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Abstract

Protein C (PC) and protein S (PS) are vitamin K-dependent
glycoproteins that play an important role in the regulation of
blood coagulation as natural anticoagulants. PC is activated
by thrombin and the resulting activated PC (APC) inactivates
membrane-bound activated factor VIII and factor V. The free
form of PS is an important cofactor of APC. Deficiencies in
these proteins lead to an increased risk of venous thrombo-
embolism; a few reports have also associated these deficien-
cies with arterial diseases. The degree of risk and the preva-
lence of PC and PS deficiency among patients with throm-
bosis and in those in the general population have been exam-
ined by several population studies with conflicting results,
primarily due to methodological variability. The molecular
genetic background of PC and PS deficiencies is heteroge-
neous. Most of the mutations cause type I deficiency (quan-
titative disorder). Type II deficiency (dysfunctional mole-
cule) is diagnosed in approximately 5%–15% of cases. The
diagnosis of PC and PS deficiencies is challenging; func-
tional tests are influenced by several pre-analytical and ana-
lytical factors, and the diagnosis using molecular genetics
also has special difficulties. Large gene segment deletions
often remain undetected by DNA sequencing methods. The
presence of the PS pseudogene makes genetic diagnosis even
more complicated.
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Introduction

Venous thromboembolism (deep vein thrombosis and/or pul-
monary embolism, VTE) and its consequences occur with
high frequency Western societies. VTE is still a major cause
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of morbidity and mortality during pregnancy and stillbirth,
and occurs with a relatively high frequency in young women
using oral contraceptives. VTE can be recurrent and may also
lead to post-thrombotic syndrome, a chronic disease with dis-
abling pain and ulceration.

VTE is a typical example of common complex diseases;
both acquired (environmental) and genetic causes play an
important role in the development of the disease (1). Over
the last decades, several genetic risk factors for VTE have
been identified. Loss of function mutations in different com-
ponents of the natural anticoagulant system lead to anti-
thrombin III (ATIII), protein C (PC) and protein S (PS)
deficiencies, while gain of function mutations in the genes
of coagulation factors, such as Factor V Leiden (FVL) and
prothrombin 20210A allele are responsible for the majority
of inherited thrombophilia. The aim of this review is to give
an overview of the physiology of PC and PS, on the mole-
cular basis of their deficiencies and on the laboratory dia-
gnosis of these disorders including the difficulties and
challenges in this field.

The role of protein C-protein S system in the

regulation of coagulation

PC and PS play important roles in the regulation of blood
coagulation as natural anticoagulants (2, 3). PC is activated
by thrombin in the presence of thrombomodulin (TM). TM
is an endothelial cell surface protein, and upon binding,
thrombin becomes a potent activator of PC. Endothelial pro-
tein C receptor (EPCR) also is highly important in the acti-
vation process; EPCR binds PC through its Gla-domain and
presents it to the thrombin-TM complex. Thrombin cleaves
the activation peptide domain of PC at Arg169 resulting in
a 12-amino acid long activation peptide being released from
the N-terminal end of its heavy chain. Activated PC (APC)
inactivates membrane-bound active factor VIII (FVIIIa) and
factor V (FVa) by cleaving these factors specific arginine
residues. FVa is cleaved at Arg506, which is the preferred
cleavage site. However, full inactivation of FVa also requires
cleavage at Arg306. Cleavage at Arg679 seems unimportant
for inactivation of FVa. FVIIIa is cleaved at Arg336 and
Arg562. Non-activated forms of FVIII and FV are poor sub-
strates for APC. Esmon and co-workers showed that the
membrane phospholipid requirement for the anticoagulant
APC complex differs from that of the procoagulant com-
plexes (4). Phosphatidyl ethanolamine, instead of phospha-
tidyl serine, is required for the binding of the APC complex
to the membrane of endothelial cells. APC can also cleave
intact FV at Arg506, which makes FV a cofactor of APC in
inactivating FVIIIa. The main inhibitor of APC is protein C
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inhibitor, a single chain glycoprotein serine protease inhibitor
synthesized in the liver. The inhibitor forms a 1:1 complex
with APC and is cleaved at the reactive site (Arg354). APC
is also inhibited by a-1 antitrypsin.

In addition to its anticoagulant function, PC plays an
important role in cytoprotection, which has been partially
clarified in the last decade. The multiple cytoprotective
effects of APC is not the subject of this review, it has been
reviewed by Mosnier et al. (5).

The free form of PS (described later) is an important
cofactor of APC, enhancing its affinity to negative charged
phospholipid surfaces. PS is able to displace FXa from its
complex with FVa, allowing APC to cleave FVa at Arg506.
In the process of FVIIIa inactivation APC activity is syner-
gistically stimulated by PS and the non-activated form of FV,
while in the process of FVa inactivation, free PS is the only
cofactor of APC. PS also forms a complex with the comple-
ment 4b binding protein (C4bBP); this complex lacks APC
cofactor activity.

PS also has direct, APC-independent effects (6, 7). PS
binds to FVa present on phospholipid vesicles, and inhibits
prothrombinase activity by competing with prothrombin for
binding to FVa. Binding of PS to FXa has also been dem-
onstrated. APC-independent PS function does not seem to be
restricted to the free form; C4bBP-complexed PS has the
same activity. A direct interaction of PS with tissue factor
pathway inhibitor (TFPI) in the inhibition of FXa was
recently reported (8).

Protein and gene structure of protein C

PC is a vitamin K-dependent glycoprotein synthesized by the
liver as a single chain protein. It exists in the plasma as a
precursor of a serine protease at a concentration of 3–5
mg/L (9). Its half-life is short, approximately 8 h in the cir-
culation. The mature 62 kDa protein is composed of a heavy
(41 kDa) and a light (21 kDa) chain, these chains are held
together by a single disulfide bond between Cys141 and
Cys265. The domain structure of PC shows high similarity
to other vitamin K-dependent proteins. It has a pre-pro leader
sequence (numbered as –42 to –1 by the traditional num-
bering system, where the first methionine corresponds to
–42), which is required for g-carboxylation of glutamic acid
residues in the Gla-domain and for secretion. The mature
protein contains a Gla-domain (amino acids 1–37) with the
nine glutamic acid residues that are carboxylated during post-
translational maturation. A short amphipathic helix (amino
acids 38–45) connects the Gla-domain to the first epidermal
growth factor (EGF) domain (amino acids 46–91). The sec-
ond EGF domain (amino acids 92–136) is followed by
the activation peptide domain (amino acids 137–184). This
region contains the Lys156–Arg157 dipeptide that is released
upon maturation, and the cleavage site for thrombin activa-
tion (Arg169). The heavy chain of PC contains the activation
peptide and the catalytic domain (amino acids 185–419).

The gene for human PC (PROC) is located at the
2q13–q14 position and contains nine exons encoding for a

1.7-kb messenger RNA (mRNA) and eight introns (10, 11).
All the exon/intron boundaries follow the GT-AG rule. Exon
1 is a non-coding exon and a long intron separates it from
the initiator ATG codon; this phenomenon is unique among
the vitamin K dependent factors. The PROC contains two
Alu repeats in intron 5. The major transcriptional start site
is located 1515 base pairs upstream from the initiator ATG
codon. Two minor transcription start sites were also recog-
nized at –7 and q13 bp relative to the major start site. The
regulation of transcription was extensively studied. Cis-ele-
ments within PROC are the HNF-1, HNF-3 and Sp1 binding
sites. A strong silencer region and two liver specific enhancer
regions have also been described.

Protein and gene structure of protein S

PS is a vitamin K-dependent single-chain 71 kDa glycopro-
tein. It is synthesized primarily in the liver. However, sig-
nificant amount of PS are also produced by endothelial cells
and megakaryocytes (12). Its plasma concentration is
20–25 mg/L and PS circulates with a half-life of 42 h. Its
domain structure is different from other vitamin K dependent
proteins. The pre-pro leader sequence (numbered as –41 to
–1), the Gla-domain (amino acids 1–36) with 11 glutamic
acid residues and a short amphipathic helix (amino acids
37–46) also exists in other vitamin K dependent hemostatic
proteins. In addition PS contains unique domains, a thrombin
cleavage sensitive loop formed from 24 residues, four EGF
domains, and a huge sex hormone domain with the binding
site for the complement regulator C4bBP. About two third
of PS circulates in complex with C4bBP. In this complex,
PS is not a cofactor of APC (13).

The gene for human PS (PROS1) is located at position
3q11.2 and contains 15 exons producing a 3.5-kb messenger
RNA (mRNA) and 14 introns (10). All exon/intron bound-
aries follow the AG/GT rule. Exon 1 encodes for the first
part of the pre-pro leader sequence, exon 2 codes for the
second part of the leader sequence and the Gla-domain. Exon
3 encodes for the short hydrophobic region and exon 4 codes
for the thrombin sensitive region. Exons 5–8 encode for the
four EGF domains. Exons 9–15 code for the very large
C4bBP-binding (sex homone binding) domain. Six Alu
repeats are located within the PROS1 gene. In addition to
the active gene, a pseudogene of PS (PROS2) has also been
discovered. This inactive gene shows 97% homology to the
active gene, but lacks exon 1 and contains multiple base
changes. The presence of PROS2 makes the molecular gene-
tic diagnosis of hereditary PS deficiency a difficult task (see
later).

Protein C and S deficiencies: epidemiological

aspects and clinical symptoms

The first patient with PC deficiency was described by Griffin
et al. in 1981 (14). PS deficiency was first reported in 1984
by Comp and Esmon (15). Both cases were associated with
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recurrent venous thromboembolism. Since then, a large num-
ber of deficient patients have been identified and the under-
lying genetic defects have been clarified in a number of cases
(see later). Soon afterwards it was revealed that PC and PS
deficiencies are associated with increased thrombotic risk.
The degree of the risk and the prevalence of PC and PS
deficiencies among patients with thrombosis and in the gen-
eral population have been examined in several population
studies, with conflicting results (16–29).

The estimated prevalence of PC deficiency in the general
population is surprisingly high (0.4%) (18, 19). The preva-
lence of PS deficiency seems to be less, but data are uncer-
tain, which is due, at least in part, to difficulties in the
laboratory diagnosis. In a Scottish study, it was within
a range of 0.03%–0.13% (20), while PS deficiency was shown
to be more prevalent in a general Japanese population
(1%–2%) (21).

Among 163 randomly selected patients with lower extrem-
ity venous thrombosis (LEVT), 2%–4% of the patients suf-
fered from PC or PS deficiency (22). Interestingly in the
same study, when patients with confirmed cerebral venous
sinus thrombosis were examined (ns163), no PC deficiency
was found, while the prevalence of PS deficiency did not
differ significantly from that of the LEVT group. In an Ital-
ian cohort, the prevalence of PC and PS deficiency among
patients with first time VTE was found to be 4.7% and 3.7%,
respectively (23). PC or PS deficiency was diagnosed in 3%
and 2% of patients with proximal deep vein thrombosis,
respectively (ns920) (24).

According to the results of the Leiden Thrombophilia
Study, one of the first case-control studies on this topic, the
risk of first VTE in PC deficiency was 3-fold, while in PS
deficiency, no significant risk was demonstrated in unselect-
ed patients (25). In other studies, a 3–11-fold risk of VTE
was demonstrated in PC or PS deficiency. The results
depended on the selection of patients, including ethnicity,
study design, and the methods for determining PC and PS
activity and concentration. The annual incidence of recurrent
VTE were 6.0% for PC deficiency and 8.4% for PS defi-
ciency (23, 26). In the large prospective EPCOT study (Euro-
pean Prospective Cohort on Thrombophilia), the risk of first
VTE in asymptomatic relatives of patients with confirmed
thrombophilia was investigated (ns575). During the 5.7
years of follow-up, 4.5% of individuals developed VTE. The
annual incidence of VTE in PC (0.7%) and PS (0.8%) defi-
ciency was higher than in cases of FVL, and thrombosis
developed at a mean age of 40 (27). Putting the results of
all epidemiological studies together, one can conclude that
the risk of developing thrombosis among individuals with
genetic defect in PROC or PROS1 varies considerably in the
various studies that have been preformed. In addition to
methodological variability, this could be due to gene-gene or
gene-environment interactions, many of which have not yet
been discovered (30, 31).

Symptoms of PC or PS deficiencies are deep venous
thrombosis and/or pulmonary embolism in early adulthood,
which is often recurrent. Thrombosis might also develop at
unusual sites, such as the proximal extremities and in mesen-

terial and cerebral veins. Intracardial thrombus was reported
in a 2-year-old child having inherited PC deficiency (32),
and intracardial multichamber thrombi were identified in a
middle aged patient with combined PC and PS deficiency
(33). Pregnancy associated thrombosis has also been reported
and PS deficiency was also found in the background of late
fetal loss (34). In severe PC and PS deficiency when plasma
PC or PS concentrations are extremely low, severe throm-
bosis develops in newborns, frequently in disseminated form,
named purpura fulminans (35). Warfarin-induced skin necro-
sis is a severe complication of PC or PS deficient patients
receiving vitamin K antagonist treatment.

In addition to venous thrombosis, patients with PC or PS
deficiency can also suffer from thrombotic complications of
arterial origin (36). In addition to isolated case reports
(37–39), a large cohort of relatives of VTE patients with PC,
PS or ATIII deficiency (ns468) had a higher incidence of
arterial thrombosis compared to subjects who were not defi-
cient. The risk of arterial thrombosis was especially high in
individuals -55 years of age; adjusted hazard ratios for PC
and PS deficiencies were 6.9 (95% CI, 2.1–22.2) and 4.6
(95% CI, 1.1–18.3), respectively (40). In the ARIC cohort
which enrolled more than 13,000 patients with coronary
events or ischemic stroke, and had a follow-up time of
almost 17 years, low PC concentrations were associated with
the development of stroke (41). A Japanese study demon-
strated that patients with PC deficiency were 10 years young-
er at the onset of myocardial or cerebral infarction compared
with those without deficiency (16). A meta-analysis of stud-
ies involving children with arterial ischemic stroke calculated
an odds ratios of 8.46 for PC and 3.20 for PS deficiency
(42). These findings suggest the importance of screening for
inherited thrombophilia, primarily PC and PS deficiencies in
young patients with arterial thrombotic events, especially in
those without any other obvious risk factor.

Molecular genetic background of protein C and

S deficiency, genotype-phenotype correlations

Protein C deficiency

PC deficiency is classified as type I (quantitative) and type
II (qualitative) deficiency. In type I deficiency, PC activity
and the antigen concentration are decreased equally, sug-
gesting defective synthesis or secretion of the protein, while
in type II deficiency, the activity is decreased without a sig-
nificant decrease in antigen concentrations. The latter type
could be due to abnormalities in substrate, calcium-ion or
receptor binding. The inheritance of PC deficiency is not as
clear as was first thought. It may show an autosomal
recessive or dominant inheritance, often with incomplete
penetrance.

The majority of PC deficient patients are heterozygous for
the defect, with typical PC activity values between 30% and
65%. Homozygous or compound heterozygous patients often
have undetectable PC concentration and/or activity and
exhibit life-threatening thrombosis very early in life. The
molecular genetic background of PC deficiency is hetero-
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geneous. Most of the mutations cause type I deficiency, type
II deficiency is diagnosed in approximately 10%–15% of
cases. Summary reports of mutations leading to decreased
PC concentrations were first described in 1995 (43, 44). To
date, approximately 250 causative mutations have been pub-
lished, which are collected in different databases (http://
www.hgmd.cf.ac.uk and http://www.isth.org) (Figure 1). A
recently developed mutation database, ProCMD, is an inter-
active tool that contains phenotypic descriptions with func-
tional and structural data obtained by molecular modeling
(47).

Most of the mutations causing type I deficiency are single
nucleotide substitutions within the coding region of PROC,
leading to amino acid changes (approx. 70%). If performed,
molecular modeling studies, in almost all cases, suggested
misfolding and instability of the mutant proteins as a con-
sequence. In vitro expression studies were performed in
approximately one third of the cases only. Point mutations
introducing a stop codon were also reported (approx. 5%).
A smaller number of the point mutations (approx. 9% of all
mutations) were found at the exon/intron boundaries leading
to splicing defects. Most of the small deletions (approx. 8%)
or insertions (approx. 4%) introduced frameshifts, resulting
in a premature stop codon and truncated protein. Gross dele-
tions were identified in only 1% of cases. Although almost
all missense mutations result in an absolute block in secre-
tion, a few mutations allow the protein to be secreted. How-
ever, the rate of secretion is much lower when compared to
the wild type protein (48). In homozygous patients having
such mutations, PC concentrations are low, but higher than
1%.

Diagnosis of type II deficiency is based on the discrepancy
between the results of functional testing and antigen meas-
urements (see later for details). Missense mutations are the
most frequently reported types; the resulting amino acid
change involving the Gla-domain or the pro-peptide result in
defective calcium and phospholipid binding (49–57). Muta-
tions in the serine protease domain result in defective pro-
tease activity or decreased substrate binding (58–60).

Of interest there are mutations that are enriched in certain
populations, suggesting the presence of a founder effect. For
example, all Finnish type II protein C deficient cases show
a single mutation (p.W380G) (61). The p.R147W mutation
within PROC is common in Taiwanese Chinese patients with
VTE (62). Five frequent mutations account for almost 50%
of all PC deficiencies in patients from Japan (c.1268delG,
p.F139V, p.R211W, p.V339M and p.M406I) (63). A com-
mon ancestor was identified for probands with the p.R306X
mutation in the Dutch population (64). The c.3363insC muta-
tion was introduced by French settlers to North America
(65).

No mutation in the PROC is detectable in 10%–30% of
families with PC deficiency (66). This does not necessarily
mean that PROC lacks causative mutations in these cases.
The larger gene deletions may remain undetectable when
using the classical Sanger (i.e., chain termination) sequenc-
ing method for detection of mutations. There are known poly-
morphisms within the PROC gene which may affect meas-

ured PC activity or antigen concentrations (see later for
details). This may be regulated by loci other than PROC. As
part of the GAIT project, a genome-wide linkage study was
performed to localize genes influencing variations in PC
plasma concentrations. A region flanked by microsatellite
markers D16S3106 and D16S516 on chromosome 16
(16q22–23) with one candidate gene was identified as a
major quantitative trait locus influencing variation in PC
concentrations. This gene encodes a quinone reductase,
NADPH:menadione oxidoreductase 1 (NQO1), involved in
vitamin K metabolism. The association of this locus with
other vitamin K dependent factor concentrations was also
demonstrated, however, the linkage was not as strong as in
the case of PC (67).

Protein S deficiency

Initially three types of PS deficiency were distinguished
according to the results of the functional test, and free and
total PS antigen concentration measurements. In type I defi-
ciency, a low amount of activity, total and free PS antigen
concentrations can be found. In type II deficiency, only the
result of the functional test is abnormal, while in type III
deficiency, low PS activity is associated with low free PS
but normal total PS antigen concentrations. Based on exten-
sive family studies, it was suggested that type I and type III
deficiencies are phenotypic variants of the same genetic
alteration (68). The molecular background of this finding
was that C4BbP and PS could bind to each other with very
high affinity. Therefore, in the case of mild PS deficiency,
the complexed form of PS is not decreased (69). Later, genet-
ic differences between type I and type III PS deficiency was
demonstrated, and no linkage to the PROS1 locus was found
in most of the patients having type III deficiency. In families
having the PROS1 mutation, the phenotype more often
shows type I rather than type III deficiency. These findings
led to the conclusion that type I PS deficiency is a mono-
genic disease caused by PROS1 mutations, while type III PS
deficiency is more complex or heterogeneous disorder (70,
71).

The majority of protein S-deficient patients are heterozy-
gous for an inherited defect, and homozygous or compound
heterozygous deficiency can cause the same symptoms as in
the case of PC deficiency. The molecular genetic background
of PS deficiency is also heterogeneous (72). Most of the
mutations cause type I deficiency, type II deficiency is diag-
nosed in approximately 5% of cases. The mutations are listed
in the HGMD and in the ISTH databases (http://www.
hgmd.cf.ac.uk and http://www.isth.org) (Figure 2). Among
the 200 different mutations found to date, missense (approx.
53%) mutations are the most frequent. Approximately 20%
of the mutations are small deletions or insertions; non-sense
and splice-site mutations are present in approximately 14%
and 10% of the cases, respectively. Type II PS deficiency is
caused by missense mutations affecting the Gla-domain or
EGF4 domain (73). Gross deletions are more frequent than
in the case of PC deficiency, they comprise approximately
3% of all cases and are associated with quantitative PS defi-
ciency. However, it is very likely that the number of large
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Figure 1 Distribution of causative mutations published to date within the PROC gene according to the HGMD (www.hgmd.cf.ac.uk)
database.
Nucleotide numbering in exon 1 and nearby is given relative to the first nucleotide of the non-coding exon 1. Nucleotide numbering in the
coding region is given relative to the first nucleic acid of the initiator ATG codon. Amino acids are numbered according to the mature
protein, where the first methionine is numbered as –42. The literature also mentions two gross deletions: one includes the entire gene, the
other includes exons 1–9 (45, 46) (not shown in the Figure.).
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Figure 2 Distribution of causative mutations published to date within the PROS1 gene according to the HGMD (www.hgmd.cf.ac.uk)
database.
Nucleotide numbering is given relative to the first nucleic acid of the initiator ATG codon. Amino acids are numbered according to the
mature protein, where the first methionine is numbered –41.
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deletions in PROS1 is even higher, but often remains unde-
tected. In the PROSIT study, mutations in PROS1 were
found only in 70% of probands with PS deficiency (17).
However, using DNA sequencing methods, large deletions
or gene segment duplications may remain undetected (74,
75). Moreover, there are mutations affecting the transcription
regulatory sequences at the 5’ of the gene (76, 77). Most
recently, the first case of PS deficiency due to chromosome
translocation has been reported. The diagnosis was estab-
lished by painting fluorescence in situ hybridization (78).
Although a founder effect is not confirmed, it is to be noted
that PS Tokushima (p.K155E) shows a high prevalence in
the Japanese population.

Polymorphisms in the protein C and S gene

It has been reported that individuals with the homozy-
gous C/G/T haplotype at the nucleotide positions -1654
(rs1799808), -1641 (rs1799809), and -1476 (rs1799810) in
the promoter region of the PROC had lower plasma PC con-
centrations compared to individuals with the T/A/A homo-
zygous haplotype (79). The -1654/-1641 CC/GG genotype
was associated with a slightly increased risk of thrombosis
(OR, 1.39, 95% CI, 1.04–1.87) (80). In a large population-
based case-control study, individuals having this genotype
had the lowest plasma PC concentration, and the highest risk
for venous thrombosis (OR, 1.27, 95% CI, 1.09–1.48) com-
pared with individuals having the TT/AA genotype (81). In
contrast to these findings, variation at the PROC structural
locus did not influence plasma PC concentrations in the
GAIT project, but the chromosome region 16q22-23 was
found to be a major determinant (67). Polymorphisms in
genes involved in the vitamin K dependent g-carboxylation
of PC and PS may also be responsible for the inter-individual
variation in the plasma concentrations of these proteins in
the general population (82).

PS Heerlen (p.S460P) results in the loss of N-glycosyla-
tion at Asn458. The concentration of free PS in the plasma
of carriers was slightly lower than that of non-carriers and
was considered to be a type III PS deficiency. However, the
risk of thrombosis conferred by this mutation is a matter of
debate. PS Heerlen displayed reduced anticoagulant activity
as cofactor to APC in plasma based assays, as well as when
using a FVIIIa degradation system. In a purified system
using recombinant proteins, PS Heerlen was a good cofactor
of APC in the degradation of normal FVa, but became a poor
cofactor in the degradation of FVa carrying the Leiden muta-
tion (83). This suggested a synergistic contribution between
FV Leiden and PS Heerlen that increases the risk of throm-
bosis. However, this hypothesis was not confirmed by anoth-
er study. The cause of the decrease in free PS concentrations
associated with PS Heerlen has not been clarified, but most
likely is a consequence of increased clearance (84).

A transition of adenine to guanine transition at nt 2148
(p.P626P, silent) and an A to C substitution at nt 2698 have
been suggested to decrease PS concentration in healthy indi-
viduals (85). However, this finding was not confirmed in

another study (86). No decrease in the secretion of p.P626P
variant was demonstrated in an in vitro expression system;
this variant was not a risk factor for VTE and did not modify
the risk of patients with causative mutations (87).

Laboratory tests of protein C deficiency

Two different types of assays are available for the diagnosis
and classification of PC deficiency, functional tests and anti-
gen assays. For screening, a functional test should be per-
formed, and if the results are abnormal, the antigen assay
can distinguish between type I and type II deficiencies, with
concentrations of antigen being normal in the latter.

There are two different methods for determination of PC
activity (Figure 3A). In both assays, PC present in patient
plasma is activated by the venom of Agkistrodon contortrix,
now commercially available under the trade name Protac.
The advantage of Protac is its insensitivity to plasma protease
inhibitors. Also, it can be added directly to plasma. Protac
activated PC can be measured either using a chromogenic
assay or a clotting assay. In chromogenic assays, paranitro-
aniline (pNA) is cleaved-off from a small synthetic peptide
by APC. Peptide bound pNA does not absorb light at
405 nm, while the liberated chromogenic compound has an
intense color at this wavelength. The spectrophotometric
measurement can be either end-point or kinetic, with the lat-
ter being preferred. The higher the APC activity, the more
intense the increase in absorbance during the test.

The rationale of the clotting time based assays is the fact
that if APC degrades its natural substrates FVa and FVIIIa,
it leads to clotting time prolongation. Determination of clot-
ting time can be based on the prothrombin time, activated
thromboplastin time (APTT) or Russell viper venom time
(RVV), and there is a linear relationship between PC activity
and clotting time.

There are numerous advantages and disadvantages of both
functional assays (88) (Table 1). Clotting tests are influenced
by several pre-analytical or analytical variables. Despite pre-
dilution of the sample with PC deficient plasma, in the pres-
ence of lupus anticoagulant, heparin or direct thrombin (or
factor Xa) inhibitor which prolongs the clotting time, falsely
increased PC activity can be measured (89). Interference by
heparin (up to 1–2 U/mL) is eliminated by adding a heparin-
neutralizing substance, e.g., hexadimethrine bromide (poly-
brene) to the reagent. The interference caused by lupus
anticoagulant is more pronounced in tests using APTT as
activator (90). In the case of increased Factor VIII, the oppo-
site effect might be seen; shortening the clotting time
(APTT) will lead to falsely decreased PC activity (91). The
most important problem with the clotting method is the influ-
ence of the FV Leiden mutation. In patients having this
mutation, falsely low PC activity could be detected despite
pre-dilution of patient plasma with PC deficient plasma con-
taining wild type FV. If PC antigen concentrations are nor-
mal, antigen measurements are not influenced by the
mutation; such patients are easily misdiagnosed as having
type II PC deficiency (92, 93).
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Figure 3 Schematic presentations of protein C and protein S functional assays.
PC, protein C; PS, protein S; APC, activated protein C; R-pNA, chromogenic substrate containing oligopeptide (R) and p-nitroaniline (pNA);
DA, difference in absorbance.

Table 1 The most important difficulties in the diagnosis of protein C and protein S deficiency.

Analytical/methodical problems Protein C Protein S

Functional clotting assays
Lupus anticoagulant Overestimation
High heparin concentration Overestimation
Direct thrombin (or FXa) inhibitor Overestimation
High FVIII level (usually )250%) Underestimation
FV Leiden mutation Underestimation

Functional amidolytic assay
Presence of enzymes cleaving the Overestimation NA
chromogenic substrate
Mutations result in altered Normal result despite genetic defect NA
g-carboxylation, or phospholipid binding

Problems with molecular genetic diagnosis Large gene segment alterations are not diagnosed by the DNA sequencing method
NA Presence of the pseudogene

(PROSP) causes difficulties
Physiological conditions which influence
PC-PS levels

Pregnancy Significant elevation in the first 22 weeks of pregnancy Decreased
Oral anticoncipients, hormonal – Decreased
replacement therapy
Infants Levels are significantly lower than adult values at birth and infancy
Age – Increases with age
Gender – Lower in women

Acquired deficiency
Vitamin K antagonist therapy Decreased
Hepatic disease Decreased
Consumption (DIC, VTE) Decreased
Presence of autoantibodies (SLE, Decreased
varicella, malignancies, sepsis, HIV)

Chromogenic assays are not sensitive to high FVIII, lupus
anticoagulant or FV Leiden. They show lower inter-labora-
tory and intra-laboratory variation (94). There are two major
limitations in the chromogenic assays; the chromogenic pep-
tide substrates do not have exclusive specificity for APC and

may overestimate PC in the presence of other proteolytic
enzymes, such as plasmin, kallicrein, and thrombin which
also cleave the chromogenic substrate(s). The second prob-
lem is that chromogenic assays are insensitive to a certain
type of qualitative PC deficiency. When the mutation affects
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the Gla-domain or the propeptide, the functional clotting test
gives a low value for activity, while the amidolytic (chro-
mogenic) assay shows normal result. Mutations in the pro-
peptide affecting the g-carboxylation process, substitution of
a Gla residue, or mutations influencing phospholipid binding
decrease PC activity as measured using the clotting test,
while amidolytic activity remains unaltered (49–54). In gen-
eral, PC deficiency caused by mutations in the serine pro-
tease domain can be diagnosed using both clotting and
amidolytic assays. However, some mutations in this region
(p.R229Q and p.S252N) result in abnormalities that can only
be demonstrated with the clotting assay. It is estimated that
approximately 5% of patients with type II PC deficiency
have normal amidolytic activity, and the deficiency is detect-
able only by clotting assays.

Initially PC antigen was measured using electroimmuno-
assay. However, this assay is now considered obsolete and
no longer routinely used. Most laboratories perform com-
mercially available ELISA testing using pairs of monoclonal
or polyclonal antibodies against PC.

Laboratory tests of protein S deficiency

Three types of assays are available for the determination of
plasma PS: the functional PS activity assay, free and total PS
antigen determinations. The test for PS activity measures the
effect of PS as a cofactor on the degradation of FVa and
FVIIIa by APC. Such clotting tests are the function of free
PS concentrations; they are not influenced by PS in complex
with C4bBP (Figure 3B). Commercially available tests use
thromboplastin, APTT, RVV or FXa for initiation of coag-
ulation. APC is added to patient or control plasma that has
been pre-diluted with PS deficient plasma. Following this,
the clotting time test is performed. The effect of APC on
clotting time, i.e., the extent that the clotting time is pro-
longed, depends on the content of the cofactor PS in the
plasma to be investigated. PS activity assays have a number
of limitations (Table 1). First, in patients having FV Leiden
mutation, significantly lower PS activity is measured, the
results often overlap with the range for true PS deficiency.
Such situations may lead to an incorrect diagnosis of type II
PS deficiency (95). In the majority of assays, purified FVa
is added to the test. This step decreases somewhat the inter-
ference from FV Leiden, but does not eliminate the problem
completely. Different kits give highly variable results; they
have different cut-off values and most of them are very sen-
sitive to reagent handling. Pre-analytical variables are similar
to those described for PC activity measurements; high FVIII
may lead to underestimation, while the presence of lupus
anticoagulant may lead to overestimation of PS activity. Plas-
ma samples are sensitive to repeated freezing and thawing;
in vitro activation of FVII may shorten the clotting time in
assays using thromboplastin as activator, resulting in under-
estimation of PS activity.

Commercially available PS activity assays give the correct
diagnosis of PS deficiency in 97% of patients having PROS1
mutations (96). However, the specificity of the functional

tests is low due to the above-mentioned interfering factors
that might lead to inappropriate interpretations of test results,
resulting in a false-positive diagnosis. For this reason, some
authors do not recommend the use of PS activity assays for
diagnosis of PS deficiency, and instead favor free PS antigen
(see below) determinations (97, 98). However, by omitting
the functional assay, type II deficient patients would remain
undiagnosed. Therefore, it has been suggested that both
activity and free antigen assays be perfomed from the same
sample (99).

For the measurement of total PS concentrations, ELISA is
the most frequently used method. Measurement of free PS
antigen was originally performed from the supernatant fol-
lowing precipitation of C4bBP-bound PS by polyethylene
glycol. This method was time consuming and poorly repro-
ducible. Later, monoclonal antibodies against the C4bBP
binding domain of PS were produced and measurement of
free PS antigen became easier and faster using ELISA
assays. Further development led to the introduction of latex
enhanced immunoassays (LIA) which were easily adapted to
automated coagulometers (100). In the latest ECAT exercise,
77% of laboratories used a LIA method for free PS antigen
measurements. In addition to monoclonal antibodies specific
for free PS, a ligand binding assay has also been developed.
In this assay, C4bBP is used to capture free PS from the
plasma (101). Assays for the free form of PS are preferred
over total PS determinations since this has higher positive
predictive value for PS deficiency (68, 69). In the latest exer-
cise of the European Concerted Action on Thrombosis
(ECAT) thrombophilia testing program, only 89 laboratories
reported total PS antigen results and 225 laboratories per-
formed free PS antigen measurements.

Conditions affecting protein C and protein S

levels; acquired deficiencies

Adult reference intervals for PC and PS are wide, and there
may be overlap between values seen in healthy individuals
and deficient patients (102). In infants, both PC and PS con-
centrations are lower than adult values. In a healthy full term
infant, PC activity is 35% (17%–53%), PS activity is 36%
(24%–48%); these reach the lower limit of the adult refer-
ence interval by 1 year of age. The PC concentration may
remain below the adult reference interval until adolescence
(103–106). It should also be noted that PS concentrations
are influenced by age and gender; lower results are obtained
in women compared with men, and PS values increase with
age. PS concentrations may decrease markedly during preg-
nancy, to a mean level of 46%, and to a lesser extent in
individuals using oral contraceptives or on hormone replace-
ment therapy (107, 108). PS measurements in pregnant wom-
en can only be used as a test for exclusion, decreased PS
concentrations cannot be considered as being deficient. Dur-
ing the first 22 weeks of pregnancy, PC concentrations show
a significant increase. It has been postulated that this increase
may play a role in maintaining early pregnancy by regulating
both coagulation and inflammation (107).
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Treatment of patients with vitamin K antagonist (VKA)
therapy influences plasma PC and PS activity and antigen
concentrations. Activities of PC and PS are markedly
decreased and, depending on the assay, antigen may also be
lower. Using typical therapeutic doses of VKA, PC antigen
and activity decreases to approximately 50% and 25%,
respectively (109). Patients should not receive VKA therapy
for at least 10 days prior to testing, they should be switched
to low molecular weight heparin therapy until collecting the
sample for PC and PS measurements. As the half-life of PC
is much more shorter than that of PS, it decreases faster
following the initiation of VKA therapy and recovers more
rapidly following discontinuation. Abnormal g-carboxylation
due to vitamin K deficiency also results in decreased PC and
PS activity and antigen concentrations.

PC and PS deficiency can develop with DIC, severe infec-
tion, sepsis and acute excessive thrombosis due to consump-
tion (110, 111). Decreased synthesis of PC and PS can be a
consequence of liver disease or immaturity of the liver in
preterm infants. Autoimmune syndromes can also be asso-
ciated with acquired PC and PS deficiency due to the pres-
ence of autoantibodies. Postvaricella purpura fulminans is a
rare complication in children caused by acquired PC or PS
deficiency (112). PS deficiency has also been described in
patients with AIDS (113, 114). Therapy with L-asparaginase
may lead to decreased PC concentrations by decreasing its
synthesis in the liver. Patients having nephrotic syndrome
may also exhibit low PS concentrations.

Molecular genetic diagnosis of protein C and

protein S deficiencies

Since both PC and PS deficiencies may be acquired. Prior
to suggesting a genetic defect, all the possible acquired con-
ditions must be excluded. Equivocal cases require confirming
the presence of a true inherited deficiency using mutation
analysis. As multiple sites of mutation have already been
described in PROC and PROS1 genes, and since no so-called
hot spot could be identified within these genes, DNA
sequencing is the most reliable method for establishing a
genetic diagnosis.

The molecular genetic diagnosis of PS deficiency repre-
sents a particularly difficult situation. The presence of the
PS pseudogene makes the genetic diagnosis of PS deficiency
rather complicated; careful design of primers are required to
eliminate the amplification of pseudogene fragments. In a
high number of individuals with PS deficiency, no mutation
was found when using DNA sequencing. This discrepancy
is due to larger gene alterations that are not diagnosed by
this method (66, 75, 115). A recently developed and com-
mercially available method for demonstrating large gene
segment deletions or duplications is the multiplex ligation-
dependent probe amplification (MLPA) method. Re-analysis
of DNA samples from ‘‘mutation negative’’ PS deficient
patients using this method has revealed large deletions or
duplications in a number of cases (74). The presence of such

larger gene alterations should be confirmed by other meth-
ods, such as quantitative PCR or long PCR.

Concluding remarks

The diagnosis of PC and PS deficiency is not an easy task;
the functional tests are influenced by several pre-analytical
and analytical factors, and the molecular genetic diagnosis is
also challenging. In the case of PC, the use of the chromo-
genic or the clotting functional test as screening tests is a
matter of debate. A clinical guideline most recently issued
by UK-based medical experts recommends the chromogenic
PC assay as being the preferred test (116). In our experience,
only the use of both chromogenic and clotting tests could
cover the full range of PC deficiencies and reduce the pro-
blems arising from interfering conditions. In the diagnosis of
PS deficiency, if a PS activity assay is used for initial screen-
ing, low results should be further investigated using a immu-
noreactive assay for free PS. Acquired deficiencies should
be considered and looked for when establishing the diagno-
sis. In all cases, repeat testing is crucial for establishing the
diagnosis. If the results of functional and antigenic assays do
not confirm the diagnosis unequivocally, genetic testing is
indicated.
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