ui(~r)α(σ) i = 1, 2, . . . , nχ (1.3.36)

κi(~r, σ) = vi(~r)β(σ) i = 1, 2, . . . , nκ (1.3.37)
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and use them to build up the N-electron determinant wave function ψ,
N = nχ + nκ. In the most straightforward case, for N electrons of even
number and nχ = nκ, ψ is simply

ψ(1, 2, . . . , N) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
u1(~r1)α(σ1) v1(~r1)β(σ1) · · · vnκ(~r1)β(σ1)
u1(~r2)α(σ2) v1(~r2)β(σ2) · · · vnκ(~r2)β(σ2)

... ... . . . ...
u1(~rN)α(σN) v1(~rN)β(σN) · · · vnκ(~rN)β(σN)

∣∣∣∣∣∣∣∣∣∣
.

(1.3.38)
For the case of the spatial part of the spin-orbitals, one can introduce
the Coulomb and exchange operators in a similar way to eq. (1.3.32) and
eq. (1.3.33), but this time they are expressed in terms of the respective
functions ui or vi:

Ĵujϕ(~r1) =
ˆ
u∗j(~r2)uj(~r2)

r12
dV2ϕ(~r1), (1.3.39)

K̂ujϕ(~r1) =
ˆ
u∗j(~r2)ϕ(~r2)

r12
dV2uj(~r1), (1.3.40)

with ϕ being an arbitrary spatial function. Swapping uj with vj in Ĵuj
and K̂uj gives the appropriate operators with respect to the spatial func-
tions vj. Choosing ϕi = ui in eq. (1.3.35), the working equations for the
spatial-functions {uj} are given by[

ĥ+
nχ∑
j=1
j 6=i

(Ĵuj − K̂ujδγiγj) +
nκ∑
j=1

(Ĵvj − K̂vjδγiγj)
]
ui =

=
[
ĥ+

nχ∑
j=1
j 6=i

(Ĵuj − K̂uj) +
nκ∑
j=1

Ĵvj

]
ui =

nχ∑
j=1

ε
(u)
ji uj,

(1.3.41)

because in the first sum δγiγj = 1 since every spin-orbitals χi have the
same α spin, while in the second sum δγiγj = 0 because the κi spin-
orbitals possess β spin. Interchanging uj with vj and nχ with nκ in the
above results yields the working equations for the spatial-functions {vj}.
Due to the restriction j 6= i in the first sum of eq. (1.3.41), the working
equations assume slightly different form for every function ui. This might
be lifted by noting (Ĵui − K̂uj)ui = 0, thus allowing j = i does not
contribute to the expression in the bracket. The operator in the left
hand side of eq. (1.3.41) is the Fockian; for the set of functions {uj}

F̂ (u) =
[
ĥ+

nχ∑
j=1

(Ĵuj − K̂uj) +
nκ∑
j=1

Ĵvj

]
(1.3.42)
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and it permits writing eq. (1.3.41) in the compact forms

F̂ (u)ui =
nχ∑
j=1

ε
(u)
ji uj (1.3.43)

F̂ (v)vi =
nκ∑
j=1

ε
(v)
ji vj. (1.3.44)

The Fockians depend on the orbitals ui and vj and solving either eq.
(1.3.43) or eq. (1.3.44) would require one to already know the solutions
to the orbitals which should be otherwise determined by the very same
equations. In order to get going, initial guesses {u(0)

i } and {v(0)
j } are

input to a procedure whose first step is to calculate the Fockians and
solve the equations (1.3.43)–(1.3.44) for a new set of functions {u(1)

i } and
{v(1)

j }. From these, the Fockians are re-calculated and the same steps
get repeated until a convergence criteria is fulfilled, for example, when
solving for a new set of functions with the new Fockians reproduces the
same functions that were acquired in the previous step. These solutions
are called the self-consistent field (SCF) solutions of the problem.

The HF method that was discussed here is called the Unrestricted
Hartree-Fock (UHF) method, because no restrictions were imposed on
electrons so that two electrons occupy the same spatial-orbital with
different spins. When the requirement of double-occupancy is set, the
corresponding HF method is called the Restricted Hartree-Fock (RHF)
method. The RHF equations are a special case of the UHF ones; they can
be derived by substituting the relevant quantities (ui, vj, ε(v)

ji and so on)
for expressions obeying the restriction imposed by the double-occupancy.

Although the working equations of the RHF or UHF cases augmented
with iterative approach give the recipe for finding the orbitals, in most
practical use cases they are too complex to solve, almost impossible for
even smaller molecules of quantum-chemical interest. For molecular sys-
tems, a common approach is to express the spatial-orbitals ϕi as a linear
combinations of some basis functions. These functions oftentimes result
from HF calculations done for free atoms and are called atomic orbitals
(AO). Expanding ϕi in terms of a finite number of atomic orbitals serv-
ing as basis functions is thus called the linear combination of atomic
orbitals, LCAO method. The resulting equations are the Hartee-Fock-
Roothan (HFR) equations.
Nowadays, vast amount of basis functions are routinely used to describe
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complex molecular systems. There also exist databases [21] that compile
large number of basis functions, freely available.
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1.3.2 Electron correlation methods
In order for theoretical quantum chemistry calculations to be of reliable
precision that may lead to application in experiments or other practi-
cal uses, a more rigorous approach to the correct treatment of electron
correlation is needed. Treating the interaction between the electrons in
an averaged way like the HF method does leads to errors in electronic
structure data that do not allow for accurate description of molecular
processes.
Modern quantum chemistry depends greatly on using basis functions and
making use of the HFR approach in which the spatial part of the spin-
orbitals ψi, that build up the Slater-determinant, are expressed as a linear
combination of said functions in the basis set. The simplest set is the
minimal one; only one function is used per orbital – e.g. one for each
of the orbitals 1s, 2s, 2p . . . – that describe the electronic structure of
the system. Assigning more basis functions to every orbital yield better
results. In the Double-Zeta (DZ) and Triple-Zeta (TZ) sets there are two
and three basis functions per orbitals, respectively. On the other hand,
with a basis set called STO-NG, Slater-type orbitals [22] (STO) are ex-
pressed as a linear combination of n Gaussian-type orbitals [23] (GTO)
and many more basis sets are widely used.

Expressing the spatial part of the spin orbitals ψi in a basis that
consists of n functions yields n spatial-functions and 2n different spin-
orbitals – corresponding to the different spins α and β – that can build the
Slater-determinant up. For an N electron wave function a total of

(
2n
N

)
possible Slater-determinants may be created and that one which possesses
the lowest energy after the variational optimisation of the combinational
coefficients is the ground-state ψ provided by the HFR method. The
remaining 2n−N spin-orbitals that are left unused when ψ is built are
called virtual orbitals. Any determinant-wave function other than ψ
can be characterised with respect to the occupied spin-orbitals that are
swapped with functions from the set of the virtual orbitals. In the case
of a singly-excited determinant ψ(1)

i→a, one electron from the ith occupied
spin orbital ψi of the ground-state ψ is admitted to the virtual orbital
φa,

ψ
(1)
i→a = ψ(ψi → φa); i = 1, 2, . . . , N, a = 1, 2, . . . , 2n−N. (1.3.45)

Similarly, all possible double excitations may be given by

ψ
(2)
i→a
j→b

= ψ({ψi, ψj} → {φa, φb}); i 6= j, a 6= b. (1.3.46)
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The different ψ(k) k-times excited determinants are called Configuration
State Functions (CSF). These are constructed so as to be an eigenstate
of the operators commuting with the Hamiltonian of the system and they
are characterised by the same quantum numbers as the wave function of
the system. In Configuration Interaction (CI) methods the wave function
Ψ is formed by a linear combination of independent CSF functions in the
form of equations (1.3.45) – (1.3.46) and determinant wave functions
corresponding to higher excitations are considered as well,

Ψ = ψ +
N∑
i=1

2n−N∑
a=1

αi,aψ
(1)
i→a +

N∑
i,j=1
i<j

2n−N∑
a,b=1
a<b

αij,abψ
(2)
i→a
j→b

+ . . . (1.3.47)

It is important to note that in the CI scheme of eq. (1.3.47) only the
independent CSFs are to be taken into account, hence the restriction to
the indices i < j and a < b of the summations over the doubly-excited
determinants is employed. Otherwise, such CSFs that only differ by
swapping i and j or a and b would also be included. However, these are
not unique since

ψ
(2)
i→a
j→b

= −ψ(2)
j→a
i→b

(1.3.48)

applies due to the properties of the determinants. Calculations that
include all possible CSFs in the combination eq. (1.3.47) that can be
built from the n basis functions is called Full CI (FCI).

Any state Ψ can be expanded according to eq. (1.3.47), but such an
expression is too demanding to handle computationally, if not outright
impossible. To alleviate the problems stemming from computational dif-
ficulties, only a finite number of N ×N determinants Φ are considered.
In practice linear combinations such as

Ψ = ψ +
M∑
m=1

βmΦm (1.3.49)

are constructed. Here Φm can be either a singly, doubly or even higher
excited Slater-determinant, but compared to eq. (1.3.47), only a number
M of excited determinants are selected. Following the standard pro-
cedure of variational optimisation, the optimal coefficients βi, so that
δE = 〈δΨ|Ĥ − E|Ψ〉 = 0 is satisfied, can be found. Assuming this to be
done and βm in eq. (1.3.49) to be the optimal ones, then multiplying the
stationary Schrödinger equation ĤΨ = EΨ by ψ∗ and integrating over
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all space gives

〈ψ|Ĥ|Ψ〉 = E 〈ψ|Ψ〉 =

= 〈ψ|Ĥ|ψ〉+
M∑
m=1

βm 〈ψ|Ĥ|Φm〉 = E 〈ψ|ψ〉+ E
M∑
m=1

βm 〈ψ|Φm〉 .

(1.3.50)

With 〈ψ|ψ〉 = 1 and 〈ψ|Φm〉 = 0 eq. (1.3.50) yields

E = 〈ψ|Ĥ|ψ〉+
M∑

me=1
βm 〈ψ|Ĥ|Φm〉 = EHF +

M∑
m=1

βmHHF,m (1.3.51)

and EHF is the energy of the optimised Slater-determinant in the HF
method and HHF,m is the matrix element of Ĥ between the HF wave
function ψ and the excited determinants Φm of the CI expansion. The
difference of the energies E and EHF is called the correlation energy

Ecorr = E − EHF =
M∑
m=1

βmHHF,m, (1.3.52)

that accounts for the fact that the electrons do not move independently
from all other electrons but correlated; it is characteristic to the error
introduced by the HF method by handling the problem in an averaged
way. A first approach to simplify eq. (1.3.52) is by selecting those matrix
elements HHF,m that do not vanish. For a spin-free Hamiltonian, the one-
electron part ĥi has zero matrix element between ψ and any determinant
Φm that is doubly or higher excited. On the other hand, the two electron
operator ĝij has zero matrix elements if Φm is triply excited. In addi-
tion, none of the singly excited determinants contribute to eq. (1.3.52)
according to Brillouin’s theorem. As a consequence, to calculate Ecorr,
one may start out with including only the doubly excited determinants
Φm into the CI expansion. This is called the Double CI (DCI) variant of
the CI method.

In SDCI calculations not only doubly excited determinants, but singly
excited ones are included as well, despite Brillouin’s theorem allowing for
their exclusion. This is done because by including singly excitations into
the expansion eq. (1.3.49) and then performing the variational optimisa-
tion to get the coefficients βi, matrix elements between singly and dou-
bly excited determinants are non-zero. This results in a slightly differing
combination of doubly excited determinants and also different matrix
elements HHF,m in eq. (1.3.52) between ψ and the doubly excited de-
terminants. For this reason, single excitations can alter the correlation
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energy and are almost always included in CI calculations. The possible
number of such determinants is also much smaller than that of higher
excitations, therefore, they do not amount to much more demanding cal-
culations.
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1.3.3 Multi-configuration and multi-reference meth-
ods

In order to get better results in a CI calculation one has to include more
and more determinants Φm in eq. (1.3.49). These determinants are ex-
cited compared to the reference determinant and this latter one is built
up from fixed spin-orbitals that were acquired in previous calculations
as a linear combination of some basis functions (HFR method). Since
the reference Slater-determinant is built up from these spin-orbitals, one
may get better results if not only the CI expansion coefficients, but the
combination coefficients of the spin-orbitals are optimised as well. Multi-
configuration self-consistent field (MCSCF) calculations do exactly this;
they optimise the two sets of coefficients simultaneously. For most ap-
plications of chemical interest, MC methods allow for the same quality
of description with the inclusion of fewer CSF for the price of additional
computational demand due to the optimisation of another set of coeffi-
cients.

Particularly important version of MCSCF is the Complete Active
Space (CASSCF) method [24]. In CASSCF, the spin-orbitals get divided
into different groups according to how they appear in the SCFs included
in the CI expansion. Orbitals appearing as doubly filled orbitals in all
the SCFs are called closed/frozen/inactive orbitals. On the other hand,
orbitals always unoccupied constitute the virtual orbitals and orbitals
corresponding to energies between the set of closed and virtual orbitals
are the active orbitals. Considering a system with n active electrons,
several different distributions of them over the active orbitals are possi-
ble. In CASSCF calculations all the possible distributions are taken into
account, thus choosing the active space appropriately is the most impor-
tant step of CASSCF. For calculations of excited electronic states, the
expansion coefficients are optimised in such a way so that the weighted
average of the energy of the electronic states is minimal (state-averaged
CASSCF).

In CI calculations the reference Slater-determinant, from which ex-
cited configurations are generated, is kept fixed, the HF wave function of-
ten serving the reference state. Multi-Reference CI (MRCI) calculations
lift this limitation and introduce several references instead of just using
only one. As to what states should be included as additional references,
a sensible choice can be made based upon performing preceding MCSCF
(CASSCF) calculations by including those CSFs as references that had
CI expansion coefficients in eq. (1.3.49) exceeding a certain value. Hav-
ing selected the reference states one can proceed by constructing excited
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determinants with respect to each of the references; in most applications
quadruply or even higher excited determinants appear due to admitting
excited SCFs to the reference set.
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1.4 Nuclear dynamics propagation
In order to follow the time-evolution of the nuclei in any molecular dy-
namical simulation, the most challenging task is, once again, the adequate
description of larger systems, where the dynamics involve many degrees
of freedom. The simplest implementation of such simulations employ the
time-dependent Hartree (TDH) method, first derived by Frenkel for elec-
trons [25]. In this framework, every degree of freedom is characterised by
a function, called single-particle function (SPF), and the wave function
is approximated as the Hartree-product of the SPFs multiplied by an ad-
ditional time-dependent coefficient. The TDH method, although being
computationally the easiest and most affordable to implement, is a rather
crude approximation, often not precise enough for most calculations of
interest in physical chemistry.

At the other end of the spectrum there is the standard method, where
the wave function is expanded in a basis formed by products of time-
independent functions {χ(κ)

j }, with χ(κ)
j being the jth function assigned

to the description of the κth degree of freedom of the system and the
expansion coefficients are taken to be time-dependent. Usually, both the
number of functions included per degree of freedom to build the product
basis set and the number of degrees of freedom present are significantly
larger than one, thus the computational demands rise exponentially with
the degrees of freedom, making the standard method suitable for rather
small systems only.

As in general the standard method is inefficient for larger systems, an
improvement of the TDH method is sought by taking more configurations
into account and making use of more SPFs rather than just one for each
degree of freedom. This modification leads to the multi-configuration
methods, from which I discuss the MCTDH variant below.

1.4.1 Multi-configuration time-dependent Hartree
method

A popular choice to conduct molecular dynamics simulations and track
the evolution of the nuclei is the Multi-configuration time-dependent
Hartree (MCTDH) method. Developed at the Institute of Physical Chem-
istry of University of Heidelberg since the 90s, a robust molecular dynam-
ics package formed. The method is widely used in applications to scatter-
ing processes [26–28], photodissociation reactions [29–31] or calculations
of absorption spectra [32, 33]. The method is very efficient for relatively
small systems, containing up to 20-25 degrees of freedom [34,35].
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In this section the basic considerations, ultimately leading to the ap-
plied working equations of the MCTDH scheme are derived. Several pub-
lications have been written dealing with the theory of MCTDH [36–38].
The derivation here follows the review of the method published in [38]
at the most crucial points, but it is augmented with several intermediate
steps leading to the final forms of the equations.

The MCTDH trial wave function Ψ for a system with s degrees of freedom
is constructed as a linear combination of s-dimensional Hartree-products,

Ψ(Q1, Q2, . . . , Qs, t) =
nQ1∑
j1=1
· · ·

nQs∑
js=1

Aj1j2...js(t)
s∏

κ=1
ϕ

(κ)
jκ (Qκ, t), (1.4.1)

combining N = ∏s
i=1 nQi of such s-dimensional functions in total. The

functions ϕ(κ)
jκ building up the Hartree-products are called the single-

particle functions (SPF). They are constructed as a combination of some
functions as well; the latter called primitive basis functions (PBF) χ and
they are independent of time:

ϕ
(κ)
jκ (Qκ, t) =

Nκ∑
iκ=1

c
(κ)
jκ,iκ(t)χ(κ)

iκ (Qκ). (1.4.2)

Moreover, the SPFs are required to satisfy the following constraints:

〈ϕ(κ)
i (t = 0)|ϕ(κ)

j (t = 0)〉 = δij, (1.4.3)

〈ϕ(κ)
i (t)|ϕ̇(κ)

j (t)〉 = −i 〈ϕ(κ)
i (t)|g(κ)|ϕ(κ)

j (t)〉 . (1.4.4)

g(κ) is a Hermitian operator that acts on the κth degree of freedom,
its name is the constraint operator. g(κ) may be arbitrarily chosen and
their explicit form do not make the precision of the MCTDH-scheme
better or worse. However, a beneficial choice of constraints that exploit
some underlying properties of the system may significantly reduce the
computational work needed. For some examples of possible choices and
their implications I refer to [38].

At this point the task is to determine the equations of motion that
describe how the coefficients and the SPFs evolve. This is done by varying
Ψ with respect to the single particle functions ϕ(κ)

jκ and the expansion
coefficients Aj1j2...js .
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Applying the variations Aj1...js → Aj1...js + δAj1...js and ϕ
(κ)
jκ → ϕ

(κ)
jκ +

δϕ
(κ)
jκ yields the varied wave function Ψ′

Ψ′ =
∑
j1

. . .
∑
js

(Aj1...js + δAj1...js)(ϕ
(1)
j1 + δϕ

(1)
j1 ) · . . . ·(ϕ(s)

js + δϕ
(s)
js ) =

=
∑
j1

. . .
∑
js

Aj1...js · (ϕ(1)
j1 + δϕ

(1)
j1 ) · . . . ·(ϕ(s)

js + δϕ
(s)
js ) =

+
∑
j1

. . .
∑
js

δAj1...js · (ϕ(1)
j1 + δϕ

(1)
j1 ) · . . . ·(ϕ(s)

js + δϕ
(s)
js ).

(1.4.5)

Keeping only those terms in eq. (1.4.5) that contain only up to first order
variations results in

Ψ′ =
∑
j1

· · ·
∑
js

Aj1...js
∏
κ

ϕ
(κ)
jκ +

∑
j1

· · ·
∑
js

Aj1...js
∑
κ

δϕ
(κ)
jκ

∏
κ′ 6=κ

ϕ
(κ′)
jκ′

+

+
∑
j1

· · ·
∑
js

δAj1...js
∏
κ

ϕ
(κ)
jκ =

= Ψ +
∑
j1

· · ·
∑
js

Aj1...js
∑
κ

δϕ
(κ)
jκ

∏
κ′ 6=κ

ϕ
(κ′)
jκ′

+
∑
j1

· · ·
∑
js

δAj1...js
∏
κ

ϕ
(κ)
jκ .

(1.4.6)

The variation δΨ is then

δΨ = Ψ′−Ψ =
∑
j1

· · ·
∑
js

Aj1...js
∑
κ

δϕ
(κ)
jκ

∏
κ′ 6=κ

ϕ
(κ′)
jκ′

+
∑
j1

· · ·
∑
js

δAj1...js
∏
κ

ϕ
(κ)
jκ .

(1.4.7)
From eq. (1.4.7) results for δΨ/δAj1...js and δΨ/δϕ(κ)

jκ = δΨ/δϕ(κ)
u (u =

1, 2, . . . , nQκ) can be read off as

δΨ
δA j1...js

=
∏
κ

ϕ
(κ)
jκ (1.4.8)

and

δΨ
δϕ

(κ)
u

=
∑
j1

· · ·
∑
jκ−1

∑
jκ+1

· · ·
∑
js

Aj1...jκ−1ujκ+1...js

∏
κ′ 6=κ

ϕ
(κ′)
jκ′
. (1.4.9)

The right hand side of eq. (1.4.9) is also called single-hole function Ψ(κ)
u ;

the linear combination of all single-particle functions but those corre-
sponding to the κth degree of freedom.
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For Ψ̇ one gets

Ψ̇ =
∑
j1

. . .
∑
js

Ȧj1...js
∏
κ

ϕ
(κ)
jκ +

∑
j1

. . .
∑
js

Aj1...jsϕ̇
(1)
j1 ϕ

(2)
j2 · . . . · ϕ

(s)
js + . . .

. . .+
∑
j1

. . .
∑
js

Aj1...jsϕ̇
(s)
js ϕ

(1)
j2 · . . . · ϕ

(s−1)
js−1 =

=
∑
j1

. . .
∑
js

Ȧj1...js
∏
κ

ϕ
(κ)
jκ +

∑
κ

∑
j1

. . .
∑
js

Aj1...jsϕ̇
(κ)
jκ

∏
κ′ 6=κ

ϕ
(κ′)
jκ′
.

(1.4.10)

By rewriting the index jκ as u and then utilising the form of the single-
hole function Ψ(κ)

u from eq. (1.4.9), eq. (1.4.10) may also be written more
compactly as

Ψ̇ =
∑
j1

. . .
∑
js

Ȧj1...js
∏
κ

ϕ
(κ)
jκ +

s∑
κ=1

nκ∑
u=1

ϕ̇(κ)
u Ψ(κ)

u . (1.4.11)

The coefficients Aj1...js and SPFs can be obtained by employing the Dirac-
Frenkel variational principle [25,39]

〈δΨ|ĤΨ− iΨ̇〉 = 0. (1.4.12)

δΨ is given by eq. (1.4.7) and it is the sum of δΨϕ and δΨA, the variations
with respect to the coefficients and SPFs, respectively. Expanding δΨ
accordingly yields

〈δΨ|ĤΨ− iΨ̇〉 = 〈δΨA|ĤΨ− iΨ̇〉+ 〈δΨϕ|ĤΨ− iΨ̇〉 = 0. (1.4.13)

Since both δAj1...js and δϕ
(κ)
jk

are arbitrary, their contributions to the
right-hand side of eq. (1.4.13) need to vanish. As a consequence, all
terms in δΨA contributing to eq. (1.4.13) shall vanish:

〈δΨA|ĤΨ− iΨ̇〉 = 〈
∑
j1

. . .
∑
js

δAj1...js
∏
κ

ϕ
(κ)
jκ |ĤΨ− iΨ̇〉 =

=
∑
j1

. . .
∑
js

〈δAj1...js
∏
κ

ϕ
(κ)
jκ |ĤΨ− iΨ̇〉

⇒ 〈δAJΦJ |ĤΨ− iΨ̇〉 = 0,

(1.4.14)

where J denotes an arbitrary, but fixed element from the set of all possible
configurations {j1 . . . js} and ΦJ is the product of SPFs with the indices
j1 . . . jκ representing the same configuration J . Due to δAJ being an
arbitrary variation, the above leads to

〈ΦJ |ĤΨ− iΨ̇〉 = 〈ΦJ |ĤΨ〉 − i 〈ΦJ |Ψ̇〉 = 0. (1.4.15)
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Upon substituting the expression of Ψ̇ from eq. (1.4.11) one gets

〈ΦJ |ĤΨ〉 = i
∑
j1

. . .
∑
js

〈ΦJ |Ȧj1...js
∏
κ

ϕ
(κ)
jκ 〉+ i

∑
κ

nκ∑
u=1
〈ΦJ |ϕ̇(κ)

u Ψ(κ)
u 〉 .

(1.4.16)
The first term can be split into two parts: one part is when the summation
over the indices j1 . . . js reproduces the configuration J , and the other one
where the summation takes over such configuration L that differ from the
J one,

i
∑
j1

. . .
∑
js

〈ΦJ |Ȧj1...js
∏
κ

ϕ
(κ)
jκ 〉 = iȦJ + i

∑
L

L6=J

〈ΦJ |ȦLΦL〉 = iȦJ , (1.4.17)

because according to the constraints of the SPFs, the overlap 〈ΦJ |ȦLΦL〉
vanishes between different configurations. Turning to the second term
on the right-hand side of eq. (1.4.16),

i
∑
κ

nQκ∑
u=1
〈ΦJ |ϕ̇(κ)

u Ψ(κ)
u 〉 =

= i
∑
κ

nQκ∑
u=1

∑
j1

. . .
∑
jκ−1

∑
jκ+1

. . .
∑
js

Aj1...jκ−1ujκ+1...js 〈ΦJ |ϕ̇(κ)
u

∏
κ′ 6=κ

ϕ
(κ′)
jκ′
〉 =

= i
∑
κ

nQκ∑
u=1

AJ |κ→u 〈ϕ(κ)
uκ |ϕ̇(κ)

u 〉 ,

(1.4.18)

owing to the orthogonality-condition of the SPFs. The shorthand AJ |κ→u
denotes a coefficient that corresponds to the configuration obtained by
swapping the κth index in configuration J for u and uκ is the κth index
in J . 〈ϕ(κ)

uκ |ϕ̇(κ)
u 〉 can be expressed in terms of the second constraint with

which

i
∑
κ

nQκ∑
u=1

AJ |κ→u(−i) 〈ϕ(κ)
uκ |g(κ)|ϕ(κ)

u 〉 =
∑
κ

nQκ∑
u=1

AJ |κ→ug
(κ)
uκu, (1.4.19)

with g(κ)
uκu = 〈ϕ(κ)

uκ |g(κ)|ϕ(κ)
u 〉.

Combining the preceding results plus expanding Ψ as ∑I AIΦI , I
denoting all possible {j1 . . . js} that can be formed, gives

iȦJ =
∑
I

〈ΦJ |Ĥ|ΦI〉AI −
s∑

κ=1

nQκ∑
u=1

g(κ)
uκuAJ |κ→u, (1.4.20)

the equation of motion for AJ in the MCTDH scheme.
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Following the same steps, this time for the δϕ(κ)
jκ variations of the

SPFs gives the equation

〈Ψ(κ)
u |Ĥ|Ψ〉 = i 〈Ψ(κ)

u |Ψ̇〉 = i 〈Ψ(κ)
u |

∑
N

ȦNΦN〉+ i 〈Ψ(κ)
u |

s∑
ν=1

nQν∑
m=1

ϕ̇(ν)
m Ψ(ν)

m 〉 ,
(1.4.21)

with N denoting all possible configurations {n1 . . . ns}. The first term
on the right of eq. (1.4.21) can be written as
∑
N

〈Ψ(κ)
u |ΦN〉 iȦN =

∑
N

〈Ψ(κ)
u |ΦN〉 〈ΦN |Ĥ|Ψ〉−

s∑
ν=1

nQν∑
i=1

∑
N

〈Ψ(κ)
u |ΦN〉 g(ν)

nν iAN|ν→i

(1.4.22)
where the expression for iȦN is substituted from eq. (1.4.20). For the
sum over ν, when ν = κ we get

ν = κ :
nQκ∑
i=1

∑
N

〈Ψ(κ)
u |ΦN〉 g(κ)

nκiAN|κ→i . (1.4.23)

The overlap between Ψ(κ)
u and ΦN vanishes due to the constraints the

SPFs need to satisfy whenever the configuration N does not constitute
the same single-hole configuration as Ψ(κ)

u defined in eq. (1.4.9). Then

ν = κ :
nQκ∑
i=1

∑
N

〈Ψ(κ)
u |ΦN〉 g(κ)

nκiAN|κ→i =

=
nQκ∑
i,nκ

nQ1∑
j1=1

. . .

nQκ−1∑
jκ−1

nQκ+1∑
jκ+1

. . .
nQs∑
js

A∗j1...jκ−1ujκ+1...js×

× Aj1...jκ−1ijκ+1...jsg
(κ)
nκiϕ

(κ)
nκ =

nQκ∑
i,nκ

ρ
(κ)
ui g

(κ)
nκiϕ

(κ)
nκ .

(1.4.24)

Here the definition of the single-hole density matrices was introduced by

ρ
(κ)
ui =

nQ1∑
j1=1

. . .

nQκ−1∑
jκ−1

nQκ+1∑
jκ+1

. . .
nQs∑
js

A∗j1...jκ−1ujκ+1...jsAj1...jκ−1ijκ+1...js . (1.4.25)

With this we have∑
N

〈Ψ(κ)
u |ΦN〉 iȦN =

∑
N

〈Ψ(κ)
u |ΦN〉 〈ΦN |Ĥ|Ψ〉 −

nQκ∑
i,nκ

ρ
(κ)
ui g

(κ)
nκiϕ

(κ)
nκ +

−
∑
ν 6=κ

nQν∑
i

∑
N

〈Ψ(κ)
u |ΦN〉 g(ν)

nν iAN|ν→i =

=
∑
N

〈Ψ(κ)
u |ΦN〉 〈ΦN |Ĥ|Ψ〉 −

nQκ∑
i,nκ

ρ
(κ)
ui g

(κ)
nκiϕ

(κ)
nκ + αA.

(1.4.26)
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On the other hand,

i
s∑

ν=1

nQν∑
m=1
〈Ψ(κ)

u |ϕ̇(ν)
m Ψ(ν)

m 〉 = i
nQκ∑
m=1
〈Ψ(κ)

u |ϕ̇(κ)
m Ψ(κ)

m 〉+ i
s∑

ν 6=κ

nQν∑
m=1
〈Ψ(κ)

u |ϕ̇(ν)
m Ψ(ν)

m 〉 =

= i
nQκ∑
m=1
〈Ψ(κ)

u |ϕ̇(κ)
m Ψ(κ)

m 〉+ αϕ = i
nQκ∑
m=1

ρ(κ)
umϕ̇

(κ)
m + αϕ.

(1.4.27)

The last equality follows from the same argumentation presented to get
to the final form in eq. (1.4.24), and a shorthand αϕ is introduced:

αϕ = i
s∑

ν 6=κ

nQν∑
m=1
〈Ψ(κ)

u |ϕ̇(ν)
m Ψ(ν)

m 〉 . (1.4.28)

Combining all the results so far shows the form

〈Ψ(κ)
u |Ĥ|Ψ〉 =

∑
N

〈Ψ(κ)
u |ΦN〉 〈ΦN |Ĥ|Ψ〉 −

nQκ∑
i,nκ

ρ
(κ)
ui g

(κ)
nκiϕ

(κ)
nκ +

+ i
nQκ∑
m=1

ρ(κ)
umϕ̇

(κ)
m + αϕ + αA.

(1.4.29)

Considering αϕ + αA, it is worth expressing αA as

αA = −
∑
ν 6=κ

nQν∑
i

nQ1∑
n1

. . .
nQs∑
ns

〈Ψ(κ)
u |An1...nν−1inν+1...ns

s∏
µ=1

ϕ(µ)
nµ 〉 g

(ν)
nν i =

= −i
∑
ν 6=κ

nQν∑
i

nQ1∑
n1

. . .
nQs∑
ns

〈Ψ(κ)
u |ANν→iϕ(ν)

nν

s∏
µ6=ν

ϕ(µ)
nµ 〉 〈ϕ(ν)

nν |ϕ̇
(ν)
i 〉 =

= −i
∑
ν 6=κ

nQν∑
i

nQν∑
nν

〈Ψ(κ)
u |ϕ(ν)

nν Ψ(ν)
i 〉 〈ϕ(ν)

nν |ϕ̇
(ν)
i 〉 =

= −i
∑
ν 6=κ

nQν∑
i

nQν∑
nν

∑
j1

. . .
∑
jκ−1

∑
jκ+1

. . .
∑
js

〈Aj1...jκ−1ujκ+1...js

s∏
κ′ 6=κ
κ′ 6=ν

ϕ
(κ′)
jκ′
|Ψ(ν)

i 〉×

× 〈ϕ(ν)
jν |ϕ(ν)

nν 〉 〈ϕ(ν)
nν |ϕ̇

(ν)
i 〉 =

= −i
∑
ν 6=κ

nQν∑
i

∑
j1

. . .
∑
jκ−1

∑
jκ+1

. . .
∑
js

〈Aj1...jκ−1ujκ+1...jsϕ
(ν)
jν

s∏
κ′ 6=κ
κ′ 6=ν

ϕ
(κ′)
jκ′
|ϕ̇(ν)
i Ψ(ν)

i 〉 =

= −i
∑
ν 6=κ

nQν∑
i

〈Ψ(κ)
u |ϕ̇(ν)

i Ψ(ν)
i 〉 .

(1.4.30)
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Therefore,

αϕ + αA = αϕ = i
s∑

ν 6=κ

nQν∑
m=1
〈Ψ(κ)

u |ϕ̇(ν)
m Ψ(ν)

m 〉 − i
s∑

ν 6=κ

nQν∑
i=1
〈Ψ(κ)

u |ϕ̇(ν)
i Ψ(ν)

i 〉 = 0.

(1.4.31)
And then

i
nQκ∑
m=1

ρ(κ)
umϕ̇

(κ)
m = 〈Ψ(κ)

u |Ĥ|Ψ〉−
∑
N

〈Ψ(κ)
u |ΦN〉 〈ΦN |Ĥ|Ψ〉+

nQκ∑
m,nκ

ρ(κ)
umg

(κ)
nκmϕ

(κ)
nκ .

(1.4.32)
With slight reformulation of the above we get

〈Ψ(κ)
u |Ĥ|Ψ〉 =

nQκ∑
nκ=1
〈Ψ(κ)

u |Ĥ|ϕ(κ)
nκ Ψ(κ)

nκ 〉 =
nQκ∑
nκ=1

H(κ)
unκϕ

(κ)
nκ , (1.4.33)

where H(κ)
unκ is called the MCTDH mean-field corresponding to configu-

rations of the κth single-hole function,

H(κ)
nm = 〈Ψ(κ)

n |Ĥ|Ψ(κ)
m 〉 n,m = 1, 2, . . . , nQκ . (1.4.34)

On the other hand,∑
N

〈Ψ(κ)
u |ΦN〉 〈ΦN |Ĥ|Ψ〉 =

=
∑
j1

. . .
∑
jκ−1

∑
jκ+1

. . .
∑
js

∑
n1

. . .
∑
ns

〈Aj1...jκ−1ujκ+1...js

∏
k′ 6=κ

ϕ
(κ′)
jκ′
|ϕ(κ)
nκ

s∏
µ6=κ

ϕ(µ)
nµ 〉

× 〈ϕ(κ)
nκ

s∏
µ6=κ

ϕ(µ)
nµ |Ĥ|Ψ〉 =

=
∑
j1

. . .
∑
jκ−1

∑
jκ+1

. . .
∑
js

nQκ∑
nκ

|ϕ(κ)
nκ 〉 〈ϕ(κ)

nκ | 〈Aj1...jκ−1ujκ+1...js

∏
µ6=κ

ϕ
(µ)
jµ |Ĥ|Ψ〉 =

= P̂ (κ) 〈Ψ(κ)
u |Ĥ|Ψ〉 ,

(1.4.35)

where the operator of projection on the sub-space spanned by all the
SPFs corresponding to the κth degree of freedom is defined as

P̂ (κ) =
nQκ∑
nκ=1
|ϕ(κ)
nκ 〉 〈ϕ(κ)

nκ | . (1.4.36)

Putting back eq. (1.4.33) and eq. (1.4.36) into eq. (1.4.32) yields the
working equations of motions for the single-particle functions,

i
nQκ∑
m=1

ρ(κ)
umϕ̇

(κ)
m = (1− P̂ (κ))

nQκ∑
nκ=1

H(κ)
unκϕ

(κ)
nκ +

nQκ∑
m,nκ

ρ(κ)
umg

(κ)
nκmϕ

(κ)
nκ . (1.4.37)
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The above equation, along with eq. (1.4.20), form the cornerstone of
the MCTDH-framework, the most general formulation of the problem at
hand, independently of the system under study.

1.5 Floquet-method
The Floquet-picture is an often employed approximation because several
molecular dynamical processes gain a picturesque explanation when the
full Hamiltonian is transformed to the Floquet Hamiltonian. This frame-
work can be derived by considering the time-dependent Schrödinger-
equation (TDSE) whose Hamiltonian is periodic in time due to the in-
teraction of the system with an external field of frequency ω. According
to the Floquet-theorem [40], the solution Ψα(~r, t) of the TDSE can be
given as

Ψα = e−iεαtΦ, (1.5.1)

with Φ ≡ Φ(~r, t) denoting a periodic function of time period T and εα is
the characteristic exponent. By writing Φ utilising Fourier-expansion and
expanding its Fourier-components f (n)

α (~r) in the basis
{
|β(~r)〉

}
formed

by the eigenstates of the field-free Hamiltonian Ĥfield−free

f (n)
α =

∑
β

Φ(n)
αβ |β〉 (1.5.2)

Ψα takes the form

Ψα = e−iεαt
∞∑

n=−∞

∑
β

Φ(n)
αβ e

−inωt |β〉 . (1.5.3)

Substituting this expansion into the TDSE and making use of some ad-
ditional alterations yield [41]

∞∑
n=−∞

∑
β

{
〈α|Ĥ(m−n)|β〉 − (εα +mω)δmnδαβ

}
Φ(n)
αβ = 0. (1.5.4)

In the above expresson, Ĥ(n) is given by

Ĥ(n) = 1
T

ˆ T

0
Ĥeinωtdt. (1.5.5)
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With the help of the Floquet-state [42] notation |αn〉, eq. (1.5.4) can be
written as ∑

γ

∑
k

〈αn|ĤF |γk〉Φ(k)
γβ = εβΦ(n)

αβ , (1.5.6)

with
〈αn|ĤF |βm〉 = ĤFαn,βm = Ĥ

(n−m)
αβ + nωδαβδnm. (1.5.7)

ĤF is the Floquet Hamiltonian, independent of time [41].
Although ĤF is time-independent, it is an infinite matrix characterised
with the two set of pair of indices, αn and βm. For two electronic states
considered and the laser-molecule interaction handled within the dipole
approximation, most of the matrix elements in the Floquet Hamiltonian
might be neglected. In particular, if the intensity of the external field is
not too high so that only single-photon processes take place, it is sufficient
to consider a 2x2 block of the infinite matrix of ĤF only. This [42,43] is
given by

ĤF =
(
− 1

2Mr

∂2

∂R2 + E1(R) 1
2V12

1
2V21 − 1

2Mr

∂2

∂R2 + E2(R)− ~ω

)
, (1.5.8)

where Mr is the reduced mass, E1(R) and E2(R) are the potential ener-
gies corresponding to the electronic states and ~ω is the photonenergy.
V12 = V21 denotes the potential energy corresponding to the interaction
of the transition dipole moment of the system with the static external
electric field of magnitude E0.

Having discussed the general theory, that in one way or other are
connected to my work, in what follows I present the results that my dis-
sertation is based on. Most of these deal with the study of dissociation
dynamics by numerically calculating the relevant physical quantities in
the MCTDH framework. I discuss my results in the framework of the
intensively investigated field of light induced non-adiabatic phenomena,
for example the effect of light-induced conical intersections (LICI), light-
induced avoided crossings (LIAC), bond hardening/softening and vibra-
tional trapping, or the effect of some other important properties of the
system.
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Chapter 2

Dissociation dynamics of D+
2

and vibrational trapping

The field free Hamiltonian of a molecular system not too large in size
can be calculated by employing standard methods of electronic structure
calculations as described in previous chapters. Having done so, the next
step involves the construction of the Hamiltonian by including the rel-
evant quantities, such as the field-free potential energy curves and the
dipole moments of the molecule. Upon subjecting the system to exter-
nal electric field of sufficiently high intensities, significant changes can be
observed in the dissociation dynamics. This is due to the fact that the
resulting strong couplings between the electronic states alter the poten-
tial landscape, hence the underlying dynamics and the dissociation yield
measured. This phenomenon called bond softening or bond hardening
was also experimentally confirmed, first in [44, 45]. Related studies on
the effects of the vibrational trapping, that predate [46, 47] the first ex-
perimental observations, are also available. The role of LIACs created
with high intensity fields was shown to be significant in the dissociation
process [48, 49] and they were found to be playing an important role in
stabilisation of the molecule, leading to the suppression of the dissocia-
tion yield. It was also found that coincidence of the field-free (diabatic)
and the laser-induced (adiabatic) vibrational eigenenergies can lead to
decreasing dissociation probabilities, in itself a very remarkable explana-
tion.

In the present section I discuss my results [50] acquired by putting
the above mentioned qualitative explanation of the vibrational trapping
to test, while keeping the applied laser intensity fixed and varying the
photon energies of the field. This is in contrast to what has been done in
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earlier studies (for example [48,49,51]), where the energy was kept fixed
and the intensity varied. By carrying out these simulations my goal is to
set up a more quantitative connection between basic physical quantities
and the observed dissociation yield.

2.1 The D+
2 system

The molecular deuterium ion, being the most simple molecular system
along with the hydrogen molecule, has the significant advantage com-
pared to the neutral counterpart in the aspect that it does not have
electron correlation. This simplifies the description to a great extent. In
particular, analytical potential energy curves and transition dipole mo-
ments are also available, moreover there exist several studies on D+

2 (or
H+

2 for that matter) that do not make use of the usual molecular physical
treatment [52,53].

Working in a two-level framework, the diabatic or field-free Hamilto-
nian (1D) can be given as a 2× 2 matrix of the form

Ĥdia =
(
− 1

2Mr

∂2

∂R2 + V1(R) 0
0 − 1

2Mr

∂2

∂R2 + V2(R)

)
(2.1.1)

whereMr is the reduced mass, R is the vibrational coordinate, V1(R) and
V2(R) are the diabatic potentials corresponding to the 1sσg and 2pσu elec-
tronic states, borrowed from [43,54]. In the presence of an external field,
the laser-matter interaction couples the two electronic states, yielding
additional terms at the off-diagonals of eq. (2.1.1). The time-dependent
Hamiltonian then reads

Ĥt =
(
− 1

2Mr

∂2

∂R2 + V1(R) 0
0 − 1

2Mr

∂2

∂R2 + V2(R)

)
+

+
(

0 f(t)E0µ(R) cos θ cosωt
f(t)E0µ(R) cos θ cosωt 0

).
(2.1.2)

In eq. (2.1.2) f(t), E0 and ω are the envelope, electric field amplitude and
the frequency of the laser pulse, respectively. µ(R) stands for the transi-
tion dipole moment coupling the two electronic states, taken from [43,54]
as well, and θ denotes the angle between the polarization of the field and
molecular axes. Although in the case of D+

2 there are analytical forms of
µ(R) available, in general this quantity needs to be calculated by deter-
mining the matrix elements of µ(R) between the electronic wave functions
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Φi and Φj of the electronic states that are to be taken into account in
the subsequent nuclear dynamics simulations; µij(R) = −〈Φi|

∑
k rk|Φj〉,

with rk indicating the electronic coordinate of the kth electron.
To get the form present at the off-diagonals, the dipole approximation
is utilised which is widely used and in general appropriate whenever the
molecule is sufficiently small compared to the wavelength of the applied
field. This holds for the parameters I used throughout the study pre-
sented in this chapter.

2.2 Model adiabatic Hamiltonian
In case of calculating the adiabatic eigenenergies, an approximate form
for the adiabatic Hamiltonian is constructed. For relatively low intensity
fields, which is the case throughout this study, a model Hamiltonian for
the upper adiabatic potential can be approximated as

Ĥadi,model = − 1
2Mr

∂2

∂R2 + Vmodel = − 1
2Mr

∂2

∂R2 +

+ (V2(R)− ~ω) ·Θ(RCR(λ)−R) + V1(R) ·Θ(R−RCR(λ))
(2.2.1)

where ~ω is the photonenergy of the laser field and λ its wavelength. Θ
is the Heaviside step function and RCR denotes the internuclear distance
at which the photon-dressed state V2(R)− ~ω crosses the lower diabatic
potential V1(R),

V2(RCR)− ~ω = V1(RCR). (2.2.2)

Figure 2.1 features the potentials used throughout the simulations.

2.3 Numerical simulations

2.3.1 Wave function
The numerical calculations were carried out with the MCTDH package.
As the vibrational coordinate R is the only dynamical variable included,
the general MCTDH wave function given in eq. (1.4.1) simplifies and
assumes the form

Ψ(R, t) =
NR∑
iR=1

C
(R)
iR

(t)χ(R)
iR

(R). (2.3.1)
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Figure 2.1: Potential energies.
The solid green and red curves show the diabatic potentials V1 and V2, while the
red dashed one represents the photon dressed state V2 − ~ωL corresponding to
~ωL = 6.199 eV. The crossing of this latter curve and the V1 state is marked with
+. The black curve marked with denotes the model potential in eq. (2.2.1) for
the same photon energy ~ωL. In addition, several vibrational eigenenergies of V1
are drawn as horizontal lines as well.

The vibrational coordinate itself is treated by using fast Fourier discrete-
variable representation (FFT-DVR) [55, 56]. In the case of calculations
focusing on the dissociation dynamics, the time-dependent Hamiltonian
in eq. (2.1.2) is used and NR = 2048 basis elements are employed cover-
ing the range of internuclear separation from 0.1 au to 80 au. In these
cases I choose the initial wave function to be either an eigenstate ψν of the
diabatic Hamiltonian eq. (2.1.1) or superposition of said eigenstates. In
the former case of initial conditions, ν = 0, 1, 2, . . ., 9 are chosen through-
out the simulations. As for the latter case of initial conditions, since not
only one, but several vibrational eigenstates are present, the dissociation
probability observed does not correspond to a single vibrational state.
In this situation, I calculated the kinetic energy release (KER) spectra
of the fragments and then the differential dissociation rate, that corre-
sponds to the photon energy shifted vibrational eigenenergy, Eν + ~ω, is
determined.
However, regardless of the initial wave function, the initial orientation of
the molecule is always assumed to be parallel to the laser field (θ = 0)
in my actual calculations.

I also needed to determine the eigenstates and eigenenergies (ψν ;
Eν) of the diabatic Hamiltonian eq. (2.1.1), and the eigenstates and
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eigenenergies (ϕν ; εν) of the model adiabatic Hamiltonian eq. (2.2.1).
For solving the corresponding time-independent Schrödinger-equations
that provides the quantities sought for, a lower value of NR is sufficient
covering shorter internuclear distances. In particular, NR = 256 covering
the internuclear distances 0.1 au – 10.05 au are used.

2.3.2 Complex absorbing potentials and the laser
parameters. Static quantities

During the propagation time tf = 350.0 fs, some parts of the wavepacket
inevitably reach the end of the simulation "box" located at 80 au. These
parts of the wavepacket dissociate and they need to be absorbed in order
to be measured and contribute to the dissociation yield. Moreover, if they
are not absorbed, they might be reflected at the end of the "box" causing
non-physical interferences and impair the results of the simulation.

In the MCTDH scheme, the most effective tool of absorbing the disso-
ciating parts is by means of complex absorbing potentials (CAP) [57,58].
They are given by

−iW (R) = −iη(R−R0)b ·Θ(R−R0) (2.3.2)

with η, R0 and b representing the strength, starting point and order of the
CAP, respectively and Θ denotes the Heaviside-function. This complex
potential is then added to the Hamiltonian eq. (2.1.2). The MCTDH
package provides tools that are able to determine the optimal parameters
[59] for which the reflection probability (or transmission probability for
that matter) are minimal. With the aid of them, the parameters that I
used are

η = 5 · 10−5 au R0 = 70 au b = 3 (2.3.3)
for the ground electronic state V1 and

η = 2.36 · 10−3 au R0 = 75 au b = 3 (2.3.4)

for the V2 excited state. With the CAP in place the dissociation proba-
bility Pd and the KER spectra PKER(E) can then be calculated [38] by
evaluating the integrals

Pd =
ˆ ∞

0
〈Ψ(t)|W |Ψ(t)〉 dt (2.3.5)

and

PKER(E) =
∞̂

0

dt

∞̂

0

〈ψ(R, θ, t)|W |ψ(R, θ, t′)〉 e−iE(t−t′)dt
′
. (2.3.6)
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As for the KER spectra, its calculation is only needed for the simulations
starting from the Franck-Condon distribution and the results correspond-
ing to Eν + ~ω are sought due to the reasons detailed in the previous
section.
In the calculations I treat the wavelength λ of the laser as a parameter
and it falls in the interval [50 nm; 400 nm], with a step size of ∆λ = 1
nm. This range proved to be wide enough to contain all dissociation
minima for all of the studied cases.

In the time-dependent calculations, the intensity is kept fixed at I0 =
1011 W/cm2, the shape of the pulse is a linearly polarised Gaussian with
pulse duration in FWHM chosen to be tp = 30 fs and centered around tc =
0 fs (starting from individual vibrational states) or tc = 34 fs (starting
from Franck-Condon distribution).

In addition to the Pd dissociation probabilities, static quantities based
on the diabatic and adiabatic eigenenergies, and the adiabatic and dia-
batic eigenstates were also calculated. These are the difference of the
adiabatic and diabatic eigenenergies,

∆Eν,ν′(λ) = εν′(λ)− Eν (2.3.7)

and the overlap

Sν,ν′(λ) = 〈ϕν′(λ,R)|ψν(R)〉 =
∞̂

−∞

ϕ∗ν′(λ,R)ψν(R)dR (2.3.8)

of the diabatic and adiabatic eigenstates.
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2.4 Dissociation probability
In order to be able to relate any of the static quantities based on the
diabatic/adiabatic eigenenergies and eigenstates to the observed dissoci-
ation minima I wanted to have as many of the latter determined in the
present framework as possible. Doing so I found the λ ∈ [50; 400] to be
sufficient even for those simulations that started out from the highest
excited vibrational state ψν=9 considered. By doing so I also expanded
on the previous results presented for a comparatively limited range of
photon energies in [60].

Figure 2.2 shows an example of the dissociation probability for the
case when the propagation starts out from the ψν=4 diabatic vibrational
eigenstate. In addition, the calculations were repeated for initial condi-
tions when the wave function is prepared as superposition of eigenstates.
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Figure 2.2: Dissociation probability as a function of the laser wavelength.
The solid red curve corresponds to the linear scale on the left and presents the
probabilities obtained in the simulations starting from the ψν=4 diabatic eigen-
state. The same quantity is also shown by the green dashed curve on a logarithmic
scale on the right. Finally, the magenta dashed-dotted curve denotes the differential
dissociation rate on the same logarithmic scale and corresponds to the calculations
that are initialised from the Franck-Condon distribution.

Four sharp minima of the dissociation probability can be observed at
the wavelengths

{λD(4, 0), λD(4, 1), λD(4, 2), λD(4, 3)} = {177 nm, 140 nm, 112 nm,
89 nm}.

(2.4.1)
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Moreover, there is a remarkable agreement between the results extracted
from the simulations starting out from the superposition of the eigen-
states (obtained from the KER spectra corresponding to the Eν=4 + ~ω
energy; dashed-dotted curve) and those results obtained by initiating
the dynamics in the ψν=4 vibrational eigenstate. They follow each other
closely, suggesting that there is practically no significant difference be-
tween the two cases as far as the shapes of the curves and the minima
positions are concerned, and the latter is what I focus on here. Other
results obtained for the cases ν 6= 4 confirm this suggestion as well, they
produce very similar results for both cases of initial conditions.

Due to this finding and for the sake of simplified discussion and pre-
sentation, further sections will be restricted to the discussion of results
obtained when the dynamics is initiated from individual ψν states and
I set out to test the original explanation of vibrational trapping based
on the coincidence of the diabatic and adiabatic energy levels while also
trying to provide more quantitative relations between the calculated dis-
sociation minima λD and the basic static quantities introduced previ-
ously. Table 2.1 lists the dissociation minima obtained when initiating
the dynamics from the first six (ν = 0, 1, 2, . . ., 5) ψν diabatic eigenstates.

ν, ν ′ λD(ν, ν ′) [nm] ν, ν ′ λD(ν, ν ′) [nm]
1,0 111 4,0 177

4,1 140
2,0 133 4,2 112
2,1 100 4,3 89

3,0 155 5,0 201
3,1 120 5,1 160
3,2 94 5,2 130

5,3 106
5,4 85

Table 2.1: λD dissociation minima acquired by starting the propagation in
the ψν vibrational eigenstate. Employing external electric fields with wave-
lengths λD practically results in no dissociation, similarly to what is shown
in Figure 2.2.
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2.5 Energy differences and overlap of vi-
brational eigenstates

The ∆Eν,ν′(λ) difference of the adiabatic and diabatic eigenenergies is
considered as well as the overlaps Sν,ν′(λ) of the eigenstates. These quan-
tities correspond to the solutions of the time independent Schrödinger
equation with the Hamiltonians eq. (2.1.1) (diabatic situation) and eq.
(2.2.1) (adiabatic situation). The smaller the difference ∆Eν,ν′ is the
more enhanced the vibrational trapping effect gets; the initial diabatic
wave function can be more effectively trapped in the upper adiabatic
potential. This should also have a fingerprint in the value of the overlap
Sν,ν′ ; the closer it is to unity the more similar the diabatic and adiabatic
eigenstates are thus making the trapping easier to occur.

However, considering the form of the adiabatic model Hamiltonian,
due to the form of the model potential Vmodel the adiabatic eigenenergies
εν′ are expected to exceed the Eν diabatic ones whenever ν ′ ≥ ν holds.
This observation allows for determining ∆Eν,ν′ and Sν,ν′ in the cases
ν ′ ≤ ν only. Figure 2.3 elaborates on these results keeping the ν = 4
case as an example.

Recalling the explanation for the vibrational trapping or bond hard-
ening phenomenon, the special λD wavelengths are expected to be closely
related to the wavelengths λE and λO. The ratios λO/λD and λE/λD can
account for how well these values agree. If no other circumstances beside
the coincidence of the eigenenergies and eigenstates play important role
in the vibrational trapping, then the above ratios should lie very close
to unity. However, as Table 2.2 clearly demonstrates, this is not the
case. In fact, these ratios deviate from 1 within a range of 5 − 15 % in
all studied cases. Although deviations of this magnitude are still accept-
able for such a simple model as described by the model Hamiltonian eq.
(2.2.1), there might be other processes or circumstances that play part
in the molecular stabilisation beside the conditions discussed so far.
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Figure 2.3: The overlaps of the diabatic eigenstate ψν=4 and the adiabatic
states ϕν′ (ν ′ < ν) shown on the left axis and the difference of the eigenener-
gies ∆Eν′,ν on the right axis as a function of the wavelength.
The vertical bars without markers represent the λD(ν, ν ′) dissociation
minima. The bars with denote λE(ν, ν ′) for which the difference of the
eigenenergy is minimal while bars with represent λO(ν, ν ′) corresponding
to the position of maximal overlap.
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2.6 The role of the nodal structure
Careful considerations reveal a special relationship between the maxi-
mum of the overlap of the eigenstates Sν,ν′ and the positions of the nodes
Rn of the diabatic eigenstate ψν . Rn is also displayed in Table 2.2.

Sufficiently large overlaps can be acquired when the nodes of the di-
abatic eigenstates are located close to those of the adiabatic eigenstates.
In addition, the adiabatic function fades to zero where the adiabatic po-
tential exceeds the adiabatic energy level. Applying a photon energy
corresponding to the wavelength λD now leads to negligible dissociation
rates and thus the diabatic and adiabatic vibrational energies should be
similar. In these circumstances a simple estimation gives that the adia-
batic wave function approaches zero where the adiabatic potential gets
close to the energy of the diabatic eigenstate. Ultimately, a large over-
lap can be expected when the coincidence of the adiabatic potential and
the diabatic eigenenergy occurs around one of the nodes of the diabatic
eigenstate.

λEν (ν, ν ′) denotes the wavelength for which the adiabatic potential
matches the energy of the diabatic eigenstate at the (ν−ν ′)th node of the
diabatic wave function, the latter being denoted by Rn(ν, ν ′). λEν (ν, ν ′)
can be calculated according to the expression

V2(Rn(ν, ν ′))− ~ωEν = Eν ⇒ ~ωEν = V2(Rn(ν, ν ′))− Eν . (2.6.1)

Another approach from the point of view of the diabatic node structure
takes into consideration the light induced picture of dissociation. In this
case, the nonadiabatic coupling is the largest in the vicinity of the cross-
ing of the diabatic ground state and the dressed excited state potentials
(V2 − ~ω). If the applied photonenergy results in the crossing getting
close to one of the Rn nodes of the diabatic eigenstate then the dissocia-
tion yield can be expected to decrease. λ×(ν, ν ′) denotes the wavelength
that produces the above circumstance,

V2(Rn(ν, ν ′))−~ω× = V1(Rn(ν, ν ′)) ⇒ ~ω× = V2(Rn(ν, ν ′))−V1(Rn(ν, ν ′)).
(2.6.2)

In one way or another, both λEν and λ× are based on the positions of
the nodes of diabatic eigenstates ψν . Table 2.2 also includes their values
and Figure 2.4 serves as a visual representation of their meaning.

47



-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

E
n
er

g
y

/
eV

-0.1

0.0

0.5 1.0 1.5 2.0

Interatomic distance / A

1.0 1.5 2.0 2.5 3.0 3.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

E
n
er

g
y

/
eV

0.5 1.0 1.5 2.0

Interatomic distance / A

= 4

’= 1

Rn(4,1)

E4

(a.u.)

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32

2pσu− h̄ωD

2pσu− h̄ωO

2pσu− h̄ωE

2pσu− h̄ωEν

2pσu− h̄ω×

Figure 2.4: The V1(1sσg) ground state potential (green curve) along with
five different dressed excited states.
Each of the dressed states are formed via shifting the excited state V2(2pσu)
by a photon energy corresponding to the wavelengths λD (solid black curve)
and λO, λE , λEν and λ× denoted by the dashed curves marked with , ,
and , respectively. Additionally, the adiabatic ϕ1 state for the case of

maximal overlap (wavelength λO(4, 1)) and the diabatic ψ4 eigenstate are
also plotted with their zero line placed at the E4 diabatic vibrational energy
level.
A zoom of the central area is also shown in the lower right corner.

The result of comparing the newly introduced wavelengths by calcu-
lating the ratios λEν/λD and λ×/λD are summarised in Figure 2.5a.

Among λEν and λ×, λEν is the best performing one and particularly
for the first seven lowest lying vibrational eigenstates studied, it provides
a better prognosis for λD than either λE or λO.

At this point an additional improvement is possible by noticing that
λEν and λ× are off in the opposite directions with respect to the dissoci-
ation minima. Moreover, λ× underestimates λD approximately twice as
much as λEν overestimates it. Using this, semi-empirical formulas based
on different kinds of means can be formulated that exploit the above

48



0.85

0.9

0.95

1.0

1.05

1.1

1.15

0 10 20 30 40 50

(a)

0

1

01

2

10 2

3

1 20 3

4

1 2 30 4

5

1 2 3 40 5
6

1 2 3 4 50 6

7

1 2 3 4 560 7

8

1 2 3 4 56 70 8

9

ν′

λO/λD

λE/λD

λEν
/λD

λ×/λD

ν
=

ν
=

ν
=

ν
=

ν
=

ν
=

ν
=

ν
=

ν
=

Figure 2.5a: Ratios of the
characteristic wavelengths,
including the node-based
ones, λEν and λ× defined by
eq. (2.6.1) and eq. (2.6.2).

observations. These are

λa = λ× + 2λEν
3 ↔ ωa = 3

1
ω×

+ 2
ωEν

,

λg = 3
√
λ× · λ2

Eν ↔ ωg = 3
√
ω× · ω2

Eν ,

λh = 3
1
λ×

+ 2
λEν

↔ ωh = ω× + 2ωEν
3 ,

(2.6.3)

the weighted arithmetic, geometric and harmonic means, respectively.
How well these forms forecast the dissociation minima is shown in Figure
2.5b. Except for a few cases for ν ′ = 8, 9 of λa, all of the three means
provide very similar results, deviating less than half a percent from λD.
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Figure 2.5b: The semi-
empirical wavelengths,
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minima, providing signifi-
cantly better results than
all preceding characteristic
wavelengths.
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2.7 Conclusions
In this section I discussed my results on testing the vibrational trap-
ping/bond hardening phenomenon and the available explanation for it.
In the framework of a model adiabatic Hamiltonian constructed for the
low-intensity regime, I determined the diabatic and adiabatic eigenfunc-
tions, the corresponding eigenenergies, the overlaps of said eigenstates
and the difference of their eigenenergies. With these static quantities,
reproduction of the observed dissociation minima is possible with an er-
ror of 5− 15% which is a fair result considering the simplistic nature of
the model Hamiltonian used.

In addition, the nodal structure of the diabatic eigenfunctions were
found to play a part in the process of molecular stabilisation due to the
fact that the characteristic wavelengths based on the node positions are
in very good agreement with the observed dissociation minima.

Making use of them, even more refined, although semi-empirical ex-
pressions can be constructed that are capable of forecasting the sought
wavelengths with less than half a percent error, a very precise reproduc-
tion of λD.

However, despite the precision achieved, it is not clear yet why the
employed weights such as those used in the formulas are the correct ones
from the point of view of physics. There must be a physically valid reason
for the 1 : 2 ratio of λ× and λEν in their combinations, as well as for the
fact why the harmonic mean of the node-based quantities present the
best predictions of λD for the largest ν ′ values. On the other hand, λg
provides the best agreement with λD in the lower regime of ν ′ values,
except for the smallest ones. The physical reasoning behind the above
could serve as the topic of a future study.

My discussion of vibrational trapping here used D+
2 as the example

to carry out the calculations. The considerations leading to the node-
based quantities seem to be general enough to assume the validity of the
present findings in the case of other systems as well.
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ν, ν′ λD λO λE λEν λ× Rn ν, ν′ λD λO λE λEν λ× Rn
1,0 111.21 123.02 120.94 112.21 109.27 2.05 7,0 258.66 291.60 281.10 266.19 243.32 3.16

7,1 206.70 222.93 219.37 215.55 189.71 2.82
2,0 133.27 147.85 144.81 135.15 129.57 2.29 7,2 170.00 180.76 178.66 178.28 154.89 2.54
2,1 100.21 109.11 108.03 101.54 97.72 1.90 7,3 141.47 149.29 148.16 148.39 129.20 2.29

7,4 118.09 124.45 123.67 123.37 108.91 2.05
3,0 154.67 171.72 167.78 157.42 149.17 2.48 7,5 98.08 103.57 103.11 101.62 91.97 1.81
3,1 120.08 130.09 128.75 122.67 115.18 2.13 7,6 79.78 84.98 84.69 81.55 76.74 1.56
3,2 93.54 101.06 100.36 95.03 90.80 1.80

8,0 293.15 331.23 319.24 302.48 274.19 3.33
4,0 177.09 197.19 192.21 180.79 169.62 2.66 8,1 234.31 253.22 248.51 245.42 213.03 2.98
4,1 139.53 150.84 149.05 143.41 132.12 2.32 8,2 193.05 204.87 202.61 203.66 173.72 2.70
4,2 111.96 120.04 119.15 114.94 106.51 2.02 8,3 161.23 169.95 168.48 170.44 145.06 2.45
4,3 88.78 95.42 94.97 90.38 85.91 1.72 8,4 135.49 142.27 141.41 142.92 122.74 2.21

8,5 113.90 119.54 119.00 119.44 104.50 1.99
5,0 201.42 225.35 218.50 206.20 191.71 2.83 8,6 95.12 100.18 99.79 98.76 88.92 1.77
5,1 159.95 172.56 170.31 165.29 149.80 2.49 8,7 77.74 82.67 82.41 79.55 74.67 1.52
5,2 130.10 138.91 137.62 134.62 121.78 2.20
5,3 106.14 113.02 112.32 109.37 100.37 1.93 9,0 332.84 377.34 363.08 344.38 309.60 3.50
5,4 85.13 91.25 90.69 86.79 82.17 1.66 9,1 265.72 286.96 281.69 279.52 239.35 3.14

9,2 218.95 232.59 229.52 232.31 194.68 2.85
6,0 228.36 255.84 247.97 234.41 216.07 3.00 9,3 183.16 192.80 191.14 195.02 162.45 2.60
6,1 182.13 196.72 193.49 189.09 168.81 2.66 9,4 154.46 162.00 160.89 164.36 137.60 2.37
6,2 149.22 158.75 157.26 155.50 137.74 2.37 9,5 130.69 136.82 136.08 138.46 117.57 2.15
6,3 123.32 130.57 129.67 128.27 114.47 2.12 9,6 110.45 115.65 115.15 116.18 100.90 1.94
6,4 101.67 107.78 107.14 105.09 95.71 1.87 9,7 92.64 97.36 97.00 96.36 86.37 1.73
6,5 82.20 87.80 87.40 83.92 79.19 1.61 9,8 76.00 80.70 80.47 77.82 72.91 1.49

Table 2.2: Characteristic λ wavelengths corresponding to the ν, ν ′ (ν ′ < ν)
different vibrational diabatic and adiabatic levels. Rn denotes the positions
of the nodes of ψν diabatic wave functions.
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Chapter 3

Berry’s phase of light induced
conical intersections

Conical intersections (CI) are very important structures in physical chem-
istry and molecular physics for the reasons outlined in the introduction
earlier. Not surprisingly, it is of interest to lay out not only the appro-
priate conditions that lead to their formation but the correct approaches
of probing the presence of a CI, as well.

These important theoretical works have been undertaken and it was
argued and proved by several authors ( [6,7] and others) that a crossing
between two electronic states of a diatomic system may only exist if
they differ in some of their property like their symmetry or multiplicity.
Even then, formation of a CI always needs at least two independently
variable dynamical parameters. Thus, in diatomic systems where the
working Hamiltonian contains a single dynamical variable only, no conical
intersections may form. It was also shown by Teller [6] upon linearly
approximating the Hamiltonian matrix elements in the vicinity of the
degeneracy, that the crossing forms a double cone whose vertex is located
at the point of degeneracy.

In polyatomic systems, the dynamical variables that need to be con-
sidered are so numerous that appropriately treating all of the relevant
ones poses significant computational challenge; in general there are more
than enough variables that can be varied and due to this CIs are very
abundant in larger molecular systems. These systems also include bio-
logically critical molecules such as DNA. In fact, the abundance of CIs in
DNA is what makes it stable against incident radiations (such as cosmic
rays) which is a critical attribute needed by the formation of life as we
know it.

The requirement corresponding to the needed differences between
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the electronic states is lifted when polyatomic systems are considered,
though. In these systems electronic states may cross despite not differing
in some essential attribute. This is proved and presented with examples
in [61, 62]. A very important result of the previous publications is the
proof concerning the electronic eigenstates. The proof shows that by re-
quiring the electronic eigenstate to be real valued, it must change sign
upon being adiabatically transported along a closed loop of the config-
uration space encircling the point of degeneracy (CI). This observation
may then be seen as a fingerprint of a degeneracy; if the adiabatically
slow transportation along the closed curve leads to a sign change in the
wave function then at one point along the loop the wave function became
degenerate. This very important result of Herzberg and Longuet-Higgins
is, in theory, capable of opening ways to probe the molecular configura-
tion space for origins of degeneracies.

Later studies have shown considerable interest in the sign change of
the adiabatic electronic eigenfunctions outlined above, particularly in the
consequence that it ceases to be single valued under such circumstances.
Detailed study of the consequences imposed on the Born-Oppenheimer
approximation and how it is applied to simulations of scattering processes
was given by Mead and Truhlar [63]. The corresponding theory was later
generalised by Berry [64] and the accompanying phase is called Berry’s
phase. As it was pointed out, this phase is geometrical in the sense
that given the system and its parameter space, it is uniquely determined
by the closed path along which the eigenstates are transported. Later
on an extension to the usual BO coupled-surface equations was derived
[65] whose solution appropriately treats difficulties arising due to the
degeneracy by construction.

Since the most interest of physical chemistry concentrates on the
study of large molecular systems, several works have dealt with the study
and interpretation of the geometrical phase associated with natural CIs
appearing in small molecules or model systems [66–68], such as the Jahn-
Teller model [69,70].

However, as laser induced CIs have several advantages in allowing
one to fine tune the position of the degeneracy and the strength of the
non-adiabatic coupling by varying the inducing field, it is of interest to
study the topological features of them as well. There are a few works
available [10,11] for the case of the Na2 molecule, where the line-integral
technique was applied to calculate the geometric phase in Floquet picture.

My intent was to go beyond the time independent treatment of [10,11]
and apply Berry’s original time-dependent adiabatic approach to cal-
culate the geometric phase of a LICI. The example system is the D+

2
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molecule and the details as well as the results of my work are lined out
in the following sections.

3.1 Floquet Hamiltonian
In contrast to the full time-dependent Hamiltonian of D+

2 used for the
dissociation dynamics previously described (eq. (2.1.2)), by using the
Floquet picture [41,43] one only considers the leading term in the Fourier
expansion of the wave function acquired by solving the time-dependent
Schrödinger equation. Moreover, following Berry’s method of calculat-
ing the geometrical phase, the dynamical parameters the Hamiltonian
depends on are parameterised so that the corresponding Floquet Hamil-
tonian depends on time only implicitly. Then the working Hamiltonian
contains the electronic states V1(R), V2(R) and the laser-matter coupling.
Its form is given by (

V1(R) E0µ(R) cos θ
2

E0µ(R) cos θ
2 V2(R)− ~ω

)
(3.1.1)

with the appearing quantities having the same meaning as discussed pre-
viously in Section 2.1. Figure 3.1 shows the potentials V1 and V2 as well
as the adiabatic potential energy curves acquired by diagonalising eq.
(3.1.1). In order for a crossing to be formed between the adiabatic po-
tentials (in addition to the required two degrees of freedom, now provided
by R and θ) it is required that

V1(R) = V2(R)− ~ω

E0µ(R) cos θ
2 = 0 ⇒ θ = π/2

(3.1.2)

Therefore, in the configuration space of D+
2 the crossing takes place at

the points satisfying eq. (3.1.2). In the actual calculations the photon
energy used is ~ω = 1.359 eV, coupling the states at RCI = 5 au and
θ = π/2. The task is to calculate the geometric phase for closed loops
that encircle this point and for other loops that do not.

3.2 Adiabatic transportation along a closed
path

The adiabatic theorem states that in case a system is prepared in an
eigenstate φ(t = 0) of its Hamiltonian Ĥ(t = 0), then slowly varying
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Figure 3.1: Diabatic potential
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– and V2(2pσu) – solid red – of
the D+

2 molecule. The dressed
state V2(2pσu) − ~ωL (dashed
red) forms a LICI with the dia-
batic ground state at R = 5 au,
denoted by +.
A cut through the adiabatic
surfaces obtained at θ = 0 is
also shown by solid black lines
marked with (lower adiabatic
potential, Vlower) and (upper
adiabatic potential, Vupper) for
field intensity I0 = 1013W/cm2

and photon energy ~ωL = 1.359
eV.

Ĥ(t), the system has enough time to always assume a state that coin-
cides with one of the eigenstates φ(t) of the instantaneous Hamiltonian
Ĥ(t). This kind of evolution of the initial state φ(0) can be followed by
introducing time dependence into the dynamical variables on which Ĥ
depends, for eq. (3.1.1) R ≡ R(t) and θ ≡ θ(t). Subjecting the system
to a cyclic adiabatic evolution of period T so that Ĥ(t = T ) = Ĥ(t = 0)
the eigenstate φ(R(t = 0), θ(t = 0)) from which the evolution is initiated
transforms into, as Berry showed,

φ(R(T ), θ(T )) =
{
eiγ(T )− i

~
´ T
0 E(R(t),θ(t))dt

}
· φ(R(t = 0), θ(t = 0)), (3.2.1)

where E(R(t), θ(t)) is the eigenenergy and the expression in the bracket{}
is the total phase factor of the adiabatic evolution. The two terms it

is made of are the dynamical phase factor

eiδ(T ) = e−
i
~
´ T
0 E(R(t),θ(t))dt (3.2.2)

and geometric phase factor
eiγ(T ). (3.2.3)

The total phase χ(T ) accumulated during the evolution is thus given as

χ(T ) = γ(T ) + δ(T ), (3.2.4)

the sum of the geometric phase γ and dynamical phase δ. The starting
and final states differing by a non-trivial Berry’s phase γ(T ) implies a
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degeneracy encircled by the parameterised loop {R(t), θ(t)} and leads to
a change of sign of the initial state at t = T . In such a case,

γ(T ) = χ(T )−δ(T ) = χ(T )+1
~

ˆ T

0
E(R(t), θ(t))dt = ±(2n+1)π. (n ∈ Z)

(3.2.5)
Otherwise a trivial Berry’s phase results and γ(T ) = 0.

For the working expressions of χ and γ I followed [71] in which it
is presented that the total phase χ can be calculated by evaluating the
autocorrelation function C(t) and from there

χ(t) = arg
{
C(t)

}
= arg

{
〈φ(R(0), θ(0))|φ(R(t), θ(t))〉

}
. (3.2.6)

Moreover, an expression for the dynamical phase is given as

δ(t) = Im
{ˆ t

0
〈φ(R(t′), θ(t′)|φ̇(R(t′), θ(t′)〉 dt′

}
. (3.2.7)

When the evolution of φ(R(t), θ(t)) is governed by the Schrödinger-
equation,

i · |φ̇(R(t), θ(t)〉 = Ĥ(R(t), θ(t)) |φ(R(t), θ(t)〉 , (3.2.8)

δ(t) may be cast into a more convenient form

δ(t) = −
ˆ t

0
〈φ(R(t′), θ(t′))|Ĥ(R(t′), θ(t′))|φ(R(t′), θ(t′))〉 dt′. (3.2.9)

Eq. (3.2.5) is only correct in a strict sense if the cyclic evolution is guar-
anteed to be an adiabatic one which is essentially taking T → ∞. The
parameters actually used decide how long a period T might be considered
adiabatic, but the appropriate period, that is adiabatically slow enough,
is not known in advance. To work around this, several values of T were
taken – as it is described in the section about the parameters I used –
and in this sense the results also allows one to deduce what parameters
can be considered adiabatic in the given circumstances.

3.3 Methodology
The geometric phase is calculated as χ(T )−δ(T ) based on eq. (3.2.6) and
eq. (3.2.9) at the end of the cyclic evolution. The dynamical variables
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R and θ are parameterised so as to form a closed loop (ellipses) in the
molecular configuration space. In my case they are taken as

R(t) = Rc + ρR cos β(t) (3.3.1)

θ(t) = θc − ρθ sin β(t). (3.3.2)
The centre of the ellipse is defined by (Rc, θc) and the lengths of its half-
axes are (ρR, ρθ). The angle β(t) then describes how the ellipse is traveled
and this is chosen to be

β(t) = 2π
T
· t+ β0. (3.3.3)

A natural choice for time period is provided by the period of the laser
field 2π

ωL
and thus T = n 2π

ωL
(n ∈ Z) transportation periods were used in

the calculations. As n increases the transportation is expected to become
more and more adiabatic which in turn justifies the application of the
adiabatic theorem and the expressions leading to the geometric phase γ.

Table 3.1 details the parameters used throughout the calculations and
Figure 3.2 depicts the paths taken displaying the starting points on each
loops as well.
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Figure 3.2: The paths
taken during the calcula-
tions [72]. Dots denote the
starting points and the po-
sition of the CI is denoted
by +.

Path Rc θc ρR ρθ β0
[a.u.] [rad] [a.u.] [rad] [rad]

P1 5 π/2 1 π/3
−π/2 (S1)

0 (S′1)
−π/4 (S′′1 )

P2 7 π/2 1 π/3 −π/2 (S2)

P3 3 π/2 1 π/3 −π/2 (S3)

P4 5 π/5 1 π/6 −π/2 (S4)

Table 3.1: Parameters used in R(t), θ(t)
and β(t) to describe the paths in the con-
figuration space. For the case of P1 several
different starting points along the curve –
determined by β0 – are considered as well.

I solved the time-dependent Schrödinger equation numerically. This
side of the implementation was carried out in C language utilising the
implicit fourth order Runge-Kutta integrator with Gaussian points [73]
implemented in the GNU Scientific Library [17] (GSL).

The initial state is chosen to be the eigenfunction of the Hamiltonian
eq. (3.1.1) with its dependencies R and θ parameterised as given in
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eq. (3.3.1) and eq. (3.3.2). The calculations use a fixed photon energy
~ωL = 1.359 eV giving rise to a crossing between the ground V1(1sσg)
and dressed V2(2pσu)− ~ωL states at RCI = 5 a.u. The intensity of the
applied field varies between I = 1010 W/cm2 and I = 1015 W/cm2.
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3.4 Geometric phase
The first batch of results correspond to while following path P1 which
is the only one that surrounds the CI located at R = 5 a.u. The start-
ing point is S1. Several different intensities and transportation times
are probed. The rather lengthy results [72] are most conveniently sum-
marised in Table 3.2.

Intensity T [2π/ωL][
W/cm2

]
50 200 500 2000 5000 20000 50000

field free <1·10−6 <1·10−6 <1·10−6 2·10−6 4·10−6 15·10−6 24·10−6

1 · 1010 0.0682 -75.0925 32.9789 -82.5002 -192.7763 -29.1699 -10.6957

3 · 1010 -3.7613 -29.9996 -29.6432 -49.4776 -12.8597 -2.2615 -0.3007

5 · 1010 -5.1357 -24.4448 -96.5521 -13.1177 -3.8062 -0.1775 0.5295

1 · 1011 -3.5758 -51.2940 -17.0145 -2.0801 -0.1961 0.7023 0.8809

3 · 1011 -9.2701 -4.4822 -0.4876 0.6534 0.8618 0.9655 0.9862

5 · 1011 -0.6340 -0.4275 0.4730 0.8705 0.9483 0.9870 0.9948

1 · 1012 -1.3928 0.6346 0.8578 0.9646 0.9859 0.9964 0.9986

3 · 1012 0.7764 0.9463 0.9785 0.9946 0.9978 0.9994 0.9998

5 · 1012 0.8962 0.9741 0.9896 0.9974 0.9990 0.9997 0.9999

1 · 1013 0.9481 0.9871 0.9948 0.9987 0.9995 0.9999 0.9999

3 · 1013 0.9582 0.9898 0.9959 0.9990 0.9996 0.9999 1.0000

5 · 1013 2.9448 0.9883 0.9953 0.9988 0.9995 0.9999 1.0000

1 · 1014 14.7622 0.9846 0.9939 0.9985 0.9994 0.9998 1.0000

3 · 1014 104.6614 2.9740 0.9897 0.9974 0.9990 0.9997 1.0000

5 · 1014 146.1297 20.9600 0.9868 0.9967 0.9987 0.9997 1.0001

1 · 1015 190.5541 252.6389 0.9814 0.9954 0.9981 0.9995 1.0003

Table 3.2: An excerpt of Table 2 from [72] showing the difference of the
total and dynamical phases given in units of π calculated at the end point of
the path (t = T ) P1 encircling the CI. The starting point of the surrounding
is S1 (Figure 3.2) and the initial wave function corresponds to the lower
adiabatic surface.

In the field free case, one expects 0 for the geometric phase. The
results are convincing as can be seen in Table 3.2, although they are not
exactly 0. In the case of the relatively low intensity regime (1 · 1010 − 5 ·
1010W/cm2) very slow loop times T are needed to consider the evolution
as adiabatic. In these situations, even the largest transportation time,
T = 50000 seems to be not slow enough to assure adiabatic behaviour.

However, as soon as the intensity is being raised, the region of the
parameter set (I0, T ) satisfying the requirements of the adiabatic theorem
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significantly expands. In fact, with I ≥ 1012W/cm2 choosing T ≥ 500
round trip times is sufficient and the calculated values of γ lie very close
to π as one expects.

An even further raise of intensity to about 1014 W/cm2 leads to the
problem and its numerical solutions getting more challenging and longer
transportation times are required as well. The beginning of the adiabatic
region is also slowly shifted to longer times T . This is due to the effect
that the derivatives of the adiabatic potentials with respect to the posi-
tion along the path – defined by β(t) – start to significantly exceed those
of the diabatic potentials. This demands slower changes in the cyclic
evolution, ultimately longer transportation times to allow for adiabatic
evolution to happen.

How the geometric phase γ(t) evolves is also displayed in Figure 3.3.
The shown curves were acquired with path P1 and I = 1 · 1013 W/cm2.
Although the displayed curves behave differently and have differing fi-
nal values at t = T depending on T , all of them exhibit rather sudden
jumps at around t/T = 0.5, e.g. when half of the path has already been
traveled. These jumps also take place when the autocorrelation function
approaches zero. It should be noted, however, that the position of the
jump at t/T = 0.5 also reflects the symmetry of the path taken since the
four end points of the small and large axes of the ellipse all present natu-
ral choices for the starting points. Using any of these, the jumps always
happen at half the transportation time T . Using an initial position that
lies anywhere between the four symmetrical end points of the axes shifts
the positions of the jumps relative to t/T = 0.5. This is also the case for
point S ′′1 along path P1, where it takes place at around ≈ 0.44 · T .

Table 3.3 compiles results with several paths and starting points
used. Results for the paths that do not surround the CI prove to be in
good agreement with the expectations as all of them are very close to
zero. In addition, the table also shows those results when the initial wave
function is prepared to be on the upper adiabatic surface. They provide
values very similar to those starting on the lower surface, they only differ
in the sign of the geometric phase. In any case, as all of them are in close
vicinity of 0, ±π,±3π or ±5π they provide the correct results expected
from their arrangement in the configuration space shown in Figure 3.2.
The uncertainty related to the exact value of n in γ = ±(2n + 1)π is
related to the fact that at some point – depending on the actual path
and starting point used – during the cyclic evolution along the path, the
autocorrelation function gets very close to zero; during these periods it
becomes rather difficult to track its argument very precisely.
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Figure 3.3: The evolution of the difference of the total and dynamical
phases for several different cycle times T [72]. The results presented corre-
spond to the starting point S1 along the ellipse P1 encircling the LICI. The
intensity is I0 = 1013W/cm2.
Part (A) shows the full time interval t ∈ [0, T ] while (B) focuses on empha-
sizing the sudden jump occurring at t/T = 0.5 by restricting the interval to
t/T ∈ [0.499, 0.501].

Path/ T [2π/ωL]

Surface 500 1000 2000 5000 10000 20000 50000

P1-S1/ lower +0.99483 +0.99741 +0.99871 +0.99948 +0.99973 +0.99985 +0.99993

P1-S1/ upper -0.99483 -0.99742 -0.99871 -0.99948 -0.99974 -0.99987 -0.99995

P1-S′1/ lower +4.98611 +2.99305 +2.99652 +4.99859 +4.99926 +2.99957 +4.99965

P1-S′1/ upper -4.98611 -2.99306 -2.99653 -4.99861 -4.99931 -2.99966 -4.99987

P1-S′′1 / lower +0.99483 +0.99741 +0.99871 +0.99948 +0.99973 +0.99985 +0.99993

P1-S′′1 / upper -0.99483 -0.99742 -0.99871 -0.99948 -0.99974 -0.99987 -0.99995

P2-S2/ lower -0.00185 -0.00093 -0.00047 -0.00019 -0.00011 -0.00007 -0.00002

P2-S2/ upper +0.00185 +0.00092 +0.00046 +0.00019 +0.00009 +0.00005 +0.00002

P3-S3/ lower -0.00009 -0.00005 -0.00003 -0.00002 -0.00002 -0.00003 -0.00006

P3-S3/ upper +0.00009 +0.00005 +0.00003 +0.00003 +0.00003 +0.00001 +0.00026

P4-S4/ lower -0.04279 -0.02138 -0.01069 -0.00428 -0.00215 -0.00109 -0.00044

P4-S4/ upper +0.04279 +0.02138 +0.01069 +0.00428 +0.00214 +0.00107 +0.00043

Table 3.3: γ in units of π at the end of the paths. Different paths, starting
points and initial wave functions are considered. The applied intensity is
I = 1 · 1013 W

cm2 in all cases listed. The data are also available in [72].
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3.5 Conclusions
In this section I presented my results for the geometric phase calculations
in the case of D+

2 system when a light induced conical intersection is
present in the molecular configuration space.

Expanding on the few available results where a LICI was considered,
I calculated the geometric phase with implicit time-dependent adiabatic
approach. I used a sufficient parametrisation of the dynamical variables
on which the Hamiltonian depends and implemented a code in C language
to numerically solve the time-dependent Schrödinger equation. I also
used the freely available GSL library for the integrator.

I considered several closed paths in the configuration space and also
chose several different starting points along the paths with the initial
wave function prepared either on the lower adiabatic or the upper adia-
batic surface.

The obtained geometric phase γ is in good agreement with the re-
sults that can be expected in the presence of natural CIs. This way the
results acquired prove that a geometric phase effect similar to those of
natural CIs can be ascribed to LICIs as well, even in the case of following
Berry’s original method of calculating the geometric phase. The impor-
tance of these results lies in the advantages of LICIs when compared to
their natural counterparts; namely the ability to fine tune some of their
most important properties such as the position of the degeneracy or the
strength of the non-adiabatic couplings they give rise to.

A step forward would be to consider the full time-dependent Hamil-
tonian where the laser-molecule coupling introduces explicit time depen-
dence. In this case the dependence also appears in the adiabatic surfaces
and through them in the molecular configuration space as well. This
makes the generalisation of Berry’s approach so that it can account for
this situation rather difficult and requires thorough considerations as to
how the adiabatic transportation along a closed path should be realized.
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Chapter 4

Orientation of the transition
dipole and its impact on
dissociation

The very first direct and unambiguous trace of a LICI and its substantial
impact on molecular dynamics was acquired upon investigating the an-
gular distribution of the photofragments in dissociation processes of the
D+

2 molecule [74] and other direct indicators of a LICI’s presence can be
obtained by investigating the field-dressed spectra of a molecule as well,
as it was shown with the Na2 recently [75].

In [74] the authors carefully prepared 2D calculations in which both
the vibrational coordinate and the angle between the polarisation direc-
tion of the laser field and the molecular axis are treated as independent
dynamical variables. Comparing these results to those of 1D calcula-
tions when the θ variable is kept fixed and considered as a parameter of
the Hamiltonian showed significant differences. The angular distribution
of the photofragments revealed striking discrepancies close to the origin
of the LICI at θ = π/2 where the induced nonadiabatic effects are the
strongest. The observed results could be tracked in the evolution of the
nuclear density as well, giving clear explanations for the effects of a LICI
on the dynamics. Obviously, in the interpretations given in the above
work the position of the LICI plays an essential role and the necessary
conditions leading to its formation are given by eq. (3.1.2) when the
transition dipole moment is parallel to the molecular axis. An interest-
ing task is to consider how these conditions and the effect of a LICI on
the dynamics are altered by taking a system whose TDM is perpendicu-
lar to the molecular axis. This circumstance is what sparked my interest
to study the MgH+ molecule which has been extensively researched by
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several works of experimental focus [76–83]. Another interesting feature
of MgH+ is the fact that it possesses permanent dipole moments which
is a significant difference compared to the systems I have considered up
to this point.

My aim is to reveal the effects of the laser induced nonadiabatic dy-
namics from the point of view of the direction of the TDM relative to
the molecular axis. This is expected to be trackable in the angular dis-
tributions of the photofragments first and foremost.

In what follows I present the most important aspects from the point
of view of the numerical simulations – carried out in MCTDH – and then
I discuss my results.
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4.1 Hamiltonian of MgH+

In the calculations two electronic states, 1Σ+ and 1Π are considered. The
TDM coupling these two states is perpendicular to the permanent dipoles
of the system. The Hamiltonian reads

Ĥ2D = T̂ + V̂ + V̂int =

=

 − 1
2Mr

∂2

∂R2 + 1
2MrR2L

2
θ 0

0 − 1
2Mr

∂2

∂R2 + 1
2MrR2L

2
θ

+

 VΣ1 0

0 VΠ1

+

− E0 cos(ωLt) · sin2
(
π
t

T

)
·Θ(T − t)

 µΣ1 cos θ µΣ1Π1 sin θ

µΣ1Π1 sin θ µΠ1 cos θ

 .
(4.1.1)

The Hamiltonian takes into account both the vibrational degree of free-
dom R and the rotational degree of freedom θ, hence the 2D suffix in
Ĥ2D.
The first term corresponds to the vibrational and rotational kinetic en-
ergy operators in which Mr and R denote the reduced mass and the
internuclear distance, respectively. Lθ is the angular momentum oper-
ator, θ is the angle between the polarisation of the laser field and the
molecular axis.
The second term, V̂ includes the potential energies, VΣ1 in conjunction
with the Σ1 electronic state, and similarly, VΠ1 corresponds to the Π1
state.
The final term V̂int accounts for the interaction between the molecule
and the external field. Here, E0 is the amplitude of the electric field and
ωL is its frequency. The sin2 factor is the envelope of the field where
the parameter T controls the duration of the pulse and the Heaviside-
function Θ(T − t) switches off the field for times t > T , while for times
−∞ < t < 0 the field is assumed to be switched off. In the diagonal ele-
ments, µΣ1 and µΠ1 stand for the permanent dipoles of the two electronic
states. The off-diagonal terms couple the dynamics on the two states
via the transition dipole moment denoted by µΣ1Π1 . Figure 4.1 depicts
these quantities. Note that in order to allow for the clear assessment of
the role of the direction of the µΣ1Π1 TDM, only the electronic properties
relevant to the included Σ1 and Π1 states are built into the simulations.

The quantities shown in Figure 4.1 were acquired with the aid of
the MOLPRO package. In order to get them, MRCI calculations were
based on preceding CASSCF computations averaged over the four lowest
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Figure 4.1: Potential ener-
gies and dipole moments of the
MgH+ molecule.
a) The VΣ1 and VΠ1 states in-
cluded in the actual dynamical
simulations described by the
Hamiltonian in eq. (4.1.1). Ad-
ditionally, two other states, VΣ2

and VΣ3 were also calculated,
but left out from the dynam-
ics. These are represented with
the dashed-dotted grey lines. A
laser with frequency ωL initi-
ates population transfer from
the ground state to the excited
state, schematically portrayed
by a vertical arrow.
b) A plot of the permanent
dipole moments of the two
states (µΣ1 and µΠ1) and the
transition dipole moment µΣ1Π1

that couples them.

lying states. During both of these computational steps aug-cc-pVQZ ba-
sis was used. In the individual irreducible representations of the relevant
C2ν point group (A1, B1, B2, A2) = (3, 1, 1, 0) closed-shell orbitals and
(A1, B1, B2, A2) = (10, 4, 1, 0) occupied orbitals were utilised throughout
the electronic structure calculations. By using the above parameters, the
electronic properties showed good agreement with previous studies of the
MgH+ molecule [79].
The TDM between the Σ1 and Π1 states is perpendicular to the perma-
nent dipole of the system. In what follows, the notations "real system"
or "perpendicular TDM " correspond to this situation.
In order to study the impact of the direction of the TDM relative to the
direction of the permanent dipole, I prepared a "model system" as well.
In the model case, I rotated the TDM artificially such that it became
parallel to the permanent dipole. For this system, the first two terms
T̂ and V̂ remain the same in the Hamiltonian. In the third term V̂int,
the sin θ terms are replaced with cos θ in the off-diagonals. I refer to the
results of these simulations as "model system" or "parallel TDM ".

In addition, I also carried out comparisons to 1D calculations in which
the rotational kinetic energy operator is left out from the Hamiltonian
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Ĥ2D. In this case the angle θ only plays the role of a parameter in the
Hamiltionian and averaging over several different values of it are per-
formed. How differently the system behaves in the absence of dynamical
rotation with respect to the dissociation dynamics, in particular when
it comes to the angular distribution of the photofragments, is discussed
later on.

Although all the results were obtained by utilising the full time-
dependent Hamiltonian, considering the form the Hamiltonian assumes
in Floquet picture is useful for the interpretations of the results. For
even more simplicity, the effect of the permanent dipoles may be ne-
glected as they average to zero [84] if the frequency of the employed field
is high enough – as it is in my case. This applies to my simulations, thus
the permanent dipoles may be neglected in Ĥ1D/2D. Following the RWA
approximation [85] yields the adiabatic Floquet Hamiltonian

ĤF
2D =

 − 1
2Mr

∂2

∂R2 + 1
2MrR2L

2
θ 0

0 − 1
2Mr

∂2

∂R2 + 1
2MrR2L

2
θ

+

+

 VΣ1 + ~ωL 0

0 VΠ1

− E0 sin2
(
π
t

T

)
·

 0 µΣ1Π1 sin θ
2

µΣ1Π1 sin θ
2 0

 .
(4.1.2)

For a crossing to be formed between the adiabatic upper and lower sur-
faces – determined upon diagonalisation of ĤF

2D –, similar considerations
follow as discussed in Section 3.1. In both the real and model systems,
the condition for the internuclear distance remains the same determined
by the equation,

~ωL = VΠ1(R)− VΣ1(R) (4.1.3)
but the angular requirement differs

sin θ = 0 ⇒ θ = 0, π for perpendicular TDM; (4.1.4)

cos θ = 0 ⇒ θ = π/2 for parallel TDM. (4.1.5)
Due to this, the LICI emerges at different positions of the configuration
space depending on the direction of the TDM. The adiabatic surfaces
of the real system are shown in Figure 4.2. Since LICIs are important
sources of strong nonadiabatic effects, the differing positions at which
they are formed are expected to leave their trace on observables suscep-
tible to the molecular orientation θ. As a candidate for such a quantity
I chose the angular distribution of the photofragments.
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Figure 4.2: The adiabatic surfaces obtained for the perpendicular TDM situation.
The crossing of the lower and upper surfaces takes places at θ = 0 and θ = π
angular orientations as required by the condition eq. (4.1.4).

Additionally, since the LICI condition requires two independent dynam-
ical variables to be present, the 1D and 2D calculations are expected to
show significant differences not only in the angular distributions, but in
the case of simpler physical quantities as well. The simplest of those
might be the population transferred to the excited state which can be
significantly enhanced by the strong nonadiabaticity near the LICI.

4.2 Parameters

The time-dependent Schrödinger equation was solved with MCTDH. The
vibrational degree of freedom is defined on a sin-DVR grid and NR ba-
sis elements were utilised and distributed along the grid of internuclear
separation from 2 au to 40 au.
The rotational degree of freedom θ is characterised by the Legendre
polynomials Pm

l (cos θ) with m = 0 the magnetic quantum number and
l = 0, 1, . . . , Nθ − 1, where Nθ is the number of basis functions used in
the representation.
Following the usual representation of MCTDH wave functions given in
eq. (1.4.1) for two degrees of freedom, the single particle functions ϕ(Q)

jQ

are formed as

ϕ
(Q)
jQ

(Q, t) =
NQ∑
iQ=1

c
(Q)
jQ,iQ

(t)χ(Q)
iQ

(Q) with Q = R, θ (4.2.1)
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and the total nuclear wavepacket is given by

Ψ(R, θ, t) =
nR∑
jR=1

nθ∑
jθ=1

AjRjθ(t)ϕ
(R)
jR

(R, t)ϕ(θ)
jθ

(θ, t). (4.2.2)

In the systematic calculations NR = 1024 basis functions for the vibra-
tional degree of freedom proved to be sufficient for all peak intensities
studied in the range of I0 = 1012 – 1013W/cm2. As for the number
of basis functions Nθ, different values were needed depending on the
intensity I0. At the lowest intensity Nθ = 61, while at the highest
Nθ = 301 functions were used. Regarding the number of SPFs, it had
to be varied depending on both the intensity and electronic state. For
I0 = 1011W/cm2 nR = nθ = 10 SPFs were employed for both Σ1 and
Π1, while at 1013W/cm2 the adequate description of the dynamics in
Π1 required nR = nθ = 13 SPFs with the number of functions for Σ1
unchanged.
Pulse duration of T = 80 fs and photon energy ~ωL = 6.56 eV were
chosen in the simulations.

CAPs – eq. (2.3.2) – have been placed at the last 10 atomic units of the
grids. The defining parameters are given by

η = 3.81 · 10−5 au R0 = 30 au b = 3. (4.2.3)
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4.3 Angular distribution
The initial wave function is taken as the lowest vibrational and rotational
eigenstate of the Σ1 state from which the laser pulse excites population to
the initially unpopulated Π1 state. During the propagation, the nuclear
wavepacket reaching the end of the grid associated to the vibrational de-
gree of freedom R gets absorbed by the respective CAPs −iW employed
for each state. To get the angular distribution, the integral

P (θj) = 1
wj

∞̂

0

〈ψ(R, θ, t)|Wθj |ψ(R, θ, t)〉 dt, (4.3.1)

is determined. In the expression of P (θj) wj is a weight factor corre-
sponding to the relevant grid point in the applied sin-DVR and −iWθj

corresponds to the projection of W to a specific grid point associated
with the rotational degree of freedom θ.
There are results available for the case of parallel TDM in the litera-
ture (see [74] for example). My intent is to discuss the situation of a
perpendicular TDM while also comparing it to the results of simulations
with parallel TDM. These are shown in Figure 4.3, providing extensive
comparisons of the 1D-2D and perpendicular-parallel TDM cases.

At the lowest intensity the parallel TDM case does not show signifi-
cant differences between the 1D and 2D calculations, they are essentially
the same. The same does not hold for the real system, however. For
orientations θ > π/8 the 1D and 2D curves possess similar behaviour.
As the molecule is being rotated closer and closer towards the orientation
parallel to the field, the 2D results have a non-vanishing part in the dis-
sociation yield, practically reaching a constant value. This observation
is in strong contrast with the 1D results, where there is a monotonous
decrease with θ ≤ π/8 and the yield finally vanishes at the θ = 0 parallel
orientation. Increasing the intensity to 1013 W/cm2 now reveals drastic
changes in the character of the 2D results. Firstly, a bumpy structure
with local maxima and minima appear, the most significant of the latter
ones occurring at around θ ≈ π/8. Still, the most striking difference is
the monotonous decrease between 0 ≤ θ < π/8 with the global maximum
taking place at θ = 0. This is especially interesting in the light of the
fact that the coupling between the Σ1 and Π1 states vanishes for this
particular orientation. The results of the 1D case are unable to account
for this behaviour and still give no dissociation at θ = 0. Albeit the 1D
calculations do give increased dissociation yields upon increasing the in-
tensity, the qualitative character of the two 1D curves are rather similar.
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Figure 4.3: Photofragment distributions resulting from dissociation on the Π1
state. [86]
The curves show the angular distributions compared for different simulation frame-
works: 1D and 2D calculations (dashed red and solid blue lines, respectively);
model – panels a), c) – and real systems – panels b), d) – for two different intensi-
ties (marked at the right axis of each subfigure).

As for the parallel TDM case at I0 = 1013 W/cm2, the 1D result is prac-
tically the same as for the real system, the two being almost flawless
mirror images of one other taken along θ = π/4. As for the 2D curve,
it displays a bumpy structure just as its counterpart in the real system,
but it differs from the latter in the sense that it still agrees with the 1D
result at θ = π/2, predicting no dissociation for this orientation.

Additional information on how the dissociation process goes can be
gained by taking snapshots of the nuclear density. The total density
can be calculated as the sum of the densities on the Σ1 and Π1 states,
|Ψ(R, θ, t)|2 = |ΨΣ1(R, θ, t)|2 + |ΨΠ1(R, θ, t)|2. This is plotted in Figure
4.4 for the highest intensity applied, I0 = 1013 W/cm2, and several time
instances.

The snapshots of the evolution of density makes it possible to track
how the dissociation develops as it provides supplementary information
to those shown in Figure 4.3. The initially uniform density is signifi-
cantly distorted by t = 20 fs and as the laser pulse gradually gets stronger
– controlled by its envelope function f(t) – the effect of the LICI gets
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Figure 4.4: Total nuclear density for the real system (perpendicular TDM) ob-
tained from 2D calculations [86].
For easier visualisation of the effect of the LICI, results with the highest instanta-
neous intensity, 1013 W/cm2 are taken. The white crosses denote the positions of
the LICI. Note the formation of peaks in the density in the vicinity of the crosses as
the driving field gets stronger.

more emphasised. Local peaks start to develop in the configuration space
at R ∼ 1.69 Å and angular orientations θ = 0 and θ = π in accordance
with the LICI condition. The non-adiabatic couplings are the strongest
in these regions of the configuration space. Moreover, the upper adia-
batic surface possesses local minima at these positions, as it is shown
in Figure 4.2. The molecule is gradually rotated towards the polarisa-
tion direction of the laser field, thus the peaks in the density appear at
these locations. However, due to the crossings between the lower and up-
per adiabatic surfaces, parts of the wavepacket can travel through these
crossings and reach the lower adiabatic surface. On this surface they can
dissociate much easier than on the upper surface. This explanation is
also in agreement with panel d) of Figure 4.3 that clearly shows the
significantly increased dissociation yield from these angular orientations
compared to the 1D results.

4.4 Conclusions
In this section I presented my results for the MgH+ molecule. My
study was tailored for revealing differences in the angular distribution
of photofragments in two systems where the direction of the transition
dipole moment is either perpendicular (real system) or parallel (model
system) to the molecular axis of the system. Besides being susceptible to
the angular orientation, this quantity is also of interest in experimental
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setups and practical applications.
In addition to the above, I also carried out simulations in 1D and 2D and
compared them.

I found significant differences between the 1D and 2D calculations
that got more pronounced as the intensity of the laser field increased.
The results can be explained by employing the light-induced picture
and then considering the LICI that gets formed between the two light-
induced/adiabatic surfaces.

The change in the character of the angular distribution is clearly
driven by the strong non-adiabatic phenomena attributed to the LICI
and it also leaves its mark on how the nuclear density evolves. These ob-
servations support the impact of the LICI on the dissociation dynamics.
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Chapter 5

Two- and three-state
simulations of the LiF
molecule

Alkali halide molecules have a segment of remarkable size in the scientific
literature, interest in the study of their physical properties have always
motivated researches. Several works have dealt with photodissociation
dynamics of these systems [87–91] and in other cases applications to track
ionic-covalent transitions of alkali metals have seen widespread adapta-
tion as well. There are also comprehensive reviews of metal halides with
their most important properties of physical interest available [92].

In addition to being unique in several of its molecular properties with
respect to other alkali metals, LiF has practical applications, too, such as
in LiF based films that have been used as high resolution electron beam
resists [93] or LiF-based imaging detectors [94].

For means of basic research, researchers dealing with electronic struc-
ture calculations have carefully studied the avoided crossing (AC) be-
tween the two lowest lying Σ states of LiF [95]. This AC gives rise
to rich nonadiabatic phenomena, enhanced energy transfer between the
electrons and nuclei, allowing for very fast decay of the excited states
and dissociation taking place in the ground Σ state of LiF. Accordingly,
as the proper tools became available and made the calculations of elec-
tronic properties approachable, the first dynamical simulations of LiF
were carried out as well [96,97].

The presence of the avoided crossing and the induced nonadiabatic
dynamics it is responsible for makes LiF especially interesting because
it is inherent to its electronic structure, unlike the previous systems I
studied: neither D+

2 nor MgH+ possess such built-in source of nonadi-
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abaticity. This is especially intriguing in the 2D calculations where, in
addition to the AC, LICI can be formed as well, making the nonadiabatic
dynamics more rich. In fact, the competition between LICIs, ACs and
even LIACs have already inspired detailed discussions for NaI in [98].

Recently, successful confinement of the nuclear wavepacket with the
help of external permanent field has been reported in the theoretical
work [99]. In this study, the field-free potentials are modified by the
external field that is taken to be the superposition of a purely sinusoidal
driving field and a pump field, the latter initiating the dynamics by
exchanging population between the ground and excited states. Due to
this, the net potential oscillates in time as well and so does the crossing
between the light induced potentials. In this setup, the authors described
a formation of surprisingly long lived states in the upper light induced
potential leading to drastically longer dissociation process. How effective
this confinement of parts of the excited wavepacket is depends on the
frequency and intensity of the applied driving field. It is interesting to
note that the authors of [98] also found similar confinement effect to that
of [99] in 1D and they also observed enhanced dissociation rates in the
2D simulations, making their results first among those discussing similar
phenomena from the point of view of the competition between inherent
and induced sources of non-adiabaticity.

Although large numbers of studies are available with LiF, several
works have consistently disregarded the 11Π electronic state despite ac-
counting for several Σ states lying even higher than the mentioned Π
state. With my contribution to the dynamical simulations of LiF, my
ambition was to shine light on influence of this electronic state.

On the other hand, as it was pointed out in the article [99], their
findings presented on the confinement only apply to the results of 1D
simulations where the polarisation direction of the field was always as-
sumed to be parallel to the molecular axis, therefore no rotation was
included in the simulations. How effective the confinement proves to be
with vibrating-rotating LiF is an interesting question and partly this is
what motivated the dynamical simulations with LiF in [100].

My main contribution to the LiF simulations resided in the electronic
structure calculations that supplied the quantities needed to construct
the Hamiltonian of LiF accounting for three electronic states. In what
follows I present the results of these calculations and also include a se-
lected portion of the dynamical studies of LiF with emphasise on what I
personally found the most interesting out of these results.
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5.1 Three-state electronic structure of LiF
In the proper dynamical simulations either two or three electronic states
are included. In the case of three states, 11Σ+, 21Σ+ and 11Π are con-
sidered. For two state-calculations, following [99], only 11Σ+ and 21Σ+

are taken into account. In the following discussion they are referred to
as Σ1, Σ2 and Π1 in similar vein to the notation used for MgH+.
The 2D and three-state Hamiltonian reads

Ĥ = T̂ + V̂ + V̂int =

=
(
− 1

2Mr

∂2

∂R2 + 1
2MrR2L

2
θ

)
· 1 +


VΣ1 0 K

0 VΠ1 0

−K 0 VΣ2

+

− E(t) ·


µΣ1 µΣ1Π1 µΣ1Σ2

µΣ1Π1 µΠ1 µΠ1Σ2

µΣ1Σ2 µΠ1Σ2 µΣ2

 .
(5.1.1)

The first term of eq. (5.1.1) follows the same notations and has the
same meaning as the first term of the Hamiltonian eq. (4.1.1) for MgH+,
1 is the 3×3 unit matrix. The second one contains the potential energies
and an additional term K as well, not needed in my previous dynamical
simulations. K(R) is called the non-adiabatic coupling. Its presence in
the Hamiltonian accounts for the avoided crossing between the Σ1 and
Σ2 states. K is defined as

K(R) = 1
2Mr

(
2τ(R) ∂

∂R
+ τ (2)(R)

)
, (5.1.2)

with τ and τ (2) denoting the NACT and second order NACT, respec-
tively. The above analytical form is taken from [2] and τ is determined
by evaluating the overlap integral

τ(R) = 〈ϕΣ1
| ∂
∂R

ϕΣ2
〉 , (5.1.3)

where ϕΣ1
and ϕΣ2

are the respective electronic wave functions. How-
ever, instead of using the exact form eq. (5.1.2), a simpler and approxi-
mated expression is employed borrowed from [101] and it reads

K(R) ≈ 1
2Mr

(
2τ(R) ∂

∂R
+ ∂

∂R
τ(R)

)
. (5.1.4)
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This is the expression built into the Hamiltonian eq. (5.1.1).
The interaction between the external field E(t) and the dipoles is ac-
counted for in V̂int. Here, the electric field is taken in the form of

E(t) = E0 cos2(1.14372 · (t− t0)/τL) · cos(ωL(t− t0))+
+ Edfd(t) cos(ωdt)

(5.1.5)

with the choice t0 = 0 and τL controlling the width of the intensity
profile of the pump pulse, taken as τL = 20 fs. The envelope fd(t) of the
driving field is 1 at all times, except for a time period of 500 fs before
the pumping laser pulse. During this window, fd(t) linearly increases to
its final value of 1. In the article [100] several different pump and driving
intensities – denoted by I0 and Id, respectively – are considered coupled
with different photon energies ~ωL and ~ωd.

Figure 5.1 presents the electronic properties calculated with MOL-
PRO. Regarding the determination of these quantities, MRCI method
was utilised that made use of previous CASSCF calculations. In both the
CASSCF and MRCI steps, aug-cc-pVQZ bases were applied. As for the
number of active molecular orbitals in the A1, B1, B2 and A2 irreducible
representations of the C2ν group, these are taken as (A1, B1, B2, A2) =
(5, 3, 3, 1). The number of active electrons in these representations are
(nA1 , nB1 , nB2 , nA2) = (2, 2, 2, 0). Setting up the MOLPRO calculations
with the above choice of parameters granted good agreement with pre-
vious results available in [102,103].

The energy of the Π1 excited state lies very close to that of the Σ2
state (subfigure A). Thus, energies allowing excitation from Σ1 to Σ2
are also capable of transferring some of the population to the Π1 state.
This path of excitation is even more possible when the initialisation of
the nuclear dynamics and the subsequent excitation takes place in the
Franck-Condon region. In this domain the µΣ1Π1 TDM exceeds both
µΣ1Σ2 and µΠ1Σ2 (subfigure C). Following these arguments, upon the
inclusion of the Π1 state a smaller amount of population is expected to
be excited to Σ2 compared to setups in which Π1 is left out and only the
two lowest lying Σ states are considered.

77



R [A◦]
0

1

2

3

4

5

6

7

8

E
n
e
rg

y
 [

e
V

]
A

R [A◦]
25

20

15

10

5

0

P
D

M
  
[a

.u
.]

B

µΣ1

µΣ2

µΠ1

2 4 6 8 10 12

R [Å]

1

0

1

2

3

4

5

6

T
D

M
  
[a

.u
.]

CµΣ1Σ2

µΣ1Π1

µΠ1Σ2

0

1

2

3

τ 
[a

.u
.]

VΣ1

VΣ2

VΠ1

τ 

Figure 5.1: Electronic
properties of LiF with
three electronic states
accounted for.
Subfigure A shows the
potential energies of the
three states (values dis-
played on the left-hand
axis). The nonadiabatic
coupling term is also
presented and scaled
on the right-hand axis
colored in magenta.
This latter curve, as
expected, possesses a
rather steep increase in
the vicinity of the AC
region with its maxi-
mum at the AC, located
at around ≈ 7.2 Å.
The dipole moments are
plotted in subfigures B
and C, showing the per-
manent and transition
dipoles, respectively.
Especially interesting
is the behaviour of the
TDMs in the Franck-
Condon region where
µΣ1Π1 surpasses the
µΣ1Σ2 TDM signifi-
cantly.

5.2 Electronic state populations and con-
finement

To track the confinement of the nuclear wavepacket the electronic popu-
lations Pi(t) are determined. This is given by the integrals

Pi(t) = 〈Ψi(R, θ, t)|Ψi(R, θ, t)〉 =
ˆ π

0
sin θ·dθ

ˆ ∞
0

Ψ∗i (R, θ, t)Ψi(R, θ, t)·dR
(5.2.1)

with i = Σ1,Σ2 or Π1 and the dissociation can be calculated in the same
vein as described before for the previous systems. In the corresponding
calculations, a CAP with parameters η = 3.97 · 10−4, b = 3 and 10 au in
length was used.
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Upon starting the propagation from the lowest vibrational-rotational
state of Σ1, the population is transferred either to Σ2 exclusively or to
both Σ2 and Π1 (second and first columns of Figure 5.2, respectively).
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Figure 5.2: Two- and three-state populations in the absence or presence of a driv-
ing field.
A pump field of intensity I0 = 4.8 × 1013 W/cm2 and of energy ~ωL = 6.94 eV
is employed to initiate the population dynamics. Then the effect of a driving field
of intensity Id = 2.68 × 1013 W/cm2 – subplots (c)-(d) – is compared to the case
when there is no driving field at all (Id = 0, subplots (a)-(b)). The photon energy
of the driving is kept constant, chosen to be ~ωd = 3.995 eV .
In addition to the 2- and 3-state comparisons, the 1D – solid lines – and 2D – bro-
ken/dotted lines – results are contrasted, as well. Interpretation of these findings
can be found in the text below.

The simplest case of the dissociation dynamics occurs when there is no
driving field present, so Id = 0. In such a situation with three states in-
cluded, the excited population can access two channels for dissociation;
a direct one which means dissociation in the Π1 state and an indirect one
that happens in Σ1 (note the flat character of Σ1 beyond the AC region).
However, for this latter channel to be activated the wavepacket needs to
be taken first to Σ2 and then it has to travel through the avoided cross-
ing at ≈ 7.2 Å. In the vicinity of the AC, both the µΣ1Σ2 TDM and the
NACT between Σ1 and Σ2 increase steeply as seen in subplot C of Figure
5.1. Thus, even with short pumping pulses used and in the absence of
a driving field, due to the NACT, population can be transferred back to
the Σ1 state as the wavepacket reaches the region of the AC, leading to
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subsequent dissociation in Σ1. However, this conversion of the excited
population in Σ2 back to Σ1 through the AC happens in several steps.
Only some parts of the wavepacket that reach the AC region is trans-
ferred back to Σ1, while other parts are reflected and get trapped in Σ2
for at least another cycle of oscillation; the cycle it takes the wavepacket
to get back to the Franck-Condon region and then back to the AC region
again. This cycle can take up to several hundred femtoseconds. Obvi-
ously, taking this pathway is expected to be slower than the direct path
on Π1. Therefore, the inclusion of the Π1 state can enhance the rate of
dissociation and results in a faster decay of the excited population.

On the other hand, the direct channel is not available in the 2-state
calculations because only Σ1 and Σ2 are taken into account. Due to this,
one can expect longer dissociation times in the 2-state case.

The above arguments are confirmed in panels (a) and (b) of Figure
5.2 which show significantly larger occupation of the Σ1 and Σ2 states
still present at the end of the time window (1000 fs) when only the two Σ
states are considered. In this case, population amounting to about half
the initial population remains in the system. On the other hand, in the
same time window less than half the initial population is retained in the
system when all three states are considered. This is clearly due to the
effect of the Π1 state as described above. During the initial population
transfer this state obtains a large amount of the total excited population
and provides a more efficient pathway to dissociation. As for the com-
parison of the 1D and 2D results, no differences can be observed at the
applied intensity I0 = 4.8× 1013 W/cm2 of the pumping field.

Keeping the pumping parameters fixed and moving on to the cal-
culations with driving field present, results corresponding to intensity
Id = 2.68× 1013 W/cm2 are showcased in the second row of Figure 5.2.

The two-state results of subfigure (d) show a similar oscillatory be-
haviour in 1D and 2D right until t ≈ 200 fs . Propagating beyond this
time instant yields gradually suppressed oscillations in 2D and a smooth
decrease in the populations sets in later on. However, the oscillations,
meaning population transfer back and forth between Σ1 and Σ2, are al-
ways persistent in 1D. The relatively shallow decrease of the envelope,
that could be fitted on top of these oscillations in 1D, tells of a rather slow
leak through the avoided crossing into the CAP region of Σ1 where the
population is annihilated finally. Therefore, even without the inclusion of
the Π1 state, which is proven to be a faster decay channel, accounting for
the rotation of the molecule and including it in the dynamical description
leads to hindered confinement efficiency on its own.

When all states are regarded (panel (c)), the state occupations show
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significant changes. By t = 1000 fs, about half the population is con-
served in 1D and only ≈ 0.35 in 2D. This is in stark contrast with the
2-state results for which populations amounting to ≈ 0.8 (1D) and ≈ 0.55
(2D) are retained.

The findings of Figure 5.2 can be presented in a more sufficient format
that is able to capture more clearly how efficient the containment is.
To this end, a ratio of the total population left unexcited to the total
population present in the system can be introduced. Following [99], this
is given by

r(t) = P (t)− (1− Pex)
Pex

, (5.2.2)

with P (t) the total population remaining in the system. According to
eq. (5.2.1), this is the sum of the individual electronic state populations,
P (t) = PΣ1(t) + PΣ2(t) ≡ PΣ(t) for two-states and PΣ(t) + PΠ1(t) for
three-states. Pex denotes the maximum of the instantaneous population
that gets excited by the pumping field during the propagation. Then the
difference 1− Pex accounts for the amount of population left unexcited.
Thus, the numerator tracks the population still excited at time t and
the ratio r(t) keeps an account of that relative to the maximum amount
converted to the excited states. At t = 0 P (t) starts off at 1, so r(t) = 1.
As the electronic states trade population it is up to the confinement to
keep the population in the excited states.

However, if the containment breaks down and looses efficiency then
more of the excited population may pass into the CAP region where they
are absorbed subsequently. This causes P (t) to decrease and r(t) follows
suit. How r(t) evolves is shown in Figure 5.3. The displayed ratios are
determined from the data presented in Figure 5.2.
As for the results in the absence of a driving field, the 1D and 2D cases
(displayed in red in Figure 5.3) yield practically the same containment
regardless of whether 2 or 3 electronic states are taken into account.
However, by comparing the 2- and 3-state ratios, a faster decay of the
excited population can be observed with 3 states included and it also
gives lower asymptotic values at around ≈ 0.1, while the 2-state r(t) is
slightly below 0.2 by t = 1000 fs. Switching a driving field of intensity
Id = 2.68 × 1013 W/cm2 on, the 1D simulations predict a significantly
slower depletion of the excited population for 2-states than for 3-states.
An interesting find presents itself in the 2D results of panels (a) and
(b), showing the 3- and 2-state yields, respectively. Here, the 2-state
confinement seems to be of somewhat worse efficiency than with the Π1
state included.
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Figure 5.3: Confinement ratio r(t).
r(t) is based on the ratio of the instantaneous excited population to the all-time
maximum of the excited population. It is an expressive quantity to describe how
sustainable the excited population is in the long run.

5.3 Conclusions
The 2- and 3-state dynamical simulations on LiF reveal the important
effect of the Π1 electronic state on the dissociation dynamics, or equiv-
alently, the efficiency of the confinement effect driven by a persistent
electric field Ed. Its capability to significantly alter the dissociation di-
rectly ties in with the energetical position of this state relative to the Σ2
state that is always included in the simulation.

Moreover, the comparatively large TDM corresponding to the Σ1 →
Π1 transition also allows for a non-negligible population transfer to this
state. Thus the presence of Π1 alters how the decay of the initially
excited population proceeds, leaving its mark on the behaviour of the
confinement ratio r(t) as well.
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Chapter 6

Summary

In this PhD dissertation I presented my studies of small molecular sys-
tems containing two atoms and discussed their non-adiabatic nuclear
dynamics in presence of an external laser field that is responsible for
initialisation of the dynamics.

The problem of tracking the nuclear dynamics always needed numer-
ical solution of the time-dependent Schrödinger equation. To this end,
I made use of the highly successful numerical package of MCTDH and
prepared the appropriate calculations or wrote my own implementation
to solve the problem at hand – as it was my approach in the case with
the calculation of Berry’s phase where I also made use of the freely avail-
able GSL package. On the other hand, no numerical simulation of the
nuclear dynamics may be done without the proper description of the
electronic structure of the molecule. In my case these quantities are the
potential energies, the permanent and transition dipole moments and the
non-adiabatic coupling between the electronic states. In some systems
not all these are relevant or there are widely used and accepted forms
available, such as it is the case for D+

2 . For those systems where these
quantities are not readily available, I carried out the needed electronic
structure calculations with the MOLPRO package.

My work has focused on laser induced nonadiabatic effects and I have
studied several different phenomena that they can be responsible for.
These included the following – given in the order they appear detailed in
the main text –

• vibrational trapping effect studied in the D+
2 system. This effect is

interesting, because it can lead to significant suppression in the dis-
sociation yield and thus effective molecular stabilisation can occur
under appropriate conditions;
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• the calculation of a non-trivial Berry’s phase that ties in with the
sign change of the adiabatic electronic eigenfunctions upon trans-
portation along a closed path in the configuration space encom-
passing a degeneration;

• detailed discussion of how the direction of the transition dipole
moment (TDM) relative to the molecular axis can affect the dis-
sociation dynamics, focusing on experimental observables first and
foremost

• electronic structure calculations of the LiF molecule that served as
input to subsequent nuclear dynamical simulations. I also discussed
a small portion of these latter results.

Vibrational trapping in D+
2

I have carried out calculations in MCTDH and tracked the total amount
populations that remained in the system by the end of the propagation.
By doing so, I was able to determine the dissociation probability. Upon
utilising laser fields of different wavelengths, several sharp minima ap-
pear in the dissociation probability. According to earlier publications
and theory, the occurrence of such minima at particular wavelengths can
be conveniently explained by considering the light-induced picture and
that the upper light-induced adiabatic potential may possess states with
vibrational energies lying very close to those of the diabatic vibrational
eigenstate. Thus, the starting diabatic vibrational states can be trapped
into upper adiabatic states effectively.

I studied the above explanation by employing a model potential to
approximate the light-induced upper adiabatic potential that is reason-
able for laser fields of relatively low intensity. Studying the differences of
the diabatic and adiabatic eigenenergies, I observed discrepancies ranging
from about 5% to about 15%.

When taking into account another relevant measure, namely the over-
lap of the diabatic and adiabatic eigenfunctions, the maxima of the over-
laps as a function of the applied wavelengths is an adequate measure
of how similar the eigenstates are. However, this quantity showed simi-
lar errors in predicting the correct wavelengths as the measure built on
the energy differences did. Although the mentioned discrepancies are
present, they still are in acceptable agreement with the original expla-
nation, especially when the approximated form of the model potential is
taken into account.
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Motivated by the above errors in the prediction of the dissociation
minima, a careful consideration of how the maxima of the overlaps and
very close coincidence of the eigenenergies can occur revealed the im-
portance of the nodal structure of the diabatic eigenstates. I calculated
several different auxiliary quantities to put the node-based theory to the
test and they proved to be more precise by a fair amount than the pre-
diction based on the overlaps and energy differences. This is especially
true for the first seven lower lying diabatic eigenstates. From the two
node based quantities, further empirical expressions can be formed that
are capable to forecast the dissociation minima with smaller than half a
percent error in several cases.

Although how the particular form of the node-based expression can
be explained from the physical point of view remains a task that still
needs to be tackled, it also supplies motivation to me to pursue this
study further in the future.

Berry’s phase
There are several publications available on the adiabatic transportation
of electronic eigenfunctions along a closed path in the molecular config-
uration space. If the closed path encircles a degeneracy upon adiabati-
cally slow transportation, when the system has enough time to assume its
eigenfunction, the wave function must change sign if it is required to be
real valued. The acquired phase factor corresponding to this sign change
is known as Berry’s phase in the literature. It has been proven to be of
purely geometrical nature as it is shown to depend only on the closed
path taken in the configuration space. Whenever the path encircles a
degeneracy such as a light-induced conical intersection (LICI) the phase
is equal to π (or odd multiple of it), otherwise it is 0.

My intent was to calculate this phase by employing the original
method of Berry, a time-dependent adiabatic approach. My choice of
system was the D+

2 molecule, chosen for its simplicity. Utilising the
Floquet-picture and parameterising the dynamical variable R and θ the
Hamiltonian depends on, I propagated the system adiabatically along
closed ellipses of the (R, θ) configuration space. To do this, I imple-
mented a C code, made with the help of the GNU Scientific Library
(GSL), to numerically integrate the Schrödinger-equation.

Laser fields encompassing a wide range of intensity were used. How
quickly the system is transported along the closed loop determined to
what extent the adiabatic theorem is applicable and thus how adiabatic
the propagation process is. At higher intensities slower and slower trans-
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portation times T are required to warrant adiabaticity which, as ex-
pected, introduces growing numerical difficulties and longer computation
times.

The acquired data are in very good agreement with the expectation,
yielding values of the geometric phase close to π whenever the path en-
closed the light-induced degeneration and close 0 in every other cases.
This also held with several different paths prepared and traveled in the
configuration space.

Direction of the transition dipole moment
and its effect on the dynamics in MgH+

The D+
2 molecule differs from MgH+ in several ways. While D+

2 is simple
enough from the point of view that it does not possess permanent dipole
moment and its transition dipole moment is parallel to the molecular axis,
MgH+ differs from it in both of the above aspects: it does have permanent
dipole moment that is parallel to the axis and transition dipole which is
perpendicular to it.

The very first results corresponding to the direct effect of a LICI on
the nuclear dynamics was obtained by careful analysis of the angular dis-
tributions of the photofragments when both the internuclear coordinate
– R – and the rotation of the molecule – θ – are considered as individual
dynamical variables of the molecule and included in the working Hamilto-
nian. How the conditions regarding the formation of a LICI are altered
in a system with perpendicular TDM is interesting and it is expected
to leave its mark on physical observable carrying information about the
orientation of the molecule.

My aim with the dynamical study of MgH+ was to go beyond pre-
viously available results and discuss the effect of direction of the TDM
on the dynamics. In order to do so, I also studied an artificial system
that has the very same properties as MgH+, except for its TDM that is
rotated parallel to the molecular axis.

I carried out both 1D and 2D simulations with both the real and
model (artificial) systems and the results I got showed striking differences
in the obtained angular distribution of the photofragments as it could be
expected. These differences get more significant as the intensity of the
external laser field is increased and it is attributed to the presence of
LICI formed between the light-induced adiabatic surfaces.

By tracking how the total nuclear density evolves in time, regions in
the configuration space of high nuclear density formed at exactly those
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positions that the LICI conditions require.
According to my results, the impact of the direction of the TDM on

the dissociation process is significant.

Electronic structure calculations with LiF and
nuclear wavepacket confinement
The apropo of the dynamical studies on LiF is the findings of a recent
article, where the authors observed effective confinement of the excited
population when an external permanent electric field was applied to the
environment of the molecule. According to the publication, a pump laser
initiates population transfer between the ground state of LiF and its Σ2
excited state and a continuous driving field alters the potential energy
curves so that effective confinement in the excited states can occur.

However, the findings of such effective confinement was only discussed
without the rotation of the molecule included in the dynamical descrip-
tion which circumstance was also pointed out by the authors themselves.
Moreover, although the Σ2 excited state is accounted for, an energetically
lower lying state, the Π1 state is left out from their simulations and this
state may also play a role in the dissociation dynamics.

In order to study whether the confinement of the excited population
is enhanced or hindered for vibrating-rotating LiF, I carried out preemp-
tive electronic structure calculations of LiF, yielding the necessary data
of the potential energies of three electronic states, their permanent dipole
moments and the transition dipole moments between the three electronic
states, subsequently serving as input to the nuclear dynamical simula-
tions. These results are in good agreement with the results of previous
publications.

Among the electronic properties of LiF, the most interesting is an
avoided crossing (AC) between the Σ1 and Σ2 states and the nonadiabatic
coupling it gives rise to. Due to its presence, LiF has the inherent possi-
bility of interesting non-adiabatic phenomena occurring, naturally built
into its electronic structure. How this interacts with the LICI formed in
2D is also an intriguing question that the nuclear dynamical calculations
are to answer.

The findings of the simulations undoubtedly showed that the con-
tainment looses efficiency as the rotation of the molecule is considered
regardless of whether the Π1 state is included or not. On the other hand,
by comparing 2-state results, when Π1 is left out, and 3-state results
where it is present, gave significant differences showing the importance

87



of this electronic state.
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7. fejezet

Összefoglalás

Az alábbi Phd értekezésben ismertetem azon eredményeimet, melyeket
kétatomos molekulákra végzett számításokból kaptam és tárgyalom az
azokban megfigyelt, külső lézertér hatására bekövetkező nem-adiabatikus
magdinamikai folyamatokat.

A magdinamikai folyamatok nyomonkövetéséhez minden esetben szük-
ség volt arra, hogy az időfüggő Schrödinger-egyenletet numerikusan meg-
oldjam. Ehhez jól bevált és magdinamika számolásokban széles körben
sikeresen alkalmazott módszerként az MCTDH programot használtam.

Más esetben, mint ahogy az a Berry-fázis meghatározására vonatkozó
szimulációkban is történt, saját implementációt is készítettem, amiben
hasznosítottam a GNU Scientific Library (GSL) könyvtárban elérhető
integrátorokat.

Habár ezek a megoldások alkalmasak a magdinamika propagálásá-
ra, bizonyos esetekben megelőző számolásokra is szükség volt, amelyek a
megfelelő rendszerhez szolgáltatták az elektronszerkezeti adatokat. Ese-
temben ezek a mennyiségek a potenciális energia görbék, a rendszer per-
manens és átmeneti dipólusmomentumai, illetve a nemadiabatikus csato-
lások az elektronállapotok között. Bizonyos rendszerekre, mint ahogy az
a D+

2 esetében is van, elérhetőek széles körben alkalmazott és elfogadott
analitikus formulák ezekre a mennyiségekre, míg más rendszerekre nem.
Ezen rendszerekre minden esetben megelőző elektronszerkezeti számolá-
sokat végeztem el a MOLPRO programcsomag segítségével. A kapott
eredményeim más publikációkban fellelhető eredményekkel jó egyezést
mutattak és a továbbiakban ezek beépítésre kerültek a magdinamikai
szimulációkba.

Munkám lézer indukálta nemadiabatikus folyamatok vizsgálatára fó-
kuszált és több idetartozó jelenséget érintett. Ezek az alábbiak:

• vibrációs csapdázódás vizsgálata D+
2 rendszerben. Az effektus ér-
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dekessége abban rejlik, hogy a disszociációs folyamatot jelentősen
elnyomhatja megfelelő körülmények között, így a molekula stabili-
tását növelni képes;

• Berry-fázis számolása, ami az adiabatikus elektron sajátállapotok
előjelváltásával kapcsolatos, amint a rendszer időfejlődése a mole-
kula konfigurációs terének egy olyan zárt görbéjét követi le, amely
valamilyen degenerációt tartalmaz az elektronállapotok között, mint
amilyen például a kónikus kereszteződés (természetes avagy indu-
kált eredetű);

• annak vizsgálata miképpen befolyásolja az átmeneti dipólus mo-
mentum (TDM) molekulatengelyhez képesti iránya a disszociációs
dinamikát, elsősorban olyan mennyiségekre koncentrálva, amelyek
potenciálisan kísérletileg is mérhetőek;

• a LiF molekula elektronszerkezeti tulajdonságainak számolása, ame-
lyek az ezt követő magdinamikai számolások bemeneteként szolgál-
tak a Hamilton operátor megkonstruálásához. Egy kis részét a
kapott magdinamikai eredményeknek a teljesség kedvéért ismerte-
tem.

Vibrációs csapdázódás D+
2 rendszerben

Szimulációkat végeztem MCTDH segítségével és nyomon követtem az
elekronállapotok populációinak változását. Meghatároztam a rendszer-
ben a disszociáció befejeztével megmaradt populációt, ilyen módon disszo-
ciációs valószínűséget számítottam.

Rögzített intenzitású, de különböző hullámhosszú lézerterek alkalma-
zásakor számos éles minimum figyelhető meg a meghatározott disszociáci-
ós valószínűségben a hullámhossz függvényeként. Korábbi publikációkra
alapozva, ezen éles minimumok a lézer-indukálta adiabatikus potenci-
álok segítségével értelmezhetők: amennyiben a tér által indukált fölső
adiabatikus potenciálhoz tartozó vibrációs sajátállapotok valamelyike a
térmentes, avagy diabatikus potenciál vibrációs sajátenergiájához közel
eső energiával bír, akkor a kezdeti diabatikus sajátállapot, amelyből a
dinamika indul, jobb hatásfokkal csapdázódhat be a fölső adiabatikus
potenciálon.

A fent adott értelmezést volt célom vizsgálni a fölső adiabatikus po-
tenciál viszonylag kis intenzitású lézertér (esetemben 1011 W/cm2 ) alkal-
mazott közelítésével, amely a D+

2 2pσu állapotának fotonnal öltöztetett
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alakjára és ennek az állapotnak az 1sσg állapottal való kereszteződé-
si pozíciójára építkezett. Meghatározva a fenti modell potenciálhoz és
az 1sσg alapállapothoz tartozó vibrációs sajátenergiákat, a disszociációs
minimumpozíciók sajátenergiák különbségére alapozott becsült és valódi
értéke között kb. 5%-tól 15%-ig terjedő eltéréseket tapasztaltam.

További releváns mennyiség, amit tekintettem, az adiabatikus és di-
abatikus sajátállapotok átfedési integrálja. Ezek maximuma a lézertér
hullámhosszának függvényében szintén alkalmas lehet a disszociációs mi-
nimumpozíciók előrejelzésére, hiszen éppen az átfedési maximumoknál a
legnagyobb a hasonlóság az adiabatikus és diabatikus vibrációs saját-
függvények között. Az erre alapozott értékek a disszociációs minimum
tekintetében a sajátenergiák alapján kapott eredményekhez hasonló pon-
tatlanságot mutattak. Habár a fent említett pontatlanságok vitathatatla-
nul jelen vannak, az alkalmazott modellpotenciál alakjára tett közelítések
fényében a kapott értékek nem túl rosszak.

Pontosabb előrejelzést tett lehetővé annak vizsgálata, hogy mikép-
pen alakulhat ki jelentős átfedés a sajátállapotok között, illetve ennek
kapcsolata a vibrációs sajátenergiákkal. Ez a megfontolás a diabatikus
sajátfüggvények nóduspozícióinak szerepére világít rá. Ennek tesztelé-
séhez további kiegészítő mennyiségeket számoltam, amelyek mindegyike
a nódusszerkezetre alapoz. Ezen mennyiségek sokkal pontosabban képe-
sek reprodukálni a disszociációs számolásokban kapott éles minimumok
pozícióit, a hét legmélyebben fekvő diabatikus vibrációs állapot esetében
pedig különösen nagy javulást hoznak a korábbiakhoz képest.

A meghatározott nódus alapú mennyiségekből további empirikus for-
mulák segítségével kapott előrejelzések kevesebb, mint fél százalék elté-
réssel képesek reprodukálni a megfigyelt minimumpozíciókat, ami újabb
jelentős javulást jelent.

Habár a pontos fizikai magyarázata annak, miképpen adódik, hogy
éppen a nódus alapú mennyiségek ezen empirikus kombinációi képesek
a legnagyobb pontossággal visszaadni a disszociációs minimumokat egy-
előre megoldatlan, azonban egyúttal motivációt is nyújt számomra, hogy
ennek pontos magyarázatát a jövőben kidolgozzam.

Berry-fázis
Számos publikáció foglalkozik az irodalomban azzal, miképpen változ-
nak meg az adiabatikus elektron sajátfüggvények, miközben a molekula
konfigurációs terének egy zárt görbéjét követi le az időfejlődésük. Meg-
mutatták, hogy amennyiben a zárt görbe közrefog egy degeneranciát a
molekula konfigurációs terében, akkor adiabatikusan lassú, a zárt görbe
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mentén történő ciklikus körbejárás folyamán a sajátfüggvény előjelet kell
váltson, ha megköveteljük, hogy valós értékű legyen. Az ehhez kapcsoló-
dó fázis faktor Berry-fázis néven ismert az irodalomban.

Bebizonyították azt is, hogy a Berry-fázis egy tisztán geometriai jel-
legű fázisfaktor, ami kizárólag a konfigurációs térben lekövetett zárt gör-
bétől függ. Amennyiben a görbe degeneranciát fog közre, mint amilyen a
lézerrel indukált kónikus kereszteződés (LICI) vagy a sokatomos, nagy-
méretű rendszerekben nagyszámban természetes körülmények között is
jelenlévő kónikus kereszteződés (CI), akkor a Berry-fázis értéke π, illetve
annak páratlan számú többszöröse, egyébként 0.

Célom az volt, hogy kiszámítsam a Berry-fázist Berry eredeti, időfüg-
gő adiabatikus módszerét alkalmazva. A rendszer tekintetében a D+

2 -ra
esett a választásom az egyszerűsége és az elektronszerkezeti tulajdonsá-
gaira elérhető analitikus kifejezések miatt.

A számolásaimban a Floquet-képet alkalmaztam a rendszer Hamilton-
operátorában és a vibrációs koordináta (R) és a forgást jellemző dinami-
kai változó (θ) parametrizációjával a Hamilton operátor nem függ explicit
módon az időtől. Az (R, θ) konfigurációs térben zárt ellipszisek mentén
végeztem a propagációt. A Schrödinger-egyenlet numerikus megoldá-
sához C nyelven kódot írtam, amelyben a GSL könyvtárban elérhető
integrátorokat alkalmaztam.

Rögzített fotonenergiával, széles tartományban változtatott intenzi-
tású lézer tereket alkalmaztam a szimulációkban. Azt, hogy mennyire
tekinthető adiabatikusnak a zárt görbéket lekövető propagáció, elsősor-
ban az alkalmazott intenzitás és a görbék mentén végzett adiabatikus
transzport gyorsasága határozta meg. Magasabb intenzitások mellett
lassab T körbejárási időre volt szükség, ahhoz hogy biztosított legyen az
adiabatikusság, ezek viszont numerikus nehézségeket is okoznak bizonyos
esetekben és sokkal hosszabb futási időket.

A szimulációs programmal nyert eredmények nagyon jó egyezésben
vannak a várakozásokkal, közel π-t szolgáltatva azokban az esetekben,
amikor a zárt görbe közrefogja a LICI pozícióját és közel 0-t minden más
esetben. Ezek az eredmények konzisztensnek bizonyultak a különböző
tesztelt zárt görbék mentén választott eltérő kezdőfeltételekkel is.

Az átmeneti dipól irányának hatása az MgH+

rendszer dinamikájára
Az előzőekben vizsgált D+

2 rendszertől az MgH+ több szempontból is
különbözik. Míg a D+

2 kellően egyszerű rendszer, már csak abból a szem-
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pontból is, hogy nem rendelkezik permanens dipólusmomentummal, to-
vábbá az átmeneti dipólja párhuzamos a molekula tengelyével, az MgH+

ezen szempontok mindegyikében különbözik: rendelkezik a molekula-
tengellyel párhuzamos permanens dipóllal és olyan átmeneti dipóllal is,
amely viszont merőleges a tengelyre.

A LICI-k magdinamikára gyakorolt hatásának első közvetlen bizonyí-
tékát a disszociációs fragmentumok szög szerinti eloszlásának tanulmá-
nyozása szolgáltatta azon vizsgálatokban, amikor mind a vibrációs ko-
ordináta (R), mind a molekula orientációját, forgását jellemző szög (θ)
dinamikai változóként voltak beépítve a Hamilton operátorba. Az, hogy a
LICI létrejöttére vonatkozó feltételek miképpen módosulnak PDM és me-
rőleges TDM esetében érdekes kérdések és várható, hogy a megváltozott
feltételek fizikai mérhető mennyiségekben is megmutatkoznak, elsősorban
olyanokban, amelyek információt hordoznak a molekula orientációjáról.

Célom az MgH+ magdinamikai szimulációjával az volt, hogy túllépve
a korábbról elérhető eredményeken, a TDM irányának dinamikára gya-
korolt hatását tárgyaljam. Ennek érdekében egy mesterséges (modell)
rendszert is szimuláltam, ami minden elektronszerkezeti tulajdonságában
megegyezik a valós MgH+-szal, kivéve a TDM-et, amelyet a molekula-
tengellyel párhuzamosként kezeltem.

1D és 2D számolásokat végeztem MCTDH használatával, mind a va-
lós, mind a model rendszer esetében. A kapott eredményeim jelentős elté-
réseket mutattak a disszociációs fragmentumok szögeloszlásában, ahogy
az várható volt. Ezek az eltérések a külső lézertér intenzitásának növe-
lésével nagyobbá válnak és a megfigyelés magyarázata a disszociációs di-
namika LICI-képben való értelmezésével, a tér által indukált adiabatikus
felületek között létrejövő LICI hatásával szemléletesen magyarázható.

Nyomon követve, hogy időben miképpen változik a magsűrűségfügg-
vény, a molekula konfigurációs terében nagysűrűségű tartományok for-
málódása figyelhető meg éppen azon pozíciók közelében, ahol a LICI
kialakulásának feltételei a kereszteződés létrejöttét jósolják. Ezek aztán
az általuk a rendszerbe bevitt erős nemadiabatikus hatások, ill. az adi-
abatikus felületek között a LICI közelében megnövekvő csatolás révén a
konfigurációs tér ezen tartományában rendkívül hatékony csatornaként
viselkednek a két felület közötti populációtranszfer szempontjából. Mind-
ez jelentősen befolyásolja, hogyan zajlik a disszociáció, ami a szögelosz-
lásra kapott 1D és 2D eredményeim összevetéséből meggyőzően látszik.

A valós és model rendszerek eredményei szintén jelentős különbsé-
gekről tanúskodnak, ami a TDM molekulatengelyhez képesti irányának
disszociációra gyakorolt hatását bizonyítja. A két rendszerben más és
más molekulaorientációk mellett megjelenő disszociációs csúcsok, az azok-
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ban megfigyelhető strukúrák mind számot tarthatnak kísérleti érdeklő-
désre.

A LiF molekula elektronszerkezetének szá-
molása és a maghullámfüggvény bezárása
A LiF molekulával történő számolások motivációját egy nemrégiben meg-
jelent elméleti munka szolgáltatta, amelyben a szerzők külső, permanen-
sen jelen lévő elektromos térrel (gerjesztő avagy driving field) a pum-
pa lézer által magasabb energiállapotba gerjesztett populáció hatékony
bezárását figyelték meg a gerjesztett állapotokban. Vizsgálataikban a
pumpa lézer által beindított dinamika során a LiF vibrációs alapállapo-
tából történik a gerjesztés a Σ2 gerjesztett állapotba, ahol az alkalma-
san választott gerjesztő tér által deformált potenciálok lehetővé teszik
viszonylag hosszú élettartammal populáció fenntartását a gerjesztett ál-
lapotban. A szerzők munkájukban különböző energiájú és intenzitású
gerjesztést is alkalmaztak és megvizsgálták ezen paraméterek hatását a
bezárás hatékonyságára nézve.

Fontos azonban megjegyezni, amire a szerzők is felhívták a figyelmet,
hogy eredményeik 1D számolásokra támaszkodnak, azaz a molekula for-
gását, orientációját nem kezelik szabad dinamikai változóként a szimulá-
ciókban. Izgalmas kérdés, hogy a disszociációs dinamika, illetve az ehhez
szorosan kapcsolódó bezárási hatékonyság, hogyan változik 2D számolá-
sok esetében. Másrészről, a szimulációkban minden esetben figyelembe
vett Σ2 állapot mellett a LiF rendelkezik egy, a Σ2-höz energetikailag kö-
zel eső Π1 elektronállapottal is. Annak során, hogy a megfelelő energiájú
pumpa tér gerjeszti a rendszert a Σ2 állapotba, a Π1 állapot is jelentős
mértékben gerjesztődik. Ez méginkább megalapozott feltételezés, ha a
Π1 hozzávételekor a Σ1 → Π1 átmenethez tartozó µΣ1Π1 TDM-et vizs-
gáljuk, az ugyanis abban a tartományban, ahol a gerjesztés történik,
összemérhető vagy meg is haladja a többi átmenetért felelős TDM-et.

A Π1 állapot azért lehet jelentős a disszociációs dinamikában és ezáltal
a gerjesztő tér által indukált bezárás hatékonyságának alakításában, mert
tisztán disszociatív állapot, így várhatóan az ezen állapotba gerjesztett
populáció gyorsan képes disszociálni.

A bezáródási hatékonyságot vizsgáló magdinamikai szimulációkat se-
gítve a LiF molekula elektronszerkezetének számolását végeztem, amiben
az alapvető hozzájárulásom rejlik ehhez a munkához. Ezek folyamán
MOLPRO segítségével számolásokat végeztem a későbbi dinamikai szi-
mulációkban figyelembe vett három elektronállapothoz (Σ1,Σ2,Π1) tar-
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tozó potenciális energiák, az ezekhez tartozó permanens dipólok és az
állapotok közti átmeneti dipólok meghatározására. Ezek jó egyezést mu-
tattak korábbi publikációkban fellelhető értékekkel.

A LiF molekula egyik legérdekesebb elektronszerkezeti tulajdonsága
egy elkerült kereszteződés (avoided crossing, AC) a Σ1 és Σ2 állapotok
között és az ezzel kapcsolatos erős nemadiabatikus csatolódás ezen két
állapot között az AC közelében. Ennek jelenléte a LiF molekula elekt-
ronszerkezetének beépített tulajdonsága, így nemadiabatikus dinamikai
folyamatok természetes forrása a rendszerben. Különösen érdekes, hogy
az AC hogyan hat kölcsön a 2D-s számolásokban kialakulni képes LICI-
vel és az általa indukált nemadiabatikus folyamatokkal.

A magdinamikai számolások eredményei a bezárási effektusra vonat-
kozóan egyértelműen azt mutatták, hogy a bezáródás veszít hatékony-
ságából, ha a molekula forgását is figyelembe vesszük, függetlenül attól,
hogy a Π1 állapot jelen van vagy sem. Másrészről, a kétállapot (csak
Σ állapotok) és háromállapot (Σ állapotok és a Π állapot) szimulációk
eredményei is jelentős eltéréseket mutatnak, bizonyítva, hogy a Π1 álla-
pot hatása a disszociációs folyamatokra nem elhanyagolható.
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