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Abstract
Weather forecasting is mostly based on the outputs of deterministic numerical weather forecasting models.
Multiple runs of these models with different initial conditions result in a forecast ensemble which is applied
for estimating the future distribution of atmospheric variables. However, as these ensembles are usually
under-dispersive and uncalibrated, post-processing is required. In the present work, Bayesian Model
Averaging (BMA) is applied for calibrating ensembles of wind speed forecasts produced by the operational
Limited Area Model Ensemble Prediction System of the Hungarian Meteorological Service (HMS). We
describe two possible BMA models for wind speed data of the HMS and show that BMA post-processing
significantly improves the calibration and accuracy of point forecasts.
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1 Introduction

The aim of weather forecasting is to give a reliable pre-
diction of the future states of the atmosphere on the basis
of present observations, prior forecasts and mathematical
models describing the dynamics (physical behaviour) of
the atmosphere. These models consist of sets of non-lin-
ear partial differential equations which can only be solved
numerically. The problem with these numerical weather
prediction models is that the solutions depend strongly
on the initial conditions and also on other uncertainties
related to the numerical weather prediction process.
Therefore, the results of such models are never fully
accurate. A possible solution to address this problem is
to run the model with different initial conditions and pro-
duce an ensemble of forecasts. With the help of an
ensemble, one can estimate the probability distribution
of future weather variables which allows probabilistic
weather forecasting (GNEITING and RAFTERY, 2005),
where not only the future atmospheric states are pre-
dicted, but also the related uncertainty information. The
ensemble prediction method was proposed by LEITH
(1974) and since its first operational implementation
(BUIZZA, et al., 1993; TOTH and KALNAY, 1997), it has
became a widely used technique all over the world. How-
ever, although, e.g. the ensemble mean on average yields
better forecasts of a meteorological quantity than any of
the individual ensemble members, the ensemble is usu-
ally under-dispersive and in this way, uncalibrated. This
characteristic has been observed with several operational

ensemble prediction systems. For an overview, see e.g.
BUIZZA et al. (2005).

The Bayesian Model Averaging (BMA) method for
post-processing ensembles in order to calibrate them
was introduced by RAFTERY et al. (2005). The basic idea
of BMA is that for each ensemble member forecast, there
is a corresponding conditional probability density func-
tion (PDF) that can be interpreted as the conditional
PDF of the future weather quantity provided the consid-
ered forecast is the best one. The BMA predictive PDF of
the future weather quantity is then the weighted sum of
the individual PDFs corresponding to the ensemble mem-
bers and the weights are based on the relative perfor-
mances of the ensemble members during a given
training period. In RAFTERY et al. (2005), the BMA
method was successfully applied to obtain 48 hour fore-
casts of surface temperature and sea level pressure in the
North American Pacific Northwest based on the 5 mem-
bers of the University of Washington Mesoscale Ensem-
ble (GRIMIT and MASS, 2002). These weather quantities
can be modeled by normal distributions, so the predictive
PDF is a Gaussian mixture. Later, SLOUGHTER et al.
(2007) developed a discrete-continuous BMA model
for precipitation forecasting, where the discrete part cor-
responds to the event of no precipitation, while the cubic
root of the precipitation amount (if it is positive) is mod-
eled by a gamma distribution. In SLOUGHTER et al.
(2010), the BMA method was used for wind speed fore-
casting and the component PDFs follow a gamma distri-
bution. Finally, using a von Mises distribution to model
angular data, BAO et al. (2010) introduced a BMA
scheme to predict surface wind direction.

In the present work, we apply the BMA method for
calibrating ensemble forecasts of wind speed produced
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by the operational Limited Area Model Ensemble Predic-
tion System (LAMEPS) of the Hungarian Meteorological
Service (HMS) called ALADIN-HUNEPS (HÁGEL,
2010; HORÁNYI et al., 2011). ALADIN-HUNEPS covers
a large part of Continental Europe with a horizontal res-
olution of 12 km and it is obtained by dynamical down-
scaling (by the ALADIN limited area model) of the
global ARPEGE based PEARP system of Météo France
(HORÁNYI et al., 2006; DESCAMPS et al., 2009). The
ensemble consists of 11 members, 10 initialized from
perturbed initial conditions and one control member from
the unperturbed analysis. As this construction implies
that the ensemble contains groups of exchangeable fore-
casts (the ensemble members cannot be distinguished),
for post-processing one has to use the modification of
BMA as suggested by FRALEY et al. (2010).

2 Data

As was mentioned in the introduction, BMA post-pro-
cessing of ensemble predictions was applied for wind
speed data obtained from the ALADIN-HUNEPS sys-
tem. The data base contains 11 member ensembles (10
forecasts started from perturbed initial conditions and
one control) of 42 hour forecasts for 10 meter wind speed
(given in m/s) for 10 major cities in Hungary (Miskolc,
Szombathely, Györ, Budapest, Debrecen, Nyı́regyháza,
Nagykanizsa, Pécs, Kecskemét, Szeged) produced by
the ALADIN-HUNEPS system of the HMS, together
with the corresponding validating observations for the
period between October 1, 2010 and March 25, 2011
(176 days, or 1760 data points). The forecasts are initial-
ized at 18 UTC. The startup speed of the anemometers
measuring the validating observations is 0:1 m/s. The
data set is fairly complete since there are only two days
(18.10.2010 and 15.02.2011) where three ensemble
members are missing for all sites and one day
(20.11.2010) when no forecasts are available.

Fig. 1 shows the verification rank histogram of the
raw ensemble. This is the histogram of ranks of validat-
ing observations with respect to the corresponding
ensemble forecasts computed from the ranks at all sta-
tions and over the whole verification period (see e.g.
WILKS, 2006, Section 7.7.2). This histogram is far from
the desired uniform distribution as in many cases the
ensemble members either underestimate or overestimate
the validating observations (the ensemble range contains
the observed wind speed in 61.21% of the cases, while its
nominal value equals 10/12, i.e 83.33%). Hence, the
ensemble is under-dispersive and in this way it is uncal-
ibrated. Therefore, statistical post-processing is required
to improve the forecasted probability density function.

3 The model and diagnostics

To obtain a probabilistic wind speed forecast, the modifi-
cation of the BMA gamma model of SLOUGHTER et al.

(2010) for an ensemble with exchangeable members
(FRALEY et al., 2010) was used. The first idea is to have
two exchangeable groups. One contains the control
denoted by fc while in the other are 10 ensemble mem-
bers corresponding to the different perturbed initial con-
ditions denoted by fl;1; . . . ; fl;10. In this way we assume
that the probability density function (PDF) of the fore-
casted wind speed, x equals:

pðxjfc; fl;1; . . . ; fl;10; b0; b1; c0; c1Þ

¼ xgðxjfc; b0; b1; c0; c1Þ þ
1� x
10

�
X10

j¼1
gðxjfl;j; b0; b1; c0; c1Þ; ð3:1Þ

where x 2 ½0; 1�, and g is the conditional PDF corre-
sponding to the ensemble members. As we are working
with wind speed data, gðxjf ; b0; b1; c0; c1Þ is a gamma
PDF with mean b0 þ b1f and standard deviation
c0 þ c1f . Here, both mean and standard deviation param-
eters are chosen to be the same for all ensemble members,
which reduces the number of parameters and simplifies
calculations. The mean parameters b0 and b1 are estimated
by linear regression, while the weight parameter, x and
the standard deviation parameters c0 and c1 are estimated
by the maximum likelihood method using training data
consisting of ensemble members and verifying observa-
tions from the preceding n days (the training period). In
order to handle the problem that wind speed values under
0.1 m/s are considered to be zero, the maximum likelihood
(ML) method for gamma distributions suggested by
WILKS (1990) is applied, while the maximum of the like-
lihood function is found with the help of EM algorithm
(MCLACHLAN and KRISHNAN, 1997). For more details,
see SLOUGHTER et al. (2010) and FRALEY et al. (2010).
Once the estimated parameters for a given day are avail-
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Figure 1: Verification rank histogram of the 11-member ALADIN-
HUNEPS ensemble. Period: October 1, 2010 – March 25, 2011.
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able, one can use either the mean or the median of the pre-
dictive PDF (3.1) as a point forecast.

Having a more careful look over the ensemble, one
can notice that there are some differences in the genera-
tion of the ten exchangeable ensemble members. To
obtain them, only five perturbations are calculated and
then they are added to (odd numbered members) and sub-
tracted from (even numbered members) the unperturbed
initial conditions (HORÁNYI et al., 2011). Fig. 2 shows
the plume diagram of the ensemble forecast of 10 meter
wind speed for Debrecen initialized at 18 UTC,
22.10.2010 (solid line: control; dotted line: odd num-
bered members; dashed line: even numbered members).
This diagram clearly illustrates that the behaviour of
ensemble member groups ffl;1; fl;3; fl;5; fl;7; fl;9g and
ffl;2; fl;4; fl;6; fl;8; fl;10g significantly differ from each
other. Therefore, in this way one can also consider a
model with three exchangeable groups: control, odd
numbered exchangeable members and even numbered
exchangeable members. This idea leads to the following
PDF of the forecasted wind speed x:

qðxjfc; fl;1; . . . ; fl;10; b0; b1; c0; c1Þ
¼ xcgðxjfc; b0; b1; c0; c1Þ

þ
X5

j¼1
ðxogðxjfl;2j�1; b0; b1; c0; c1Þ

þ xegðxjfl;2j; b0; b1; c0; c1ÞÞ; ð3:2Þ
where for weights xc;xo;xe 2 ½0; 1� we have
xc þ 5xo þ 5xe ¼ 1, while the definition of the PDF, g
and the parameters b0; b1; c0; c1 remains the same as for
the model (3.1). Obviously, both the weights and the
parameters can be estimated in the same way as before.

As an illustration, we consider the data and forecasts
for Debrecen for two different dates, 30.12.2010 and
17.03.2011, for models (3.1) and (3.2). Figs. 3a and 3b
show the PDFs of the two groups in model (3.1), the
overall PDFs, the median forecasts, the verifying obser-
vations, the first and last deciles and the ensemble mem-
bers. The same functions and quantities can be seen in

Figs. 3c and 3d, where besides the overall PDF, we have
the three component PDFs and three groups of ensemble
members. On 30.12.2010, the spread of the ensemble
members is reasonable and the ensemble range contains
the validating observation (3.2 m/s). In this case, the
ensemble median (3.77 m/s) overestimates, while BMA
median forecasts corresponding to the two- and three-
group models (3.29 m/s and 3.22 m/s, respectively) are
quite close to the true wind speed. A different situation
is illustrated in Figs. 3b and 3d where the spread of the
ensemble is even larger and all ensemble members under-
estimate the validating observation (6.1 m/s). Obviously,
the same holds for the ensemble median (3.3 m/s) and the
BMA median forecasts corresponding to models (3.1)
and (3.2), as they also give inaccurate results (3.34 m/s
and 3.08 m/s, respectively).

In order to check the overall performance of the prob-
abilistic forecasts (based on (3.1) and (3.2)) in terms of a
probability distribution function, the mean continuous
ranked probability scores (CRPS; WILKS, 2006;
GNEITING and RAFTERY, 2007) and average widths of
66.7% and 90% central prediction intervals are computed
and compared for the corrected and raw ensemble. In the
latter case, the ensemble of forecasts corresponding to a
given location and time is considered as a statistical sam-
ple and the sample quantiles are calculated according to
HYNDMAN and FAN (1996, Definition 7). Additionally,
the ensemble mean and median are used to consider point
forecasts, which are evaluated with the use of mean abso-
lute errors (MAE) and root mean square errors (RMSE).
We remark that for MAE and RMSE, the optimal point
forecasts are the median and the mean, respectively
(GNEITING, 2011; PINSON and HAGEDORN, 2012). Fur-
ther, given a cumulative distribution function (CDF)
F(y) and a real number x, the CRPS is defined as

crpsðF ; xÞ :¼
Z 1

�1
ðF ðyÞ � 1fy�xgÞ2dy:

The mean CRPS of a probability forecast is the average
of the CRPS values of the predictive CDFs and corre-
sponding validating observations taken over all locations
and time points considered. For the raw ensemble, the
empirical CDF of the ensemble replaces the predictive
CDF. The coverage of a 1� að Þ100%; a 2 ð0; 1Þ central
prediction interval is the proportion of validating
observations located between the lower and upper a/2
quantiles of the predictive distribution. For a calibrated
predictive PDF this value should be around (1 – a)100%.

4 Results

The data analysis provided below was performed using
the ensembleBMA package in R (FRALEY et al., 2009,
2011). As a first step, the length of the appropriate train-
ing period was determined, then the performances of the
BMA post-processed ensemble forecasts corresponding
to models (3.1) and (3.2) were analyzed.
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Figure 2: Plume diagram of ensemble forecast of 10 meter wind
speed for Debrecen initialized at 18 UTC, 22.10.2010 (solid line:
control; dotted line: odd numbered members; dashed line: even
numbered members).
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4.1 Training period

We proceed in the same way as RAFTERY et al. (2005)
and determine the length of the training period to be used
by comparing the MAE values of BMA median
forecasts, the RMSE values of BMA mean forecasts,
the CRPS values of BMA predictive distributions and
the coverage and average widths of 90% and 66.7%
BMA central prediction intervals for training periods of
length 10,11,...,60 calendar days. In order to ensure the
comparability of the results, we consider verification
results from 02.12.2010 to 25.03.2011 (114 days).

Consider first the two-group model (3.1). In Fig. 4,
the average widths and coverage of 66.7% and 90%
BMA central prediction intervals are plotted against the
length of the training period. As the average widths of
the central prediction intervals show an increasing trend,
shorter training periods yield sharper forecasts. On the
other hand, the coverage of 66.7% and 90% central
prediction intervals also increase, but not monotonously.
For short training periods, the coverage of the 66.7% cen-
tral prediction interval oscillates around the correct
66.7%, but for training periods greater than around

20 days, it stays above this level. The coverage of the
90% central prediction interval stabilizes above the cor-
rect 90% for training periods longer than approximately
25 days. Hence, to have calibrated forecasts, one should
not choose a training period less than 25 days, while
training period lengths much higher than 25 days should
be also avoided as the increasing coverage of the central
prediction intervals, away from the nominal value, results
in overdispersion (so this diagnostic would rather suggest
to use values around 25).

Fig. 5 shows CRPS values of the BMA predictive dis-
tribution, MAE values of the BMA median forecasts and
RMSE values of the BMA mean forecasts as function of
the training period length. The CRPS, MAE and RMSE
take their minima at around day 28–30. The correspond-
ing values are 0.7388, 1.0472 and 1.3675, respectively.
This means that for model (3.1), a 28 day training period
seems to be reasonable (choosing the smallest value of
the interval mentioned above), while an extension of
the number of training days beyond 30 leads to inferior
results.

Similar conclusions can be drawn from Figs. 6 and 7
for the three-group model (3.2). In this case, the 66.7%
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Figure 3: Ensemble BMA PDFs (overall: thick black line; control: red line; sum of exchangeable members in (a) and (b): light blue line; in
(c) and (d): green (odd members) and blue (even members) lines), ensemble members (circles with the same colours as the corresponding
PDFs), ensemble BMA median forecasts (vertical black line), verifying observations (vertical orange line) and the first and last deciles
(vertical dashed lines) for wind speed in Debrecen for models (3.1): (a) 30.12.2010, (b) 17.03.2011; and (2): (c) 30.12.2010, (d) 17.03.2011.

4 S. Baran et al.: Statistical post-processing of probabilistic wind speed forecasting in Hungary Meteorol. Z., 22, 2013



eschweizerbart_xxx

10 20 30 40 50 60

2.
58

2.
60

2.
62

2.
64

Average Width of BMA 67% Prediction Interval

Days in Training Period

A
ve

ra
ge

 W
id

th
 (

m
/s

)

10 20 30 40 50 60

4.
42

4.
46

4.
50

4.
54

Average Width of BMA 90% Prediction Interval

Days in Training Period

A
ve

ra
ge

 W
id

th
 (

m
/s

)

10 20 30 40 50 60

0.
66

5
0.

67
5

0.
68

5

Coverage of BMA 67% Prediction Interval

Days in Training Period

C
ov

er
ag

e

10 20 30 40 50 60

0.
88

5
0.

89
5

0.
90

5
0.

91
5

Coverage of BMA 90% Prediction Interval

Days in Training Period

C
ov

er
ag

e

Figure 4: Average widths and coverages of 66.7% and 90% BMA central prediction intervals corresponding to the two-group model (3.1)
for various training period lengths.
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Figure 5: CRPS of the BMA predictive distribution, MAE values of the BMA median and RMSE values of the BMA mean forecasts
corresponding to the two-group model (3.1) for various training period lengths.
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Figure 6: Average widths and coverages of 66.7% and 90% BMA central prediction intervals corresponding to the three-group model (3.2)
for various training period lengths.
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Figure 7: CRPS of the BMA predictive distribution, MAE values of the BMA median and RMSE values of the BMA mean forecasts
corresponding to the three-group model (3.2) for various training period lengths.
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and 90% central prediction intervals are slightly narrower
than the corresponding intervals of model (3.1) as their
coverage stabilizes above the correct 66.7% and 90%
for training periods longer than about 20 and 25 days,
respectively. The CRPS, MAE and RMSE plotted in
Fig. 7 reach their minima of 0.7372, 1.0452 and 1.3632,
respectively, 25–35 days into the training period. After
35 days, there is a slight, but rather monotonous increase
in every measure. Moreover, for the 66.7% and 90% cen-
tral prediction intervals, the shorter period is better in the
25–35 day range in terms of sharpness and therefore, the
lower part of this interval seems appropriate for the three-
group model. When comparing the diagnostic results for
the two-group and three-group models, the choice
between 25 and 30 days seems appropriate for the length
of the training period. Finally, we have chosen the training
period of length 28 days for both BMA models. It is
mentioned here that the decision on the training period
is subject to sampling variability and this is taken
into account as much as possible in the final choice.

4.2 Predictions using BMA post-processing

According to the results of the previous subsection, to
test the performance of BMA post-processing on the
11 member ALADIN-HUNEPS ensemble, we use a
training period of 28 calendar days. In this way ensemble

members, validating observations and BMA models are
available for 146 calendar days (on 20.11.2010 all
ensemble members are missing).

First we check the calibration of BMA post-processed
forecasts with the help of probability integral transform
(PIT) histograms. The PIT is the value of the BMA pre-
dictive cumulative distribution evaluated at the verifying
observations (RAFTERY et al., 2005). The closer the his-
togram is to the uniform distribution, the better the cali-
bration is. In Fig. 8, the PIT histograms corresponding to
two- and three-group BMA models (3.1) and (3.2) are
displayed. A comparision of the verification rank histo-
gram of the raw ensemble (see Fig. 1) shows that post-
processing improves the statistical calibration of the fore-
casts substantially. However, these PIT histograms are
still not perfect as e.g., a Kolmogorov-Smirnov test
rejects uniformity both for the two- and for the three-
group model. As both corresponding p-values are 0:02,
there is no difference between PITs of the two-group
and of the three-group model.

Table 1 gives the coverage and average widths of
66.7% and 90.0% central prediction intervals calculated
using models (3.1) and (3.2), and the corresponding mea-
sures calculated from the raw ensemble. As before, in the
latter case the ensemble of forecasts corresponding to a
given location and time is considered as a statistical sam-
ple from which the central prediction intervals are
derived. The BMA central prediction intervals calculated

Table 1: Coverage and average widths of central prediction intervals.

Coverage (%) Average Width (m/s)

Interval 66.7% interval 90.0% interval 66.7% interval 90.0% interval

Raw ensemble 38.70 55.14 1.4388 2.2001
BMA model (1) 68.08 90.34 2.6359 4.5297
BMA model (2) 68.36 90.21 2.6153 4.4931
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Figure 8: PIT histograms for BMA post-processed forecasts using the two-group (3.1) and three-group (3.2) models.
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from both models are approximately twice as wide as the
corresponding intervals of the raw ensemble. This comes
from the small dispersion of the raw ensemble as seen in
the verification rank histogram of Fig. 1. Concerning cal-
ibration, one can observe that the coverage of both BMA
central prediction intervals are rather close to the correct
coverage, while the coverage of the central prediction
intervals calculated from the raw ensemble are quite poor.
In addition to the almost uniform PIT histogram, this
shows that BMA post-processing greatly improves cali-
bration. Further, the BMA model (3.2) yields slightly
sharper predictions, but there is no great difference
between the coverage of the two BMA models.

In Table 2, scores for the different probabilistic fore-
casts are given. Verification measures of probabilistic
forecasts and point forecasts calculated using BMA mod-
els (3.1) and (3.2) are compared to the corresponding
measures calculated for the raw ensemble. By examining
these results, one can clearly observe the advantage of

BMA post-processing which resulted in a significant
decrease in all verification scores. Further, the BMA
median forecasts yield slightly lower MAE values than
the BMA mean forecasts for both models, while in the
case of RMSE values the situation is just the opposite,
which is a perfect illustration of the theoretical results
of GNEITING (2011) about the optimality of these verifi-
cation scores. Finally, model (3.2) distinguishing three
exchangeable groups of ensemble forecasts slightly out-
performs model (3.1).

Fig. 9 shows the BMAweights corresponding to mod-
els (3.1) and (3.2). Examining the behaviour of the
weight, x of the control member of the ensemble in
the two-group model (3.1), one can observe that in
84.56% of the cases, there is a real mixture of gamma
distributions (none of the groups has a weight which is
almost 1). The values of x which are close to 1 corre-
spond to a time interval 17.11.2010 – 09.12.2010 when
the control member of the ensemble gives much better

Table 2: Mean CRPS of probabilistic, MAE and RMSE of deterministic forecasts.

Mean CRPS (m/s) MAE (m/s) RMSE (m/s)

median mean median mean

Raw ensemble 0.8599 1.1215 1.1090 1.4634 1.4440
BMA model (3.1) 0.7577 1.0678 1.0763 1.4213 1.4067
BMA model (3.2) 0.7556 1.0643 1.0749 1.4153 1.4018
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Figure 9: BMA weights of the two-group (3.1) and three-group (3.2) models.
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forecasts than the ten exchangeable ensemble members.
This can clearly be seen from Table 3 where the MAE
and RMSE values of the particular ensemble members
are given for the above mentioned period. In all of these
23 subsequent days, x > 0.995 except for 25.11.2010
when x = 0.9873. The situation is quite different in the
case of the three-group model (3.2) where the weight,
xc of the control is close to 1 (greater than 0.98) only
on 7 days. Thus in the remaining cases (95.30%), a real
mixture of gamma distributions are present. Further,
observe that there are 55 days (36.91%) when all BMA
weights are positive, the even numbered exchangeable
members have nearly zero weights (less than 0.001) in
45 cases (30.20%) at the beginning of the considered
time period, while the odd numbered exchangeable mem-
bers are almost zero in 53 cases (35.57%), and which
occur mainly at the end of this period.

5 Conclusions

In the present study, the BMA ensemble post-processing
method is applied to the 11 member ALADIN-HUNEPS
ensemble of the HMS to obtain 42 hour calibrated predic-
tions for the 10 meter wind speed. Two different BMA
models are investigated. One assumes two groups of
exchangeable members (control and forecasts from per-
turbed initial conditions), while the other considers three
(control and forecasts from perturbed initial conditions
with positive and negative perturbations). For both mod-
els, a 28 days training period is suggested. The compar-
ison of the raw ensemble and of the probabilistic
forecasts shows that the mean CRPS values of BMA
post-processed forecasts are considerably lower than the
mean CRPS of the raw ensemble. Furthermore, the
MAE and RMSE values of BMA point forecasts (median
and mean) are also lower than the MAEs and RMSEs of
the ensemble median and of the ensemble mean. The cal-
ibration of BMA forecasts is nearly perfect as the cover-
age of the 66.7% and 90.0% central prediction intervals
are very close to the nominal levels. The three-group
BMA model slightly outperforms the two-group one
and in almost all cases yields a real mixture of gamma
distributions.

We therefore conclude that as the BMA post-process-
ing of the ALADIN-HUNEPS wind speed ensemble
forecasts significantly improves the calibration and accu-
racy of point forecasts, its operational application is
worth considering.
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KONV-2012-0001 project. The project has been sup-
ported by the European Union and co-financed by the
European Social Fund. The authors are indebted to Til-
mann Gneiting for his useful suggestions and remarks
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