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A method is introduced that allows the construction of pseudopotentials in the density-functional theory.
This method is based on a procedure worked out by one of the authors@J. Phys. B26, 43 ~1993!; Philos. Mag.
B 69, 779~1994!# for determining Kohn-Sham potentials, one-electron orbitals, and energies from the electron
density. The Hartree-Fock densities of Bunge, Barrientos, and Bunge@At. Data Nucl. Data Tables53, 114
~1993!# are used to obtain the Kohn-Sham potentials of the Li, Na, and K atoms, and then Phillips-Kleinman-
type @Phys. Rev.116, 287 ~1959!; 118, 1153~1960!# pseudopotentials are calculated. The arbitrariness of the
pseudo-orbital is removed by minimization of the kinetic energy.

PACS number~s!: 31.15.Ew, 71.10.2w

I. INTRODUCTION

Pseudopotentials are widely used for a large variety of
problems. Recently, pseudopotentials have been introduced
into the density-functional theory@1#, too. These are based
on the local density approximation~LDA !.

The problem of obtaining the Kohn–Sham potential with
the knowledge of the electron density has become of consid-
erable interest@2,3#. Several methods have already been pro-
posed to solve this question@4–9#. One of the authors has
also presented such a method for determining Kohn-Sham
and exchange potentials in the exchange-only density-
functional theory@5#. Here, pseudopotentials determined by
this method are presented. These are exact pseudopotentials
of Phillips-Kleinman type@10#.

II. KOHN-SHAM POTENTIAL
IN THE DENSITY-FUNCTIONAL THEORY

First, the method obtaining Kohn-Sham potentialv
KS
,

one-electron orbitalsui , and energies« i is summarized@5#.
Usually the Kohn-Sham equations

@2 1
2¹21v

KS
~r !#ui~r !5« iui~r ! ~1!

are solved self-consistently using some kind of approxima-
tion for the exchange-correlation potentialvxc . If we know
the density, however, we can solve the inverse problem, i.e.,
we can determine the Kohn-Sham potential. A possible so-
lution to this problem is the following. Starting out from an
approximate potential the Kohn-Sham equations are solved
and the densityn(1) of the first iteration is determined. Then
the Kohn-Sham potential of the second iteration is con-
structed and the Kohn-Sham equations are solved again. The
process goes on until the density equals the input density.

If the process converges it converges to the true Kohn-
Sham potential corresponding to the input density because of
the Hohenberg-Kohn theorem. It was found that the starting
potential can be constructed using a simple LDA~e.g.,Xa)
potential. The Kohn-Sham potential in the (i11)th iteration

v
KS

~ i11!5Fg
% ~ i !

% input
1~12g!GvKS

~ i ! ~2!

is obtained from the potential and density of thei th iteration.
This scheme withg50.6 leads to an appropriate conver-
gence.

From the Kohn-Sham potential the exchange-correlation
potential can be readily obtained. If the exact density is
known, this procedure makes it possible to determine the
Kohn-Sham potential exactly. If, however, only the Hartree-
Fock density is available, one can obtain a very accurate
exchange potential. This is not the exact exchange potential
of the density-functional theory, though, because the
Hartree-Fock density does not equal exactly the exchange-
only density functional density. This question is detailed in
two recent papers@11,12#. It was found@11,12# that the rela-
tive difference in the exchange energy is about 1024,

UEx
HF@%#2Ex

KS@%#

Ex
HF@%#

U,4.431024. ~3!

Earlier @5# it was demonstrated that

UEx
HF@%#2Ex

KS@%
HF

#

Ex
HF@%#

U,1.531023. ~4!

So, though the exchange potential and energy obtained from
the Hartree-Fock density are not the exact exchange potential
and energy, they are very close to the exact ones.

III. CONSTRUCTION OF PSEUDOPOTENTIALS

With the knowledge of the Kohn-Sham one-electron or-
bitals and energies, pseudopotentials can be constructed. The

TABLE I. The pseudopotential coefficients of the Li, Na, and K
atoms calculated by ourselves and Szasz and McGinn.

Our results Results of Szasz and McGinn

Atom 1s 2s 3s 1s 2s 3s

Li 0.2072 0.1658
Na 0.0237 0.2443 0.0214 20.2193
K 0.0075 0.0617 0.3298 0.0052 0.0544 0.3022
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pseudopotentials are obtained using the method of Phillips
and Kleinman@10#.

Let us treat a system with one valence electron only. The
Kohn-Sham core orbitals are denoted byu1 ,u2 , . . . ,un .
The valence orbitalw is given by

w5c2(
i51

N

a iui , ~5!

wherec is the pseudo-orbital anda i5^ui uc&. Substituting
w into the Kohn-Sham equation for the valence electron

~2 1
2¹21v

KS
!w5«w ~6!

we obtain the following equation forc:

~2 1
2¹21v

KS
1vp!c5«c. ~7!

The local Phillips-Kleinman pseudopotentialvp is given by

vp5(
i51

N

a i

~«2« i !ui
c

. ~8!

It was observed by Cohen and Heine@13# that the defini-
tion of the pseudopotential is not uniquely determined. They
showed that the pseudo-orbital can be subjected to an addi-

tional requirement that does not disturb the exactness of the
theory. The most plausible additional requirement, suggested
also by Cohen and Heine, is the condition that the pseudo-
orbital should minimize the expectation value of the kinetic
energy operator, i.e., it should be the ‘‘smoothest’’ pseudo-
orbital. In this work this condition was applied to determine
the pseudo-orbitalc, i.e., the pseudopotential coefficients
a i .

The valence kinetic energyT is given by the expectation
value of the kinetic energy operatort̂52 1

2¹
2:

T5
^cu t̂uc&

^cuc&
. ~9!

The minimization ofT leads to

^dcu t̂2Tuc&50. ~10!

Using Eq.~5! we obtain

^uj u t̂2Tuc&50 ~ j51, . . . ,N!. ~11!

From Eqs.~5!, ~6!, and~11! a set of equations can be gained
for the coefficientsa i :

FIG. 1. Orbitals and the pseudo-orbital of the Li atom.

FIG. 2. Orbitals and the pseudo-orbital of the Na atom.

FIG. 3. Orbitals and the pseudo-orbital of the K atom.

FIG. 4. The Kohn-Sham potential, the pseudopotential, and the
modified potential for the Li atom.
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~« j2T!a j2(
i51

N

a i^uj uvKS
uui&5^uj uvKS

uw&

~ j51, . . . ,N!. ~12!

Equation~12! can be solved fora i self-consistently: the first
iteration is obtained by inserting simplyw instead ofc in Eq.
~9! and then Eq.~12! is a set of linear equations for the
coefficientsa i . Then, using Eqs.~5! and ~9!, Eq. ~12! is
solved again to get the second iteration for the coefficients
a i . The procedure rapidly converges, leading to a self-
consistent solution. Then Eqs.~5! and ~8! give the pseudo-
orbital c and the pseudopotentialvp .

IV. RESULTS AND DISCUSSION

First, Kohn-Sham potentials have been determined from
electron densities. The Hartree-Fock data obtained recently
by Bungeet al. @14# have been used to construct the input
density. Calculations have been performed for the Li, Na,
and K atoms.

From the Kohn-Sham orbitals pseudo-orbitals have been
calculated by minimizing the kinetic energy. Table I contains

our numerical results for the coefficientsa i and Figs. 1–3
show the pseudo-orbitalsc for these atoms. For comparison
they contain the Kohn-Sham orbitals, too. All the orbitals are
radial orbitals. As was expected, the pseudo-orbitals are
rather smooth.

Then pseudopotentials have been determined from Eq.
~8!. The Kohn-Sham potentialsv

KS
, the pseudopotentials

vp , and the modified potentialsv
KS

1vp are presented in
Figs. 4–6. The potential barrier which prevents the valence
electron from falling into the core can be clearly seen.

As the input density was the Hartree-Fock density in our
calculations, it is very natural to make a comparison with
calculations of Szasz and McGinn@15#. They determined
pseudopotentials of Phillips-Kleinman type from Hartree-
Fock wave functions using the expression

Vp5(
i51

N

a i
HF~«HF2« i

HF!
w i
HF

cHF, ~13!

wherew i
HF and « i

HF are the Hartree-Fock core orbitals and
orbital energies andcHF and«HF are the pseudo-orbital and
the valence orbital energies, respectively.

FIG. 5. The Kohn-Sham potential, the pseudopotential, and the
modified potential for the Na atom.

FIG. 6. The Kohn-Sham potential, the pseudopotential, and the
modified potential for the K atom.

FIG. 7. The pseudo-orbital of the Li atom calculated by our-
selves and Szasz and McGinn.

FIG. 8. The pseudopotential of the Li atom calculated by our-
selves and Szasz and McGinn.
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Figure 7 presents their and our pseudo-orbitals of the Li
atom. These curves are quite close to each other. We have
obtained similar results for the other two atoms. One can
easily understand this as there is only a small difference be-
tween these close-to-exchange-only density-functional and
the Hartree-Fock one-electron orbitals@5#. The main cause of
the difference between the pseudo-orbitalsc andcHF, as can
be seen from Eq.~5!, lies in the difference of the coefficients
a i . Table I shows these coefficients. The differences be-
tween the pseudopotential and modified potential determined
here and the ones calculated by Szasz and McGinn@15# are
quite significant, as can be seen in Fig. 8 for the Li atom.
Comparing Eqs.~8! and~13! we can observe that the reason
for this difference is the deviation of the one-electron eigen-
values. As Table II demonstrates, the highest one-electron
orbitals are the same but all the others differ considerably
@5,16#. Here the Hartree-Fock energies of the core orbitals
are the one-electron energies of the ions Li1,

Na1, and K1 because Szasz and McGinn used them to con-
struct the pseudopotentials.

In conclusion, we can state that a method is worked out to
determine pseudopotential in the density-functional theory.
This method makes it possible to determine an exact pseudo-
potential if the exact electron density is available. If, how-
ever, the input density is the Hartree-Fock density, a pseudo-
potential very close to the exact exchange-only one can be
obtained.
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TABLE II. The orbital energies~in a.u.! of the Li, Na, and K atoms calculated by ourselves and Szasz and
McGinn.

Our results Results of Szasz and McGinn

Atom 1s 2s 3s 4s 1s 2s 3s 4s

Li 22.0821 20.1963 22.7924 20.1966
Na 238.0730 22.2569 20.1820 240.7597 23.0737 20.1811
K 2128.9787 213.0587 21.3505 20.1474 2133.7524 214.7082 21.9638 20.1467
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