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Excited-state Koopmans theorem for ensembles
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Koopmans's theorem is generalized for excited-state ensemble density-functional theory. Formal expres-
sions are derived that relate orbital energy differences to exchange-only excitation energies. These expressions
provide stringent requirements for approximating the universal exchange component of the exact exchange-
correlation functional for excited-state ensembles, and the expressions lead to a relation, containing a correla-
tion potential, that gives exact excited-state ionization enerff50-294{©9)03202-3

PACS numbds): 31.15.Ew

I. INTRODUCTION <¢i|¢j>: 5” . (4)

In ensemble density-functional theory for excited stateq et us consider, for simplicity of presentation, the closed-
[1-3], there is an unknown exchange-correlation functionakhell case, for evell, where
that must be approximated. For this purpose, it is necessary
to invoke known properties of the exact functional. With this N72
in mind, we here derive a relation that connects the repulsion nGS=E 2| ¢i|2. (5)
energies of the components of the auxiliary noninteracting =1
Kohn-Sham ensemble with an integral containing the corre- . )
sponding ensemble repulsion functional derivative. This reC@ll ®cs, whose density isigs, the closed-shell determi-
lation, Eq.(28), is one that involves the exchange componen{1@nt which is composed of the firi/2 doubly occupied
of the unknown exchange-correlation functional. Further<Chn-Shamd;. In other words®gs is the ground state of
when this relation is combined with an earlier daginvolv- ~ Some local potentiabs and simultaneously minimizes the
ing the ensemble correlation potential,, a new relation expectation values oH, in Eqg. (1). That is, ®gs is the
results, Eq(29), that connects the exact excited-state ioniza-ground state of the noninteracting Kohn-Sham Hamiltonian
tion energy with expectation values involving noninteracting
Kohn-Sham wave-function solutions amnd. Finally, ma- N N N N
nipulation of Eq. (28) allows the development of an Hs= iZl -3V +i21 vs(r;[nesh). (6)
exchange-only excited-state Koopmans theorem(®&gthat - -
relates, with a small correction term, an orbital energy dif- ! K , - .
ference, involving an unoccupied orbital from an exchangeN€Xt, definedgs as an excited state ds that is formed
only ground-state calculation, to an expectation value differ{f0m ®cs by exciting an electron from Ck)l’blta|= N/2 to
ence involving Kohn-Sham determinants and the truePrbitali=Kk. The density corresponding tbgs has the form

physical Hamiltonian of interest.

M
kK _ 12 2 2
Let ngg be the exchange-only ground-state density of theWh ;
N-electron Hamiltonian ere
N M=(N/2)—1. (8)
|:Iv::l\—"_\’\/ee_"E v(ry), (1) . . o
i=1 Consider the ensemble densitywhich is composed of a

sum such that each element in the sum consists of a nonzero

where T is the kinetic energy operator ande. is the  \yejght factor times an eigenstate densityfaf [1-3]. It is
electron-electron repulsion energy operator. The auxiliarynderstood that included in the sum are all densities whose

Kohn-Sham equations fotgs are energies, with respect tﬁls, are less than or equal to the
k . .
—1v24 4 (r:[n (1) =€ dbi(r), 2 energy ofngs. With n so defined, we shall prove the follow-
=2 vs(NiNesh} (1) =eidi(r) @ ing ensemble Koopmans theorem for excited states:

where
€k~ EnppT f Av(r)|i(r)|?dr

EogEls €p (3)

and =(PEJH, |PED —(PedH,[Pes). 9
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whereAv (r)=v(r)—v'(r), andv’ is that external potential
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a. Note thatgg=v¢ Whereuv is the Kohn-Sham potential in

for whichniis the optimum Kohn-Sham ensemble density forgq, (2). In other wordsH,=H,. However,g; is neitherv

an exchange-only ensemble calculation, and wHggis an

excited state ofl, that yieldsnks. The potentiab, on the
other hand, is that external potential in Hamiltonidn for

which ngg is the optimum Kohn-Sham ground-state density

in the exchange-only approximation. Also in E§)

2V2+o4(r;[nes))| nrz) (10

enn="{Pnial —
and

ex=(l =3V +v4(r;[Nas))| &), (11

wheregy, is the highest-occupied orbital in the ground-state| EES — E&S' ™ Y|. This means thaEgS

exchange-only calculation.

Ill. PROOF OF THE THEOREM

In line with the definition ofv’, we have

min[fv’(r)p(r)dr+Fxo[p]]=J v'(r)n(r)ydr+F,n],
P

12
wherep(r) is an arbitrary ensemble density given by

p(r)=tr{Dp(r)}, (13)

wherep(r) is the density operator. The noninteracting den-

sity matrix D is defined as

k

|5=i§1 Wi @)D, (14

while the exchange-only functioné&l,, has the definition
Fro=tr{D(T+Veo}, (15)

where the®; in Eq. (14) yield p through Eq.(13) and are

simultaneously the lowest eigenfunctions of some noninter-

acting Hamiltonian, and the weightg are understood to be
the same as those with The minimization in Eq(12) dic-
tates that the potential’ can be expressed as

SF sVl p]
o= — xd Pl :US—L , (16)
I . I .
where
KSP 17— +rf AV
Vee[p]_tr{DVee}- (17)

In Eqg. (16) it is understood, for later development, that
and 5V§§[p]/5p have been made to vanish &g—,
through additive constants as necessary.

Next, letn be the optimum density for

N
Ho=T+aVeet 2 ga(riilnD). (18)

In other words,g,(r;;[n]) is constructed such that the en-

norv’, although close to both. Defimgg andEgg, respec-

tively, as the ground-state density and energyﬂqf, and
define the eigenstate densitg:d as that ensemble compo-

nent ofn with the highest energ;lEES , with respect td1 , .
Then, in accordance with previous studid$], the
asymptotic decay ofggs is governed by|E&s—E& 7,
while unless prohibited by symmetry, the asymptot|c decay
of n&< is governed byEfS — is the
ground-state energy &1, with one electron removed. Con-
sequently[4] the asymptotic decay of is governed by
—E&Y Y is indepen—
dent of @ becausen is independent otv (Observe than
connects wittnkg asa—0.)

Next, following the procedure of Ref6] for a ground-
state density-functional theoryDFT) Koopmans theorem,
we here employ

d _
e (EE§ —E&8 Dla=0=0, (19
and using Eq(18), we obtain
- 9,
(@EdVedbtio+ [ drne”
a =
1 99,
~(@YsHVd s+ [ om0
a=0

where ®¥s* and nis?t are, respectively, the ground-state

wave function and density of the Kohn—Shzﬁlg of Eq. (6),
with one electron removed.

To identify the partial derivative in Eq20) we observe
that from the analogous ground-state adiabatic connection
expansior{ 7], it follows here, for smalk, that

SVKS
ga(ri[n])= —a% (2D
[ P
This leads to
9. Vs
Gal =S 22
a=0 p p=n

Comparison with Eq(16) gives

99

py =v'(r)—vgr,[n])

a=0

(23

and the substitution of Eq23) into Eq.(20) leads to

6= (DEJA, | OE—(DFSTA) DR, (29

N—-1

whereH is H,, with one electron removed. Equation

semble density, with fixed weights, remains independent of (24) may be conveniently written as
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et | Aol acnP=(@kdA ok
—(Pgs A DG "), (29)

whereR" "1 is A, with one electron removed.

BRIEF REPORTS

1689

fication forv' —g makes sense becauge is that potential

for which n is a sum of eigenstate densities, obtained when
correlation is included, while’ is that potential for whichn

is the optimum ensemble density for an exchange-only
excited-state ensemble calculation, where by definition, cor-
relation is excluded. Equation(29) gives the exact ioniza-

Next, we use the following ground-state Koopmans theotion energy from the highest eigenstatefbf whose density

rem, which was previously arrived at for fini{&,6] and
infinite systemg9]:

fN/2:<q)Gs||:|v|q)Gs>_<q)g§1|Hu|q)g§1>-

The combination of Eq$25) and(26) yields our first desired
result, Eq.(9). Further, combine Eq%20) and(22) to obtain

<(I)II(ES|Vee|(DII(ES>_<¢ggl|\7eelq)ggl

(26)

WKS
- [armgenten 5= @
p=n
or
(DEJVed DEY — (PG5 Ved PEs
- [ drlguni e (29
p=n

Equation(28) is in the form which is especially useful for
imposing a stringent constraint for approximatMéi[p].
FinaIIy, observe that by Eq24) and by the facf4,5] that
«—=ERI-EZN Y, it follows with «=1 in Eq.(18) that

Efd—EgY™ 1_<<DES|H1+Z ()| PES

—(@GsRY T 2 ve() 9GS,

(29
where HY™! is the H, in Eq. (18) with one electron re-

moved, and where., which equale)’ —g,, is the ensemble
correlation potential fon. (This correlation potential identi-

is a component ofi. Of special relevance, of course, is when
g, is the atomic, molecular, or solid-state external potential
of interest.

IV. CONCLUDING REMARKS

Constraintg(9), (27), and(28) serve as stringent require-
ments for the exchange component of the exchange-
correlation functional for excited-state ensemble calcula-
tions. Further, observe that analogous constraints arise with
any excited-state formulation for which EA.9) applies.

It was previously observef4] that the negative of the
highest-occupied Kohn-Sham orbital energy of the noninter-
acting auxiliary ensemble gives the exact ionization energy,
including correlation, of the highest-energy eigenstate in the
occupied interacting ensemble for the true physical interact-
ing Hamiltonian of interest. In the present paper we have
shown that Eq(29) provides an alternative formula for this
exact eigenstate ionization energy from an ensemble calcu-
lation.

Finally, the ensemble Koopmans theorem for excited
states, Eq(9), is of special relevance for the study of the use
of unoccupied orbital energies in the approximation of exci-
tation energies. In this connection, it is worth noting the fact
that cases have recently been reported, with explanation,
where these unoccupied orbital energies give surprisingly ac-
curate excited-state ionization energi€See Ref[10], and
references therein.
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