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We study hysteretic phenomena in random ferromagnets. We argue that the angle dependen
magnetostatic (dipolar) terms introduce frustration and long-range interactions in these systems. Thi
makes it plausible that the Sherrington-Kirkpatrick (SK) model may be able to capture some of the
relevant physics of these systems. We use scaling arguments, replica calculations, and large sca
numerical simulations to characterize the hysteresis of the zero temperature SK model. By constructing
the distribution functions of the avalanche sizes, magnetization jumps, and local fields, we conclude tha
the system exhibitsself-organized criticality everywhere on the hysteresis loop.
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Hysteresis in ferromagnetic systems is a century o
physical problem. Efficient phenomenologies have a
ready been developed [1], but an accepted microscopic t
ory is yet to be constructed. In soft magnets, where dom
wall motion dominates the physics, considerable progre
has been achieved recently [2–4]. In hard magnets dom
nucleation, domain wall motion, and their interaction a
all important. Hence they are better described on a mo
microscopic level as an assembly of strongly interactin
spins or hysterons [5]. Quantitative insight to such sy
tems has been gained recently through studying the r
dom field Ising model (RFIM) [6].

However, a key aspect of the physics of real system
is missing from the RFIM: it does not include the long
range dipolar (or magnetostatic) interactions. While the
are negligible on atomic scales relative to the exchan
term, they can dominate the collective behavior of granu
systems. This is so because the dipolar interaction is lo
ranged, so it involves every spin in the volume of th
grains, whereas the exchange coupling scales only with
number of spins on the surface of the grain. These dipo
forces are important: they prevent the roughening of t
domain walls [4] and determine the size of the domains [1
Crucially, the sign of these interactions changes with t
angle. This introducesfrustration into the system, which
is not represented in the RFIM.

To capture the influence of frustration on hysteretic ph
nomena, we study the simplest system containing lon
range frustrated interactions, the Sherrington-Kirkpatri
(SK) model. Early numerical work demonstrated that th
model exhibits hysteresis [7,8]. However, in spite of i
obvious importance, we could not find analytic studies
the hysteresis loop of the SK model. In this Letter w
use scaling arguments, replica calculations, and large sc
numerical simulations to characterize the hysteresis of
zero temperature SK model. By constructing the distrib
tion functions of the avalanche sizes, magnetization jum
and local fields, we conclude that the system exhib
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self-organized criticality everywhere on the hysteresis
loop.

The SK model consists ofN Ising spins (s � 61) on
a fully connected lattice, described by the Hamiltonian

H � 2
1
2

NX
ifij�1

Jijsisj 2 h
NX

i�1

si , (1)

whereJij is a random Gaussian number of zero mean a
variance1�N . Throughout the paper we work atT � 0.

First we summarize our numerical results. We sta
from a fully polarized state and change the extern
magnetic fieldh adiabatically: for a given field we let all
spins align according to their local field before varyingh
again. During the avalanches we use sequential sin
spin flip updating to ensure the decrease of the to
energy. The resulting hysteresis loop for the SK model
presented in Fig. 1. Finite size scaling analysis shows th
the hysteretic trajectories are well defined in theN ! `

limit, and the coercive field converges to a finite value.

FIG. 1. The hysteresis loop of the SK model, averaged ov
100 disorder configurations (N � 1600). Inset: multiple minor
loops, exhibiting return point memory.
© 1999 The American Physical Society
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We also analyzed the minor hysteresis loops of the SK
model (inset of Fig. 1). Within numerical accuracy they
return to the major loop at the point of departure, exhibiting
return point memory. This feature is present in many
experimental systems, and it is also one of the criteria for
the applicability of the Preisach phenomenology [1].

Next we establish some of the basic energy scales from
elementary considerations. When spin sj is flipped, the
local field hi at another site changes by an amount pro-
portional to 2Jij � 2�N1�2. Thus the external field h has
to be changed by an amount dh ~ 1�N1�2 to start a new
avalanche. Now let S be the change in the total magnetiza-
tion during an avalanche, and dm � S�N the jump of the
magnetization m during the avalanche. The average m�h�
curve is continuous and thus its derivative �dm�dh� ~

�S��N1�2 is finite (Fig. 1), requiring �S� ~ N1�2. This is
possible only if the scale of the distribution of avalanches
is set by N1�2. This is characteristic of systems at critical-
ity, whereas for off-criticality the scale is set by some con-
trol parameter of the Hamiltonian. This leads to the central
result of the paper: the SK model exhibits critical behavior
everywhere along its hysteresis loop. As this phenomenon
is independent of the parameters of the Hamiltonian, it is
a manifestation of self-organized criticality.

To elucidate this point, in Fig. 2 we show the distribu-
tion functions of S, and the number of spin flips in an
avalanche (its “size” ), n; P �S� and D �n�, respectively,
measured in the interval m [ �20.3, 0.3� for various sys-
tem sizes. Both distributions exhibit power-law behavior
and can be well described by the finite size scaling forms

D �n� � �B� lnN�n2�d�n�Ns� , (2)

P �S� � �A� lnN�S2tp�S�Nb� , (3)

with t, � � 1 6 0.1, s � 0.9 6 0.1, and b � 0.6 6

0.1. The logarithmic prefactors were necessary to achieve
satisfactory scaling collapse. Since such terms are needed
only to keep distributions with an exponent 1 normalized,
this strongly suggests that t � � � 1 exactly. Unfortu-
nately, because the cutoffs of the distributions P �S� and
D �n� scale with different powers of N , the attractive pic-
ture of a diffusive motion of the local fields due to the
randomness in Jij [2] would lead to an infinite diffusion
constant D ~ �n��N1�2 and is thus inapplicable.

Adopting t � 1 and combining it with �S� � N1�2

immediately yields the relation b � 1�2, with logarithmic
corrections, in good agreement with the measured value.
Also, because the Jij ’s take negative values too, spins of
both signs are destabilized in an avalanche. Therefore the
number of participating spins is only bound from below
by S�2, yielding the exponent-bound s $ b � 1�2. An
upper bound for s can be obtained from estimating the
dissipated energy, Ed , during a finite but small sweep of
the external-field h1 ! h2 � h1 1 Dh: Ed � NmDh �
N . Also, since the average energy dissipation per spin
is at least 2dh � 1�N1�2, Ed can be estimated as Ed .

2ntotal�N1�2, where ntotal is the number of flips during all
avalanches from h1 to h2. But the number of avalanches
during this sweep is proportional to Dh�dh � N1�2, i.e.,
ntotal � N1�2�n�. Combining all these gives N � Ed .

�n� � Ns implying s # 1, which is nearly saturated
according to our numerics.

The above distributions imply that the average value of
x 	 dm�dh is dominated by a few very large avalanches,
whereas its typical value scales to zero as �1�N1�2,
which we confirmed independently numerically. There-
fore the hysteresis loop for a specific disorder realiza-
tion has a slope zero with unit probability, interrupted by
a few macroscopically large avalanches. This feature is
characteristic of the Barkhausen noise and establishes the
frustrated spin glasses as possible candidates to describe
certain classes of hysteretic magnets.

We also studied the correlations of consecutive
avalanches. We measured the Hausdorff dimensions of
the numerically determined hysteresis loop and that of a
sequence of independent avalanches, generated with the
above distributions. Having found the two Hausdorff di-
mensions equal suggests that avalanches are uncorrelated.

These results, in particular the size N as the sole
cutoff of the different distribution functions, which all
exhibit power-law behavior, confirm the above-stated self-
organized criticality of the entire hysteresis loop of the SK
model. To shed more light on the underlying physics we
explore the local fields, hi �

P
j Jijsj 1 h, by studying

the local stabilities, li � sihi , which are all positive
for stable spin configurations. Their distribution, P�l�,

FIG. 2. Avalanche size and magnetization jump distributions
D �n� and P �S� for system sizes N � 400, 800, 1600,
and 3200. The insets show the collapsing scaling curves
corresponding to Eq. (3) with d�n�Ns� � n ln�N�D �n� and
p�S�Nb� � S ln�N�P �S�.
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is shown in Fig. 3. Remarkably—unlike the local field
distribution [2]—P�l� is essentially the same at any point
of the hysteresis loop. This suggests that the avalanche
dynamics of the SK model organizes the system into
special states with similar properties everywhere along
the hysteresis loop. A careful finite size analysis shows
that P�l � 0� � 1�

p
N and P�l� 
 Cla with C 
 a 


1 for small l’s. As we now show, this latter result
establishes once again that these special states are critical.
To prove this let us flip nflip arbitrary spins starting
from a given stable spin configuration �si� with li . 0
and calculate the average number of new unstable spins,
�nunst�, distinguished by negative stabilities l

0
i � li 1

Dli , 0:

l0
i � li 2 2

X
j flipped

siJijsj . (4)

The system is critical if �nunst� � nflip , as for �nunst� ,

nflip the avalanches die out exponentially fast while in
the opposite case they explode [6]. Assuming that the
nflip random terms on the right-hand side of Eq. (4) are
independent, the probability Pd of destabilizing a given
spin is

Pd �
Z `

0
dl P�l�

Z 2l

2`
d�Dl� Q�Dl� , (5)

where Q�Dl� � exp�2NDl2�8nflip�
q

N�8pnflip is the
probability distribution of the Dl term in Eq. (4), and
P�l� is approximated by its asymptotic form, P�l� �
Cla . The average number of destabilized spins is then
�nunst� � NPd � C̃�a�N�nflip�N��a11��2, with C̃�a� an
a-dependent constant, C̃�1� � C. For a . 1 (or a � 1
and C , 1) �nunst� , nflip , and the system cannot give
rise to large avalanches. On the other hand, for a , 1
(or a � 1 and C . 1) �nunst� . nflip , and the state is
unstable. Thus the criticality condition is characterized by
a � 1 and C � 1. These are exactly the values found
in our numerical simulations, once again underlining the
criticality of the system.

The physical mechanism of self-organized criticality can
be qualitatively understood as follows. As the avalanche

FIG. 3. The distribution of the local stabilities, P�l�, for
N � 3200. Inset: The finite size scaling of P�0�.
1036
rolls, at any given time step t the stabilities of the spins
are shifted only by those spins, which changed sign at step
t 2 1. These spins have flipped because the second term
of Eq. (4) for their stabilities was negative, pulling their
li ’s downward. However, once li changed sign, the very
same term now enhances this stability. More importantly,
this term being symmetric, it also pushes upward the
stabilities of the other spins of the avalanche, which pulled
spin i down and flipped it in the first place. This effect
is suppressing the density of states with low local fields,
reminiscent of the formation of the Coulomb gap in the
disordered electron problem [9]. The stabilities of the
spins not participating in the avalanche will be shifted by a
random amount by the just-flipped spins. However, in the
presence of a slope in their distribution P�l�, this will have
a net effect, moving the stabilities of more spins downward
than upward. In short, correlations between the spins of an
avalanche move the stabilities of the already flipped spins
upward; at the same time the random couplings between
all spins drive a net downward drift. The competition of
these two forces keeps the system critical.

To understand the shape of the measured major hystere-
sis loop more in detail we first observe that the states where
an avalanche stops must always be single spin-flip stable
(SSS). Let us therefore define the average number of SSS
states,

�V �m, h�� �

*
Tr

(YN

i�1 Q�li�d

√
mN 2

X
i

si

!)+
,

(6)

where the angular bracket indicates annealed disorder
averaging and the trace stands for the summation over all
spin configurations. The product of the theta functions in
Eq. (6) projects out those states where all the spins have
positive stabilities, while the delta function selects states
with a given magnetization.

Using the integral representations d�y� �R`

2`

dx
2p e2ixy and Q�li� �

R`

2`

i dzi

2pzi
e2izili the func-

tion V �m, h� can be rewritten in an exponential form,
V �m, h� �

R dx
2p

Q
i �

R i dzi

2pzi
exp�2i�lizi 2 xsi 1 mx���,

and the disorder average and the spin summation can
easily be carried out. After the disorder averaging the
effective action contains a term proportional to ��

P
i zi�2.

Decoupling this term with a new Hubbard-Stratonovich
field R, one finally arrives at the following expression:

�V � �
p

N
Z dx

2p

Z dR
p

2p

3 exp

(
N

"
lnQ 2

R2

2
2 imx

#)
,

Q�h, x, p� �
Z i dz

2pz
2 cos�x 2 zh�e2�1�2�z22iRz . (7)

The above integral can readily be evaluated in the N !
` limit by the saddle point method. The saddle point
equation, ≠Q�≠x � imQ, can be solved analytically, and
the variable x can be completely eliminated resulting in the
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FIG. 4. Outer bound of the region of the single spin-flip
stable states. Dotted line: J0 � 0; solid line: J0 � 2.5. The
impossibility of a monotonic m�h� curve within these bounds
forces the jump, as indicated by the arrows.

following expression for �V �m, h��:

�V �m, h�� � exp�NVsp�m, h�� ,

Vsp �
1 2 m

2
ln

1 2 f2

1 2 m
1

1 1 m
2

ln
1 1 f1

1 1 m

2
R2

2
,

where R is determined from ≠Vsp�m, h, R��≠R � 0, and
f6 � f��h 6 R��

p
2 � with f�x� � �2�

p
p �

Rx
0 e2t2

dt.
In Fig. 4 we plotted the contour of Vsp � 0. Outside

this line the density of SSS states scales to 0 exponentially;
thus they are definitely unable to arrest the avalanches.
Inside this line the number of SSS states is exponentially
large, and is thus comparable to the total number of states,
themselves exponential in N . Therefore avalanches get
trapped with a higher probability in one of the SSS states.
Hence the Vsp � 0 contour constitutes a strict outer bound
for the true hysteresis loop.

Comparing Figs. 1 and 4 shows that the Vsp � 0 con-
tour considerably overestimates the size of the hysteresis
loop. We pursued two refinements of this calculation. We
developed a replica symmetric description as well as a de
Almeida-Thouless-type replicon instability analysis: these
will be reported separately [10].

Finally, we briefly discuss the effect of a finite ferro-
magnetic coupling, J0 . 0. J0 simply shifts the value of
the magnetic field h ! h 1 J0m in Eq. (7), and results in
a shear of the entire contour Vsp � 0. For a branch of
the hysteresis loop m must be a monotonic function of h.
Since the Vsp � 0 contour is an outer bound of the hys-
teresis loop, therefore, when this loop would force a non-
monotonic m�h� relation (Fig. 4), the major hysteresis loop
must develop a finite jump. Since the slope of the major
hysteresis loop for J0 � 0 is finite, one expects this tran-
sition to occur at a finite critical coupling, J0 � Jc. Our
numerical data agree with this picture [10].
We end with a comparison to the random field Ising
model. In that model our initial simple scaling considera-
tions yield �S� ~ O �1�, i.e., a noncritical avalanche distri-
bution. As shown in Ref. [6], there is only a single critical
point at the coercive field at some specific value of the dis-
order. Therefore the distribution functions exhibit a scal-
ing behavior, with the cutoff set by the distance from this
critical point, rather than by the system size, as happens
for the SK model. In short, the RFIM exhibits “plain old
criticality” [6], while the SK model exhibits self-organized
criticality. Also, the avalanche distribution exponents t

in the two models are different: on the mean field level
t � 1.5 for the RFIM and 1.0 for the SK model. In fi-
nite dimensions the exponents typically increase: numeri-
cal simulations of the 3D RFIM found t � 1.6 [6]. In
contrast, numerical studies of realistic 3D models [11], as
well as experimental [12] works report t in the 1.1 1.4
regime. This raises the possibility that the finite dimen-
sional extensions of the frustrated models might provide a
t closer to the experimental values.

In summary, we studied the hysteretic behavior of the
SK model. We determined numerically the distribution
functions of the avalanches, the magnetization jumps, and
the local fields. The model exhibits self-organized critical-
ity everywhere along the hysteresis loop. We recalculated
the loop with analytic methods as the location of one-spin-
flip stable states, and found satisfactory agreement with the
numerical results.
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