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Stochastic maps are developed and used for first order reaction networks to decide whether the de-
terministic kinetic approach is appropriate for a certain evaluation problem or the use of the compu-
tationally more demanding stochastic approach is inevitable. On these maps, the decision between
the two approaches is based on the standard deviation of the expectation of detected variables: when
the relative standard deviation is larger than 1%, the use of the stochastic method is necessary. Four
different systems are considered as examples: the irreversible first order reaction, the reversible first
order reaction, two consecutive irreversible first order reactions, and the unidirectional triangle re-
action. Experimental examples are used to illustrate the practical use of the theoretical results. It is
shown that the maps do not only depend on particle numbers, but the influence of parameters such
as time, rate constants, and the identity of the detected target variable is also an important factor.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758458]

INTRODUCTION

Both experimental results and theoretical considerations
show that the traditional deterministic approach to chemical
kinetics should be replaced by stochastic models when deal-
ing with relatively low numbers of individual molecules or
ions.1–6 The continuous time discrete state (CDS) stochastic
approach2, 5 recognizes the fact that chemical reactions oc-
cur as a sequence of individual molecular events rather than
changes in a continuous concentration-time function and pro-
vides a consistent description of natural fluctuations, which
are inherent in every chemical system. It is now understood
that the application of the CDS approach may be necessary
even when the number of involved particles is quite large,
e.g., autocatalysis7, 8 or chiral amplification5, 6, 9–11 gives rise
to macroscopic fluctuations under certain conditions. In many
cases, it is an important question to decide whether a par-
ticular kinetic problem can be solved by the computation-
ally much less intensive deterministic approach, or the use
of mathematically often more demanding stochastic models
is inevitable.

Stochastic mapping, which was used in essence in at least
three recent articles8, 12, 13 but was only named so in the last
one,13 attempts to answer this question by identifying the pa-
rameter range of a given kinetic scheme in which only the
stochastic approach is viable. These earlier papers were con-
cerned with chiral amplification,12 extinction phenomena in
autocatalysis,8 and the Michaelis-Menten mechanism.13 The
stochastic region of a given scheme was defined in them as
the set of parameter values for which the stochastic approach
shows that the relative standard error of the target variable
is larger than a pre-set critical value (usually 1%). Kurtz’s
theorem14 ensures that the stochastic description of any re-
active system converges to the deterministic solution when

a)Fax: 36-52-518-660. Tel: 36-52-512-900 Ext.: 22373. E-mail:
lenteg@delfin.unideb.hu.

the volume approaches infinity. Consequently, a sufficiently
small standard deviation of the expectation of a variable cal-
culated based on the stochastic approach guarantees that the
stochastic expectation is sufficiently close to the determinis-
tic solution. Recently, a different sequence of thought further
re-affirmed these conclusions.15

The stochastic description of chemically first order (or
monomolecular) reaction networks has been the subject of
a surprisingly large number of studies at various levels of
sophistication.16–29 From a theoretical point of view, these
reaction schemes offer conceptual clarity and simplicity in
mathematical formalism, which often facilitates the recogni-
tion of known probability distributions in the results. Practical
interest is also increasing in these processes due to improve-
ments in single molecule detection.30–35 Therefore, the objec-
tive of this article is to develop stochastic maps for first order
reaction networks. General strategies toward building these
maps will be illustrated by a number of specific examples in-
volving particularly important reaction schemes. The use of
these maps will also be demonstrated using some published
experimental data. The main text of the article will only state
relevant equations, the derivations are deposited in the sup-
plementary material.36

RESULTS AND DISCUSSION

A general first order reaction sequence

A general network of first order reactions involves n dif-
ferent chemical species (A1, A2, . . . , An), every one of which
can convert to any other, i.e., chemical reactions are possible
for all pairs of species present

Ai

ki,j−−→ Aj . (1)

Therefore, ki,j is the rate constant characteristic of the first
order chemical process converting species Ai into species Aj
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and has the unit s−1. It is practical to complete these series
of rate constants with identity constants ki,i = 0. The net-
work thus features a maximum of n(n − 1) different rate
constants, some of which may still be zero. It is also notable
that these constants are usually not fully independent of each
other because chemical considerations, most often of thermo-
dynamic nature, can set certain relationships between them.
Nevertheless, the general treatment presented in this article
is valid for any values of the rate constants and does not de-
pend on the mentioned relationships. The rate constants are
conveniently given in a form of a matrix, which is denoted k

here

k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k1,2 · · · k1,n

k2,1 0 · · · k2,n

...
...

. . .
...

kn,1 kn,2 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Equation (1) is written with a set 1:1 stoichiometry for each
process in the reaction network. In this case, conservation of
matter ensures that the sum of concentrations is always the
same. In deterministic calculations, where concentrations are
used, the mathematical description can often be simplified
by introducing dimensionless concentrations. For the present
problem, dimensionless concentrations (�i) are introduced
by dividing the concentration of species Ai with the con-
stant (i.e., time-independent) sum of concentrations of all
species

�i = [Ai]∑n
j=1 [Aj ]0

. (3)

If the reactions in Eq. (1) do not all show 1:1 stoichiometry,
this should be reflected appropriately in the definition of di-
mensionless concentrations.

The deterministic description
of the reaction network

Although this work aims to give a stochastic description
of the chosen model, it is quite useful to describe the deter-
ministic approach and its solution because they will be shown
to be notably significant in the stochastic solutions as well.
The differential equations for the dimensionless concentra-
tions are as follows:

d�i

dt
= −

⎛
⎝ n∑

j=1

ki,j

⎞
⎠ �i +

n∑
j=1

kj,i�j . (4)

This is a system of ordinary, linear, first order, homoge-
neous differential equations, the solution of which is well
known from mathematics. One way to state this solution
uses matrix notations. For this purpose, matrix k must be

transposed ( kT) and completed by adding diagonal elements.
The resulting matrix is denoted k′ and has the following

composition:

k′ = kT +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
n∑

i=1

ki,1 0 · · · 0

0 −
n∑

i=1

ki,2 · · · 0

...
...

. . .
...

0 0 · · · −
n∑

i=1

ki,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

This matrix simplifies stating Eq. (4) if the dimensionless con-
centrations are used in the form of a vector (�)

d�

dt
= k′ �. (6)

The solution of this equation is most conveniently given using
the matrix exponential function5 (expm):

�(t) = expm(k′t)�(0). (7)

�(0) represents the initial conditions, i.e., the values of di-
mensionless concentration at t = 0. The individual �i func-
tions can be given using the eigenvalues of matrix k′. Let m be
the number of different eigenvalues of matrix k′, λ1, λ2, . . . ,
λm the eigenvalues themselves, l1, l2, . . . , lm the multiplicities
of these eigenvalues, in order. The following equation holds
for the multiplicities:

n =
m∑

i=1

li . (8)

The sums of all columns in matrix k′ are zero, therefore the
matrix itself is singular and at least one of its eigenvalues is
zero. The solution given in Eq. (7) can also be given without
using the matrix exponential function

�i(t) =
m∑

j=1

li∑
h=1

Ci,j,ht
h−1eλj t . (9)

Complex numbers may arise as eigenvalues, but as all the ele-
ments of matrix k′ are real, they can only appear in conjugate
pairs. In this case, it is always possible to re-formulate the
solution using the real sine and cosine functions only, thus
eliminating the need for using the complex exponential func-
tion. The values of constants Ci,j,h can be given based on the
initial conditions.

The stochastic description of the reaction network

As explained earlier, the CDS method will be used here
to create stochastic maps of first order reaction networks. The
CDS solution of this problem was the subject of several ear-
lier articles16–29 and will only be covered here to the extent
that understanding of the stochastic maps requires. First, it is
necessary to identify all possible states of the system. In a
given state, let ai mean the number of molecules for species
Ai and N0 the overall number of particles (these could be both
ions and molecules, later discussion will usually call them
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molecules for simplicity). Conservation of mass ensures that
the sum of all ai values will be N0

N0 =
n∑

i=1

ai. (10)

The number of states can be given by a combinatorial line
of thought: it is identical to the number of different non-
negative integer solutions of Diophantine Eq. (10). The math-
ematics of problems like this was discussed earlier Dahmen
and Micchelli,37 and the number of states can be given by a
binomial coefficient

M =
(

N0 + n − 1

n − 1

)
= (N0 + n − 1)!

(n − 1)!N0!
. (11)

As pointed out in the earlier literature of the CDS method,5

an enumerating function is often useful in solving stochastic
kinetics problems. The enumerating function identifies each
possible state with a unique positive integer. An enumerating
function for the reaction network defined in Eq. (1) is given
as follows:

f (a1, a2, . . . , an)

= 1 +
n∑

i=2

ai∑
j=1

⎛
⎜⎝N0 − j + i − 1 −

n∑
h=i+1

ah

i − 2

⎞
⎟⎠. (12)

The CDS master equation of the first order reaction network
is given as follows:

dP (a1, a2, . . . , an)

dt

= −
⎛
⎝ n∑

j=1

n∑
i=1

aiki,j

⎞
⎠ P (a1, a2, . . . , an)

+
(

n∑
j=1

n∑
i=1

(ai + 1)ki,j

×P (a1, a2, . . . , ai + 1, . . . , aj − 1, . . . , an)

)
. (13)

This master equation, similarly to Eq. (4), is a system of or-
dinary linear, first order, homogeneous differential equations.
It can also be stated in a matrix form using the enumerat-
ing function.4 In this case, the matrix (denoted �) is often
called the infinitesimal transition probability matrix or evo-
lution matrix. For a single molecule in the system (N0 = 1),
which is understood to have important implications in chiral
systems,38–40 master Eq. (13) is in essence identical to Eq. (4)
and � = k′. This observation makes the connection between
the deterministic and stochastic approaches evident.

In the CDS approach, the time-dependent probabilities
P(a1, a2, . . . , an) carry all the information about the system.
Nevertheless, it is extremely useful to define time-dependent
descriptors of the system, which have chemical meaning.
One such descriptor is the expectation for the numbers of

molecules Ai. Its definition is

〈ai〉 =
∑

all M states

aiP (a1, a2, . . . , an). (14)

The expectation for the square of the numbers of molecules
Ai is given as

si,i =
∑

all M states

a2
i P (a1, a2, . . . , an). (15)

Using the values of si,i, the standard deviation for the 〈ai〉 can
be calculated

σi =
√

si,i − 〈ai〉2. (16)

Next, the probability of having exactly a certain number (N)
of Ai molecules is defined by summing the probabilities of all
states with ai = N

Pi(N ) =
∑

all ai=N states

P (a1, a2, . . . , ai = N, . . . , an). (17)

For many problems, it is sufficient to find the values of the
descriptors defined in Eqs. (14)–(17) rather than the entire set
of P(a1, a2, . . . ,an) functions. It can be shown that the expec-
tation for molecule numbers can be obtained using the deter-
ministic solution in a quite straightforward way

〈ai〉 = �iN0. (18)

To determine the standard error, an additional quantity needs
to be defined, which is characteristic of the expectation for the
product of a pair of molecule numbers

si,j = sj,i =
∑

all M states

aiajP (a1, a2, . . . , an). (19)

Differential equations for si,i and si,j follow from Eq. (13):

dsi,i

dt
= (−2si,i + N0�i)

n∑
j=1

ki,j +
n∑

j=1

(2si,j + N0�j )kj,i ,

(20)

dsi,j

dt
= −si,j

n∑
h=1

(kj,h + ki,h) − N0�iki,j − N0�jkj,i

+ si,iki,j + sj,j kj,i +
n∑

h=1,h �=j,h �=i

(si,hkh,j + sj,hkh,i).

(21)

Through differential Eqs. (20) and (21), the time dependences
of si,i and si,j can be given without solving Eq. (13). Therefore,
the standard deviation of 〈ai〉 can be calculated.

In the case of first order reaction networks, there is a
particularly useful line of thought, which can simplify some
considerations. This could be termed the method of inde-
pendent molecules, which can be employed because — as a
consequence of first order processes only — there are no in-
teractions between molecules and the state of each individ-
ual molecule can be described without knowing about the
states of the rest of the molecules in the system. This line of
thought is particularly easily used under conditions when the
initial state of the system contains only one type of molecules,
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which is not uncommon in practice. If this holds, even P(a1,
a2, . . . , an) functions can be given in a simple way using �i

functions

P (a1, a2, . . . , an) = N0!∏n
i=1 ai!

n∏
i=1

�
ai

i . (22)

Probability Pi(N), originally defined in Eq. (17) also has a
simple form for this case

Pi(N ) =
(

N0

N

)
�N

i (1 − �i)
N0−N . (23)

The probability distribution for Ai molecules is therefore de-
scribed by a binomial distribution. This is in agreement with
Eq. (18), and also opens a much simplified way to give the
standard deviation of 〈ai〉

σi =
√

�i(1 − �i)N0. (24)

Interferences form detection efficiency

In actual measurements when the system is analyzed for
one of the components, the detection method cannot normally
identify all molecules individually. Therefore, the measure-
ment method is characterized by a detection efficiency (p),
which is the probability that a given individual molecule will
influence the signal, or, in a slightly different way of thought,
the fraction of detected molecules. If any sampling occurs
during analysis (i.e., only a fraction of the entire volume is
analyzed), this can be also incorporated into the value of p.
Under these conditions, the probability of detecting exactly N
molecules of Ai is given as

Di(N ) =
N0∑

j=N

(
j

N

)
pN (1 − p)j−NPi(N ). (25)

For the case when only one type of molecule is present ini-
tially, this formula is simplified into one describing a binomial
distribution

Di(N ) =
(

N0

N

)
pN�N

i (1 − p�i)
N0−N . (26)

The expectation and standard error of Di is simply obtained
using Eqs. (18) and (24) with p�i instead of �i

〈Di〉 = p�iN0, (27)

σDi
=

√
p�i(1 − p�i)N0. (28)

Irreversible first order decay

Irreversible first order decay is the case when
n = 2, k1,2 > 0, and k2,1 = 0. This is the classical ex-
ample of first order processes invariably present in all
introductory chemical kinetics textbooks. In many cases,
chemical reactions are simplified to this mathematical de-
scription by the method flooding (i.e., using all the reactants
in large excess except the limiting reagent).41 The stochastic

nature of irreversible first order decay is described in some
depth and used quite routinely in radioactive decay.42, 43

In general, stochastic mapping identifies the region of
the parameter space in which using stochastic kinetics is in-
evitable. This also depends on the property that is examined
(target variable). Therefore, even for one given scheme, sev-
eral different maps can be used depending on what the exper-
imentally detectable variable is.

For an irreversible first order reaction, the stochastic re-
gion as defined by the time-dependent number of product
molecules (A2) is identified by the following expression:

0.01 ≤
√

e−k1,2t

(1 − e−k1,2t )N0
. (29)

A graphical representation of the stochastic map is given in
Fig. 1. It is quite convenient to use the dimensionless compos-
ite variable k1,2t rather than the two parameters individually.
This gives a simpler map without any loss of information, as
the map only depends on the product of these parameters but
not in any other way. The stochastic region in Fig. 1 is located
in the lower left-hand corner, whereas the deterministic re-
gion lies above it. The map shows experimental data points as
well. Point A represents the conditions under which the half-
life of the radioactive isotope bismuth-209 was determined.43

This is probably the isotope with the longest half-life
(1.9 × 1019 year) for which the decay constant was deter-
mined by real-time monitoring of alpha decay events (41
events in 100 h in a sample of 45,7 g Bi4Ge3O12). Point A lies
firmly in the stochastic region of the map: indeed, the authors
of the article used a stochastic method of evaluation,43 which
is standard for extremely slow radioactive decay. The key ex-
perimental achievement in that work was the 100% detection
efficiency.

Point B in the same map shows the experiments
through which the half-life of the isotope tellurium-130 was
determined.42 In this case, a particular piece of Bi2Te3 min-
eral was dated to be 93 million years old by an independent

FIG. 1. Stochastic map for the irreversible first order reaction using the num-
ber of product molecules as the target variable. A: Conditions for the determi-
nation of the half-life of bismuth-209.43 B: Conditions for the determination
of the half-life of tellurium-130.42 C: Conditions for the 40Ar/39Ar dating of
jarosite.44 D: Typical pseudo-first order stopped-flow measurements. E: Typ-
ical pseudo-first order laser flash photolysis measurements. F: Single-enzyme
kinetics.45 G: Single-enzyme kinetics.46
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method and then the decay constant of tellurium-130 was
estimated by measuring the excess amount of its daughter iso-
tope xenon-130 enclosed in the crystals. The results showed
that the radioactive half-live of tellurium-130 is 7.9 × 1020

years. Although this is longer than for bismuth-209, point B
lies in the deterministic region of the map because of the much
longer decay time elapsed (93 million years instead of 100 h).

A further experimental point from radiochemistry is de-
fined in Fig. 1 by a study reporting 40Ar/39Ar dating of jarosite
samples (point C).44 As already pointed out, kinetic obser-
vations can often be simplified to first order mathematics
by applying suitably chosen conditions.41 The range of typ-
ical pseudo-first order experiments by the stopped-flow (D)
and laser flash photolysis (E) techniques is shown by lines
in Fig. 1. Furthermore, the Michaelis-Menten mechanism for
enzyme kinetics is also simplified into a pseudo-first order
scheme under the limit of low substrate concentration.13 Two
such experiments are shown in Fig. 1: point F describes sin-
gle enzyme activity studies using Lipase B from Candida
Antarctica,45 whereas line G represents similar experimen-
tal studies with a β-galactosidase enzyme.46 Fig. S1 in the
supplementary material36 gives a different, three-dimensional
view of the map shown in Fig. 1.

An alternative, somewhat limited version of this map is
shown in Fig. 2 for N0 = 105. In this graph, the x axis is the
same as in Fig. 1, but the y axis shows the expectation of prod-
uct molecule numbers. The standard error (±σ ) of the expec-
tation is also displayed by a pair of blue dotted lines around
the expectation. In addition, two independent runs of stochas-
tic simulation for irreversible first order decay carried out by
the Gillespie algorithm47 are also shown. It is clearly seen that
the deterministic region lies at reaction times where the stan-
dard error line is indistinguishable from the expectation line.
The markers in the graph show that the Monte Carlo simula-
tions of the Gillespie method are in excellent agreement with
the analytically derived probability data.

Another quite common experimental problem is finding a
the value of k1,2t from known values of N and N0. A stochas-
tic map based on this target variable is shown in Fig. 3. In

FIG. 2. Expectation of the number of product molecules in the irreversible
first order reaction using as a function of dimensionless time. Red solid line:
expectation values. Blue dotted lines: standard errors (±σ ) of the expecta-
tion. Green and purple markers: two runs of simulation using the Gillespie
algorithm.

FIG. 3. Stochastic map for the irreversible first order reaction using the prod-
uct of decay constant and time as the target variable. A: Conditions for the
determination of the half-life of bismuth-209.43 B: Conditions for the deter-
mination of the half-life of tellurium-130.42 F: Single-enzyme kinetics.45

practice, this could mean either the determination of the age
of a sample using a known rate constant, or determining the
rate constant of a process for which the time of experiment
is known. If N particles remain in an experiment out of an
initial number of N0, the expectation for k1,2t can be given as
follows:

〈k1,2t〉 = ln
N0 + 1

N + 1
. (30)

The standard deviation can be calculated by the following
equation:

σk1,2t = ln

(
1 +

√
N0 − N

(N + 1)(N0 + 2)

)
. (31)

The previous examples from the radioactive decay of the
bismuth-209 and tellurium-130 isotopes42, 43 are shown in
Fig. 3 as points A and B, whereas results from one of the
enzymatic studies with the lipase45 are represented by point
F. The part labeled “undetermined” in Fig. 3 is the part where
N = N0 or N = 0, in which case no estimate for the value of
k1,2t can be given, only lower or upper limits.

Reversible first order reaction

A reversible first order reaction is the case n = 2, k1,2

> 0, and k2,1 > 0. Only the case k21 = k12 > 0 will be
dealt with here as it has experimentally studied relevance in
the field of racemization reactions. For the number of prod-
uct molecules (A2), the stochastic region is determined as
follows:

0.01 ≤
√

1 + e−2k1,2t

(1 − e−2k1,2t )N0
. (32)

The stochastic map drawn based on Eq. (32) is shown in
Fig. 4 (a three-dimensional view is given as Fig. S2 in the
supplementary material36). Similarly to Figs. 1 and 3, some
experimental data are shown on this map. These experimen-
tal data were generated using the principle of the amino acid
clock,48, 49 which is based on the natural racemization ten-
dency of amino acids. Apart from a few bacterial systems,
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FIG. 4. Stochastic map for the reversible first order reaction using the num-
ber of product molecules as the target variable. A: Conditions for Ostrich egg
shell dating by amino acid racemization.48 B: Conditions for silk dating by
amino acid racemization.49

amino acids only occur in life as L enantiomers. As time
progresses, D amino acids gradually appear in the remains of
organisms because of a natural racemization process. This ef-
fect can be used for dating samples when the external temper-
ature is known with reasonable accuracy, although some geo-
chemical technical problems might arise in practice. Vertical
line A in Fig. 4 shows results form a study that dated 750 000-
year old ostrich eggshells found in the Kalahari desert.48

These measurements were originally designed to resolve the
contradiction in the results obtained in two radiocarbon-based
determinations. Unfortunately, the original article does not
give information about the sample sizes measured; therefore,
a vertical line is used to show the location of the experiments
on the map. This line shows that the deterministic description
can be used in this case if the number of detected molecules
exceeds 105 (about 0.2 amol). Silk samples aged 20-2400
years have also been dated based on the same principles.49

In this case, the line is horizontal because of the overall two
orders of magnitude variation in sample ages. All determina-
tions in that study49 fell into the deterministic region of the
model.

Two consecutive irreversible first order reactions

Two consecutive irreversible first order reactions can be
described by n = 3, k1,2 > 0, k2,3 > 0, and k1,3 = k2,1 = k3,1

= k3,2 = 0 in the general scheme of first order reaction net-
works. The most commonly used example of these systems
is a two-step radioactive decay series. The stochastic map
shown in Fig. 5 is based on the number of intermediate (A2)
molecules. The stochastic region can be given by the follow-
ing expression:

0.01 ≤
√

k2,3 − k1,2 − k1,2e−k1,2t + k1,2e−k2,3t

(k1,2e−k1,2t − k1,2e−k2,3t )N0
. (33)

A special case is k1,2 = k2,3, which would lead to a some-
what different formula. In the map shown as Fig. 5 (a three-
dimensional view is given as Fig. S3 in the supplementary
material36), the x axis shows k1,2t and the y axis shows N0

FIG. 5. Stochastic map for the two consecutive first order reactions using the
number of intermediate molecules as the target variable. A: Line represent-
ing the first two steps of the uranium-238 radioactive decay series with the
estimated age of the Universe as reaction time. B: Conditions for 230Th/234U
dating of mollusk shells.50 C: Conditions from a typical double exponential
stopped-flow study.51

similarly to Figs. 1 and 4. However, the map is also de-
pendent on a parameter other than those displayed on the
two axes, this is the ratio of rate constants k2,3 and k1,2. In
Fig. 5, the boundaries between the stochastic and determin-
istic regions are indicated for six possible ratios between
10−8 and 1012 by separate lines. Vertical line A is drawn for
the 238U → 234Th → 234Pa radioactive decays series, where
k2,3/k1,2 = 6.7 × 1010 and the sample is assumed to be as old
as the Universe (1.3 × 1010 years). Another radiochemical
example is provided by line B, which represents 230Th/234U
dating of mollusk shells.50 It is also possible to simplify a
chemical system to a series of two consecutive irreversible
first order reactions by the method of flooding.41 An example
in Fig. 5 is provided by line C, which uses the conditions of
a typical double exponential stopped-flow study.51 An alter-
native representation similar to Fig. 2 is given in Fig. S4 in
the supplementary material.36 It should be noted that this map
can also be used for the first intermediate of a longer series of
consecutive first order reactions, as the mathematical descrip-
tion does not depend on the processes appearing later in the
system.

The triangle reaction

The unidirectional triangle reaction is obtained by setting
n = 3, k1,2 > 0, k2,3 > 0, k3,1 > 0, and k2,1 = k3,2 = k1,3

= 0 in the general scheme. This scheme has been the notable
subject of significant theoretical considerations.52–57 Only the
case k1,2 = k2,3 = k3,1 will be analyzed here, as this is a very
special scheme that does not adhere to detailed balance (or
microscopic reversibility) yet it does not violate the second
law of thermodynamics.57 It can be shown that sine and cosine
functions appear in the solutions in this case from an initial
state where only A1 is present

�1 = 1

3
+ 2

3
e− 3

2 k1,2t cos

(√
3

2
k1,2t

)
, (34)
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FIG. 6. Stochastic map for the unidirectional triangle reaction using the
number of the second product molecule as the target variable.

�2 = 1

3
− 1

3
e− 3

2 k1,2t cos

(√
3

2
k1,2t

)

+
√

3

3
e− 3

2 k1,2t sin

(√
3

2
k1,2t

)
, (35)

�3 = 1

3
− 1

3
e− 3

2 k1,2t cos

(√
3

2
k1,2t

)

−
√

3

3
e− 3

2 k1,2t sin

(√
3

2
k1,2t

)
. (36)

The stochastic map shown in Fig. 6 can be obtained after some
numerical calculations for the number of A3 molecules as the
target variable. Although the scheme itself does not adhere
to detailed balance, the map actually looks quite normal. In
fact, there is a high amount of similarity with the map of the
reversible first order reaction shown in Fig. 4.

Conclusion

This work has shown that the appropriate kinetic ap-
proach (stochastic or the deterministic) for any evaluation
problem in the field of chemically first order reaction net-
works can be decided based on stochastic maps. These maps
do not only depend on particle numbers, the influence of pa-
rameters such as time, rate constants and the identity of the
detected target variable is also an important factor. Combina-
tions of parameters (for example, the product of time with a
first order rate constant) are often more conveniently used in
the construction of stochastic maps than individually consid-
ered parameters.
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