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ABSTRACT: In this study, the possibility of preparation and application of highly porous
silica aerogel-based bioactive materials are presented. The aerogel was combined with
hydroxyapatite and β-tricalcium phosphate as bioactive and osteoinductive agents. The
porosity of aerogels was in the mesoporous region with a maximum pore diameter of 7.4
and 12.7 nm for the composite materials. The newly developed bioactive materials were
characterized by SEM. The in vitro biological effect of these modified surfaces was also
tested on SAOS-2 osteogenic sarcoma cells by confocal laser scanning microscopy.
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1 Introduction

Recently, bone replacement has been an effective solution
for the treatment of bone illnesses healing spontaneously
very slowly or not healing at all. For the treatment of bone
defects, various animal- or human-derived and artificial
materials can be used. Over the past few years, remarkable
progress has been achieved in the field of synthetically
produced biomaterial [1]. Nowadays, in dentistry, osseoin-
ductive and osseoconductive materials are widely used to
fill alveolar bone defects, as implantable scaffolds to satisfy
the customers’ expectations [2–3].
Inorganic materials, mostly calcium phosphates [4] are
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used in bone surgery [5], which are in addition bioactive
and osteoinductive, so they can be used as scaffolds. The
stages that are involved in forming the bone bond of
bioactive glasses and bioactive glass–ceramics were
summarized by Hench [2,6]. The surface characteristics
of commercially available bioactive glasses and ceramics
are usually modified [7]. Functional forms of these surfaces
are often biologically active calcium phosphate layers, like
hydroxyapatite (HA) which ensures the bonding interface
with tissues [8]. The HA layers are structurally and
chemically identical with the mineral phase of bone and
provides the interfacial bonding [9]. Various bioactive
material types are used in orthopaedic surgery, such as
45S5 Bioglass®, 58S, 77S glasses [10] or glass–ceramics in
different systems [11]. Metals with ceramic surface coat-
ings can also be used [12].
Natural-based materials, including polysaccharides

(chitin/chitosan, hyaluronic acid, alginate) or proteins
(soy, collagen, fibrin gels) [8] may serve as a framework
for porogen materials, e.g. chitosan powder, which can be
incorporated in bone cement aiming to improve its
mechanical properties [13].
Recently, more and more sol-gel derived silicon-

substituted biomaterials came into focus of interest.
Silicon-substituted HA has been used in orthopedic, dental
and maxillofacial surgery as a bone substitute. This
bioactive material is an attractive and innovative solution
for enhancing bone tissue growth rate, thereby improving
early mechanical bone-fixation and thus leading to an
enhancement in the lifetime of implants [14]. The
requirement for artificial bone substitute materials is the
appropriate pore size [15–16].
The aim of the study was to prepare mesoporous silica

containing biomaterials for dental application, using HA
and β-tricalcium phosphate (β-TCP), as bioactive agents.

2 Materials and methods

2.1 Reagents

Tetramethoxysilane (Sigma-Aldrich, St. Louis, MO, USA),
acetone, ammonia solution, methanol (Molar Chemicals,
Budapest, Hungary), dried dimethyl sulfoxide (DMSO)
(VWR, Debrecen, Hungary), microcrystalline cellulose for
column chromatography (20–160 μm in diameter, Merck,
Darmstadt, Germany), β-TCP, HA and nanopowder HA
(< 200 nm (BET, Sigma-Aldrich, St. Louis, USA)) were

used as received. Water was triple deionized and carbon
filtered. All chemicals were of reagent grade.

2.2 Synthesis of aerogels with bioactive modifications

For preparation of our samples two different solutions were
prepared. The first solution (A), consisted of methanol
solution (10 mL) of tetramethoxysilane (TMOS) (3.00
mL). The second solution (B) consisted of methanol (10.8
mL), dried DMSO (1.2 mL), water (1.6 mL), and aqueous
ammonia solution (7 mol/L, 1.7 mL) and microcrystalline
cellulose (1 g). To solution B, β-TCP (1.00, 0.25, or 0 g)
and HA (0, 0.75, or 1.00 g) were added, respectively, and
homogenized carefully. Solutions A and B were combined
and homogenized again, then poured in plastic molds,
where they solidified to alcogels in approximately 30 min.
The molds were made of poly(vinyl chloride) (PVC) tubes,
and the bottoms were covered by glass slides. A thin layer
of commercial silicon was sprayed onto the inner walls
prior to use.
Alcogels were dried to aerogels in a custom-designed

autoclave by using supercritical carbon dioxide at 80°C.
The samples were heat-treated in a furnace (Wise Therm
FM-PH20, Daiham Sci. Co, Korea) with a temperature
gradient of 500°C and 1000°C in 100°C increments.
Approximately 1 mm thick discs were cut from the sintered
monoliths with a serrated diamond hard tissue Leitz 1600
microtome (Ernst Leitz Wetzlar GmbH, Wetzlar, Ger-
many).

2.3 Pore size analysis

The porosities of samples were characterized by nitrogen
adsorption porosimeter (NOVA® 2200e, Quantachrome
Instr., Boynton Beach, Florida, USA). Samples were
measured out into a glass container (approx. 45 mg). The
samples were vacuum degassed at 300°C for 3 h before the
nitrogen gas sorption–desorption process.

2.4 Scanning electron microscopy (SEM)

SEM studies were performed by a Hitachi S-4300
instrument (SEM) equipped with a Bruker energy dis-
persive X-ray spectroscope (Hitachi Science Systems, Ltd.,
Japan). The surfaces of modified aerogels were covered by
a sputtered gold conductive layer, and 5–10 kVaccelerating
voltage was used for taking high resolution electron
micrographs.

2 Front. Mater. Sci.

1

5

10

15

20

25

30

35

40

45

1

5

10

15

20

25

30

35

40

45

FMS-14231-Ka.3d 27/2/014 11:15:13



2.5 Cell culture

SAOS-2, malignant osteogenic sarcomas (ATCC® HFB-
85™, Rockville, MD, USA) were cultured in low glucose
Dulbecco’s modified Eagle’s medium (DMEM), supple-
mented with 10% fetal bovine serum (FBS), 1% penicillin–
streptomycin (Sigma-Aldrich, St. Louis, MO, USA), and
1% GlutaMax (Gibco, Life Technologies, Grand Island,
NY, USA). Cell cultures were maintained at 37°C under
humidified air containing CO2 (5%). After trypsinization
ostesarcomas (150,000 per sample disc) were seeded onto
the sliced discs and the coverslip (12 mm) as control to
confluency.

2.6 Confocal laser scanning microscopy (CLSM)

The four-day cultured cells were fixed with aceton and
stained using Alexa Fluor 488 phalloidin, and propidium
iodide (PI) (Molecular Probes, Life Technologies, Grand
Island, NY, USA). Cells were washed three times in
phosphate buffered saline (PBS) buffer (0.15 mol/L NaCl,
3.2 mmol/L KCl, 8.7 mmol/L Na2HPO4 � 12 H2O, 1.7
mmol/L KH2PO4) at pH 7.4 and incubated with fluorescent
dyes (5 unit/well) at room temperature for 30 min in the
dark. Thereafter cells were washed three times in PBS and
identified using Olympus FluoView-1000 laser scanning
microscope (Olympus Imaging America Inc., Center
Valley, PA, USA). Images were obtained of control, A
and C samples.

3 Results and discussion

3.1 Synthesis of aerogels

Aerogel composite samples A (containing 1 g β-TCP, 0 g
HA), B (0.25 g β-TCP, 0.75 g HA) and C (0 g β-TCP, 1 g
HA) were received after supercritical drying of the
corresponding alcogels (Fig. 1). The aim of the preparation
of aerogel composites and nanocomposites by the sol-gel
technique was to provide a biocompatible matrix loaded
with bioactive materials, in a manner, which preserves the
porous 3D structure of the original gel state, and provides
highly permeable and dimensionally stable structures for a
potential biomedical use. Since aerogels are fairly sensitive
and delicate materials, all of our samples were sintered to
reach a mechanically stable state. The samples shrunk
significantly in the range of 950°C and 1000°C (Fig. 2),
which was in good accordance with previous thermogravi-
metric measurements [1].

3.2 Results of porosity measurements

Specific surface areas and average pore diameters are
presented in Table 1. The average pore diameters clearly
indicate that these bioactive modified aerogels belong to
the group of mesoporous materials [16]. Samples A and C
showed similar specific surface areas and pore diameters.
Sample B was significantly different in its physisorption
properties from samples A and C. Sample B contained a
mixture of 0.25 g of β-TCP and 0.75 g of HA, and has
shrunk more intensively, which resulted in a lower specific
surface area and average pore diameter due to the
simultaneous embedding of both of β-TCP and HA
bioactive materials. Sample C, which contained nano-
sized HA only, showed the highest porosity. As a
consequence of its ability to be uniformly distributed in
the matrix, in contrast to micron-sized inorganic fillers, this
may form macroscopic inhomogeneities.

3.3 Morphology of aerogel-based bioactive materials

SEM images of modified aerogels are presented in Fig. 3.
Sample A proved to be more vulnerable to mechanical
stress than samples B and C. Its structure was damaged
more than that of the others, because of the lower surface
adhesion and less reinforcing effect of high-melting point
TCP crystals compared to either micron- or nano-sized HA
particles. Aggregation of β-TCP grains can be observed
inside the holes. Samples B and C showed more compact
structure on the SEM picture; both of them contained
hydroxyapatite, which developed stronger adhesion with
the matrix. Sample C contained nano-sized HA distributed
homogenously in the matrix, without forming a separated
phase. The micron-sized inorganic fillers HA and β-TCP in
sample B formed separated phases inside the matrix.

Fig. 1 Aerogel composites A (containing 1 g β-TCP, 0 g HA); B
(0.25 g β-TCP, 0.75 g HA) and C (0 g β-TCP, 1 g HA) received
after supercritical drying.
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However, HA reacted with silica matrix on the grain
boundaries leading to a lower melting region, and it
resulted in a higher degree of shrinking on heating at higher
temperatures. The complete embedding of the nano-HA
particles prevented autonomous thermal behaviours at the
phase borders, and the reinforced nano-composite behaved
more like a homogeneous aerogel monolith. It resulted in
an increased mechanical strength with the preservation of
high porosity. The elemental composition of the modified
aerogels was confirmed by X-ray fluorescence elemental
analyses.

3.4 Cell attachment, confocal microscopy experiment

The prerequisite for successful osseointegration of the
implant in vivo is the attachment of stem cells/precursor
cells to the implant surface (reviewed in Ref. [17]). In order
to demonstrate cellular activities including cell spreading
and proliferation of SAOS-2, malignant osteosarcoma cell
line was used as our model system. The cells plated and
cultured on coverslip (control) and modified aerogels
samples A and C. We could not investigate the cell
behaviour on sample B because it broke into small pieces
during slicing. Visualization of the cytoskeleton (phalloi-
din) and nucleus (propidium iodide) by confocal laser

scanning microscopy demonstrated that the osteosarcomas
are spreading, and remained as coherent cells (Fig. 4). The
behaviour of the osteosarcomas on modified surfaces is
very similar to that observed on coverslip, however, on
sample C, there were areas not covered by cells. These
“not-covered-areas” look specific for sample C. These
areas could be due to the differences of the charging and/or
the surface structure between the two samples. However,
further experiments are needed to clarify this observation
and to clear up the reasons.

4 Conclusions

In this study, aerogel composite samples A (containing 1 g
β-TCP, 0 g HA), B (0.25 g β-TCP, 0.75 g HA) and C (0 g β-
TCP, 1 g HA) were prepared and examined by cell
attachment, porosity and scanning measurements. Sample
C, which contained nano-sized HA only, showed the
highest porosity. As a consequence of the nanoparticles’
ability to be uniformly distributed in the matrix, composite
C showed the lowest thermal shrinking and good
mechanical strength, in contrast to other micron-sized
inorganic fillers, which may form agglomerates in the
matrix. Sample A proved to be more vulnerable to

Fig. 2 Standard aerogel and modified aerogels (a) before and (b) after heat-treatment. Left: 25°C; right: 1000°C. The yellowish sample
in picture (a) is the basic aerogel, and the others are bioactive modified aerogels.

Table 1 Surface area (BET) and average pore diameter (BJH) data of bioactive modified aerogels (R2 is the linear regression coefficient of BET
determination)
Sample BET /(m2$g–1) BJH /nm R2

A 118 12.7 0.9999

B 78 7.4 0.9997

C 125 12.7 0.9998
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Fig. 3 SEM images and X-ray fluorescence spectra of the surface of aerogel-based bioactive materials: (a) sample A; (b) sample B; (c)
sample C (bar: 50 μm).
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mechanical stress than samples B and C. The latter one
presented more compact structure on the SEM picture; both
B and C contained HA, which developed strong adhesion
with the matrix. SAOS-2 cells were plated and cultured on
glass (control) and modified aerogel samples A and C. The
behaviour of the osteosarcomas on modified aerogels was
very similar to that observed on glass slide. Based on these
measurements, we have demonstrated that these aerogel
composite samples are biocompatible and non-toxic for
this cell type, so it might find practical applications in the
dental field in the future.
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