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Pseudopotentials from electron density
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Institute of Theoretical Physics, Kossuth Lajos University, H-4010 Debrecen, Hungary
(Received 7 March 1995; revised manuscript received 13 Novembep 1995

A method is introduced that allows the construction of pseudopotentials in the density-functional theory.
This method is based on a procedure worked out by one of the afithdthys. B26, 43 (1993; Philos. Mag.
B 69, 779(1994] for determining Kohn-Sham potentials, one-electron orbitals, and energies from the electron
density. The Hartree-Fock densities of Bunge, Barrientos, and BingeéData Nucl. Data Table§3, 114
(1993)] are used to obtain the Kohn-Sham potentials of the Li, Na, and K atoms, and then Phillips-Kleinman-
type[Phys. Revl116, 287(1959; 118 1153(1960] pseudopotentials are calculated. The arbitrariness of the
pseudo-orbital is removed by minimization of the kinetic energy.

PACS numbes): 31.15.Ew, 71.16-w

[. INTRODUCTION is obtained from the potential and density of thieiteration.
This scheme withy=0.6 leads to an appropriate conver-
Pseudopotentials are widely used for a large variety ofyence.
problems. Recently, pseudopotentials have been introduced From the Kohn-Sham potential the exchange-correlation
into the density-functional theorjl], too. These are based potential can be readily obtained. If the exact density is
on the local density approximatiqih.DA). known, this procedure makes it possible to determine the
The problem of obtaining the Kohn—Sham potential with Kohn-Sham potential exactly. If, however, only the Hartree-
the knowledge of the electron density has become of consid=ock density is available, one can obtain a very accurate
erable interesi2,3]. Several methods have already been pro-exchange potential. This is not the exact exchange potential
posed to solve this questiqd—9]. One of the authors has of the density-functional theory, though, because the
also presented such a method for determining Kohn-Shaiartree-Fock density does not equal exactly the exchange-
and exchange potentials in the exchange-only densityenly density functional density. This question is detailed in
functional theory[5]. Here, pseudopotentials determined bytwo recent papergl1,12. It was found[11,12 that the rela-
this method are presented. These are exact pseudopotentitile difference in the exchange energy is about4,0
of Phillips-Kleinman typg10].

Il. KOHN-SHAM POTENTIAL
IN THE DENSITY-FUNCTIONAL THEORY
First, the method obtaining Kohn-Sham potential,, Earlier[5] it was demonstrated that

one-electron orbitals;, and energies; is summarized5]. EHFr 01— EKS
Usually the Kohn-Sham equations x €]~ Ey [QHF]‘ ~15x10°3 @
Eflel |7 '

Ex'Tel-EXe]] .
£ o] ’<4.4><10. ©)

[—2VZ+0, (N]ui(r)=gui(r) @

) i i . So, though the exchange potential and energy obtained from
are solved self-consistently using some kind of approximage Hartree-Fock density are not the exact exchange potential

tion for the exchange-correlation potent_igJC. If we know ~ and energy, they are very close to the exact ones.
the density, however, we can solve the inverse problem, i.e.,

we can determine the Kohn-Sham potential. A possible so-
lution to this problem is the following. Starting out from an Iil. CONSTRUCTION OF PSEUDOPOTENTIALS

approximate potential the Kohn-Sham equations are solved \yjith the knowledge of the Kohn-Sham one-electron or-

. 1 . . . . . ) ) N
and the densitn®) of the first iteration is determined. Then pjtals and energies, pseudopotentials can be constructed. The
the Kohn-Sham potential of the second iteration is con-

structed and the Kohn-Sham equations are solved again. The TagLE |. The pseudopotential coefficients of the Li, Na, and K

process goes on until the density equals the input density. atoms calculated by ourselves and Szasz and McGinn.
If the process converges it converges to the true Kohn-

Sham potential corresponding to the input density because of Our results Results of Szasz and McGinn
the Hohenberg-Kohn theorem. It was found that the starting
potential can be constructed using a simple Li®g.,Xe)  Atom 1s 2s 3s 1s 2s 3s
potential. The Kohn-Sham potential in theH(1)th iteration | ; 0.2072 0.1658
(i) Na 0.0237 0.2443 0.0214 —0.2193
US;l): v Q t*“‘”}”g 2 K 0.0075 0.0617 0.3298 0.0052 0.0544 0.3022
inpu
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FIG. 1. Orbitals and the pseudo-orbital of the Li atom. FIG. 3. Orbitals and the pseudo-orbital of the K atom.
pseudopotentials are obtained using the method of Phillip.

fional requirement that does not disturb the exactness of the
and Kleinman10]. d

theory. The most plausible additional requirement, suggested
: Qlso by Cohen and Heine, is the condition that the pseudo-

Kohn-Sham core orbitals are denoted by,u, ....Un.  ghital should minimize the expectation value of the kinetic

The valence orbitab is given by energy operator, i.e., it should be the “smoothest”’ pseudo-

N orbital. In this work this condition was applied to determine
@Zl!/—z au;, (5) the pseudo-orbitaly, i.e., the pseudopotential coefficients
i=1 a;

The valence kinetic energy is given by the expectation

where ¢ is the pseudo-orbital and;=(u;|). Substituting value of the kinetic energy operatbs — V2

¢ into the Kohn-Sham equation for the valence electron

(~1V2+u Je=cg ®) _(wltly) o
“ (1 ©
we obtain the following equation fap:
1o The minimization ofT leads to
-5V +UKS+vp)¢/=st//. (7) )
. . o (sylt=T[y)=0. (10
The local Phillips-Kleinman pseudopotentig} is given by
N Using Eq.(5) we obtain
; :E a_(S_Si)Ui ®)
PET oy (Ult=Tly)=0 (j=1,...N). (12)

It was observed by Cohen and Heifie] that the defini- ; ;
tion of the pseudopotential is not uniquely determined. The From Eqs.(5), (6), and(11) a set of equations can be gained

showed that the pseudo-orbital can be subjected to an adﬁlgr the coefficientsx;
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FIG. 4. The Kohn-Sham potential, the pseudopotential, and the
FIG. 2. Orbitals and the pseudo-orbital of the Na atom. modified potential for the Li atom.
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FIG. 5. The Kohn-Sham potential, the pseudopotential, and the F|G. 7. The pseudo-orbital of the Li atom calculated by our-
selves and Szasz and McGinn.

modified potential for the Na atom.

N

our numerical results for the coefficiendss and Figs. 1-3

(“31'_1-)“1‘_21 “i<uj|va|“i>:<Uj|UKs|‘P> show the pseudo-orbitalg for these atoms. For comparison
they contain the Kohn-Sham orbitals, too. All the orbitals are
radial orbitals. As was expected, the pseudo-orbitals are

rather smooth.
Equation(12) can be solved for; self-consistently: the first Then pseudopotentials have been determined from Eq.

iteration is obtained by inserting simpdyinstead ofy in Eq. (8). The Kohn—Sh_gm potentlf'a\IeKS, the pseudopotenugls
(9) and then Eq(12) is a set of linear equations for the Up» @nd the modified potentials  +v, are presented in
coefficientse;. Then, using Eqgs(5) and (9), Eq. (12) is  Figs. 4—6. The potential barrier which prevents the valence
solved again to get the second iteration for the coefficient€lectron from falling into the core can be clearly seen.

a;. The procedure rapidly converges, leading to a self- As the input density was the Hartree-Fock density in our
consistent solution. Then Eqé5) and (8) give the pseudo- calculations, it is very natural to make a comparison with
orbital s and the pseudopotential, . calculations of Szasz and McGinil5]. They determined
pseudopotentials of Phillips-Kleinman type from Hartree-
Fock wave functions using the expression

(j=1,... N). (12

IV. RESULTS AND DISCUSSION

N oFF
- HF HF_ _HF ¥
Vp= i21 o (e €

wHF’

First, Kohn-Sham potentials have been determined from
electron densities. The Hartree-Fock data obtained recently
by Bungeet al. [14] have been used to construct the input
density. Calculations have been performed for the Li, Na,
and K atoms. where ¢ and ¢/ are the Hartree-Fock core orbitals and

From the Kohn-Sham orbitals pseudo-orbitals have beenrbital energies ang" and " are the pseudo-orbital and
calculated by minimizing the kinetic energy. Table | containsthe valence orbital energies, respectively.

(13
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FIG. 6. The Kohn-Sham potential, the pseudopotential, and the FIG. 8. The pseudopotential of the Li atom calculated by our-
modified potential for the K atom. selves and Szasz and McGinn.
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TABLE II. The orbital energiesin a.u) of the Li, Na, and K atoms calculated by ourselves and Szasz and

McGinn.
Our results Results of Szasz and McGinn
Atom 1s 2s 3s 4s 1s 2s 3s 4s
Li —2.0821 —0.1963 —2.7924 —0.1966
Na —38.0730 —2.2569 —0.1820 —40.7597 —-3.0737 -—-0.1811
K —128.9787 —13.0587 —1.3505 —0.1474 —133.7524 —14.7082 —1.9638 —0.1467

Figure 7 presents their and our pseudo-orbitals of the LNa*, and K* because Szasz and McGinn used them to con-
atom. These curves are quite close to each other. We hawtruct the pseudopotentials.

obtained similar results for the other two atoms. One can In conclusion, we can state that a method is worked out to
easily understand this as there is only a small difference bedetermine pseudopotential in the density-functional theory.
tween these close-to-exchange-only density-functional and@his method makes it possible to determine an exact pseudo-
the Hartree-Fock one-electron orbitpd. The main cause of potential if the exact electron density is available. If, how-
the difference between the pseudo-orbitaland 4", as can  ever, the input density is the Hartree-Fock density, a pseudo-
be seen from Eq5), lies in the difference of the coefficients potential very close to the exact exchange-only one can be
a;. Table | shows these coefficients. The differences beebtained.
tween the pseudopotential and modified potential determined

here and the ones calculated by Szasz and Mc@Gibhare

quite significant, as can be seen in Fig. 8 for the Li atom.
Comparing Egs(8) and(13) we can observe that the reason  This publication is based on work sponsored by the
for this difference is the deviation of the one-electron eigenHungarian—U.S. Science and Technology Joint Fund in co-
values. As Table Il demonstrates, the highest one-electroaperation with the National Science Foundation and the
orbitals are the same but all the others differ considerabl{Hungarian Academy of Sciences under Project No. 146/91.
[5,16]. Here the Hartree-Fock energies of the core orbitalsThis work has also been supported by OTKA Grants No.
are the one-electron energies of the ions "Li T16623 and No. F16621.
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