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The Michaelis-Menten mechanism is an extremely important tool for understanding enzyme-
catalyzed transformation of substrates into final products. In this work, a computationally viable, full
stochastic description of the Michaelis-Menten kinetic scheme is introduced based on a stochastic
equivalent of the steady-state assumption. The full solution derived is free of restrictions on amounts
of substance or parameter values and is used to create stochastic maps of the Michaelis-Menten
mechanism, which show the regions in the parameter space of the scheme where the use of the
stochastic kinetic approach is inevitable. The stochastic aspects of recently published examples of
single-enzyme kinetic studies are analyzed using these maps. © 2012 American Institute of Physics.
[doi:10.1063/1.3681942]

I. INTRODUCTION

Highly selective and extremely efficient enzyme cataly-
sis is in the heart of biochemical processes and provides the
molecular foundation of life itself. The small size and the high
variation in the types of proteins in a single cell, which is
usually considered a chemical reactor spatially distinct from
other cells (although not unconnected to them), necessarily
lead to the conclusion that at least some of the essential en-
zymes in it should be present in amounts that do not exceed
a few individual molecules. Therefore, describing chemical
reactions at very low amounts of substance (zeptomol or yoc-
tomol), which is seldom of significant interest for usual chem-
ical processes, is highly important in biochemistry. This point
is further strengthened by the fact that measuring enzyme ac-
tivity provides the foundation of numerous specialized diag-
nostic methods, which are highly desirable to be implemented
using the smallest possible amounts of human sample.

The Michaelis-Menten mechanism has been an ex-
tremely productive tool to interpret experimental findings in
enzyme kinetics ever since its postulation about a century
ago.1–5 The simplest form of the Michaelis-Menten mecha-
nism involves the reversible reaction of an enzyme (E) and
a substrate (S) to give an enzyme-substrate adduct (ES), and
the subsequent formation of the product (P) with simultane-
ous regeneration of the original enzyme,

E + S
k1
⇀↽
k−1

ES
k2→ E + P. (1)

In typical experiments, the substrate is used in large excess
over the enzyme, and it is also quite common that substrate
binding to the enzyme is orders of magnitude faster than prod-
uct formation. Consequently, only two parameters can usu-
ally be determined in the scheme given in Eq. (1): k2 and a
combination parameter KM = (k2 + k−1)/k1, which is called
Michaelis constant. The Michaelis-Menten equation, which
gives the rate of product formation, is normally given in the

a)Electronic mail: lenteg@delfin.unideb.hu. Fax: 36-52-518-660. Tel.: 36-
52-512-900 ext. 22373.

following form:

d[P]

dt
= k2[E]0[S]

KM + [S]
. (2)

Although enzyme action very often follows more complex
schemes, the Michaelis-Menten equation is often still useful
for interpreting such cases.3–5

With the advance of detection technology, it is now pos-
sible to study the activity of a single enzyme.6–13 For ex-
ample, the activity of a single cholesterol oxidase molecule
could be observed through fluorescent microscopy by detect-
ing the emission from the enzyme’s fluorescent active site,
flavin adenine dinucleotide.6 In addition to following single-
molecule events, these measurements also gave evidence of
slow fluctuations in protein conformation.6 Another work in-
vestigated individual β-galactosidase enzyme molecules and
concluded that the Michaelis-Menten equation, interpreted in
a microscopic fashion, still holds even for a fluctuating sin-
gle enzyme.11 A somewhat earlier article reported the de-
velopment of a method based on confocal fluorescence mi-
croscopy in order to study the catalytic activity of lipase en-
zyme molecules on a molecular level.10 Finally, the method
of alternating laser excitation fluorescence resonance energy
transfer was also employed to measure reaction rates in sys-
tems using the RNA-cleaving 8–17 deoxyribozyme enzyme
at the single-molecule level in real time.13

These experimental examples clearly demonstrate that
usual deterministic kinetics, which is the background of
Eq. (2), cannot be used for cases where the number of in-
volved particles is very low and consequently cannot be use-
ful for single-enzyme kinetics. This phenomenon has been
predicted theoretically and kinetic descriptions of systems
containing a single enzyme based on various stochastic ap-
proaches were published multiple times.14–27

Staff developed a stochastic model for the reversible
Michaelis-Menten mechanism with one substrate, one inter-
mediate, and one product focusing on the state of equilib-
rium and showed that fluctuations are small with large par-
ticle numbers.14 In a mathematically rather advanced but
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seldom cited paper, Arányi and Tóth15 gave a complete
stochastic description of the time evolution of individual
state probabilities with a single-enzyme molecule and an un-
restricted number of substrate molecules using generating
functions.15 They also pointed out that using the stochastic
mean in comparisons with experimental data could be a favor-
able practice. In a study of the action of a single horseradish
peroxidase enzyme molecule by fluorescence spectroscopy,
Edman et al.16 postulated a two-state dynamic model that
was based on deterministic equations but aimed at describ-
ing random fluctuations. In another stochastic analysis of the
single-molecule Michaelis-Menten system including both en-
zyme dynamics and substrate turnover, it was shown that the
system can exhibit oscillatory features in the non-equilibrium
steady state in certain regions of the parameter space.19 Rao
and Arkin20 applied the Gillespie algorithm28 for describing
enzyme kinetics at very low molecule numbers. They also
used the quasi-steady-state assumption in their model, which
will be discussed in more detail in Sec. II of the present
work. Basu and Mohanty23 widened the scope of stochas-
tic single-molecule Michaelis-Menten kinetics by including
two-dimensional diffusion effects. A Monte Carlo simula-
tion study of single enzyme and multi-enzyme systems took
the combined effect of stochastic noise and spatial diffusion
into account.26 The Michaelis-Menten approximation has also
been compared with the slow-scale stochastic simulation al-
gorithm and it was shown that the validity conditions of dis-
crete stochastic models at low particle numbers are similar to
the deterministic case.27 Several relevant reviews have also
been published focusing on various aspects such as single-
molecule enzymology in general,17 experimental results in
detection of single-molecule processes,18 stochastic models
of in vivo reactions,21 kinetic fluctuations in biochemically
relevant chemical processes,24 and irreversible processes cou-
pled with diffusion.25

Experimental evidence shows that the Michaelis-Menten
mechanism is useful for understanding single-enzyme
kinetics.5, 7, 10, 11, 27 A particularly popular method is based on
using the waiting time τ for product formation to occur, the
expectation of which is related to the parameters by an equa-
tion fully analogous to Eq. (2),

1

〈τ 〉 = k2[S]

KM + [S]
. (3)

Equation (3) is referred to as the single-molecule Michaelis-
Menten equation.12, 22

Recent advance in the stochastic modeling of absolute
asymmetric reactions shows that it is often possible to ob-
tain meaningful analytical solutions for systems exhibiting
moderate levels of complexity, and give reasonably com-
plete general mathematical descriptions of those chemical
schemes.29–31 This paper attempts to carry out a similar anal-
ysis for the Michaelis-Menten mechanism.

There are three main objectives of this work. The first
is to give an appropriate mathematical framework for a full
stochastic treatment of the Michaelis-Menten mechanism for
any number of species, which is more complete and more gen-
eral than previously published approaches. The second is to
explore those conditions in the parameter space of initial con-

centrations and rate constant values under which the use of the
stochastic approach is inevitable, an analysis that might be re-
ferred to as stochastic mapping. The third is to relate these
theoretical results to experimental data published earlier by
various groups and highlight the implications for experiment
design. Generally, mathematical results will only be stated in
the text, the proofs are deposited separately in the supplemen-
tary material.32

II. RESULTS AND DISCUSSION

A. Full stochastic description of the Michaelis-Menten
mechanism

The continuous time discrete state stochastic (CDS)
approach33 will be applied to the Michaelis-Menten mecha-
nism. This has already been done for the case of a single-
enzyme molecule and the solution has been obtained by using
the method of generating functions.15 The present work will
treat the more general case when the initial number of enzyme
molecules is e0, and the initial number of substrate molecules
is s0 in the kinetic scheme displayed as Eq. (1).

In contrast to the deterministic approach, which views
matter as a continuum, CDS deals with individual molecule
numbers.30, 33 A state of the system is identified by giving the
number of molecules present. For the present scheme, one can
give the actual number of free enzyme molecules (e) and the
number of uncomplexed substrate molecules (s) to identify
a given state. By mass conservation, the number of enzyme-
substrate adducts (es) will be es = e0 − e, and the number
of product molecules formed will be p = s0 − s − e0 + e.
The overall number of different possible states (m) is given as
follows:

m =
(
s0 − e0

2
+ 1

)
× (e0 + 1). (4)

This formula is given for the usual case of s0 ≥ e0. For s0 <

e0, a fully analogous formula obtained by exchanging s0 and
e0 could be used. This is true for all forthcoming discussions.
The established formalism of the CDS approach gives a dif-
ferential equation for Pe,s(t) functions, which give the proba-
bility that the system is exactly in state (e,s) at a given time
moment t. The relevant master equation for the scheme given
in Eq. (1), already stated with various simplifications in the
earlier literature,15, 20 takes the following form:

dPe,s(t)

dt
= −

[
k1

NAV
es + (k−1 + k2)(e0 − e)

]
Pe,s(t)

+ k1

NAV
(e + 1)(s + 1)Pe+1,s+1(t)

+ k−1(e0 − e + 1)Pe−1,s−1(t)

+ k2(e0 − e + 1)Pe−1,s(t). (5)

It should be noted that the CDS approach usually uses rate
constants that are different from the deterministic ones.30, 33

In this work, however, all rate constants are used with the
deterministic values for internal consistency (e.g., k1 has the
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units of M−1s−1), which explains the origins of the appear-
ance of volume (V) and the Avogadro constant (NA) in the
master equation. Equation (5) is a system of linear differential
equations, which can be solved exactly. For direct computa-

tions at relatively low particle numbers (m ≤ 104), the use of
an enumerating function30 is necessary, which gives a unique
integer number between 1 and m to every possible state. In
this case, a suitable enumerating function is

f (e, s) =

⎧⎪⎨
⎪⎩

(s0 − s − e0 + e + 1)(e0 + 1) − e if e ≤ s

(s0 − s − e0 + e + 1)(e0 + 1) − (e − s − 1)(e − s)

2
− e if e > s

. (6)

Using this enumerating function and a direct method (such as
matrix exponential functions), Eq. (5) can be solved for rela-
tively small values of m. The expectations and standard devi-
ations for the number of ES and P molecules have additional
significance and also give potential ways to relate the theoret-
ical calculations to experimental results.15 These values can
be calculated directly based on their definitions:

〈ES〉 (t) =
∑

all m states

(e0 − e)Pe,s(t), (7)

σES(t) =
√ ∑

all m states

[(e0 − e)2Pe,s(t)] − [〈ES〉 (t)]2, (8)

〈P〉 (t) =
∑

all m states

(s0 − s − e0 + e)Pe,s(t), (9)

σP (t) =
√ ∑

all m states

[(s0 − s − e0 + e)2Pe,s(t)] − [〈P〉 (t)]2.

(10)

B. Stochastic equivalent of pre-equilibrium
and steady-state approximations

In deterministic kinetics, the pre-equilibrium and steady-
state approximations are often used, mostly for intermediates.
Such is the case in the classic approach to Michaelis-Menten
kinetics as well, where the usual form displayed in Eq. (2) is
customarily derived from the scheme in Eq. (1) by using a
steady-state assumption for the enzyme-substrate adduct ES.
Mathematically, these approximations replace one of the dif-
ferential equations with a non-differential equation and give
the concentration of the intermediate as an explicit function of
other concentrations so that the time dependence remains only
implicit.34 When these approximations are useful, the primary
reason for the success is that the time resolution and the con-
centration sensitivity of the experiments are insufficient to
make a significant difference between the full and the ap-
proximation model. A stochastic equivalent of this approach
was developed in this work to enable calculations for larger
particle numbers. A somewhat similar simplified calculation
method using CDS stochastic kinetics was published in the
Michaelis-Menten mechanism by Rao and Arkin.20 However,

in this earlier work, the deterministic Michaelis-Menten equa-
tion (Eq. (2) here) was used to derive steady-state concentra-
tions of the enzyme-substrate adduct ES.20 This is an approx-
imation as the process involves a second-order reaction (the
formation of ES) and the stochastic expectations of variables
are by no means the same as deterministic concentrations.33

Another work focusing on quasi-steady-state model reduc-
tions in stochastic kinetics also used the Michaelis-Menten
kinetics as one of the examples.34 Here, singular perturbation
analysis was used to derive a reduced set of equations, which
is similar to the one used by Rao and Arkin20 in that it does
not rely on the stochastic particle distribution for the enzyme
substrate complex ES or the enzyme E. In contrast, the present
work uses a fully stochastic approach in this sense.

The deterministic pre-equilibrium and steady-state ap-
proximations decrease the number of concentrations whose
time dependence needs to be calculated (e.g., Eq. (2)
in the mentioned work about quasi-steady-state model
reductions34), whereas the stochastic equivalent reduces the
number of states whose probability needs to be calculated as
a function of time. This is done by assuming that the func-
tion Pe,s(t) can be obtained as a product of a time dependent
R function and an S value, which is characteristic of the state
but does not depend on time,

Pe,s(t) = Rs0−s+e−e0 (t)Se0−e,s0−s+e−e0 . (11)

In essence, this assumption states that the probability of the
formation of a given number of ES adducts can be obtained
simply from the initial number of enzyme molecules and un-
transformed product molecules without explicit inclusion of
time, which is essentially the same assumption made during
the usual deterministic derivation of the Michaelis-Menten
equation. With the new notation introduced by Eq. (11),
Eq. (5) is transformed into the following, more compact form:

dRp(t)

dt
= k2 〈ES〉p−1 Rp−1(t) − k2 〈ES〉p Rp(t). (12)

The new quantity 〈ES〉p is the steady-state expectation for the
number of ES molecules when there are p molecules of prod-
uct formed. By definition, it can be calculated as

〈ES〉p =
α∑

i=0

iSi,p, where α = min(e0, s0 − p). (13)
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Using statistical thermodynamics and partition functions, S
values can be calculated by the following formula:

Si,p =

(
e0

i

)
(s0−p)!

(s0−p−i)! (V NAKM)−i

∑α
i=0

(
e0

i

)
(s0−p)!

(s0−p−i)! (V NAKM)−i

. (14)

Furthermore, the expectation and the standard deviation are
analytically given as follows:

〈ES〉p =
∑α

i=1 i

(
e0

i

)
(s0−p)!

(s0−p−i)! (V NAKM)−i

∑α
i=0

(
e0

i

)
(s0−p)!

(s0−p−i)! (V NAKM)−i

= α
1F1( − α + 1, |e0 − s0 + p| + 1,−KMNAV )

1F1( − α, |e0 − s0 + p| + 1,−KMNAV )
,

(15)

σES,p =
√

〈ES〉p KM

V NA
− (e0 − 〈ES〉p )(s0 − p − 〈ES〉p ).

(16)
Equation (15) uses 1F1, the confluent hypergeometric func-
tion. It should be noted that Eqs. (15) and (16) basically give
the stochastic description of an equilibrium state of the reac-
tion E + S ⇀↽ ES with 1/KM as its equilibrium constant. This
solution (with some confusing typographical errors) has al-
ready been published in the earlier stochastic literature35 not
related to the Michaelis-Menten mechanism. It is also notable
that a similar line of thought was used in a recent, Monte
Carlo simulation study of the Soai reaction based on stochas-
tic kinetics.36

Solving Eq. (12) is much less computationally memory
intensive than solving the Eq. (5) and is possible for much
larger initial molecule numbers. The expectation and standard
deviation for the number of product molecules is given as

〈ES〉 (t) =
s0∑

i=0

〈ES〉i Ri(t), (17)

σES(t) =
√√√√ s0∑

i=0

[
(σ 2

ES,i + [ 〈ES〉i ]2)Ri(t)
] − [ 〈ES〉 (t)]2,

(18)

〈P 〉 (t) =
s0∑

i=0

iRi(t), (19)

σP(t) =
√√√√ s0∑

i=0

i2Ri(t) −
(

s0∑
i=0

iRi(t)

)2

. (20)

The stochastic steady-state approximation provides an excel-
lent approximation of the desired results. This is shown in
Fig. 1, where a comparison between the expectations and
standard deviation calculated by the full and steady-state
equations is given for a relatively small system, where both

FIG. 1. Comparison of expectations (〈〉) and standard deviations (σ ) ob-
tained for the enzyme-substrate adduct (ES) and the product (P) obtained
with the full solution and the stochastic steady-state approximation in the
Michaelis-Menten mechanism. Solid lines: full solution; markers: steady-
state approximation. k1/NAV = 100 s−1, k−1 = 100 s−1, k2 = 1 s−1, e0 = 10,
and s0 = 50.

calculations were viable. Figure S1 (supplementary material)
(Ref. 32) gives a similar comparison for a different parame-
ter set. The excellent agreement proves that the steady-state
method is useful. At this point, it should be noted that the
steady-state assumption is always associated with some loss
of information. In this special case, this loss refers to the pre-
diction of the number of ES molecules in some initial period
of the reaction (Fig. 1 for ES). This dead time can be esti-
mated parametrically by the following formula:

td = 1

k�

ln
20k�NAV + k1 〈ES〉0

k�NAV + k1 〈ES〉0

(21)

k� = k1
e0 + s0 − 2 〈ES〉0

NAV
+ k−1.

Figure S2 in the supplementary material32 gives a comparison
between values calculated by this formula and those obtained
from the full solutions of the system and shows an excellent
agreement. Events within this initial time are very often
inconsequential as they are below the limit provided by
the time resolution of experimental data. This aspect of the
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stochastic steady-state approximation bears some similarities
to fast variable elimination in stochastic kinetics.37

C. Stochastic maps of the Michaelis-Menten
mechanism

Stochastic mapping means exploring the parameter space
of a given kinetic scheme to decide in which region the use of
the stochastic kinetic approach is inevitable. Outside this re-
gion, the computationally much less intensive deterministic
approach can be used for a comparison with measured data.
Stochastic maps critically depend on the experimental prop-
erty followed during the course of reaction. The stochastic
region of a given scheme is the set of parameter values for
which the stochastic approach shows that the relative standard
error of the followed property is larger than a pre-set critical
value, which will be 1% in this work following the conven-
tion used in an earlier work concerned with the effect of par-
ity violation on the formation of biological chirality.38 The
cornerstone of this method is Kurtz’s theorem,39 which states
that the deterministic description of any system is obtained as
the limit of the stochastic description at infinite volume. From
this, it also follows that when the standard deviation of the
expectation based on the stochastic approach is small, then
this expectation is very close to the deterministic property.
In the present analysis, two important properties are selected,
the first is the number of product molecules formed, and the
second is the enzyme activity. These are exactly the ones for
which Eqs. (7)–(10) and (17)–(20) were stated.

The number of product molecules formed is usually an
important property in kinetic investigations. The expectation
of this quantity can be directly calculated from the approxi-
mation introduced here. The stochastic map of the Michaelis-
Menten mechanism based on product formation is shown in
Fig. 2 and includes different values of e0 (i.e., not only single-
molecule cases). The map has composite parameters on both
axes. The x axis shows k2t, in other words, the time in units
of 1/k2. The values of time t and rate constant k2 do not influ-
ence the stochastic map individually, only through their prod-
uct. The y axis shows the initial substrate concentration in KM

units. Two additional parameters influence the map. These are
e0, the initial number of enzyme molecules, and the overall
volume of the system (V). The effects of these parameters are
also shown in Fig. 2 by drawing several border lines. It was
clear from the calculations that there is a high-volume and a
low-volume limit on the map, which are also shown in the
graph. This may be surprising at first sight. However, the phe-
nomenon of volume dependence is well known from earlier
stochastic literature.30, 33, 39 In the map of Fig. 2, it is neces-
sary to show these limits because the description of the system
depends on the number of substrate molecules present and
not only the concentration. However, if the molecule number
were chosen as an independent variable, the volume depen-
dence would still remain and the map would lose one very
practical factor: the dimensionless nature of the y axis. It
should be kept in mind that the extreme case of s0 = 1 also
sets a lowest meaningful volume in the representation used in
Fig. 2, which is Vmin = 1/([S]0NA).

FIG. 2. Stochastic map of the Michaelis-Menten mechanism for the number
of product molecules formed. In addition to the quantities shown on the x and
y axes, the map depends on the initial number of enzyme molecules (e0) and
the overall volume (V) as well. Solid lines for boundaries are drawn for e0
= 1, dotted lines represent e0 = 100. Points A, B, and C are experimental
points from the literature (e0 = 1 for all of them). A: Ref. 11; B: Ref. 10;
C: Ref. 7.

Published experimental data from three earlier single-
enzyme kinetic studies are also shown on the map in Fig. 2.
These data were measured at the high-volume limit (i.e., rel-
atively large numbers of substrate molecules present). The
three sets of points clearly fall into the stochastic region,
which shows that only a stochastic evaluation of these experi-
ments is meaningful. In fact, a stochastic evaluation was used
in these earlier studies, but it was limited in scope. Unfortu-
nately, a deeper analysis of these data does not seem feasible
because, unsurprisingly, the published results are focused on
those for which a meaningful evaluation was also published.
It seems that the entire experimental design was devised keep-
ing the limited evaluation method in mind.

Enzyme activity is often of high importance in medical
applications. The expectation of this parameter can be sim-
ply calculated as the product of the expectation of enzyme-
substrate adduct molecules (〈ES〉(t = 0) = 〈ES〉0) and rate
constant k2,

ν = k2 〈ES〉0 . (22)

Figure 3 shows the stochastic map of the Michaelis-Menten
mechanism based on enzyme activity. This is somewhat sim-
pler than the map drawn based on the number of product
molecules. The variables in this stochastic map are NAV/KM

and s0 ( = [S]0NAV). The boundary between the deterministic
and stochastic regions is defined by a line, which is depen-
dent on the value of e0 and mostly relates to quantities on the
two axes in an inversely proportional manner. Another possi-
ble representation (KM − [S]0) of the same map is shown in
the lower graph of Fig. 3, although the concept of the small-
est meaningful volume should also be considered here. This
alternative representation is only drawn for the single-enzyme
case with some experimental data included. Again, the exper-
imental points are firmly in the stochastic region. For higher
number of enzyme molecules, the graph would be very simi-
lar with a somewhat shifted boundary.
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FIG. 3. Stochastic maps of the Michaelis-Menten mechanism for enzyme
activity. In addition to the quantities shown on the x and y axes, the map
depends on the initial number of enzyme molecules (e0) and several boundary
lines are shown for different values of e0. Points A, B, and C are experimental
points from the literature (e0 = 1 for all of them). A: Ref. 11; B: Ref. 10;
C: Ref. 7.

A paramount fact must be noticed from the two stochas-
tic maps presented. Even for single-enzyme kinetics, there
are certain conditions when some parameters can be success-
fully obtained from the deterministic model. Conversely, even
when the number of initial particles are quite large, certain
properties can only be correctly calculated with the stochastic
approach. It is also highly important to notice that the maps
depend on the overall volume. This may be counterintuitive at
first sight, but it is a well-established characteristic of stochas-
tic kinetics.29, 39 It should also be noted that the mathematical
approach here does not assume any limitations on the num-
ber of enzyme or substrate molecules initially present. All
stochastic maps given in Figs. 2 and 3 are drawn for sev-
eral different e0 values so that the effects of increasing ini-
tial numbers of enzyme molecules can be seen easily. Gen-
erally speaking, the boundary between the deterministic and
stochastic region shifts toward higher values of KM as e0 in-
creases. This means that more enzyme molecules are needed
in a system to be in the deterministic region when the enzyme
binds the substrate less strongly. However, the actual relation-
ships describing the boundaries are usually complex and it is

much better to consult the map with several different e0 values
than to rely on a simple evaluation of tendencies.

Most of the earlier experimental data were evaluated
solely based on the τ waiting times.11, 22 The expectation for
this quantity is shown in Eq. (3) for e0 = 1. The analogy of
this formula with deterministic Eq. (2) is rather tempting and
one might think that it could be completed by simply mul-
tiplying with e0 for a general case (e0 > 1). However, this
is mathematically incorrect. It can be shown that for more
than one enzyme molecule, the correct expression is given as
follows:

〈τ 〉 = 1

k2 〈ES〉0
. (23)

As expected, this equation is converted into Eq. (3) for e0

= 1 as the equations 〈ES〉0 = s0/(NAVKM)/[1 + s0 /(NAVKM)]
and [S]0 = s0/(NAV) hold. For e0 > 1, this formula cannot be
simplified in an analogous manner.

The stochastic description given in this paper is full, i.e.,
any experimentally measured property can be derived based
on it. Therefore, the experimental design of forthcoming work
on kinetics with small numbers of molecules need and must
not be limited to a narrow selection of parameters.

III. CONCLUSION

It has been conclusively shown that the stochastic ana-
log of the steady-state approximation developed in this work
is suitable for giving a full stochastic description of the
Michaelis-Menten mechanism. Stochastic maps can be cre-
ated based on this description in order to differentiate the
cases when using the stochastic description is inevitable from
the ones the mathematically less demanding deterministic so-
lution can be justifiably used. In this differentiation, the vol-
ume of the reactor plays an important role, which should be
kept in mind when modeling chemical processes in extremely
small volumes such as individual cells. The necessity to use
the stochastic approach to chemical kinetics is not limited to
studies on single enzymes, it could arise in multi-enzyme sys-
tems as well depending on other system parameters.
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