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Retinoids enhance glucocorticoid-induced
apoptosis of T cells by facilitating glucocorticoid
receptor-mediated transcription

K Téth', Z Sarang', B Scholtz', P Brazda', N Ghyselinck?, P Chambon?, L Fésiis' and Z Szondy*"

Glucocorticoid-induced apoptosis of thymocytes is one of the first recognized forms of programmed cell death. It was shown
to require gene activation induced by the glucocorticoid receptor (GR) translocated into the nucleus following ligand binding.
In addition, the necessity of the glucocorticoid-induced, but transcription-independent phosphorylation of phosphatidylinositol-
specific phospholipase C (PI-PLC) has also been shown. Here we report that retinoic acids, physiological ligands for the nuclear
retinoid receptors, enhance glucocorticoid-induced death of mouse thymocytes both in vitro and in vivo. The effect is mediated
by retinoic acid receptor (RAR) alpha/retinoid X receptor (RXR) heterodimers, and occurs when both RARx and RXR are ligated
by retinoic acids. We show that the ligated RAR«/RXR interacts with the ligated GR, resulting in an enhanced transcriptional
activity of the GR. The mechanism through which this interaction promotes GR-mediated transcription does not require DNA
binding of the retinoid receptors and does not alter the phosphorylation status of Ser232, known to regulate the transcriptional
activity of GR. Phosphorylation of PI-PLC was not affected. Besides thymocytes, retinoids also promoted glucocorticoid-induced
apoptosis of various T-cell lines, suggesting that they could be used in the therapy of glucocorticoid-sensitive T-cell
malignancies.
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Glucocorticoids are a group of steroid hormones that possess
a wide range of anti-inflammatory, immunosuppressive and
antitumor activities, including the ability to induce apoptosis
in T and B lymphocytes." Glucocorticoid-induced apoptosis
of thymocytes is one of the first recognized forms of
programmed cell death.? For this effect, glucocorticoids
passively diffuse into the cell and bind to the glucocorticoid
receptor (GR), a member of the nuclear receptor super-
family.® Subsequently, the hormone—receptor complex trans-
locates into the nucleus, where it modulates gene expression
either by direct binding to its cognate response element
or by interaction with other transcription factors. In the case
of thymocyte apoptosis, gene activation is essential to the
process, as in thymocytes expressing a mutated GR
capable of interacting with other transcription factors, but
not of transactivating genes following ligand binding,
dexamethasone-induced apoptosis was impaired.* During
the past decades, many of the genes involved have
been identified.> ' Increasing evidence suggests that the
effector phase of glucocorticoid-induced apoptosis is
mediated by the mitochondrial pathway involving Bcl-2 family
members."'~'® The role of mitochondria is further supported
by the findings that caspase-9 as well as Apaf-1-deficient
mice are impaired in dexamethasone-induced thymocyte
cell death.'®1”

In addition to the genomic effects, glucocorticoids induce
a rapid Src-dependent phosphorylation of the phosphatidyl-
inositol-specific phospholipase C (PI-PLC),"®° leading to the
subsequent activation of the acidic sphingomyelinase, which
results in the production of ceramide and sphingosine. These
compounds have no effect on the mitochondria, but contribute
to caspase-8 activation, and thus accelerate the glucocorti-
coid-induced cell death program.'82%:21

Besides glucocorticoids, all-frans (ATRA) and 9-cis retinoic
acid (9cRA), possible physiological ligands for retinoic acid
receptors (RAR)s and retinoid X receptors (RXRs),>* were
also shown to modulate thymocyte apoptosis.?>° They were
reported to induce apoptosis in immature thymocytes, 325
inhibit negative selection®®2° and promote glucocorticoid-
induced death of thymocytes.?32 Retinoid receptors similarly
to the GR belong to the steroid/thyroid/retinoid nuclear
receptor family.4 ATRA and 9cRA are equipotent in activating
RAR, whereas activation of RXR by ATRA is 50-fold less than
by 9cRA.?? In the presence of RAs, retinoid receptors function
in the form of RAR/RXR heterodimers or RXR/RXR homo-
dimers,® and modulate gene expression either by direct
binding to their cognate response elements or by interaction
with other transcription factors. Recently, we found that
similarly to glucocorticoids,®' retinoids are also produced by
the thymic epithelial cells,®2 suggesting that they might indeed
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have a physiological role in regulating thymocyte differentia-
tion and apoptosis.

Although previously we have studied the involvement of
retinoids in the regulation of negative selection®”2° and in the
cell death induction of thymocytes,?® so far the mechanisms
by which retinoids promote glucocorticoid-induced apoptosis
of thymocytes have not been investigated yet.

Results

Ligation of both RAR« and the RXRs promotes dexa-
methasone-induced death of mouse thymocytes.
Increasing concentrations of dexamethasone induced a
significant degree of apoptosis in mouse thymocytes
already at 6h following addition, detected by determining
the amount of DNA degradation (Figure 1a). As it was repo-
rted previously,?®2 increasing concentrations of RAs further
enhanced glucocorticoid-induced apoptosis of thymocytes in
a dose-dependent manner (Figure 1b). The concentration of
dexamethasone, at which the effect of the retinoids was
tested, was selected for 0.1 uM, in which about 45% of DNA
degradation was observed when added alone (Figure 1a).
Retinoids were able to induce about a 30% further increase
in the DNA fragmented at this time point; however, ATRA at
physiological concentrations was ineffective. 9cRA, how-
ever, was very effective, suggesting that RXR receptors
stimulated selectively by 9cRA may participate in the
phenomenon. Indeed, increasing concentrations of LG268,
an RXR agonist, also promoted dexamethasone-induced
apoptosis (Figure 1b). However, addition of LG268 at 0.1 nM
concentration, which alone had only slight effect on the
GR-induced DNA fragmentation (Figure 1c), effectively
lowered the concentration of ATRA required to enhance
GR-induced apoptosis of thymocytes, implying that stimu-
lation of both RAR and RXR receptors might play a role in the
enhancement of GR-induced death.

To investigate which of the RARs is involved in the pheno-
menon, the effect of various RAR-specific agonists was
also tested. In agreement with the lack of RARf expression
in mouse thymocytes,®® the RARf-selective compound
(CD2314) tested could not promote GR-induced apoptosis
(data not shown). Although RARy was shown to be expressed
by mouse thymocytes, three RARy-binding compounds
(CD437, CD666 and CD2325) found previously to induce
apoptosis in thymocytes® (Figure 1c) were also ineffective.

These data suggested that neither RARS nor RARy are good
candidates for mediating the effect of retinoids on GR-induced
apoptosis.

Two RARu-selective agonists, which alone have no effect
on the background cell death rate (Figure 1c), however,
effectively promoted GR-induced death of thymocytes
(Figure 1b). The ECso values for apoptosis inhibition of the
compounds were around 5nM for CD2081 and Am580,
respectively. These data suggest that ligation of RAR« may be
responsible for the observed cell death promotion by RAs.
To prove this further, the effect of retinoids was also tested
in dexamethasone-exposed thymocytes derived from RARx
knockout mice.®® As shown in Figure 1d, while the RAR«
agonists ATRA and AM580 were practically ineffective in
enhancing GR-mediated death in these thymocytes, the
biological activity of the RXR agonist LG268 and 9cRA
remained unaffected. These data provide a direct proof that
retinoids mediate their apoptosis-promoting effect by both
RARo and RXRs. Interestingly, when CD2503, an RARu
antagonist, was added to the culture, which alone did not
affect spontaneous thymocyte death up to 10 uM concentra-
tion (Figure 1c), also stimulated GR-induced thymocyte
apoptosis with an EC value at around 5nM (Figure 1b).
CD2503 was acting also via RARu, as it was ineffective in the
RARux knockout thymocytes (Figure 1d). As CD2503, being an
RARo antagonist, cannot trigger the transcriptional activity of
RARu, this observation indicates that the effect of retinoids on
the GR-induced death of thymocytes might not require the
retinoid receptor’s transcriptional activity.

Although DNA fragmentation is specific for the apoptotic
form of cell death, possible DNA rearrangements during
thymocyte differentiation might interfere with the assay. To
prove that retinoids indeed enhance glucocorticoid-induced
death, dying cells were simultaneously labeled with Annexin
V-FITC and propidium iodide. As seen in Figure 1e, 9cRA,
AM580, CD2503 and LG268 all enhanced dexamethasone-
induced apoptosis. In addition, Am580 and LG268 promoted
glucocorticoid-induced thymocyte death also under in vivo
conditions, resulting in enhanced cell death, especially in the
CD4CD8 double-positive immature thymocyte population,
which is known to be sensitive to glucocorticoids (Figure 1f).34

Retinoids do not promote glucocorticoid-induced
PI-PLC phosphorylation. As activation of PI-PLC was
reported to be non-genomic effect participating in

Figure 1

>

Retinoids promote glucocorticoid-induced apoptosis of thymocytes by RARo/RXR. (a) Dexamethasone acetate induces DNA fragmentation in mouse

thymocytes in a dose-dependent manner detected at 6 h following addition. (b) The RAR« agonists ATRA, 9cRA, Am580 and CD2081, the RXR agonist LG268, a combination
of ATRA with LG268 (0.1 nM), and an RARx antagonist CD2503 all promote dexamethasone (0.1 1:M)-induced DNA fragmentation of mouse thymocytes. The amount of DNA
degradation in the presence of glucocorticoid alone was 45 + 4%. (c) The RARy agonists CD437, CD666 and CD2325 alone induce DNA fragmentation, whereas compounds
acting on RXR or RARx do not alter the basal DNA fragmentation (8 + 3%) of thymocytes detected at 6 h following addition of the retinoids. (d) The RXR agonists 9cRA and
LG268 can, but the RARwx agonists are unable to promote significantly the dexamethasone acetate (0.1 uM)-induced DNA fragmentation of RARo knockout mouse
thymocytes. The amount of DNA degradation in the presence of glucocorticoid alone was 45 + 4%. Data represent mean + S.D. of three determinations. (e) 9cRA, AM580,
CD2503 and LG268 all promote glucocorticoid-induced apoptosis of thymocytes in vitro detected by propidium iodide/Annexin V labeling. (f) Injection of both Am580 (50 1)
and LG268 (50 ug) significantly enhances dexamethasone (0.2 mg)-induced CD4 " CD8 " thymocyte apoptosis in vivo determined at 24 h following treatment. Data (one
representative experiment out of three) show the number of surviving thymocytes and the distribution of various thymocyte cell populations following in vivo treatments.
(9) Glucocorticoid-induced PI-PLC activation is not enhanced by retinoids in mouse thymocytes. Tyrosine-phosphorylated proteins were immunoprecipitated (IP) from cell
lysates with agarose-conjugated 4G-10 antibodies, and PI-PLC in the immunoprecipitate was assessed by western blot with anti-PI-PLC antibodies. The results are
representative of one of three independent experiments

Cell Death and Differentiation

NPG.CDD.CDD2010136




dexamethasone-induced thymocyte cell death,'® we decided
to test whether retinoids could promote glucocorticoid-
induced phosphorylation of PI-PLC. However, 9cRA, which
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was the most powerful natural RA in promoting gluco-
corticoid-induced apoptosis of thymocytes, was unable to
enhance dexamethasone-induced phosphorylation of PI-PLC
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Figure 2 Retinoids enhance glucocorticoid-induced expression of GILZ in mouse thymocytes. (a) Retinoids do not affect the basal levels of glucocorticoid receptors.
Isolated thymocytes (107 cells per ml) were exposed to 0.1 M dexamethasone acetate alone or together with 0.3 uM ATRA, 9cRA, Am580, or CD2503 for 2 h. Levels of the
glucocorticoid receptors were determined by immunoblot analysis. 3-Actin was used as loading control. (b) Retinoids enhance the glucocorticoid-induced expression of GILZ
in a dose-dependent manner. Isolated mouse thymocytes were exposed to 0.1 uM dexamethasone acetate and the indicated concentrations of retinoids. mRNA levels of GILZ
were determined 2 h later. Data represent mean + S.D. of three determinations. *Significantly different from glucocorticoid-treated control determined by Student’s paired t-test

(P<0.05)

(Figure 1g), indicating that not PI-PLC is the main target of the
retinoid action.

Retinoids enhance glucocorticoid-induced expression
of GILZ, a glucocorticoid target gene, during thymocyte
apoptosis. Increasing evidence suggests that in addition to
transactivation of their own target genes, nuclear receptors
are also capable of cross-talking with other transcription
factors. The original observation was made in 1990, when it
was shown that GR could inhibit, in a ligand-dependent
manner, the ability of AP1 to transactivate its target gene
promoters.®® This transrepression was mutual and required
an unknown state of the receptor, which could be induced by
both receptor agonists and certain, but not all receptor
antagonists. Since then it was also discovered that this cross-
talk does not per se imply negative regulation of transcription,
as several reports show that under certain conditions this
cross-talk can lead to positive transcriptional effects.®® As
previous studies have shown that glucocorticoid-induced
apoptosis is dependent on the transcriptional activity of GR,*
we decided to investigate whether GR-induced transcriptional
activity changes in the presence of various retinoids.

First, we investigated whether addition of retinoids affect
the amount of GR. However, no such effect was found
indicating that retinoids do not affect the level of GR
(Figure 2a).

Several genes have been reported to be upregulated during
dexamethasone-induced death of thymocytes.'® From these
genes, we selected GILZ® to test how its expression changes
under the effect of various retinoids, as its promoter carries
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several glucocorticoid response elements; thus, its transcrip-
tion can be used as a read out of the transcriptional activity of
GR in the thymocytes.®” As shown in Figure 2b, the
expression of GILZ was not effected by retinoids alone, but
its glucocorticoid-induced expression was further induced by
the RAR« agonist and antagonist, and the RXR agonist tested
in a dose-dependent manner. These data indicate that
retinoids are capable of enhancing glucocorticoid-induced
gene expression, and ligation of RARo or RXR alone is
sufficient for the effect.

RAR«/RXR heterodimers mediate the transactivating
effects of retinoids. To investigate further the transacti-
vating phenomenon, the effect of retinoids was tested in an
in vitro glucocorticoid reporter assay system using COS-1 cells.
These cells express sufficient amount of GR to transactivate
a GRE-luc construct in the presence of glucocorticoids,
but lack detectable ATRA binding.®® Figure 3a shows that
following transient transfection of the GRE-luc reporter
plasmid, the reporter enzyme is induced in COS-1 cells
in a dose-dependent manner, but 10 uM dexamethasone
decreased the viability of these cells. On the basis of these
results, 0.1 uM dexamethasone concentration was selected
to test the effect of various retinoids on the glucocorticoid-
induced transcription. Preliminary experiments have shown
that none of the retinoids tested affected the basal luciferase
expression (Supplementary Figure 1). Neither did addition of
retinoids affect the glucocorticoid-induced transactivation,
which is in line with the lack of sufficient amount of functional
RAR expression in these cells (Figure 3b—f).
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Figure 3 RAR«/RXR heterodimers mediate the transactivating effects of retinoids. (a) Dexamethasone acetate induces the expression of the pCMX-GRE-luc reporter
construct in a dose-dependent manner in COS1 cells transfected transiently. Effect of increasing concentrations of ATRA (b), 9cRA (c), LG268 (d), AM580 (e) and CD2503 (f)
on the dexamethasone (0.1 «M)-induced expression of the pPCMX-GRE-luc reporter in the presence of the indicated full-length retinoid receptors. (g) Western blot analysis of
retinoid receptor expression before and after transient transfections of COS-1 cells. In comparison, the endogenous level of retinoid receptors in the IG3T cell line*® is also
shown. (h) Effect of the combination of AM580 and LG268 on the dexamethasone (0.1 uM)-induced expression of the pCMX-GRE-Iuc reporter in the presence of the
full-length RAR«/RXRo: receptors. (i) Effect of the indicated concentrations of 9cRA, LG268 and AM580 on the dexamethasone (0.1 uM)-induced expression of the
pCMX-GRE-luc reporter in the presence of retinoid receptors not capable of DNA binding. Data represent mean + S.D. of three independent experiments. *Significantly
different from glucocorticoid-treated control determined by Student’s paired ttest (P<0.05)

To test the effect of various retinoid receptors involved,
RARx and RXRo were transfected alone or together
(Figure 3g), and the dexamethasone-induced luciferase
expression was tested in the presence of increasing con-
centrations of retinoids. As shown in Figure 3b—f, transfection
of various retinoid receptors in the absence of retinoids did not
affect the dexamethasone-induced luciferase expression.
However, in the presence of retinoids we detected various
transcription efficiencies. ATRA, the pan-RAR agonist,
at physiological concentrations, had no effect on the
GR-induced transcription in the presence of RXR, and only
slightly elevated the transcription in the presence of RARx or
RAR«/RXRo (Figure 3b). 9cRA, the pan-RAR/RXR agonist,
however, significantly elevated the GR-induced transcription in
the presence of RXRux, but a most pronounced enhancement
was observed when both receptors were present and activated
by 9cRA (Figure 3c). These data suggested that ligation of

RXR is capable of affecting GR-induced transcription, but a
maximal enhancement is seen only when both receptors are
present and ligated by retinoic acids. To prove this statement
further, we tested the effect of the synthetic retinoids. The
RXR agonist LG268 significantly enhanced transcription
in the presence of RXR alone, and to a similar degree in the
presence of RAR«/RXR heterodimer (Figure 3d). AM580
(Figure 3e) and CD2503 (Figure 3f), similar to ATRA, had no
effect in the presence of RXR, and only slightly elevated
transcription, when only RARx was expressed. In contrast
to ATRA, however, when both retinoid receptors were expres-
sed, these compounds significantly enhanced GR-induced
transcription. When both Am580 and LG268 were added
together in the presence of RAR«/RXRa heterodimers
(Figure 3h), a more pronounced transcription was detected,
indicating that ligation of both sides of the receptor hetero-
dimer results in a more effective enhancement of GR-induced
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transcription. These data imply that RAR«/RXR heterodimers
must mediate the effect of RAs on the glucocorticoid-induced
transcription. Physiological concentration of ATRA, which
bind only RARs, cannot induce the required conformation
even if RXR is present. Simultaneous ligand binding of
RXR is also required. The synthetic retinoid Am580 and
CD2503, however, can induce the necessary conformation
also in the absence of RXR binding. On the other side, RXR
ligation alone is also sufficient to enhance GR-induced
transcription.

As CD2503 cannot transactivate RAR«, but is as effective
as the RARu agonists, we tested the possibility that DNA
binding of the retinoid receptors is not required for promoting
the transcriptional activity of the GR by using DNA binding
mutants of the retinoid receptors (RARx-LBD and RXR«-LBD)
(Figure 3g). As shown in Figure 3i, these receptors tested at
one effective concentration of the retinoids were as effective
as their wild-type variants.

Glucocorticoid, RARx and RXR receptors interact
following ligand binding. As the cross-talks between
various transcriptional factors are very often mediated by
direct interaction, which does not necessarily require DNA
binding of the interacting partner, we investigated a possible
interaction between the two nuclear receptors by immuno-
precipitating the GR from thymocytes in the presence of
various ligands, and searched for RARa among the
co-immunoprecipitated proteins. As shown in Figure 4a,
equal amount of GR proteins were immunoprecipitated
from thymocytes in the presence of various ligands. When,
however, the co-immunoprecipitated proteins were investi-
gated, co-immunoprecipitation of RARx was not seen in
the absence of dexamethasone, whereas the addition of
all the other ligands, with the exception of physiological
concentrations of ATRA, was able to co-immunoprecipitate
RARu in the presence of dexamethasone. The fact that
LG268, which is an RXR ligand, also induces interaction
between RARx and the ligated GR indicates that within the
thymocytes LG268 must bind to RAR«/RXR heterodimers.

To prove that the interaction between the two nuclear
receptors is direct and is not mediated, for example, by a
protein present in the coactivator complex of the GR, the
mammalian two-hybrid technique was used. For this purpose,
293T fibroblast cells were transfected with the pmH100-
TK-luc plasmid alone or together with the pCMX-Gal-L-hGR
and/or the VP-hRARz-LBD plasmids. As shown in Figure 4b,
in cells transfected with pmH100-TK-luc alone, or together
with pCMX-Gal-L-hGR or VP-hRARx-LBD, no significant
luciferase activity could be detected. However, in pmH100-
TK-luc/pCMX-Gal-L-hGR-transfected cells, the presence of
the VP-hRARz-LBD was able to induce a similar degree
of luciferase expression as dexamethasone in the absence
of VP-hRARw«-LBD, proving that the GR and RAR« can
indeed interact directly. However, this interaction was not
affected significantly by the addition of retinoids or dexa-
methasone.

As ligation of RXRx in the presence of RXRa alone
could promote dexamethasone-induced transcription in the
transient transfection assays (Figure 3d), using again
the mammalian two-hybrid technique, we checked whether
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Figure 4 The ligated retinoid receptors directly interact with the ligated
GR. (a) RARx co-immunoprecipitates with GR only when the ligand of both
receptors is present. GR was immunoprecipitated from cell lysates with agarose-
conjugated anti-GR antibodies, and GR and RAR« in the immunoprecipitate
was assessed by western blot with anti-GR and anti-RARex antibodies. The dose of
glucocorticoid was 0.1 uM, that of retinoids 0.3 uM, except for LG268, which
was 100nM. The results are representative of one of three independent
experiments. (b) Mammalian two-hybrid system reveals a direct interaction
between GR and RARe. (¢) Mammalian ttwo-hybrid mammalian system reveals a
direct interaction between GR and RXRw, which is influenced by the presence of
the receptor ligands

RXRo can also interact with GR. As shown in Figure 4c, in
cells transfected with pmH100-TK-luc alone, or together with
pCMX-Gal-L-hGR or VP-hRXRu-LBD, no significant luci-
ferase activity could be detected. However, in pmH100-
TK-luc/pCMX-Gal-L-hGR-transfected cells, the presence of
the VP-hRXRz-LBD was able to induce a similar degree
of luciferase expression as dexamethasone in the absence
of VP-hRXRu«-LBD, proving that the GR and RXRo can indeed
interact directly. This interaction was enhanced by the
addition of the RXR ligands. In the presence of the ligands
of both GR and RXR receptors, the interaction became
more efficient detected by the enhanced luciferase activity.
These data imply that the strength of the interaction
between GR and RXRuo is enhanced by ligand binding of
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the RXRu, and might be also influenced by the ligand binding
of the GR.

Retinoids do not affect the Ser232 phosphorylation of
the GR. Although ligand binding is essential for initiating the
transcriptional activity of the GR, the receptor is also subject
of post-translational modification through phosphorylation.*®
Seven phosphorylation sites have been identified in the
N-terminal region of the mouse GR, from which Ser232
(Ser211 in humans) has been shown to be phosphorylated to
a greater extent upon hormone exposure*® and specifically
on GRs located in the nucleus.®® It has also been shown that
phosphorylation can enhance the transcriptional activity
of the GR in a promoter-specific manner.*' That is why we
decided to test whether treatment of thymocytes with
retinoids alter the dexamethasone-induced phosphorylation
of Ser232 of the GR. Although the addition of dexametha-
sone to thymocytes enhanced the phosphorylation of Ser232
on GR, retinoids had no effect on it indicating that ligated
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Figure 5 Gilucocorticoid-induced Ser232 phosphorylation of GR is not affected
by retinoids. Thymocytes were exposed to 0.1 uM dexamethasone acetate alone
or with 0.3uM Am580, 0.3 M CD2503 or 50nM LG268 for 1h. GR was
immunoprecipitated from cell lysates with agarose-conjugated anti-GR antibodies,
and GR and its phosphorylated Ser232 in the immunoprecipitate was assessed by
western blot by using specific antibodies (Cell Signaling Antibody No. 4161)
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retinoid receptors must act by a different mechanism
(Figure 5).

Retinoids also promote glucocorticoid-induced apoptosis
in malignant T-cell lines. To investigate whether the
observed enhancing effect of retinoids on the GR-induced
apoptosis is specific only for thymocytes, the effect of retinoids
on GR-induced apoptosis was further tested using a murine
(IP-12-7)*2 and two human (1G3*® and CCRF-CEM**) gluco-
corticoid-sensitive T-cell lines. As shown in Figure 6, 9cRA
efficiently promoted the glucocorticoid-induced apoptosis of
these T-cell lines as well. In addition, in Figure 6d we also
show that various retinoid-specific ligands at selected
concentrations affect GR-induced apoptosis of these T-cell
lines, similarly as they do in mouse thymocytes.

Discussion

Retinoic acids, the derivatives of vitamin A, are widely known
to affect various immune functions.*® Here we show that
retinoids can also stimulate glucocorticoid-induced apoptosis
in immature thymocytes. Using various receptor-specific
retinoids or RAR« knockout thymocytes, we have shown that
the effect is mediated via RAR« and RXR, and simultaneous
ligation of both RARx and RXRs by the natural RAs, or
ligation of RXR« or RARs alone by the synthetic retinoids
are required for the phenomenon. As an RARu-specific
antagonist also enhanced glucocorticoid-induced apoptosis,
we proposed that the enhancing capability of the retinoid
receptor does not involve its transcriptional activity. As
phosphorylation of PI-PLC, one of the known non-
genomic effect of glucocorticoids reported to participate in
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Figure 6 Retinoids enhance glucocorticoid-induced apoptosis of various T-cell lines as well. 9cRA enhances dexamethasone acetate (0.1 ;M)-induced apoptosis of (a)
IP-12-7T hybridoma, (b) IG3 and (c) CCRF-CEM T cells in a dose-dependent manner determined at 6 h following treatment. (d) RARo and RXRe: ligands also enhance

dexamethasone acetate (0.1 «M)-induced apoptosis in CCRF-CEM T cells. Data represent mean £ S.D. of three determinations. *Significantly different from glucocorticoid-

treated control determined by Student's paired ttest (P<0.05)
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dexamethasone-induced death of thymocytes,'® was not

affected by retinoids, we investigated other mechanisms to
explain the observed phenomenon.

As nuclear receptors are known to interact with various
transcription factors and regulate their transcriptional activity
in a ligand-dependent manner,®>3 we tested the possibility
that retinoid receptors interact with the GR to regulate its
transcriptional activity. We found that retinoids can enhance
glucocorticoid-induced transcription of GILZ in thymocytes
and a GR-driven reporter construct in COS-1 cells in an RARo/
RXR-dependent manner. In the presence of the RARx/RXR
heterodimers, all the investigated RARo and RXR agonists
and the RARa antagonist could enhance the transcription
added alone, whereas in the case of physiological concentra-
tions of ATRA, ligation of RAR« alone was not sufficient.
On the other hand, RXR agonists could also enhance
GR-induced transcription if only RXR was expressed. These
data pointed for a strong role of RXR in regulating GR-induced
transcription, but also a contribution from the RARu side in the
heterodimer.

GR and RXRa or RARu directly interacted in a mammalian
two-hybrid assay in the absence of ligands, and only the RXR
ligand enhanced this basal interaction, especially in the
presence of the GR ligand. On the other hand, RAR« could
be co-immunoprecipitated with GR from thymocytes, but only
if thymocytes were exposed simultaneously to dexametha-
sone and to those retinoids that were effective in enhancing
glucocorticoid-induced thymocyte cell death, including the
RXR agonist LG268. On the basis of these data, we propose
that in cells ligated RAR«/RXR heterodimers and ligated GR
interacting with each other result in the enhanced transcrip-
tional activity of the GR. Under physiological conditions, when
the receptors are expressed at physiological levels, one role
of the GR ligand in mediating the GR/RAR«/RXR interaction is
to promote the nuclear translocation of GR into the nucleus, in
which the GR and retinoid receptors can physically interact. In
the mammalian two-hybrid assay, overexpressed GR might
saturate the levels of proteins that keep it in the cytosol,
resulting in nuclear translocation of the GR and interaction
with retinoid receptors even in the absence of the dexametha-
sone, as in other experiments we found overexpressed
GR-GFP proteins in the nucleus even in the absence of the
GR ligand (P Brazda, unpublished observations). As in the
transient transfection assays ligated RAR« alone only slightly
affected GR-mediated transcription, whereas ligated RXRu
was fully effective, and the RXR ligand enhanced the
GR/RXRu interaction, whereas the RAR« ligand had no effect
on the GR/RARu interaction, we propose that the RXR side of
the RAR«/RXR heterodimer regulates the transcriptional
activity of the GR. The conformation of RXR required for the
interaction with GR can be stabilized by both the RAR« and
the RXR ligands acting on the heterodimer. As ATRA and the
RARu synthetic ligands differ in their ability to regulate RAR«/
RXR-mediated transcription and to induce interaction with the
GR, we propose that they all stabilize a different conformation
of RARwx, some of which promote or inhibit transcription,
whereas others promote the interaction. The mechanism
through which this interaction promotes GR-mediated tran-
scription does not require the DNA binding of the retinoid
receptors and does not alter the phosphorylation status of
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Ser232, known to regulate the transcriptional activity of GR.
Altogether, our data reveal a novel signal cross-talk between
the GR and RAR signaling pathways showing that RARs
similar to GRs**®® can also enhance the transcriptional
activity of other transcription factors with which they interact.

Thymic epithelial cells play a central role in guiding the
development of immature thymocytes. Both glucocorticoids®’
and retinoids® were shown to be produced by thymic
epithelial cells. As they both can stimulate the death of
neglected thymocytes either alone®232® or, as it is shown
here, by interacting with each other, we propose that under
in vivo conditions the production of the two molecules will
provide an excellent environment for the fast removal of the
neglected cells, the TCR of which is unable to interact with
self-MHC.

Retinoids are already widely used in the treatment of
cutaneous T-cell lymphoma and certain B-cell malignan-
cies.*® Our data, which show that retinoids can also promote
glucocorticoid-induced apoptosis of T-cell lines, indicate that
retinoids could also be used in the treatment of glucocorticoid-
sensitive T-cell malignancies to enhance the therapeutical
efficacy of glucocorticoids.

Materials and Methods

Retinoids and plasmids. All the retinoids used in this study were from the
Galderma Research & Development (Sophia Antipolis, France), with the exception
of ATRA and 9cRA, which were from Sigma-Aldrich (Budapest, Hungary), Am580,
which was purchased from Tocris Bioscience (Ellisville, MO, USA) and LG00268
(LG268), which was a gift from R Heyman (Ligand Pharmaceuticals). These
retinoids were characterized in our previous papers.2>27:2 All the plasmids used in
these studies were a kind gift from Ron Evans (San Diego, CA, USA) and were
described previously.*”

Mice. Male NMRI mice (4 weeks old) purchased from LATI (G6d6llo, Hungary)
were used. For the induction of in vivo thymic apoptosis, mice were treated
intraperitoneally with 0.5mg dexamethasone acetate (Sigma-Aldrich) alone or
either with 50 ug Am580 or with 50 ug LG268 dissolved in a mixture of 0.1 ml
ethanol and 0.4 ml physiological saline. Control animals were injected with the same
amount of vehicle. Study protocols were approved by the Animal Care Committee of
the University of Debrecen.

Characterization of thymocyte subpopulations. Thymocytes were
isolated after 24 h of various in vivo treatments. Cells were washed twice and
resuspended in ice-cold PBS containing 0.1% (w/v) sodium azide before staining
with PE-labeled anti-CD4 and FITC-conjugated anti-CD8 (BD Biosciences
Pharmingen, Erembodegen, Belgium). The cells were incubated with agitation for
30min at 4°C, washed twice with ice-cold PBS supplemented with 1% BSA and
0.1% sodium azide, and resuspended in PBS containing 0.1% sodium azide.
Unstained thymocytes treated similarly served as autofluorescence controls.
Dual fluorescence was analyzed on a Becton Dickinson FACScan (BD Biosciences,
San Jose, CA, USA) with excitation at 488 nm.

Thymocyte culture, cell lines and apoptosis detection. Thymocyte
suspensions were prepared from thymus glands of 4-week-old NMRI or RARx
knockout®® mice by mincing the glands in RPMI 1640 media (Sigma-Aldrich)
supplemented with 10% charcoal-treated FCS, 2mM glutamine and 1001IU
penicillin/100 ug streptomycin per ml. Thymocytes were washed three times and
diluted to a final concentration of 5 x 10° cells per ml before incubation at 37°C in a
humidified incubator under an atmosphere of 5% CO, /95% air. Cell death was
measured by Trypan blue uptake. A total of 95-98% of cells routinely excluded
Trypan blue after the isolation procedures. The IP-12-7 CD4 ™ T-cell hybridoma was
developed from BALB/c mouse pre-immunized with a synthetic peptide 317-329 H1
(covering the C-terminal of the HA1 subunit of the human influenza virus A/PR/34/8)
and subsequently infected with the a/PR/8/34 human influenza virus.*? The Kit225
IG3 cell line is an IL-2-independent subclone of the Kit225 human T leukemic cells
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with helper/inducer phenotype.*> CCRF-CEM cells derived from the peripheral
blood buffy coat of a child (CEM) with acute lymphoblastic leukemia who had
originally presented with lymphosarcoma** was a kind gift from Edit Buzas
(Budapest, Hungary). Thymocytes and the T-cell lines were treated with
dexamethasone acetate (0.1 «M) and various retinoids for 6 h in the presence of
10% charcoal-treated FCS (Sigma-Aldrich). At each culture, the final concentration
of DMSO used as the dissolvent for retinoids was 0.5%. At the end of culture, the
percentage of DNA degraded in the thymocyte cultures was determined by
diphenylamine reagent, as it was described previously.2>%28 |n the case of the
T-cell lines, the percentage of cells containing degraded DNA (sub-Gg—G; cells) was
determined by flow cytometry analysis in ethanol-fixed cells following RNAaseA
and propidium iodide treatment. For further confirmation of apoptosis induction,
Annexin V binding was performed on thymocytes treated in various ways using a
standard kit from BD Pharmingen (San Diego, CA, USA) to measure apoptosis.
After rinsing cells twice with PBS, cells were resuspended in 100 ul of 1 x binding
buffer in a flow cytometry tube, to which 5 ul of Annexin V-FITC and 5 ul of
propidium iodide were added and mixed well. After a 15-min incubation at room
temperature in the dark, 400 zl of 1 x binding buffer was added and flow cytometry
was performed within 15min. The 293T fibroblast cells used for the mammalian
two-hybrid system and COS-1 cells used for the reporter assay were grown in
DMEM medium supplemented with 10% charcoal-treated FCS and antibiotics.

PI-PLC immunoprecipitation and western blot. Thymocytes were
treated with vehicle alone, dexamethasone acetate (1 «M) alone or together with
9-cRA (0.3 uM) for 30 min. After treatment, cells were harvested, and whole-cell
lysates were prepared in RIPA buffer containing 50 mM Tris-HCI, pH 8.0, 137 mM
NaCl, 10% glycerol, 1% Nonidet P-40, 1 mM sodium vanadate, 10mM sodium
pyrophosphate, 50mM sodium fluoride, 1mM phenylmethylsulfonyl fluoride,
10 ug/ml leupeptin and 2 ug/ml aprotinin. Phosphotyrosine-containing proteins
were immunoprecipitated with agarose-conjugated 4G10 antibodies (Upstate
Biotechnology, Waltham, MA, USA). PI-PLC in the 4G10 immunoprecipitates
was measured by western blot. Membranes were incubated with the monoclonal
anti-PI-PLC antibody (Upstate Biotechnology). Antigen—antibody complexes
were detected by enhanced chemiluminescence (SuperSignal, Pierce, Rockford,
IL, USA).

Q-PCR for detecting changes in the mRNA expression of
GILZ. Total RNA was isolated with RNeasy Mini Kit (Qiagen, Hilden, Germany)
from treated cells. Transcript quantitation was performed via quantitative real-time
RT polymerase chain reaction using Tagman probes. Every sample was assayed in
triplicates. The RT reaction was performed at 42°C for 30 min and 72°C for 5min
using 100 ng total RNA, specific reverse primer (Bio-Science, Pécs, Hungary) and
Superscript || Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). Real-time
monitoring was carried out using an ABI Prism 7900 performing 40 cycles of 94°C
for 12s and 60°C for 1min. Values of transcripts in unknown samples were
calculated from standard curve derived from transcript-specific oligonucleotides.
Transcript levels were normalized to the level of cyclophilin (Bio-Science). The
following primers were used: mGILZ reverse, 5-CTTCAGTGGACAGATC
AGGGAG-3'; mGILZ forward, 5'-AGACCAGCCTCACAATGCG-3'; mCyc reverse,
5-TCTGCTGTCTTTGGAACTTTGTC-3'; and mCyc forward, 5'-CGATGACGAGC
CCTTGG-3'.

Reporter gene assays following transient transfections. COS-1
cells were transfected at 60-80% confluency with the pCMX-GRE-luc and
pCMX-p-Gal plasmids alone, or together with pCMX-FL-hRARe and/or pCMX-FL-
hRXRo plasmids using polyethylene-imine (Promega, Madison, WI, USA).
Transfection was carried out in Dulbecco’s modified essential medium containing
10% charcoal-stripped bovine calf serum (Sigma-Aldrich). After 6h, the medium
was changed to Dulbecco’s modified essential medium containing the indicated
ligands or vehicle. Cells were lysed and assayed for reporter expression 48 h after
transfection. Luciferase activity of each sample was normalized to the galactosidase
activity as described above. Each transfection was carried out in triplicates.

Western blot analysis of RAR« or RXR receptor expression in
COS1 cells following transient transfections. At 48h following
transfection, cells were harvested and boiled in 2 x sample buffer and loaded
onto SDS-PAGE gels. PVDF membranes were probed for anti-mouse RARx or
RXRe (Santa Cruz) and f-actin antibodies (Sigma).
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Co-immunoprecipitation. To show the possible direct interaction between
the GR and the RARe, thymocytes were exposed to dexamethasone acetate (1 M)
and to various retinoids alone or together for 1 h in an RPMI medium containing 10%
charcoal-treated FCS. Thymocytes (4 x 107) were then lysed, and the GR was
immunoprecipitated with agarose-conjugated anti-mouse GR antibody (Santa Cruz)
according to the manufacturer’s instructions. Following 12% SDS electrophoresis,
immunoprecipitated proteins were analyzed with western blot technique using anti-
mouse GR and anti-mouse RAR« antibodies (Santa Cruz). In some experiments,
the immunoprecipitated GR was analyzed for Ser211 phosphorylation by a
site-specific antibody from Abcam.

Mammalian two-hybrid system. To show direct interaction between GR
and RAR« or RXRe,, a mammalian two-hybrid system was used. For this purpose,
293T fibroblast cells were transfected with pCMX-Gal-L-hGR and pMH100-TK-luc
plasmids alone or either with VP-hRAR-LBD or VP-hRXRa-LBD together. pCMX-
B-galactosidase plasmid was used to normalize transfection efficiency, VDR™'
plasmid, which codes a reverse sequence for the vitamin D receptor, was used to
equalize the total amount of plasmid DNA (1 xg per 10° cells per well) transfected.
Luciferase activities were detected 48h later by using the kit from Promega
(Madison, WI, USA), whereas f-galactosidase activities were detected by the kit
from Fermentas (St. Leon-Rot, Germany) according to the manufacturer's
directions. In this assay, luciferase enzyme will be induced only if (a) either
glucocorticoid acts on a pmH100-TK-luc- and pCMX-Gal-L-hGR-transfected cell,
because following ligand binding, the transfected GR bound to the luciferase promoter
with its Gal fusion DNA-binding domain will drive the transactivation, or (b) in the
absence of glucocorticoids, the VP-hRARo-LBD or VP-hRXRx-LBD plasmid-coded
RARe or RXRo: fusion proteins that carry a strong transactivation domain of Herpes
simplex virus origin (VP), but have no DNA-binding ability interact with the pCMX-Gal-
L-hGR-coded GR fusion protein and drive the transactivation. This latter luciferase
activities show the interaction between the glucocorticoid and two retinoid receptors.
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