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Addition theorems for the Appell polynomials
and the associated classes of polynomial expansions

Á. Pintér and H. M. Srivastava

Abstract. Various interesting and potentially useful properties and relationships involving the
Bernoulli, Euler and Genocchi polynomials have been investigated in the literature rather
extensively. Recently, the present authors (Srivastava and Pinter in Appl Math Lett 17:375–
380, 2004) obtained addition theorems and other relationships involving the generalized

Bernoulli polynomials B
(α)
n (x) and the generalized Euler polynomials E

(α)
n (x) of order α

and degree n in x. The main purpose of this sequel to some of the aforecited investigations
is to give several addition formulas for a general class of Appell sequences. The addition
formulas, which are derived in this paper, involve not only the generalized Bernoulli poly-

nomials B
(α)
n (x) and the generalized Euler polynomials E

(α)
n (x), but also the generalized

Genocchi polynomials G
(α)
n (x), the Srivastava polynomials SN

n (x), several general families
of hypergeometric polynomials and such orthogonal polynomials as the Jacobi, Laguerre and
Hermite polynomials. Some umbral-calculus generalizations of the addition formulas are also
investigated.
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1. Introduction, definitions and preliminaries

Throughout this paper, we use the following standard notations:

N := {1, 2, 3, . . .}, N0 := {0, 1, 2, 3, . . .} = N ∪ {0}
and

Z
− := {−1,−2,−3, . . .} = Z

−
0 \{0}.
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Also, as usual, Z denotes the set of integers, R denotes the set of real numbers
and C denotes the set of complex numbers.

The classical Bernoulli polynomials Bn (x), the classical Euler polynomi-
als En (x) and the classical Genocchi polynomials Gn (x), together with their
familiar generalizations B

(α)
n (x), E

(α)
n (x) and G

(α)
n (x) of (real or complex)

order α, are usually defined by means of the following generating functions
(see, for details, [5, Vol. III, p. 253 et seq.], [10, Section 2.8] and [15, p. 61 et
seq.]; see also [16, p. 81 et seq.] and [18] and the references cited therein):

(
t

et − 1

)α

· ext =
∞∑

n=0

B(α)
n (x)

tn

n!
(|t| < 2π; 1α := 1) , (1)

(
2

et + 1

)α

· ext =
∞∑

n=0

E(α)
n (x)

tn

n!
(|t| < π; 1α := 1) (2)

and
(

2t

et + 1

)α

· ext =
∞∑

n=0

G(α)
n (x)

tn

n!
(|t| < π; 1α := 1) , (3)

so that, obviously, the classical Bernoulli polynomials Bn(x), the classical Euler
polynomials En(x) and the classical Genocchi polynomials Gn(x) are given,
respectively, by

Bn (x) := B(1)
n (x) , En (x) := E(1)

n (x) and Gn (x) := G(1)
n (x)

(n ∈ N0) . (4)

For the classical Bernoulli numbers Bn, the classical Euler numbers En and
the classical Genocchi numbers Gn of order n, we have

Bn := Bn (0) = B(1)
n (0) , En := En (0) = E(1)

n (0)

and Gn := Gn (0) = G(1)
n (0) (n ∈ N0) , (5)

respectively.
Various interesting and potentially useful properties and relationships

involving the Bernoulli, Euler and Genocchi polynomials have been investi-
gated in the literature rather extensively (see, in addition to the aforecited
references, [1], [5, Vol. I, p. 35 et seq.] and [11]; see also [6,8,9] and the
references cited therein). Recently, Chen et al. [4] presented several general
classes of multiplication formulas and polynomial expansions in series of the
Bernoulli and Euler polynomials for the Srivastava polynomials SN

n (x) which
are defined, in terms of a suitably bounded double sequence {Am,n}m,n∈N0

of essentially arbitrary (real or complex) parameters, by (cf. [14]; see also
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[7, p. 145, Equation (3.1) with m = 0])

SN
n (x) :=

[n/N ]∑
k=0

(−n)Nk

k!
An,k xk (n ∈ N0; N ∈ N) , (6)

where, as usual, [κ] denotes the largest integer in κ ∈ R and (λ)ν denotes the
Pochhammer symbol or the shifted factorial, since

(1)n = n! (n ∈ N0),

which is defined (for λ, ν ∈ C), in terms of the familiar Gamma function, by

(λ)ν :=
Γ(λ + ν)

Γ(λ)
=

⎧⎨
⎩

1 (ν = 0; λ ∈ C\{0})

λ(λ + 1) · · · (λ + n − 1) (ν = n ∈ N; λ ∈ C),

it being understood conventionally that (0)0 := 1. For example, Chen et al. [4]
derived the following multiplication formulas and applied each of their results
to hypergeometric polynomials as well as many classical orthogonal polyno-
mials including (for example) the Jacobi, Laguerre and Hermite polynomials
[4, p. 137, Equation (2.5); p. 140, Equation (2.24)]:

SN
n (ωx) =

[n/N ]∑
k=0

(−1)Nk

(
n

Nk

)
(Nk)!

k!

·
⎛
⎝[(n−Nk)/N ]∑

j=0

(−n + Nk)Nj

(j + 1)!
An,j+k ωj+k

⎞
⎠Bk (x)

(n ∈ N0; N ∈ N) (7)

and

SN
n (ωx) =

1
2

[n/N ]∑
k=0

(−1)Nk

(
n

Nk

)
(Nk)!

k!

·
⎛
⎝An,k +

[(n−Nk)/N ]∑
j=0

(−n + Nk)Nj

j!
An,j+k ωj

⎞
⎠ωk Ek (x)

(n ∈ N0; N ∈ N) . (8)

More recently, the present authors [18] obtained addition theorems and other
relationships involving the generalized Bernoulli polynomials B

(α)
n (x) and the

generalized Euler polynomials E
(α)
n (x). The purpose of this sequel to some of

the aforecited investigations is to give several addition formulas for a general
class of Appell sequences.
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Definition 1 (see [3]; see also [12, p. 145, Exercise 2] and [17, p. 398, Problem
28].) A polynomial sequence {fn(x)}n∈N0 is said to be an Appell sequence if

d

dx
{f0(x)} = 0 and

d

dx
{fn(x)} = nfn−1(x) (n ∈ N) (9)

or, equivalently, if

f(t) · ext =
∞∑

n=0

fn(x)
tn

n!
(
f(0) �= 0

)
. (10)

Some obvious examples for Appell sequences are the trivial monomials
{xn}n∈N0 as well as the generalized Bernoulli polynomials B

(α)
n (x) and the

generalized Euler polynomials E
(α)
n (x) which are defined by their exponential

generating functions (1) and (2) by choosing

f(t) =
(

t

et − 1

)α

and f(t) =
(

2
et + 1

)α

,

respectively, in the defining generating function (10) above. Other examples
of Appell sequences are the monic Hermite polynomials {2−nHn(x)}n∈N0

and

the modified Laguerre polynomials {(−1)n n!L(α−n)
n (x)}n∈N0 for which (see,

for details [17, Section 1.11])

f(t) = exp
(

− t2

4

)
and f(t) = (1 − t)α, (11)

respectively, in the defining generating function (10) above.

Remark 1. Other definitions and notations for Appell sequences can be found
in the existing literature (see, for example [2]).

In our present investigation, we shall also need the Stirling numbers S(n, k)
of the second kind defined by means of the following expansion (see [15, p. 58
et seq.]):

xn =
n∑

k=0

(
x

k

)
k! S(n, k) (12)

or, equivalently, by the following generating functions:

(et − 1)k = k!
∞∑

n=k

S(n, k)
tn

n!
, (13)

and

(1 − t)−1 (1 − 2t)−1 · · · (1 − kt)−1 =
∞∑

n=k

S(n, k) tn−k
(|t| < k−1

)
, (14)
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where S(n, k) denotes the number of ways of partitioning a set of n elements
into k non-empty subsets, so that

S (n, 0) = δn,0, S (n, 1) = S (n, n) = 1 and S (n, n − 1) =
(

n

2

)
, (15)

δn,k being the Kronecker symbol.

2. The first set of addition formulas

With a view to use it in deriving our first set of addition formulas for the App-
ell polynomials {fn(x)}n∈N0 given by (9) and (10), we present the following
lemma.

Lemma 1. Each of the following expansion formulas holds true:

xn =
n∑

k=0

n!
k! (n − k + 1)!

Bk (x) , (16)

xn =
1
2

[
En (x) +

n∑
k=0

(
n

k

)
Ek (x)

]
(17)

and

xn =
1

2(n + 1)

[
Gn+1 (x) +

n∑
k=0

(
n + 1
k + 1

)
Gk+1 (x)

]
. (18)

Proof. The expansion formulas (16) and (17) are well known (see, for example,
[18, p. 378, Equations (27) and (29)]). In order to demonstrate the assertion
(18) of Lemma 1, we easily find from the generating function (3) that

G(α+β)
n (x + y) =

∞∑
k=0

(
n

k

)
G

(α)
k (x)G(β)

n−k(y), (19)

which, in the special case when y = 1 and β = 0, yields

G(α+β)
n (x + 1) =

∞∑
k=0

(
n

k

)
G

(α)
k (x). (20)

Moreover, it readily follows from the generating function (3) (with α = 1) that

Gn+1(x + 1) + Gn+1(x) = 2(n + 1)xn (n ∈ N0). (21)

Thus, upon combining (20) and (21), we are led to the assertion (18) of
Lemma 1.

Alternatively, since (see, for example, [9, p. 5707, Lemma 1])

G(�)
n (x) =

n!
(n − 
)!

E
(�)
n−� (x) =

(
n




)

! E

(�)
n−� (x)

(n, 
 ∈ N0; 0 � 
 � n) (22)
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or, equivalently,

E(�)
n (x) =

n!
(n + 
)!

G
(�)
n+� (x) =

1

!

(
n + 





)−1

G
(�)
n+� (x) (n, 
 ∈ N0) , (23)

so that, obviously,

En(x) =
1

n + 1
Gn+1(x) and Gn(x) = nEn−1(x), (24)

the assertion (18) of Lemma 1 involving the Genocchi polynomials Gn(x) can
be deduced from the assertion (17) of Lemma 1 involving the Euler polynomials
En(x). �

Remark 2. Making use of the expansion formula (18) or (alternatively) by
means of the first relationship in (24), we get the following companion of
the multiplication formulas (7) and (8) for the Srivastava polynomials SN

n (x)
defined by (6):

SN
n (ωx) =

1
2

[n/N ]∑
k=0

(−1)Nk

(
n

Nk

)
(Nk)!

(k + 1)!

·
⎛
⎝An,k +

[(n−Nk)/N ]∑
j=0

(−n + Nk)Nj

j!
An,j+k ωj

⎞
⎠ωk Gk+1 (x)

(n ∈ N0; N ∈ N) . (25)

involving the Genocchi polynomials Gn(x).

We choose to first state our addition formulas in terms of the one-parameter
Appell sequence {f

(α)
n (x)} (α ∈ C) generated by

(
f(t)

)α · ext =
∞∑

n=0

f (α)
n (x)

tn

n!
(
f(0) �= 0; 1α := 1

)
, (26)

so that, by comparing with the generating function (10), we have

f (1)
n (x) = fn(x) (n ∈ N0).

Obviously, the generating function (26) is much more in line with the gener-
ating functions (1) and (2) for the Bernoulli and Euler polynomials of (real or
complex) order α. In fact, the one-parameter Appell sequence {f

(α)
n (x)} (α ∈

C) can easily and precisely be identified with the generalized Bernoulli poly-
nomials B

(α)
n (x), the generalized Euler polynomials E

(α)
n (x) and the modified

Laguerre polynomials (−1)n n!L(α)
n (x) for which

f(t) =
t

et − 1
, f(t) =

2
et + 1

and f(t) = (1 − t) ,

respectively.
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Theorem 1. Let {f
(α)
n (x)}n∈N0 be a one-parameter sequence of Appell polyno-

mials. generated by (26). Then each of the following addition formulas holds
true:

f (α)
n (x + y) =

n∑
k=0

⎡
⎣ n∑

j=k

1
j + 1

(
n

j

)(
j + 1

k

)
f

(α)
n−j(y)

⎤
⎦Bk(x), (27)

f (α)
n (x + y) =

1
2

n∑
k=0

⎡
⎣
(

n

k

)
fn−k(y) +

n∑
j=k

(
n

j

)(
j

k

)
f

(α)
n−j(y)

⎤
⎦Ek(x), (28)

f (α)
n (x + y) =

1
2

n∑
k=0

1
k + 1

⎡
⎣
(

n

k

)
f

(α)
n−k(y) +

n∑
j=k

(
n

j

)(
j

k

)
f

(α)
n−j(y)

⎤
⎦

·Gk+1(x) (29)

and

f (α)
n (x + y) =

n∑
k=0

k!

⎡
⎣ n∑

j=k

(
n

j

)
S(j, k)f (α)

n−j(y)

⎤
⎦
(

x

k

)
. (30)

Proof. For the one-parameter Appell sequence {f
(α)
n (x)}n∈N0 generated by

(26), it is easily observed that

f (α+β)
n (x + y) =

n∑
k=0

(
n

k

)
f

(α)
k (x)f (β)

n−k(y), (31)

so that, since

f (0)
n (x) = xn (n ∈ N0)

we have

f (α)
n (x + y) =

n∑
k=0

(
n

k

)
f

(α)
n−k(y)xk. (32)

Now, upon replacing the factor xk in (31) by its expansion given by the asser-
tion (16) of Lemma 1, if we interchange the order of the resulting double sum,
we arrive at the assertion (27) of Theorem 1.

The assertions (28) and (29) of Theorem 1 can be proven similarly by using
the expansion formulas (17) and (18) in (32). Of course, in view of the relation-
ships stated in (24), the assertions (28) and (29) of Theorem 1 are essentially
equivalent.

The last assertion (30) of Theorem 1 is a similar consequence of (32) and
the definition (12) of Stirling numbers of the second kind. �

Upon setting α = 1, Theorem 1 yields the following corollary.
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Corollary 1. Let {fn(x)}n∈N0 be an arbitrary sequence of Appell polynomials.
Then each of the following addition formulas holds true:

fn(x + y) =
n∑

k=0

⎡
⎣ n∑

j=k

1
j + 1

(
n

j

)(
j + 1

k

)
fn−j(y)

⎤
⎦Bk(x), (33)

fn(x + y) =
1
2

n∑
k=0

⎡
⎣
(

n

k

)
fn−k(y) +

n∑
j=k

(
n

j

)(
j

k

)
fn−j(y)

⎤
⎦Ek(x), (34)

fn(x + y) =
1
2

n∑
k=0

1
k + 1

⎡
⎣
(

n

k

)
fn−k(y) +

n∑
j=k

(
n

j

)(
j

k

)
fn−j(y)

⎤
⎦

·Gk+1(x) (35)

and

fn(x + y) =
n∑

k=0

k!

⎡
⎣ n∑

j=k

(
n

j

)
S(j, k)fn−j(y)

⎤
⎦
(

x

k

)
. (36)

If, in Theorem 1, we set α = 1 and x = 0, we are led immediately to
the following corollary involving the Bernoulli, Euler and Genocchi numbers
defined by (5).

Corollary 2. Let {fn(x)}n∈N0 be an arbitrary sequence of Appell polynomials.
Then each of the following addition formulas holds true:

fn(x) =
n∑

k=0

⎡
⎣ n∑

j=k

1
j + 1

(
n

j

)(
j + 1

k

)
fn−j(x)

⎤
⎦Bk, (37)

fn(x) =
1
2

n∑
k=0

⎡
⎣
(

n

k

)
fn−k(x) +

n∑
j=k

(
n

j

)(
j

k

)
fn−j(x)

⎤
⎦Ek (38)

and

fn(x) =
1
2

n∑
k=0

1
k + 1

⎡
⎣
(

n

k

)
fn−k(x) +

n∑
j=k

(
n

j

)(
j

k

)
fn−j(x)

⎤
⎦Gk+1. (39)

3. Addition formulas involving hypergeometric polynomials

For two general families of hypergeometric polynomials, Chen et al. [4]
derived the following expansion formulas (see, for details [4, p. 149, Equations
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(3.39) and (3.40)]):

xn =
n!

(Nn)!

(∏q
j=1 (βj)n

∏r
j=1 (γj)Nn∏p

j=1 (αj)n

∏s
j=1 (δj)Nn

)
Nn∑
k=0

(−1)k

(
Nn

k

)
λ + 2k

(λ + k)Nn+1

· p+N(s+2)Fq+Nr

⎡
⎣Δ (N ; −k) , Δ (N ; λ + k) , (αp) , Δ [N ; (δs)] ;

(βq) , Δ [N ; (γr)] ;
xN (s−r+2)N

⎤
⎦

(40)

and

xn =
n!

(Nn)!

(∏q
j=1 (βj)n

∏r
j=1 (γj)Nn∏p

j=1 (αj)n

∏s
j=1 (δj)Nn

)
Nn∑
k=0

(−1)k

(
Nn

k

)

· p+N(s+1)Fq+Nr

⎡
⎣Δ(N ;−k) , (αp) ,Δ[N ; (δs)] ;

(βq) ,Δ[N ; (γr)] ;
xN (s−r+1)N

⎤
⎦ , (41)

where, for convenience, we use such contracted notations as (for example) (αp)
for the array of p parameters

α1, . . . , αp,

Δ(N ;λ) for the array of N parameters

λ

N
,
λ + 1

N
, . . . ,

λ + N − 1
N

(N ∈ N) ,

Δ[N ; (αp)] for the array of Np parameters

αj

N
,
αj + 1

N
, . . . ,

αj + N − 1
N

(j = 1, . . . , p; N ∈ N) ,

and so on, an empty product being interpreted (as usual) to be 1.
By applying the expansion formulas (40) and (41) in conjunction with (32),

it is not difficult to prove Theorem 2 below.

Theorem 2. Let {f
(μ)
n (x)}n∈N0 be a one-parameter sequence of Appell polyno-

mials generated by (26) with the parameter α replaced by μ. Then each of the
following addition formulas holds true for N ∈ N:
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f (μ)
n (x + y) =

Nn∑
k=0

(−1)k
n∑

j=[k/N ]

j!
(Nj)!

(
n

j

)(
Nj

k

)

· λ+2k

(λ + k)Nj+1

(∏q
l=1 (βl)j

∏r
l=1 (γl)Nj∏p

l=1 (αl)j

∏s
l=1 (δl)Nj

)
f

(μ)
n−j(y) · p+N(s+2)Fq+Nr

×
⎡
⎣Δ(N ;−k) ,Δ(N ;λ + k) , (αp) ,Δ[N ; (δs)] ;

(βq) ,Δ[N ; (γr)] ;
xN (s−r+2)N

⎤
⎦ (42)

and

f (μ)
n (x + y)

=
Nn∑
k=0

(−1)k
n∑

j=[k/N ]

j!
(Nj)!

(
n

j

)(
Nj

k

)(∏q
l=1 (βl)j

∏r
l=1 (γl)Nj∏p

l=1 (αl)j

∏s
l=1 (δl)Nj

)
f

(μ)
n−j(y)

· p+N(s+1)Fq+Nr

⎡
⎣Δ(N ;−k) , (αp) ,Δ[N ; (δs)] ;

(βq) ,Δ[N ; (γr)] ;
xN (s−r+1)N

⎤
⎦ . (43)

Remark 3. Corollary 3 below, which involves such classical orthogonal polyno-
mials as the Jacobi polynomials P

(α,β)
n (x), the Laguerre polynomials L

(α)
n (x)

and the Hermite polynomials Hn(x), can be deduced by suitably specializing
Theorem 2 or (alternatively) by directly applying (32) in conjunction with the
following known polynomial expansions [12, p. 262, Equation 136 (2); p. 207,
Equation 118 (2); p. 194, Equation 110 (5)]:

xn = n!
n∑

k=0

(−1)k

(
n + α

n − k

)
α + β + 2k + 1

(α + β + k + 1)n+1

P
(α,β)
k (1 − 2x) , (44)

xn = n!
n∑

k=0

(−1)k

(
n + α

n − k

)
L

(α)
k (x) (45)

and

(2x)n =
[n/2]∑
k=0

(
n

2k

)
(2k)!
k!

Hn−2k (x) . (46)

However, in the case of the derivation of the assertion (49) of Corollary 3
below, the use of the known polynomial expansion (46) is seen to provide a
much more convenient and straightforward alternative.

Corollary 3. Let {f
(μ)
n (x)}n∈N0 be a one-parameter sequence of Appell polyno-

mials generated by (26) with the parameter α replaced by μ. Then each of the
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following addition formulas holds true:

f (μ)
n (x + y) =

n∑
k=0

(−1)k
n∑

j=k

j!
(

n

j

)(
j + α

j − k

)
α + β + 2k + 1

(α + β + k + 1)j+1

·f (μ)
n−j(y)P (α,β)

k (1 − 2x) , (47)

f (μ)
n (x + y) =

n∑
k=0

(−1)k
n∑

j=k

j!
(

n

j

)(
j + α

j − k

)
f

(μ)
n−j(y)L(α)

k (x) (48)

and

f (μ)
n (x + y) =

[n/2]∑
k=0

n∑
j=2k

2−j

(
n

j

)(
j

2k

)
(2k)!
k!

f
(μ)
n−j(y)Hj−2k (x) . (49)

4. An umbral-calculus generalization of the addition theorems

Following the notations and conventions described in [13], let P be the algebra
of polynomials in the single variable x over the field C of complex numbers.
Then the following formal power series:

f(t) =
∞∑

k=0

ak
tk

k!
(50)

defines a linear functional on P by setting

< f(t)|xn > = an (n ∈ N0). (51)

Let {fn(x)}n∈N0 be the Appell sequence corresponding to the function f(t)
as in the generating function (10).

Theorem 3. Let {fn(x)}n∈N0 and {gn(x)}n∈N0 be the Appell sequences corre-
sponding to the functions f(t) and g(t), respectively. Then

fn(x + y) =
n∑

k=0

(
n

k

)
fk(y)

n−k∑
j=0

< g(t)|(xn−k)(j) >

j!
gj(x), (52)

where (xn−k)(j) denotes the derivative of xn−k of order j.

The Proof of Theorem 3 is a simple consequence of the following two known
results (see [13, Theorems 2.5.2 and 2.5.8]).

Lemma 2. Let hn(x) be an Appell sequence for the function h(t). Then, for
any polynomial p(x),

p(x) =
∑
k≥0

< h(t)|p(k)(x) >

k!
hk(x), (53)

where p(k)(x) denotes the derivative of p(x) of order k.
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Lemma 3. The sequence {hn(x)}n∈N0 is an Appell sequence if and only if

hn(x + y) =
n∑

k=0

(
n

k

)
hk(y)xn−k =

n∑
k=0

(
n

k

)
hn−k(y)xk. (54)

Although it is usually not easy to calculate the coefficients

< g(t)|(xn−k)(j) >

occurring in (52), there is an example for the Hermite polynomials Hn(x)
which is given in [13, p. 90].
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